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Ensemble Machine Learning
Approach Improves Predicted Spatial
Variation of Surface Soil Organic
Carbon Stocks in Data-Limited
Northern Circumpolar Region
Umakant Mishra1*, Sagar Gautam1, William J. Riley2 and Forrest M. Hoffman3

1Bioscience Division, Sandia National Laboratory, Livermore, CA, United States, 2Earth and Environmental Sciences, Lawrence
Berkeley National Lab, Berkeley, CA, United States, 3Climate Change Institute, Oak Ridge National Laboratory, Oak Ridge, TN,
United States

Various approaches of differing mathematical complexities are being applied for spatial
prediction of soil properties. Regression kriging is a widely used hybrid approach of
spatial variation that combines correlation between soil properties and environmental
factors with spatial autocorrelation between soil observations. In this study, we
compared four machine learning approaches (gradient boosting machine,
multinarrative adaptive regression spline, random forest, and support vector machine)
with regression kriging to predict the spatial variation of surface (0–30 cm) soil organic
carbon (SOC) stocks at 250-m spatial resolution across the northern circumpolar
permafrost region. We combined 2,374 soil profile observations (calibration datasets)
with georeferenced datasets of environmental factors (climate, topography, land cover,
bedrock geology, and soil types) to predict the spatial variation of surface SOC stocks.
We evaluated the prediction accuracy at randomly selected sites (validation datasets)
across the study area. We found that different techniques inferred different numbers of
environmental factors and their relative importance for prediction of SOC stocks.
Regression kriging produced lower prediction errors in comparison to multinarrative
adaptive regression spline and support vector machine, and comparable prediction
accuracy to gradient boosting machine and random forest. However, the ensemble
median prediction of SOC stocks obtained from all four machine learning techniques
showed highest prediction accuracy. Although the use of different approaches in spatial
prediction of soil properties will depend on the availability of soil and environmental
datasets and computational resources, we conclude that the ensemble median
prediction obtained from multiple machine learning approaches provides greater
spatial details and produces the highest prediction accuracy. Thus an ensemble
prediction approach can be a better choice than any single prediction technique for
predicting the spatial variation of SOC stocks.
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INTRODUCTION

High latitude permafrost region soils store large stocks of soil
organic carbon (SOC) due to multiple cryopedogenic processes
operating over long time scales (Ping et al., 2008; Tarnocai et al.,
2009; Hugelius et al., 2014; Ping et al., 2015). Enhanced rate of
climate warming at high latitudes is causing widespread
degradation and thawing of permafrost soils and subsequent
release of greenhouse gases such as CO2 and CH4 to the
atmosphere (Romanovsky et al., 2010; Rowland et al., 2010;
Biskaborn et al., 2019). As a significant portion of permafrost
region SOC stocks has the potential to be emitted as greenhouse
gases under changing climate (McGuire et al., 2016; McGuire
et al., 2017), permafrost region SOC stocks are a vulnerable
component of the global carbon cycle. Current earth system
models show large uncertainty both in baseline SOC stock
representations and their release to the atmosphere under
changing climate (Mishra et al., 2013; Schuur et al., 2015;
McGuire et al., 2016). Reliable estimates of the magnitude and
spatial variation of permafrost region SOC stocks are essential to
better understand the environmental controls and to reduce the
uncertainty in predicting permafrost region carbon -climate
feedbacks. The magnitude of SOC stored in the soil per unit
of land area is highly variable in permafrost region soils (Mishra
and Riley, 2015; Mishra et al., 2017), as SOC stocks depend on
various environmental factors such as soil type, land use,
topographic features, and climatic conditions, which are site
specific. Knowledge of soil and site-specific environmental
controllers is essential to make reliable spatial predictions of
SOC stocks.

