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Towards Robust and Fair Machine Learning

Abstract

Recent advances in Machine Learning (ML) and Deep Learning (DL) have resulted in the wide-

spread adoption of models across various application pipelines. However, despite these performance

improvements, ML/DL models have been shown to be vulnerable to adversarial inputs that can

reduce functionality. Concerns over these issues have prompted researchers to study model robustness

from multiple perspectives– such as privacy, fairness, security, interpretability, among others. In this

thesis, we build upon these ideas of robustness, by investigating adversarial and social robustness for

a number of different learning models and problem settings. We first study adversarial robustness

of unsupervised clustering models, by proposing novel poisoning and evasion attacks for both deep

and classical models. We then study the social robustness of models in the context of fairness, and

propose the antidote data problem for fair clustering, as well as the fair video summarization problem.

Finally, we investigate two problems at the intersection of adversarial and social robustness. We

propose a new robust fair clustering method that can jointly ensure adversarial and social robustness,

and data selection approaches that can improve interpretability, and optimize the utility, fairness,

and robustness for classification models. Through the concepts and ideas proposed in this thesis we

aim to lay the groundwork for analyzing and ensuring robustness of ML/DL models of the future.
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CHAPTER 1

Introduction

1.1. Motivation

Recently, machine learning (ML) and deep learning (DL) models have been extremely successful

at achieving state-of-the-art performance on a number of learning tasks, leading to significant impacts

in a diverse set of fields [1, 2, 3, 4]. However, these models suffer from issues of robustness, as was first

discovered by Szegedy et al [5] in their work on deep learning based classification networks. Follow-up

work [6, 7] demonstrated that ML and DL models are highly susceptible to such adversarial attacks,

where an informed adversary can perturb inputs minimally to lead to undesirable model outputs,

often with regards to some notion of model performance. In this thesis, we explore and extend these

concepts of model robustness in multiple ways.

In general, robustness encompasses many different subproblems related to model functioning on

manipulated or corrupted inputs, out-of-distribution generalization, cross-domain generalization,

domain shift, performance on unseen test data, and resilience to adversarial attacks [8]. In this

thesis, we utilize these definitions but structure them as different dimensions of model robustness.

For instance, adversarial robustness constitutes the study of attacks and defenses against models,

whereas performance robustness includes consistent performance on distribution-shifted, distorted,

or unseen test data. As models become ubiquitously utilized in society, ensuring model robustness

from diverse perspectives is of paramount importance. Our work thus also motivates the need for

a social dimension to robustness, comprising the societal facets of models such as fairness [9] and

explainability [10], among others. We delineate the various aspects of robustness covered in this

thesis, below.

First, we find that the study of adversarial robustness has remained limited mostly to supervised

models for classification tasks, with very limited work undertaken for unsupervised learning problems

such as data clustering [11, 12]. In such scenarios, adversarial robustness is significantly more
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challenging to define due to the absence of class labels corresponding to data samples. Thus, in

Chapter 2, we bridge this gap by proposing novel black-box poisoning and evasion attacks against

clustering models. In this manner, our work investigates adversarial robustness for unsupervised

classification (or clustering) models for both classical and deep learning based methods. For

completeness, we also delineate possible defense strategies against our attacks, but find that better

approaches need to be proposed. Finally, we highlight the efficacy of our attacks by attacking

Face++1, a production-level MLaaS (ML-as-a-service) photo clustering API and showcasing the

subsequent drop in performance.

Second, we posit that model robustness extends beyond analyzing security properties of models

under adversarial influence, and models need to be robust socially for widespread societal adoption.

