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Green’s functions perspective on nonequilibrium thermodynamics of open quantum

systems strongly coupled to baths

Nicolas Bergmann1 and Michael Galperin2, ∗

1Department of Chemistry, Technical University of Munich, D-85748 Garching, Germany
2Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, United States

We give nonequilibrium Green’s function (NEGF) perspective on thermodynamics formulations
for open quantum systems strongly coupled to baths. Scattering approach implying thermody-
namic consideration of a super-system (system plus baths) weakly coupled to external super-baths
is compared with consideration of thermodynamics of a system strongly coupled to its baths. We
analyze both approaches from the NEGF perspective and argue that the latter yields a possibility
of thermodynamic formulation consistent with dynamical (quantum transport) description.

I. INTRODUCTION

Tremendous progress in experimental techniques in the
last decade resulted in miniaturization of devices for en-
ergy storage and conversion making use of quantum ef-
fects possible. One of such experimental developments is
study of thermoelectric effects in nanoscale single atom
and single molecule junctions1–5. Such quantum devices
are characterized by efficiency of their performance6–8,
and traditional characteristics (such as, e.g., figure of
merit) taken from studies on macroscopic equilibrium
thermoelectric systems are often utilized. Clearly, macro-
scopic thermodynamics underlying such characteristics
is not applicable at nanoscale. Meaningful description
of efficiency in nanoscale junctions requires correspond-
ing development of quantum nonequilibrium thermody-
namic theory. Moreover, in junctions with molecules
chemisorbed on (at least one of the) macroscopic contacts
thermodynamic theory should account for non-negligible
(strong) system-baths couplings.
Significant theoretical effort was undertaken to formu-

late nanoscale thermodynamics at strong system-bath
coupling for both classical9,10 and quantum11–13 systems.
Arguably, there are two main approaches to the problem.
First approach complements physical system strongly
coupled to its baths with set of additional super-baths
and implements standard methods in consideration of
super-system (system plus baths) weakly coupled to its
super-baths. System thermodynamics is defined as a dif-
ference between thermodynamic characterization of such
super-system and that of set of free baths weakly coupled
to corresponding super-baths. Second approach builds
thermodynamic description for the physical system, i.e.
system strongly coupled to its baths. In addition to de-
velopments of thermodynamic formulations, an interest-
ing widely debated question is possibility of thermody-
namics being consistent with underlying system dynam-
ics14,15.
Here, we consider a generic model of molecular junc-

tion with non-negligible (strong) molecule-contacts cou-
plings. We utilize nonequilibrium Green’s function
(NEGF) to describe dynamics of the system and discuss
compatibility of the dynamic consideration with several
suggestions for thermodynamic characterization of such

systems available in the literature. We present general
NEGF formulations (beyond usually assumed slow driv-
ing) for thermodynamic characteristics of the system and
argue that difficulties of Green’s function based analy-
sis of supersystem-superbath thermodynamic treatments
are caused by incompatibility of basic assumptions in the
two theories. System-bath thermodynamic formulations
are found to be compatible with NEGF dynamics. Struc-
ture of the paper is the following. Section II introduces
model and presents basics of the dynamical NEGF treat-
ment. Thermodynamic NEGF based formulations are
presented in Section III for supersystem-superbath and
in Section IV for system-bath considerations. Section V
summarizes our findings.

II. DYNAMICAL CONSIDERATION

We consider an open non-interacting nonequilibrium
quantum system S (e.g., molecule with its electronic
structure calculated using DFT) strongly coupled to its
baths {B} (e.g., metallic contacts in the junction). The
system is subjected to an arbitrary external driving.
Hamiltonian of the model is

Ĥ(t) = ĤS(t) +
∑

B

(

ĤB + V̂SB(t)

)

(1)

where ĤS(t) and ĤB are Hamiltonians of the system and

bath B, respectively; V̂SB(t) describes coupling (electron
transfer) between system S and bath B. Explicit expres-
sions are

ĤS(t) =
∑

m1,m2∈S

H(S)
m1m2

(t)d̂†m1
d̂m2 , (2)

ĤB =
∑

k∈B

εk ĉ
†
kĉk, (3)

V̂SB(t) =
∑

m∈S

∑

k∈B

(

Vmk(t)d̂
†
mĉk +H.c.