In spatial prediction of soil properties, mathematical or
statistical relationships are usually developed using limited
number of soil observations and environmental predictors.
The derived relationship is then applied with environmental
predictors across the study area to produce spatially-explicit
estimates of soil properties. A number of spatial prediction
approaches have been used to predict the spatial variation of
SOC stocks depending upon the available data density and
environmental data of soil-forming factors (Mishra and Lal,
2010; Minasny et al., 2013). Spatial prediction techniques can
broadly be categorized into three groups that use: 1)
environmental correlation between soil C and environmental
factors (Martin et al., 2011; Zhang et al., 2011); 2) spatial
autocorrelation among soil C observations (Mishra et al., 2009;
Cambule et al., 2013); and 3) hybrid approaches that combine
environmental correlation and spatial autocorrelation (Martin
et al., 2014; Meng, 2014). Among spatial prediction approaches
used to predict the spatial variation of SOC stocks, multiple linear
regressions (group 1 that uses environmental correlation) and
ordinary kriging (group 2 that uses spatial autocorrelation) are
the most commonly used techniques in the literature, primarily
because of their simplicity in interpretation and ease of use.
However, the most accurate predictions (lowest prediction
errors) have been achieved through the use of hybrid
approaches [e.g., regression kriging (Hengl et al., 2007;
Minasny et al., 2013; group 3] that combined environmental
correlation and spatial autocorrelation.

In addition to the above-mentioned three groups of spatial
prediction, methods with increasing computational
complexity are being used to predict the spatial variation of
soil properties. For example, machine-learning based spatial
modeling techniques such as random forest (Sreenivas et al.
2016; Siewert 2018), neural networks (Li et al., 2013), and
rule-based models (Viscarra Rossel and Webster, 2012;
Lacoste et al., 2014) have been used to capture non-linear
relationships between soil C and environmental factors. These
machine learning approaches are being increasingly applied
for predicting soil properties including SOC stocks. More
recently, ensembles of multiple approaches are also being
applied to improve the spatial prediction of SOC stocks
(Vasat et al., 2017; Chen et al., 2020). The use of average
or median predictions from ensemble of different approaches
improves spatial prediction of soil properties and the inter
quartile range of ensemble predictions provides estimates of
uncertainty ranges due to different model structures
(McGuire et al., 2016; McGuire et al., 2017; Shi et al.,
2018). Further, the spatial distribution of uncertainty
estimates can also inform future sampling locations to
reduce the existing uncertainty.

Permafrost affected soils show vast spatial and vertical
heterogeneity of soil properties (Johnson et al., 2011; Siewert
et al., 2015; Beer, 2016), and therefore areal estimates of
permafrost region soil properties, including SOC stocks, could
benefit from advanced spatial modeling approaches. However,
application of geospatial approaches in the permafrost region has
been limited due to low sample density and limited availability of
spatially resolved environmental datasets (Mishra et al., 2013;
Siewert, 2018). Recently, spatial predictions of soil properties
using geospatial and remote sensing information have been
applied at local to regional scales to account for and better
represent the spatial variation of permafrost affected soil
properties (Pastick et al., 2014; Bartsch et al., 2016; Ding et al.,
2016; Siewert, 2018). These high-resolution predictions using a
variety of geospatial techniques have demonstrated promising
results in the permafrost terrain.

Multiple studies have documented that the regression kriging
approach produces lower prediction errors (Hengl et al., 2007;
Kumar et al., 2012; Meng, 2014) in comparison to other spatial
prediction approaches. We designed this study to compare the
prediction accuracy of regression kriging with different machine
learning approaches. We hypothesized that because regression
kriging approach captures both spatial autocorrelation and
environmental correlation, it will produce lower prediction
errors in comparison to machine learning approaches, which
capture mainly non-linear relations between soil properties and
environmental factors. The specific objectives in this study are to
1) compare prediction accuracy of machine learning approaches
with regression kriging, 2) determine the importance of
environmental predictors across different spatial prediction
approaches, 3) evaluate the accuracy of individual and
combined (ensemble) ML approaches, and (4) create a high-
resolution estimate of surface (0–30 cm) northern circumpolar
region SOC stocks using an ensemble machine learning
approach.
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MATERIALS AND METHODS