This definition for social robustness encompasses recent work on fair, accountable, transparent, and

explainable ML/DL [9, 13]. However, while the ML community has responded to the need for

accommodating these social robustness requirements in models, there are still a number of potential

problems that have been overlooked [14, 15, 16, 17]. In Chapter 3, we focus specifically on fairness,

and provide novel directions for enhancing fairness and social robustness of models. We discern that

most works studying fairness in classification and clustering propose in-processing fair algorithmic

variants to models [15]. However, this direction for research is untenable as fairness notions are

application-specific and new learning models are being developed rapidly. This results in a large

number of possible fairness notion - learning model combinations requiring new fair models for each

such combination. Thus, we propose novel approaches for fair clustering based on antidote data [18],

that work with any fairness notion and learning model provided as input at runtime. Furthermore,

we observe that the lack of development of fair models for certain ML tasks stems from a lack of

appropriate datasets containing information regarding individuals and their sensitive attributes, such

as ethnicity and age. We hence define the fair video summarization learning task which incorporates

fairness in the traditional vision task of video summarization [19] which is conceptually adjacent to

clustering. As there are currently no datasets that facilitate fair video summarization, we propose

the FairVidSum dataset [20] which includes annotations for sensitive attributes and individuals

alongside video frame importance scores. Using FairVidSum and newly proposed fairness metrics,

1https://www.faceplusplus.com/photo-album-clustering/
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we benchmark the fairness of various state-of-the-art video summarization models and underscore

the need for improved fair video summarization models.

Finally, we study the interplay between the adversarial and social dimensions of robustness in the

context of machine learning. As models are deployed in more societal applications, they need to be

robust both adversarially and socially. Deficiencies and vulnerabilities relating to either dimension

would mitigate the model’s impact and diminish its utility in society. Therefore, in Chapter 4, we

study two problems at the intersection of adversarial and social robustness. Continuing with our

use-case of clustering, we propose a novel poisoning attack that reduces clustering fairness [21].

We show that numerous state-of-the-art fair clustering models tend to be extremely volatile with

regards to fairness when our attack is employed. Moreover, we propose a novel robust fair clustering

model based on consensus clustering and fair graph partitioning, that is resilient to our proposed

fairness attack. Then, reverting to the more traditional classification setting, we show how simple

data selection approaches based on influence functions [22] can improve a classification model’s

fairness, robustness, and accuracy [23]. We then extend these ideas to non-traditional classification

settings, such as active learning [24], and online learning [25]. Our work thus ties adversarial and

social robustness together via multiple facets for a number of diverse learning tasks.

It is also important to note that the primary goal of this thesis is to provide general solutions to

these proposed problems, wherever possible. It is not possible to study all dimensions of robustness

along all possible ML/DL tasks and models, but ideas proposed for a problem defined on one ML

task are often transferable across adjacent or complementary tasks. This has been true for concepts

proposed in this thesis as well, with Cinà et al [26] expanding our original bi-clustering poisoning

attack (Chapter 2) to the general cluster case, and Li et al [27] utilizing antidote data for mitigating

(individual) unfairness in classification models based on our work on fair clustering (Chapter 3),

among others.

The rest of the thesis proceeds as follows: Chapter 2 discusses adversarial robustness and our

work on analyzing it for classical and deep clustering models, Chapter 3 delineates social robustness

in the context of ML and our contributions to enhancing the fairness of models, Chapter 4 provides

perspective and insights on novel problems relating to both adversarial and social robustness, and

Chapter 5 concludes the thesis.
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1.2. Related Works

Model Robustness. Existing work on model robustness has investigated problems related

to improving performance robustness via self-supervised learning [28], pre-training [29], or other

alternatives [30, 31]. Other problems along the performance dimension of robustness have also been

studied previously– such as tackling distribution shift [32] and corrupted/contaminated data [33, 34].

Adversarial robustness has been the most well-studied dimension of robustness, with multiple works

investigating adversarial attacks and defenses, for various learning tasks, models, and threat models

[5, 35, 36, 37, 38]. More recently, work on social robustness has also been undertaken, specifically

with regards to fairness [39, 40, 41].

Deep Clustering. To leverage clustering algorithms on high-dimensional data, early work

on deep clustering [42, 43], aimed to learn a latent low-dimensional cluster-friendly representation

that could then be clustered on. This task was achieved using AutoEncoders (AEs) [42, 44, 45],

Variational AEs [46, 47], or Generative Adversarial Networks (GANs) [48, 49, 50]. More recently,

current state-of-the-art deep clustering models employ self-supervised and contrastive learning instead

of the earlier AE/GAN based approaches to perform clustering [51, 52, 53].