)

, (4)

where d̂†m (d̂m) and ĉ†k (ĉk) create (annihilate) electron
in orbital m of the molecule and single-particle state k of
a contact, respectively.
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For such a non-interacting model one can easily simu-
late exact projections of the single-electron Green’s func-
tion

Gn1n2(τ1, τ2) ≡ −i〈Tc ân1(τ1) â
†
n2
(τ2)〉 (5)

Here, ni are indices for single-particle state either on the

molecule or in the baths, i.e. ân is either d̂m or ĉk.

Dynamical (quantum transport) consideration defines
particle, IB, and energy, JB, fluxes at S − B interface
as (minus) rates of change of, respectively, particles and
energy in the bath B. Exact expressions for the fluxes
in terms of single particle Green’s functions are obtained
following Jauho-Wingreen-Meir16 and similar17 deriva-
tions

IB(t) ≡ −
∑

k∈B

d

dt

〈

ĉ†k(t)ĉk(t)
〉

= −Tr

[

N̂B
d

dt
ρ̂(t)

]

=
∑

k∈B

TrS
[

I
(+)
k (t)− I

(−)
k (t)

]

(6)

JB(t) ≡ −
∑

k∈B

εk
d

dt

〈

ĉ†k(t)ĉk(t)
〉

= −Tr

[

ĤB
d

dt
ρ̂(t)

]

=
∑

k∈B

εk TrS
[

I
(+)
k (t)− I

(−)
k (t)

]

(7)

Here, N̂B ≡
∑

k∈B ĉ†k ĉk is the operator of particle number in bath B, ρ̂(t) is the total (system plus baths) density
operator, Tr[. . .] and TrS [. . .] are traces over total (system plus baths) and system (molecular) degrees of freedom,

I
(+)/(−)
k are matrices in subspace S representing k-resolved in-/out-scattering particle fluxes at the S −B interface

[

I
(+)
k

]

m1m2
= 2Re

∫ t

−∞

dt′
(

Vm1k(t) g
<
k (t− t′)Vkm2 (t

′)G>
m2m1

(t′, t)
)

(8)

[

I
(−)
k

]

m1m2
= 2Re

∫ t

−∞

dt′
(

Vm1k(t) g
>
k (t− t′)Vkm2 (t

′)G<
m2m1

(t′, t)
)

(9)

G
≶
m2m1 are lesser/greater projections of the molecu-

lar space single particle Green’s function (5), and

gk(τ1, τ2) ≡ −i〈Tc ĉk(τ1) ĉ
†
k(τ2)〉 is Green’s function of

free electron in bath B. Note, definition (7) assumes

〈ĤB〉 to be energy of bath B, so that dynamical approach
sets

ES(t) =

〈

ĤS(t) +
∑

B

V̂SB(t)

〉

(10)

as energy of the system.

III. SUPERSYSTEM WEAKLY COUPLED TO

SUPERBATHS

At equilibrium, thermodynamics of the system
strongly coupled to its bath (one bath, B, is enough at
equilibrium) is modeled as difference in thermodynamic
description (difference of grand potentials) of supersys-
tem (system plus bath) weakly coupled to superbath (ad-
ditional external bath) and bath weakly coupled to the
superbath. The approach was pioneered in Refs. 18,19.
It allows to utilize standard (weakly coupled) thermody-
namic description to derive grand potential, entropy and

energy of the system as20

Ωeq
S =

1

βB

∫

dE

2π
AB(E) ln[1− fB(E)] (11)

Seq ≡ −
∂Ωeq

S

∂TB
=

∫

dE

2π
AB(E)σB(E) (12)

Eeq
S ≡ Ωeq

S + µBN
eq
B +

1

βB
Seq = Ωeq

S − µB
∂Ωeq

S

∂µB
+

1

βB
Seq

=

∫

dE

2π
EAB(E) fB(E) (13)

Here, βB = 1/kBTB, σB(E) is the energy-resolved Shan-
non entropy

σB(E) = −

(

fB(E) ln fB(E)+[1−fB(E)] ln[1−fB(E)]

)

(14)
and AB(E) is the renormalized spectral function

AB(E) = A(E) − 2 Im
∑

k∈B

[

Gr
kk(E)− grk(E)

]