Spatial Variation in Environmental Factors
of the Permafrost Region
A digital elevation model with 250-m spatial resolution was
obtained from the US Geological Survey (Danielson and
Gesch, 2011). Elevations ranged from sea level to 6,130 m in
the northern circumpolar region. The digital elevation model was
used to calculate seven major topographic attributes (elevation,
slope, aspect, flow accumulation, topographic wetness index,
sediment transport index, and stream power index) to evaluate
their use in predicting the spatial variation of surface SOC stocks.
Average annual (1960–1990) precipitation and temperature data
at 1-km spatial resolution were obtained from the global climate
data of Hijmans et al. (2005). This interpolated dataset was
generated for global land surfaces using latitude, longitude and
elevation as independent variables. In the northern circumpolar
region, average annual precipitation ranged from 52 mm in the
Russian Arctic Desert to 2,956 mm in southeast Greenland.
Average annual temperatures were lowest in northern Canada
and Greenland (−28° to −20°C) and highest in southern Canada
(3° to –10°C).

Global land cover data at 250-m spatial resolution were
obtained from the European Space Agency (Glob cover, 2009).
Of the total land area in the northern circumpolar region,
Needleleaf mixed forest covered 31%, sparse vegetation
covered 27%, permanent snow and ice covered 11%, and
shrub land covered 7%. The bedrock geology data was
obtained from the global lithological map produced by
Hartmann and Moosdorf (2012). In the northern circumpolar
region, the largest proportion of land area hadmixed sedimentary
rocks (24.7%), followed by siliciclastic sedimentary rocks (19%),
metamorphic rocks (12.4%), and ice and glaciers (12.1%). The
smallest proportions of land area were underlain by evaporates
(0.05%), pyroclastics (0.37%), and acid volcanic rocks (0.73%).
For this study, we resampled all the environmental data into a
common spatial resolution of 250 m. Continuous environmental
variables were resampled using bilinear interpolation and
categorical variables were resampled using nearest neighbor
resampling technique by using the resample function of
ArcGIS (ArcGIS version 10.4, Environmental Systems
Research Institute, Inc., Redlands, CA, United States). The soil
type information of the study area was obtained from the soil
order map of Tarnocai et al. (2009). The largest soil area in the
study domain was under Gelisols (57%), followed by Histosols
(5%), and remaining mineral soils Spodosols, Inceptisols,
Mollisols, Entisols, Alfisols, Andisols, and Aridisols covered
38% soil area.

Soil Organic Carbon Profile Observations
and Their Distribution Across
Environmental Factors
We compiled and updated the existing SOC data for permafrost
affected soils from various sources. In addition to the SOC data
used by Michaelson et al. (2013), Hugelius et al. (2014), Palmtag
et al. (2015), Siewert et al. (2015), and Vitharana et al. (2017), we

collected additional georeferenced SOC profile observations from
individual investigators from Canada, Russia, South Korea, and
Sweden. Figure 1 shows the spatial distribution of SOC profile
observations across the study area.

The collected soil observations are broadly representative of
the heterogeneity of environmental conditions of the northern
circumpolar region permafrost affected soils. The SOC profile
observations represented 13 different land cover types. The
largest number of samples were from the Needleleaf forest
land cover type (34.3%), followed by sparse vegetation
(25.5%), and mosaic forest shrubland vegetation (10.5%). The
smallest number of samples were from broadleaf deciduous forest
(0.12%), followed by broadleaf evergreen forest (0.17%), and
shrublands (0.21%). The SOC observations captured a large
range of climatic factors: mean annual precipitation ranged
from 820 to 1,625 mm and mean annual temperature ranged
from −20° to 6°C. The SOC observations were distributed from
sea level to 3,000 m in elevation and captured a large range of
slope angles (0.5 to 44.5°). SOC samples covered 11 of 14 bedrock
geology types in the circumpolar region. The largest number of
samples were from siliciclastic sedimentary rocks (34.5%), mixed
sedimentary rocks (25.3%), and unconsolidated sediments
(8.7%). The smallest number of samples were from basic
plutonic rocks (0.25%), intermediate plutonic rocks (0.3%),
and acid volcanic rocks (1%).