Video Summarization. Video summarization approaches can be categorized [19] as either

supervised (frame-level importance scores are used in training) [54, 55, 56, 57, 58] or unsupervised

(only visual frame information is used during training) [59, 60, 61, 62, 63, 64] with regards to the

learning setting, and as unimodal (only visual information is used for training) [54, 57, 60, 61]

or multimodal (other video metadata is also utilized) [65, 66, 67, 68, 69, 70] with regards to the

input data type. Unsupervised unimodal approaches model the application scenarios for video

summarization better as annotated frame importance scores and additional video metadata (such

as transcripts) are generally hard to obtain [19]. For video summarization, the state-of-the-art

supervised approaches constitute DSNet [71], PGL-SUM [72], among others and the state-of-the-

art unsupervised approaches constitute CA-SUM [73], AC-SUM-GAN [74], SUM-GAN-AAE [75],

SUM-GAN-SL [63]. All these models are benchmarked on the TVSum [76] and SumMe [77] datasets.

Adversarial Attacks Against Clustering. Ours is the first work to propose a blackbox

adversarial poisoning attack against clustering [11]. These seek to poison a small number of samples

in the input data, so that when clustering is undertaken on the poisoned dataset, other unperturbed

4



samples change cluster memberships. This attack setting is better suited to classical clustering

algorithms such as k-means [78] which retrain on the poisoned input data constituting an attack

at training time. For deep clustering, the model does not train again once deployed, so we have to

generate adversarial samples that the model misclusters at test time. For this reason, we also propose

the first evasion adversarial attack specific to deep clustering models [12]. There have also been

whitebox attacks proposed for traditional clustering, but these can only be employed for the specific

traditional clustering algorithm considered [79, 80, 81]. For single-linkage hierarchical clustering,

[79] first proposed the poisoning and obfuscation attack settings, and provided algorithms that

aimed to reduce clustering performance. In [80] the authors extended this work to complete-linkage

hierarchical clustering and [81] proposed a white-box poisoning attack for DBSCAN [82] clustering.

Fairness in Machine Learning and Summarization. While video summarization has not

yet been studied from the purview of fairness, fair models have been developed for various ML

tasks and problem settings [9, 14]. These include supervised learning [83, 84], unsupervised learning

[15, 16, 85], recommendation systems [18, 86], active learning [87, 88], outlier detection [89, 90],

among others. Fairness has also been studied for data summarization such as for k-center based

summarization [91, 92, 93] and text summarization [94, 95]. However, these approaches are not

general– they are highly specific to the learning algorithm being used (for e.g. k-center [96]).

Fairness in Clustering. ML algorithms can be made fair in three stages of the learning

pipeline [9, 97]– before-training (pre-processing the dataset), during-training (changing the ML

algorithm), or after-training (post-processing the learnt model). Fair clustering aims to conduct

unsupervised cluster analysis without encoding any bias into the instance assignments. Most research

on fair clustering focuses on the during-training phase [85, 98, 99, 100, 101, 102, 103, 104] and

proposes fair clustering algorithms. In their paper, [105] study the after-training phase for improving

fairness post-clustering. Another categorization for fairness can be made between group-level and

individual-level fairness notions [14]. The former encapsulates notions that seek to quantify how the

model’s predictions affect protected or minority groups of people (for example, based on gender)

unfairly, while the latter comprises notions that seek to ensure that similar individuals are treated

similarly by the model. In this thesis, we only consider group-level fairness.
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Robustness and Fairness. The robustness of fairness is the study of how algorithmic fairness

could be violated or preserved under adversarial attacks or random perturbations. [106] and [107]

propose poisoning attack frameworks aiming to violate the predictive parity among subgroups in

classification. [108] and [109] also work on classification and study fairness under perturbations on

protected attributes. Other work has also studied the reduction in fairness (defined alternately as

class-wise performance) when adversarial training is undertaken [39], and proposed novel approaches

for fair and robust classification [40, 41].