(15)

with

A(E) = −2 Im
∑

m∈S

Gr
mm(E) (16)

being the usual spectral function of the system.
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At nonequilibrium, expressions (12) and (13) are used
as templates for ad hoc formulations of energy and en-
tropy by substituting spectral functions and/or Fermi
distributions with their nonequilibrium analogs at slow
driving20–22. Expressions for system characteristics at
slow driving are obtained employing gradient expan-
sion23,24. More consistent approaches to nonequilibrium
reformulate equilibrium consideration of Refs. 18,19 in
the basis of scattering states25. In this formulation su-
perbaths provide thermal distributions of the scatter-
ing states. Parametric dependence of scattering ma-
trix on time developed for adiabatic quantum pumps in
Ref. 26 is utilized to obtain nonequilibrium system behav-
ior at slow driving. It was shown within such thermody-
namic considerations20,27–29 that consistent (dynamic-to-
thermodynamic) description can be obtained within the
wide-band approximation (WBA) and for driving con-

fined to the system Hamiltonian ĤS(t), if energy of the
system is taken as

ES(t) =

〈

ĤS(t) +
1

2

∑

B

V̂SB(t)

〉

(17)

Similar separation of the total Hamiltonian is assumed in
recent density matrix based approaches30–33. Extension
of the formulation to account for driving in the system-
bath coupling was claimed42 in Ref. 22. Note that defi-
nition (17) deviates from the dynamical definition (10).
Before proceeding to Green’s function based analysis

we want to stress several points. First, definition (17)
modifies energies of the baths adding half of system-bath
coupling into the bath’s energy. This addition induces
mixing between baths making full counting statistics for-
mulation impossible. Thus, it is natural that defini-
tion (17) fails to describe energy fluctuations34. Second,
simple single particle scattering formulation is only pos-
sible for noninteracting systems and adiabatically slow
driving, when scattering channels are independent of
each other. Indeed, scattering theory yields the famous
Landauer-Büttiker formalism applicable in description of
steady-states in noninteracting systems. Finite driving
and/or presence of interactions requires more elaborated
description. Third, consistent thermodynamic descrip-
tion employing definition (17) was only possible in the
wide-band approximation (WBA) where renormalization
of the spectral function is dropped, i.e. A(E) = A(E).
As we show below, extension of the formulation beyond
the WBA is impossible when (17) is taken as energy of
the system.
We now turn to NEGF analysis of the two definitions

for system energy, Eqs. (10) and (17), with the goal to es-
tablish their consistency with the expected limiting (equi-
librium) expression, Eq. (13), as obtained from general
result for a noninteracting system (1)-(4) under arbitrary
driving and beyond wide-band approximation. To do so
we are going to express contributions to the total energy,
i.e. averages of terms in the total Hamiltonian (1), in
terms of Green’s functions utilizing Wigner representa-

tion in time variables

F (t; s) = F (t1, t2)

F (t;E) =

∫

dse−iEsF (t; s)
(18)

Here, t = (t1 + t2)/2 and s = t1 − t2.
First, it is straightforward to see that

〈

ĤS(t)
〉

= −i
∑

m1,m2∈S

H(S)
m1m2

(t)G<
m2m1

(t, t)

= −i

∫

dE

2π
TrS

[

H(S) G<(t;E)
]

(19)

Second, for system-baths coupling we get

∑

B

〈

V̂SB(t)
〉

= 2 Im
∑

B

∑

m∈S

∑

k∈B

Vmk(t)G
<
km(t, t)

= 2 Im

∫ +∞

−∞

dt′ TrS
[

Σ<(t, t′)Ga(t′, t) + Σr(t, t′)G<(t′, t)
]

= 2 ImTrS

[(

i
∂G<(t, t′)

∂t

)

t=t′
−H(S)(t)G<(t, t)

]

≡ −2 i

∫

dE

2π
E TrS

[

G<(t;E)
]

− 2
〈

ĤS(t)
〉

(20)

where transition from first to second line uses integral
form of Dyson equation for G<

km(t, t), third line is ob-
tained employs differential from of left side Dyson equa-
tion for G<

m1m2
(t, t) together with assumption of non-

interacting character of the system, i.e. Σ(τ, τ ′) =
∑

B ΣB(τ, τ
′), and last line is obtained by using Wigner

representation (18) for the first term and by using
Eq. (19) for the second term.
Third, for baths contributions to the total energy one

has

∑

B

〈

ĤB

〉

= −i
∑

B

∑

k∈B

εkG
<
kk(t, t)

=
∑

B

∑

k∈B

Im

[(

i
∂G<

kk(t, t
′)

∂t

)

t=t′
−

∑

m∈S

Vkm(t)G<
mk(t, t)

]

= Im

[

∑

B

∑

k∈B

(

i
∂G<

kk(t, t
′)

∂t

)

t=t′
−

∑

m∈S

(

i
∂G<

mm(t, t′)

∂t

)

t=t′

+
∑

m1,m2∈S

H(S)
m1m2

(t)G<
m2m1

(t, t)

]

= −i

∫

dE

2π
E

(

TrB
[

G<(t;E)
]

− TrS
[

G<(t;E)
]

)

+
〈

ĤS(t)
〉

(21)

Here, transitions from first to second and from second to
third and fourth lines utilize differential forms of left side
Dyson equations forG<

kk(t, t) and G<
mm(t, t), respectively.