Spatial Prediction of SOC Stocks
Regression Kriging
Regression Kriging is a widely used spatial interpolation
technique in soil science, which combines a linear regression
of dependent variable such as SOC stocks with environmental
variables with kriging of the regression residuals (Hengl et al.,
2007; Keskin and grunwald, 2018; Wu et al., 2019). In this
method, the SOC stocks at an unsampled location are
predicted by adding the interpolated regression residuals into
the regression predicted SOC stocks. This approach can be
summarized by:

z^LRK(s0 ) � m^
MLR(s0) + e^OK(s0)

Where, z^LRK(s0) is the estimated SOC stocks at location s0,
m^

MLRis the value predicted from multiple linear regressions
(MLR), and e^OK is the kriged values of the MLR residuals at
point S0 using ordinary kriging. In summary, in this study the
forward stepwise multiple linear regression was used to identify
the statistically significant predictors of SOC stocks of the study
area. Then Ln-transformed SOC stocks model residuals were
calculated for the sample locations and covariance structure of
the model residuals was fitted using a variogram model.
Regression residuals were then interpolated using ordinary
kriging and added to the estimated Ln-transformed SOC
stocks regression model surface (Mishra et al., 2012). Several
recent studies have also applied a variant of this technique using
a geographically weighted regression approach to model the
spatially varying regression relationships between the SOC
stocks and its environmental controllers (Zhang et al., 2011;
Mishra and Riley, 2015; Mitran et al., 2018).
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Machine Learning Approaches
Machine learning approach is a family of algorithms which do not
assume any mechanistic nature to the data and instead seek to
“learn” a function that best maps input parameters to an output.
We used gradient boosting machine (GBM), multinarrative
adaptive regression spline (MARS), support vector machine
(SVM), and random forests (RF) machine learning approaches
to predict the surface SOC stocks which were previously used to

predict soil properties in a variety of environments. Individual
predictions from these machine learning techniques and their
ensemble median were compared with the SOC stocks predicted
by the regression kriging approach. The GBM algorithm which
was originally proposed by Friedman (2001), uses simple
regression model “weak learners” and iteratively combine this
simple model to obtain “strong learner” with improved accuracy
by reducing the bias and the variance. GBM model include two
major user defined parameters; number of tree and tree depth.
The tree depth of 3 and number of trees of 150 were used based on
the minimum root mean squared error (RMSE) of prediction.
MARS, which was introduced by Friedman (1991), computes the
underlying nonlinear patterns hidden in the data. It builds the
relationship between the response and dependent variable using
distinct set of coefficients and the function which are controlled
by the regression. MARS optimization is a two-step process. In
the first step, a large number of basis functions (connected
splines) are constructed to overfit the data and in the second
step the basis functions are selected based on best fit. The tuning
parameters forMARS include the nprune and degree. The nprune
value of 18 and degree value of 1 were used based on the
minimum RMSE of prediction. The SVM, originally proposed
by Cortes and Vapnik (1995), sets up a decision boundary in the
feature space to separate different classes. Mathematically, it
creates best fit hyperplanes between the classes to minimize
errors. The objective function intends to select the best
hyperplane with largest margin between the classes, where
margin is the sum of distance between the separating
hyperplane and nearest points of different class in either side

FIGURE 1 | Study area and distribution of soil samples (n � 2,374). Green dots show distribution of soil organic carbon (SOC) observations across different
permafrost types of the Northern circumpolar permafrost region.

FIGURE 2 | Histogram and descriptive statistics of surface soil organic
carbon stocks (0–30 cm) observations used in this study (n � 2,374).
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of the hyperplane. The tuning parameters for SVM includes
sigma and C. The sigma value of 0.14 and C value of 1 were
used based on the minimum RMSE of prediction. RF is a tree-
based machine learning approach that works by building a set of
regression trees and averaging the results for final prediction
(Breiman, 2001). RF works on a rationale that the combination of
learning models (tree-based ensemble) increases the prediction
accuracy. It consists of an ensemble of randomized classification
and regression trees (CART, Breiman et al., 1984), where many
decision trees are built using a random subsample of the available
environmental factors. The final result is a single prediction
constructed as a weighted average over all these individually
suboptimal trees. In the RF approach, the model parameters that
needed specification were: 1) the number of trees to grow in the
forest (ntree � 500), 2) the number of randomly selected predictor
variables at each node (mtry � 5), and 3) the minimum number of
observations at the terminal nodes of the trees (nodesize � 5). RF
has been reported to have high predictive performance, low
correlation of individual trees, and small bias and provides
information on the relative importance of predictors (Breiman,
2001; Svetnik et al., 2003; Arun and Langmead, 2005).