1.3. Contributions

Through the individual works that comprise this thesis, we make the following contributions:

• We propose the first black-box poisoning attack against classical clustering models which

results in non-perturbed samples being misclustered by the model [11]. We theoretically

and experimentally validate the extent of our poisoning attack on k-means [78] and Ward’s

hierarchical clustering [110] models.

• We propose the first black-box evasion attack specific to deep clustering models [12]. We

show that our attack can significantly reduce the performance of state-of-the-art models

while requiring a minimal number of queries. We also undertake transferability analysis

that demonstrates that the attack can be successful even if the attacker does not have exact

knowledge of the target model.

• We propose an alternative approach to group-level fair clustering, where we augment the

original dataset with data points (antidote data) such that when we use vanilla clustering

on this new combined dataset, fairness is improved [15]. This is the first work that utilizes

data augmentation and antidote points for improving fairness in clustering. In contrast,

existing works on fair clustering modify the clustering algorithm specific to a notion of

group-level fairness.

• We introduce FairVidSum– the first benchmark video summarization dataset containing

individual and group-level fairness information [20]. FairVidSum comprises of videos

comprising diverse settings such as panel discussions, podcasts, and interviews. We also

propose the SumBal fairness metric to evaluate model fairness, which is derived from
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the Balance [14] metric proposed to measure fairness in unsupervised learning. Using

the FairVidSum dataset and the SumBal metric, we conduct extensive experiments to

benchmark numerous state-of-the-art supervised and unsupervised models for unfairness.

We find that since models do not optimize for fairness, they can be highly unfair, prompting

the need for newer methods that can balance both accuracy and fairness.

• We propose a novel black-box adversarial attack against clustering models where the attacker

can perturb a small percentage of protected group memberships and yet is able to degrade

the fairness performance of state-of-the-art fair clustering models significantly [21]. To

achieve truly robust fair clustering, we propose the Consensus Fair Clustering (CFC) model

which is highly resilient to the proposed fairness attack. To the best of our knowledge, CFC

is the first defense approach for fairness attacks, which makes it an important contribution

to the unsupervised ML community.

• We propose the use of tree-based influence estimation models to better interpret what

features and samples improve (or degrade) a classification model’s performance with respect

to utility, fairness, and robustness [23]. Based on that, we also propose a simple training

data trimming strategy to improve fairness, robustness, and accuracy.

The research undertaken as part of this dissertation has resulted in the following publications

[11, 12, 20, 21, 23, 111].
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CHAPTER 2

Analyzing the Adversarial Robustness of Models

2.1. Introduction

Clustering models are utilized in many data-driven applications to group similar samples together,

and dissimilar samples separately. They constitute a powerful class of unsupervised ML models

which can be employed in many cases where labels for data samples are either hard (or impossible) to

obtain. Note that there are a multitude of different approaches to accomplishing the aforementioned

clustering task, and an important differentiation can be made between traditional and deep clustering

approaches.

Traditional or classical clustering generally aims to minimize a clustering objective function

defined using a given distance metric [112]. These include approaches such as k-means [78], DBSCAN

[82], spectral methods [113], hierarchical algorithms [110], among others. Most classical models are

considerably fast1 on moderately-sized tabular datasets and provide satisfactory clustering solutions.

On the other hand, such models generally fail to perform satisfactorily on high-dimensional data

(i.e., high resolution image datasets), or incur huge computational costs that make the problem

intractable [114]. To ameliorate these challenges on high-dimensional data, deep clustering models

were proposed to decompose the high-dimensional input to a cluster-friendly low-dimensional

representation using deep neural networks. Clustering was then undertaken on this latent space

representation [42, 43]. Since then, deep clustering models have become considerably advanced, with

state-of-the-art (SOTA) models outperforming traditional clustering models by significant margins

on a number of high-dimensional image datasets [51, 53].