As previously, last line is obtained by using Wigner rep-
resentation (18) for the first and second terms and by



4

using Eq. (19) for the last term. Similarly, for free baths
evolution one has

∑

B

〈

ĤB

〉

0
= −i

∑

B

∑

k∈B

εk g
<
k (t, t)

=
∑

B

∑

k∈B

Im

[(

i
∂g<k (t, t

′)

∂t

)

t=t′

]

= −i

∫

dE

2π
E TrB g<(E)

(22)

where g<(E) does not contain dependence on t due to
absence of driving in baths.

We note that contrary to previous considerations ex-
pressions (19)-(22) are not limited to slow driving – for
non-interacting model (1)-(4) they are exact. Eqs. (19)
and (20) show that dynamical definition (10) does not
yield expected within the approach equilibrium behavior
(13), while scattering theory based suggestion, Eq. (17),
leads to

〈

ĤS(t) +
1

2

∑

B

V̂SB(t)

〉

= −i

∫

dE

2π
ETrS

[

G<(t;E)
]

(23)
At equilibrium, this expression yields result similar to
(13) but with A(E) substituted with A(E), i.e. one gets
the form of correct limiting expression in the wide band
approximation (WBA). It is clear from the derivation
above that generalization beyond WBA is not possible
when using (17) as definition for system energy.

To get the expected equilibrium behavior, Eq. (13),
one has to assume

ES(t) =

〈

ĤS(t) +
∑

B

(

ĤB + V̂SB(t)

)〉

−

〈

∑

B

ĤB

〉

0

(24)
as expression for system energy. Here, 〈. . .〉 = Tr[. . . ρ̂(t)]
and 〈. . .〉0 = Tr[. . . ρ̂0] with ρ̂0 being density operator
of free decoupled system and baths evolution. Indeed,
substituting (19)-(22) into (24) leads to

ES(t) = −i

∫

dE

2π
E

(

Tr
[

G<(t;E)
]

− TrB
[

g<(E)
]

)

(25)
which yields the expected equilibrium behavior.

We note that expression (24) is very logical in a sense
that it follows philosophy of defining system characteris-
tics as difference between those of supersystem and free
baths. At the same time, it reveals basic incompatibil-
ity between supersystem weakly coupled to superbaths
thermodynamic approach and standard NEGF dynami-
cal formulation. Lack of superbaths concept in the latter
does not allow to meaningfully introduce heat in any at-
tempt of combining the two descriptions.

IV. SYSTEM STRONGLY COUPLED TO

BATHS

A variant of thermodynamic formulation for system
strongly coupled to its baths was proposed in Refs. 35,
36. As expected, in absence of superbaths definition of
system energy

ES(t) =

〈

ĤS(t)+
∑

B

V̂SB(t)

〉

−

〈

ĤS(t)+
∑

B

V̂SB(t)

〉

0

(26)
and expression for energy flux are consistent with dy-
namical NEGF results - Eq. (10) and (7), respectively.
Similar to the supersystem-superbath thermodynamics,
system-bath formulation is also based on a set of ad hoc

assumptions. In particular, Ref. 35 assumes entropy of
the system strongly coupled to its baths to be given by
the Shannon entropy

S(t) ≡ −TrS
[

ρ̂S(t) ln ρ̂S(t)
]

(27)

where ρ̂S(t) = TrB [ρ̂(t)] is the many-body density opera-
tor of the system. Below we show how entropy, Eq. (27),
and the second law of themodynamics can be expressed
in terms of Green’s functions.
First, we note that for quadratic Hamiltonian (1)-(4)

the Wick’s theorem holds for the whole universe (sys-
tem plus baths) or any of its parts. This means that
corresponding many-body density operator should have
a Gaussian form. In particular, system density operator
has the form

ρ̂S(t) =
1

ZS(t)
exp

(

−
∑

m1,m2∈S

h(S)
m1m2

(t) d̂†m1
d̂m2

)