Evaluation of Prediction Accuracy of
Different Geospatial Approaches
We calculated four validation indices that demonstrate different
quality attributes of predicted SOC stock maps: 1) the measure of
inaccuracy expressed as the RMSE, 2) the measure of bias
expressed as the mean estimation error (MEE), 3) the measure
of linear relationship between observed and predicted SOC stock
values expressed as Pearsons’s correlation coefficient (r), and 4)
the ratio of performance to deviation (RPD), which is the ratio of
the standard deviation of the observed SOC stock values to the
RMSE of the predictions. The larger the RPD, the more accurate
the prediction. To calculate these validation indices, we split the
SOC stock dataset into four different spatially balanced
calibration and validation datasets (70/30, 75/25, 85/15, 90/10)
using “create subset” function of ArcGIS (ArcGIS version 10,
Environmental Systems Research Institute, Inc., Redlands, CA,
United States). We reported average validation indices obtained
from these four validation subsets. The predicted SOC stock
values from all the prediction approaches were extracted at
validation data sites and the following equations were applied:

MEE � 1
n
∑n
i�1
[SÔC(xi) − SOC(xi)]

RMSE �
�����������������������
1
n
∑n
i�1

[SÔC(xi) − SOC(xi)]2√
where SOC(xi) is the measured SOC, SÔC(xi) the estimated SOC,
and n is the number of validation observations (n � 714). For
optimal predictions, MEE and RMSE values should approach
zero. Chang and Laird (2002) defined three classes of RPD;
models that have high predictive ability (RPD > 2), models
that have intermediate predictive ability that can be possibly
improved (RPD between 1.4 and 2), and models that have no
predictive ability (RPD < 1.4). In addition to predict the spatial

variation of SOC stocks at 250-m spatial resolution across the
study area, we also calculated the coefficient of variation of
surface SOC stocks across different permafrost zones of the
Northen circumpolar permafrost region.

RESULTS

Descriptive Statistics of Soil Organic
Carbon Observations
Statistical properties of the surface SOC profile observations at
calibration and validation sites are summarized in Figure 2. The
average surface SOC stock of northern circumpolar region was
12.5 kg m−2, ranging from 0.25–90 kg m−2. The observed SOC
stocks showed unimodal (kurtosis � 2) and positively skewed
(coefficient of skewness � 2.1) distributions. Among total SOC
observations, 2% of the samples had SOC stocks less than 1
kg m−2, and about 6% of the samples had SOC stocks larger than
30 kg m−2. The majority of samples (92%) had SOC stocks
between 1 and 30 kg m−2. The SOC stock values of validation
samples were within the range of calibration samples. Figure 3
shows the linear relations between SOC stocks and different
environmental factors used in this study.

Predicted Spatial Variation of Surface Soil
Organic Carbon Stocks
Due to lowest prediction errors of surface SOC stocks obtained,
we used the results of the ensemble median of the machine
learning approaches to describe the magnitude and spatial
variation of surface SOC stocks (Figure 4). Predicted median
surface SOC content showed moderate spatial variation (CV �
26%), ranging from 0.5 to 37.5 kg m−2, with an average
circumpolar region surface SOC content of 12.3 kg m−2.
Among different permafrost regions, the discontinuous
permafrost region showed highest SOC content (12 kg m−2,
with lower and upper quartiles of 11.0 and 13.5 kg m−2,
respectively), followed by the sporadic permafrost region (10.5
kg m−2, with lower and upper quartiles of 9.0 and 12.0 kg m−2,
respectively), and the continuous permafrost region (10.0 kg m−2,
with lower and upper quartiles of 8.6 and 11.0 kg m−2,
respectively). Lowest surface SOC content was found in
isolated permafrost region soils (9.0 kg m−2, with lower and
upper quartiles of 8.0 and 10.0 kg m−2, respectively).