Despite these successes, clustering models have not been sufficiently analyzed from an adversarial

robustness perspective. Furthermore, no work investigates generalized black-box attacks, where the

adversary has zero knowledge of the exact clustering model being used. This is the most realistic

1k-means has linear time complexity with regards to both the samples in the dataset and the number of clusters.
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setting under which a malicious adversary could aim to disrupt the working of these models. While

there is a multitude of work in this domain for supervised learning models, deep clustering approaches

have not received the same attention from the community. Thus, to bridge this gap we propose

two black-box attacks against clustering models in this chapter. First, since classical models are

computationally efficient and retrain on data input, we propose a training-time poisoning attack

[80] that works by perturbing a single sample close to the decision boundary, which leads to the

misclustering of multiple unperturbed samples, named spill-over adversarial samples. Next, since

deep clustering models are deployed frozen for inference post training, we propose a test-time evasion

attack [7] that utilizes Generative Adversarial Networks (GANs) [115] to generate adversarial images

that are misclustered by SOTA deep clustering models despite being minimally perturbed.

2.2. Poisoning Attacks Against Classical Clustering Models

2.2.1. Preliminaries and Notation. Let X be the dataset used for clustering, where X ∈

Rn×m. The Frobenius norm of a matrix M is denoted by ∥A∥F = (
∑

i,j A
2
ij)

1/2, and ⟨·, ·⟩ represents

the standard vector inner product. Let a clustering algorithm be defined as a function C : Rn×m →

{0, 1}n×k that partitions the given dataset X ∈ Rn×m into k clusters. Since we are only considering

hard clustering problems, we can represent the clustering result as a matrix Y ∈ {0, 1}n×k where

each row has all 0 except one 1 indicating the cluster that point belongs to, and thus, Y = C(X).

Here n refers to the number of samples in the dataset and m refers to the features. For the clustering

output, let ki and Xki ∈ Rni×m denote the i-th cluster and the samples of X that belong to the i-th

cluster, respectively. The centroid of the i-th cluster is denoted as ci. Moreover, we will denote the

set of spill-over samples as S, with the number of samples in S denoted as nS .

2.2.2. Threat Model. We delineate the main features of the threat model that the adversary

operates under:

(1) The adversary has no knowledge of the clustering algorithm that has been used and is thus,

going to carry out a black-box attack.

(2) While the adversary does not have access to the algorithm, we assume that they have access

to the datasets, and a noisy version of the true metric used for clustering. This assumption

is weak as the metric can be learnt by observing the clustering outputs by the defender.
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For details see [116] and the references therein. We therefore first present our algorithm

assuming exact knowledge of metric. We then show later that, if the noise is small enough,

under certain conditions, a spill-over adversarial sample in clustering using the noisy metric

will also spill-over in clustering using the true metric.

(3) Once the attacker has the clusters, they can then use the proposed adversarial attack

algorithm to perturb just one judiciously chosen input sample, called the target sample. The

algorithm perturbs this input data sample by iteratively crafting a precise additive noise

to generate the spill-over adversarial samples. We allow the perturbation to be different

for each feature of the sample. We assume that each perturbation is within a pre-specified

threshold which is determined by adversary’s motivation of not getting detected as an

outlier, and/or the limited attack budget of the adversary.

2.2.3. Adversary’s Objective. The goal of the adversary is to maximize the number of points

which are misclustered into the target cluster. Note that, perturbation of the target sample essentially

perturbs the decision boundary which creates spill-over adversarial samples but the target sample

may not necessarily be misclustered. The adversarial attack algorithm proposed operates on only

two clusters at a time (refer to [26] for their work on generalizing our approach to the multi-cluster

case). This is similar to a targeted adversarial attack on supervised learning models [7]. Note that

our attack has a number of motivating cases in the real world. Similar to [81], where the authors

present an attack algorithm against DBSCAN clustering [117], consider the AnDarwin tool [118] that

clusters Android apps into plagiarized and non-plagiarized clusters. If an adversary perturbs one

plagiarized app such that it along with some other unperturbed apps, gets misclustered, that could

lead to a loss of confidence in the tool as the defender is unaware of the reason for this decreased

performance.