(28)

where ZS(t) is a normalization constant. The form (28)
is mathematically similar to equilibrium case, so that for
fixed t standard tools of equilibrium path integral con-
sideration can be applied. In particular, we can consider
the form (28) as an equilibrium density matrix with ‘ef-

fective Hamiltonian’
∑

m1,m2∈S h
(S)
m1m2(t)d̂

†
m1

d̂m2 and in-
verse temperature βS = 1.
Using results of equilibrium consideration for non-

interacting Hamiltonians37 one gets

ZS(t) = det
[

iG>(t, t)
]−1

(29)

e−h
(S)(t) =

(

iG>(t, t)
)−1(

− iG<(t, t)
)

(30)

=
(

− iG<(t, t)
)(

iG>(t, t)
)−1

Thus,

ρS(t) =
1

ZS(t)
e−h

(S)(t)

= det
[

iG>(t, t)
](

− iG<(t, t)
)(

iG>(t, t)
)−1

= det
[

iG>(t, t)
](

iG>(t, t)
)−1(

− iG<(t, t)
)

(31)

Here, G≷(t, t)h are matrices of greater/lesser projection
of Green’s function (5) in the system subspace of the
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problem, ρS(t) is the system density matrix (representa-
tion of operator ρ̂S(t) in the single-particle basis of S).
Similar expressions were derived in Refs. 38–41.

Using (31) in (27) and employing ln detM = Tr lnM
(M is a matrix) leads to

S(t) = −TrS

[

− iG<(t, t) ln
(

− iG<(t, t)
)

]

− TrS

[

iG>(t, t) ln
(

iG>(t, t)
)

]

(32)

Here, −iG<(t, t) is the single-particle density matrix ρS(t) and iG>(t, t)− iG<(t, t) = I (I is the unity matrix). Note
that (32) holds for any driving.
Taking time derivative of the entropy (32) leads to the second law of thermodynamics in the form

d

dt
S(t) = TrS

[(

− i
d

dt
G<(t, t)

)

ln
iG>(t, t)

−iG<(t, t)

]

(33)

≡
∑

B

∑

k∈B

TrS

[

βB(εk − µB)
[

I
(+)
k (t)− I

(−)
k (t)

]

+
[

I
(+)
k (t)− I

(−)
k (t)

]

ln
G>(t, t) g<k (t, t)

G<(t, t) g>k (t, t)

]

=
∑

B

[

βB Q̇B(t) + ∆iṠB(t)
]

Here, Q̇B ≡ JB(t) − µBIB(t) is the heat flux expressed
in terms of particle, IB, and energy, JB, fluxes at S −B
interface, whose definitions are given by the dynamical
NEGF expressions (6) and (7), respectively. ∆iṠ(t) =
∑

B ∆iṠB defined by the second term in the middle line
of (33) is the rate of entropy production which (as was
discussed in Ref. 35) may be negative.

V. CONCLUSION

We considered two different approaches to thermody-
namic formulations for open nonequilibrium quantum
systems strongly coupled to their baths: supersystem
(system plus baths) weakly coupled to superbaths and
system strongly coupled to its baths. In particular, the
former encompasses popular scattering theory formula-
tions of quantum thermodynamics. We analyzed com-
patibility of the formulations with dynamical description
of the system within the nonequilibrium Green’s func-
tion approach. We presented thermodynamics formu-
lation within NEGF beyond slow driving. Results for
adiabatic driving and equilibrium can be derived from
our consideration as limiting cases. Our analysis shows
that supersystem-superbath formulations are based on
set of assumptions which are incompatible with basics
of the dynamical NEGF formulation. In particular, this

is the cause for difference in definition of energy flux as
accepted in the two approaches. At the same time, the
system-bath formulation is consistent with NEGF, and
definitions of energy fluxes are equivalent in this ther-
modynamic formulation to those of dynamic NEGF de-
scription. For the system-bath formulation we present
expressions for entropy and entropy production in terms
of Green’s functions. It is interesting to note that while
supersystem-superbath formulations postulate energy re-
solved Shannon-like expression for entropy of the system,
system-bath approach assumes entropy of the system to
be given by Shannon expression constructed from system
characteristics integrated in energy. We note that both
expressions for system entropy, nonequilibrium analog of
Eq. (12) and Eq. (32), are ad hoc formulations, and possi-
bility of construction of energy-resolved formulation con-
sistent with dynamical NEGF description is still an open
question.
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system-bath coupling ẆB(t) – is an artifact of inconsis-
tent treatment: the term can be derived as surface term
where limit of wide band is taken first while limit of energy
going to infinity second. Physically relevant order of taking
the limits is the opposite. In this case the term ẆB(t) is
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