The ensemble median of machine learning approaches
predicted total SOC stock 218+22−26 Pg C in 0–30 cm depth of
the northern circumpolar region. Out of this total, the continuous
permafrost region contained 54.5% (119+12−14 Pg C), the
discontinuous permafrost region contained 18% (39+4−4 Pg C),
sporadic permafrost region contained 14% (31+3−4 Pg C), and the
isolated permafrost region contained 13% (29+4−3 Pg C) of the total
surface SOC stocks. The largest spatial variation in predicted
surface SOC stocks was found in continuous permafrost region
soils (CV � 61%), followed by isolated permafrost region (CV �
50%). Both sporadic and discontinuous permafrost region soils
showed similar spatial variation (CV � 39%) in the surface SOC
stocks (Table 1).
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In general, we observed an inverse spatial relationship
between the magnitude of SOC stocks and its uncertainty
(expressed as a percent calculated using the lower and upper
quartile values), i.e., the areas that stored more SOC stocks
(Figure 4) were least uncertain and the areas that stored less
SOC stocks were most uncertain. The uncertainty in surface
SOC stocks was less than 20% in about half of the study area,
shown by blue color in Figure 5. Areas with high uncertainty

(>50% uncertainty; purple color in Figure 5) in predicted SOC
stocks was observed in small patches in Southern Alaska and
Iceland, and in larger areas of Southern and Western Russian
permafrost region. Our results showed that 7% of the total study
area had high uncertainty in surface SOC stocks. Areas with
intermediate uncertainty (20–49% uncertainty; shown by green
color in Figure 5) in surface SOC stocks covered about 43% of
the study area.

FIGURE 3 | Pearson’s correlation coefficients between SOC stocks and environmental variables used in this study. The insignificant correlations (p value >0.05) are
blank (white).

FIGURE 4 | Predicted spatial variation of surface (0–30 cm) SOC stocks (median predictions; (B) of the northern circumpolar permafrost region using ensemble
machine learning approach, with its lower quartile (A) and upper quartile (C). Areas in black showwater surface or perennial ice, urban, and barren land with consolidated
materials.
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Environmental Predictors of Surface Soil
Organic Carbon Stocks
We applied multiple environmental predictors in different
prediction approaches, and the number and importance of
environmental predictors differed among prediction
approaches (Figure 6). In machine learning approaches where
we applied all environmental predictors, temperature, land cover
types, slope, and elevation had higher impacts and soil types,
bedrock geology types, aspect, and sediment transport index had
lower impacts on the predicted variation of SOC stocks. In the RF
approach, which produced the highest prediction accuracy
(lowest RMSE) among machine learning approaches, average
annual temperature and precipitation, latitude, and elevation
were the most important environmental predictors of surface
SOC stocks. Similarly, soil types, bedrock geology types, and
surface hydrology attributes (e.g., stream power index and flow
accumulation) were less important predictors in the RF approach.
In contrast, in the regression kriging approach where we applied
statistically significant environmental predictors, soil types, land

cover types, stream power index, and sediment transport index
were the most important predictors of surface SOC stocks.
Likewise, the bedrock geology type was the least important but
a statistically significant predictor of surface SOC stocks in the
regression kriging approach.

Comparison of Prediction Accuracy in
Different Approaches
The predicted SOC stocks using an ensemble median of machine
learning approaches showed lowest prediction errors (r � 0.64
and RMSE � 6.75 kg m−2; Figure 7) among all the spatial
prediction approaches we evaluated. MLR and MARS
produced highest prediction errors (r � 0.33 and 0.36, and
RMSE � 9.0 and 8.25 kg m−2) among all the approaches we
evaluated. Similarly, RF and regression kriging produced
comparable prediction accuracies (comparable r and RMSE
values; Figure 7). The average error of prediction was largest
in the MLR approach followed by the MARS approach. On
average, all prediction approaches showed positive bias

TABLE 1 | Average SOC content and predicted total SOC stocks in different permafrost zones within the circumpolar permafrost region.

Permafrost types Average SOC content
(kg m−2)

Coefficient
of variation (%)

Total SOC stock
(Pg C)

Continuous 10.0 (8.6–11) 61.0 119.0 (105–131)
Discontinuous 12.0 (11–13.5) 39.0 39.0 (35–43)
Sporadic 10.5 (9–12) 39.0 31.0 (27–34)
Isolated 9.0 (8–10) 50.0 29.0 (25–32)

Values in parentheses are the lower and upper quartiles.