2.2.4. Proposed Attack. The proposed algorithm is shown as Algorithm 1. The inputs for

the algorithm are the dataset X ∈ Rn×m, the clustering algorithm C, the clustering result on the

original data Y ∈ {0, 1}n×2, the data points that populate each of the two clusters, Xk1 ∈ Rn1×m

and Xk2 ∈ Rn2×m, and the noise threshold ∆ ∈ Rm where ki (i = {1, 2}) denotes the clusters. ∆ is

the noise threshold for each of the m features, i.e., the jth feature of the optimal perturbation will
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Algorithm 1 Proposed Black-box Poisoning Attack
Input: X, C, ∆, Y = C(X), k1, k2, n1, n2, Xk1 ,Xk2

Output: Optimal additive perturbation ϵ∗ ∈ Rm

1: set c2 ← 1
n2

∑
xj∈Xk2

xj

2: set xt ← argminx∈Xk1
|x− c2|

3: function f(ϵ)
4: set x′t ← xt + ϵ
5: obtain X ′ from X by replacing xt with x′t
6: obtain Y ′ = C(X ′)
7: set δ := −∥Y Y T − Y ′Y ′T ∥F
8: return δ
9: end function

10: minimize f(ϵ∗) subject to ϵ∗j ∈ [−∆j ,∆j ] where j = 1, 2, ...,m
11: return ϵ∗

lie in the range [−∆j ,∆j ] where j = 1, ..,m. This definition for ∆ can lead to the case where points

of k2 spill-over into k1, but since the formulation is equivalent, we consider only the case of spill-over

from k1 to k2. ∆ ensures that the adversary does not perturb the target sample too much to get

detected by the defender as an outlier. ∆ can also be interpreted as the limited attack budget of the

adversary. We elaborate on how to choose ∆ at the end of this section.

Algorithm 1 proceeds as follows: In Line 1, we find the centroid of whichever cluster we want

the spill-over points to be a part of, after the attack. From here on, without loss of generality, we

assume the spill-over points belong to cluster k1 originally, and therefore cluster centroid c2 for k2 is

calculated. Next, in Line 2, we select the target point xt in k1 which is closest in Euclidean distance

to c2. This point is a good target for the adversarial attack as it is the nearest point of k1 to the

decision boundary between both clusters. Lines 3-10 define the function f(ϵ) ∈ R which we optimize

over to find the ϵ that will lead to spill-over.

In Line 4 of the algorithm, we perturb the target point and obtain x′t, and get X ′ by replacing

xt with x′t in X. We then find the noisy clustering result Y ′ = C(X ′). Line 5 presents the metric δ

used to measure how much the clustering result has changed from the original clustering to after the

attack [79]:

(2.1) δ := −∥Y Y T − Y ′Y ′T ∥F
11



The ijth element of the Y Y T matrix represents whether sample i, and j belong to the same

cluster. Note that, if there is no change in cluster membership, δ = 0. |δ| increases with the number

of points that spill over from k1 to k2.

Line 11 is essentially the formulation of the minimization problem. We have to find the optimal

perturbation ϵ∗j ∈ [−∆j ,∆j ] which minimizes f , such that f(ϵ∗) ≤ f(ϵ) for any ϵ ∈ [−∆j ,∆j ],

j = 1, 2, · · · ,m. It is also important to understand a few aspects about the function f , before we get

to the choice of an optimization approach. As the function is not continuous, we cannot use gradient

based methods to solve the minimization problem. Instead, we require derivative-free black-box

optimization approaches to minimize f while ensuring that the noise threshold constraints on the

optimal perturbation ϵ∗ are met. There are many possibilities for such an optimization procedure,

e.g., genetic algorithms [119], and simulated annealing [120]. We opt for a cubic radial basis function

(RBF) based surface response methodology [121] for the optimization. The optimization approach

utilizes a modified iterative version of the CORS algorithm [122], and uses the Latin hypercube

approach [123] for the initial uniform sampling of search points required for the CORS algorithm.