FIGURE 5 | Distribution of uncertainties in the predicted surface soil organic carbon stocks of the northern circumpolar permafrost region. Blue color shows areas
with <20% uncertainty, green color shows areas with 20–49% uncertainty and purple color shows areas with >50% uncertainty in the predicted SOC stocks. Areas in
black color show water surface or perennial ice, urban, and barren land with consolidated materials.
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(positive MEE values) and over predicted surface SOC stocks. The
MLR and SVM techniques showed largest biases in SOC stock
predictions, and RF showed smallest bias among all the prediction
approaches. The RPD results showed that the SOC stock predictions
from the ensemble median of machine learning approaches had an
RPD value of 1.8. This moderate predictive accuracy is higher than
any individual approach we applied (Chang and Laird, 2002;
Viscarra Rossel and Webster, 2012). Other individual spatial
prediction approaches showed lower predictive ability.

DISCUSSION

We compared multiple spatial prediction techniques to predict
the surface SOC stocks of the northern circumpolar region.
Calculated validation errors showed comparable prediction
accuracies of GBM, RF, and regression kriging approaches.
Prediction errors obtained from the ensemble median
predictions of machine learning approaches were lowest in
comparison to the regression kriging and other individual
machine learning approaches. Our results show the
distribution of the magnitude of uncertainty in SOC stocks
across the northern circumpolar region, which can be used to
guide future sampling efforts in order to reduce the modeled
climate carbon feedback predictions.

Using a different thematic upscaling approach, Tarnocai et al.
(2009) and Hugelius et al. (2014) predicted 191 and 217 Pg C in

the surface soils of the northern circumpolar region. Our estimate
of total SOC stocks (218+22−26 Pg C) is consistent with these previous
estimates of the northern circumpolar region surface SOC stocks.
However, our results showed different spatial distribution of SOC
stocks across the study area. Our results showed 54% of SOC
stocks reside in the continuous permafrost region, compared with
58% in Tarnocai et al. (2009). We report 18% SOC stocks in the
discontinuous permafrost region, compared with 13% estimate in
Tarnocai et al. (2009). Both our and Tarnocai et al. (2009) SOC
stock estimates were similar in the sporadic permafrost region
(14% SOC stocks). Our estimates showed similar SOC stocks in
the isolated permafrost region as reported in Tarnocai et al.
(2009) (<2%). Hugelius et al. (2014) used a different
physiographic categorization to describe the spatial
distribution of SOC stocks, and do not provide distributions
of SOC stocks in different types of permafrost regions. In contrast
to these previous estimates of surface SOC stocks, our approach
provides greater spatial details and captures a larger range in
predicted SOC stocks, primarily due to the larger number of field
observations available to us and different geospatial approaches
we used. Our ensemble median machine learning approach also
elucidated impacts of different environmental variables
representing various soil-forming factors, however, while both
Tarnocai et al. (2009) and Hugelius et al. (2014) showed the
impact of soil types only.

Areas with high uncertainty (>50%) in predicted SOC stocks
have higher elevation and slope positions. Areas with low

FIGURE 6 | The importance of different environmental predictors differs in different machine learning approaches. Number in the horizontal bars shows the relative
importance of environmental predictors of soil organic carbon stocks expressed as percent.
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predicted uncertainty in SOC stocks have lower elevation and
slope positions (Table 2). On average, areas with high uncertainty
in SOC stocks receive lower precipitation and have drier soils. We
note that these areas also have very few field observations (∼2% of
total samples). The areas with medium and low uncertainty
ranges have 37 and 61% of the observational samples,
respectively. Our results of uncertainty distributions are
consistent with findings of Shelef et al. (2017), who also
reported that northern circumpolar region areas with high
SOC stock uncertainty are areas with hillslope topography.
The environmental characteristics and sample numbers of
areas with different uncertainty ranges in the predicted surface

SOC stocks of the northern circumpolar region are provided in
Table 2. In order to reduce the existing uncertainty in surface
SOC stocks, future sampling efforts should focus in the areas
represented by green and purple colors in the Figure 5 (Table 2).

In this study, we used data of environmental factors that
provided spatially-explicit information of major soil-forming
factors across the study area. The impact of these
environmental factors on soil formation is well documented in
soil science literature (Jenny, 1941; McBratney et al., 2003; Mishra
and Riley, 2012; Vitharana et al., 2017). For example, average
annual precipitation and temperature data provided information
of the average climate of the study area. Land cover types
provided information on biota properties. Various topographic
attributes that we used in this study provided information on
relief. Soil types and bedrock geology types data provided
information about different kinds of parent materials that
impacted soil properties. In addition, in the permafrost
domain, soil formation is also governed by cryopedogenic
processes where the role of cold temperatures and ice
formation are important for SOC stock accumulation and
decomposition (Bockheim, 2007; Ping et al., 2013; Ping et al.,
2015).

The regression kriging approach combines both
environmental correlation and spatial autocorrelation to
predict SOC stocks. As a result, regression kriging usually
produces lower prediction errors in comparison to other
approaches (Hengl et al., 2007; Mishra et al., 2012; Minasny

FIGURE 7 | Average validation indices calculated for four different randomly selected calibration and validation datasets (70/30, 75/25, 85/15, 90/10) across the
study area.

TABLE 2 | Average values of environmental factors and number of samples in
areas with different uncertainty ranges in the predicted surface SOC stocks of
the northern circumpolar region.

Environmental
factors

Uncertainty ranges

Low (>20%) Medium (20–9%) High (>50%)

Elevation (m) 408.0 (0–4,707) 575.0 (0–4,711) 687.0 (0–4,086)
Slope (°) 4.0 (0.5–71) 5.5 (0.5–72.2) 7.0 (0.5–64.6)
Temperature (oC) −7.7 (−25.5–9.5) −8.0 (−25.65–9.7) −8.5 (−25.6–9.5)
Precipitation (mm) 407.0 (54–1751) 415.0 (54–2044) 395.0 (57–2,861)
Soil wetness index 9.5 (4.9–13) 9.0 (4.4–13) 8.0 (4.8–12.7)
Sample number 1,006 620 34

Values in parentheses show the range of environmental factors.
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et al., 2013). Our results suggest that some machine learning
approaches, such as GBM and RF, that capture the non-linear
relations between environmental controllers and SOC stocks, can
produce similar prediction accuracy to that of regression kriging.
We note that not all the machine learning approaches (for
example, SVM and MARS) produced comparable prediction
accuracy as was obtained from the regression kriging
approach. However, the ensemble median prediction of
machine learning approaches convincingly decreased the
prediction errors and resulted in the most accurate predictions
of surface SOC stocks but did not allow attribution of importance
of individual environmental factors. Future studies should focus
on 1) deriving the non-linear relationships between soil
properties and the environmental factors and (2)
incorporating the spatial autocorrelation function into
machine learning approaches to achieve greater prediction
accuracies.

SUMMARY

We compared multiple spatial prediction approaches to predict
the surface SOC stocks of the northern circumpolar permafrost
region. Using a larger number of samples than previously
available, we compared the prediction accuracy of the
regression kriging approach with four machine learning
approaches. We found that SOC stock predictions from two
machine learning approaches (GBM and RF) and regression
kriging have comparable prediction accuracies. Prediction
errors obtained from the ensemble median predictions of
machine learning approaches were lowest in comparison to
the regression kriging and other individual machine learning
approaches. The number and importance of environmental
predictors differed among different prediction approaches.
Among machine learning approaches, temperature, latitude,
land cover types, slope, and elevation had higher impacts on
the predicted spatial variation of surface SOC stocks. Soil types
were also important predictors in the regression kriging
approach. We found an inverse spatial relationship between
the magnitude of SOC stocks and its uncertainty. The
uncertainty in surface SOC stocks was less than 20% in about
half of the study area. Areas with high uncertainty (>50%
uncertainty) in predicted SOC stocks were observed in small
patches in Southern Alaska and Iceland, and in larger areas of
Southern and Western Russian permafrost region. Because
different machine learning approaches make use of different
environmental predictors, the ensemble approach provides
greater spatial details, and would probably provide improved
estimates of SOC changes as it captures the non-linear relations
between SOC stocks and its environmental predictors.
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