The CORS optimization procedure has achieved competitive results on a number of different test

functions [122, 124]. For our attack algorithm, this optimization algorithm achieved much better

results on multiple datasets as compared to methods like genetic algorithm, and simulated annealing.

We found that this optimization was much less sensitive to parameter choices.

If the adversary does not have an attack budget, then ∆ should only be chosen such that the

adversarial sample does not get construed as an outlier. Mahalanobis Depth (MD) is one such

measure for outlyingness:

Definition 2.2.1 (Mahalanobis Depth). Mahalanobis Depth of a point x, D (x), with respect

to a set X ⊆ Rm is defined as

D (x) =
(
1 + (x− x̄)⊤ Σ̂x

−1
(x− x̄)

)−1
(2.2)

where x̄, and Σ̂x are the sample mean and covariance.

The smaller the value of D, the larger the outlyingness. Using D to detect the outlyingness of a

point for a dataset with clusters may pose problems, e.g., for two well separated clusters the points

around the line joining the cluster means have very small depth. But a point between two clusters
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which is sufficiently far from both the clusters will clearly be interpreted as an outlier. So we propose

a modified measure of depth similar in flavor to [125]:

Definition 2.2.2 (Mahalanobis Depth for Clusters (MDC)). Let there be J clusters. Say D (x)

with respect to only cluster i is given by ti. Then Mahalanobis Depth for clusters of x is defined as

DC (x) =
∑J

i=1 ti.

For high dimensional data computing MD is difficult as the computed covariance matrix can be

singular. So for high dimensional data we propose a new depth-based measure, Coordinate-wise

Min-Mahalanobis-Depth (COMD), to measure outlyingness:

Definition 2.2.3 (Coordinate-wise Min-Mahalanobis-Depth). Consider x = [x1, x2, · · · , xm] ∈

X ⊆ Rn×m. Let Xi denote the ith column of X. Let DC,i denote the MDC depth of xi w.r.t the points

Xi ⊆ Rn×1. Then Coordinate-wise Min-Mahalanobis-Depth is defined as DM (x) = min{DC,i}mi=1.

Intuitively COMD measures the maximum outlyingness along all the coordinates. It is a

conservative measure of outlyingness, and hence ensuring small value of COMD is sufficient for the

adversary to avoid being detected as an outlier. After observing the clusters, the attacker forms

equi-DC (x) contours, or equi-DM (x) spaces for m ≥ 2, over the data. ∆ is chosen such that the

perturbed point is at least above 0.1 quantile of the COMD values of the dataset.

2.2.5. Theoretical Justification. In this section we theoretically study the effect of perturba-

tion, and using a noisy metric. The following theorem shows that perturbing one sample can distort

the decision boundary in such a way that another uncorrupted point can spill-over.

Theorem 2.2.1. Say k-means clustering is used to cluster a linearly separable dataset. A

judiciously chosen datapoint can be perturbed by additive noise, ensuring that it does not become

an outlier, in such a way that there may exist another point which changes cluster membership, i.e.,

one or more spill-over point(s) may exist.

Proof. Let a point x is such that ⟨x− c1, c2 − c1⟩ ≥ 0. Intuitively we select x belonging to k1

such that x− c1 forms an acute angle with c2 − c1. It is easy to see that such a point always exists.

Now, an adversary perturbs x to c2, hence ensuring that the perturbed point is not an outlier. We
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will show by contradiction that, under certain conditions, there exists at least one other point which

will spill over to k2.

Let us assume that k1 remain unchanged after the perturbation except that x moves to c2.

Because of this perturbation the mean and composition of the k2 does not change. Let the mean of

the k1 be c′1 after the perturbation. We have,

c1 − c′1 = c1 − n1c1−x
n1−1 = x−c1

n1−1 . Say there is a point y such that ⟨x − c1, y − c1⟩ ≥ 0, and

∥y− c2∥2 = ∥y− c1∥2 +α with α ≥ 0 . Consequently, ⟨y− c1, c1− c′1⟩ = ⟨y− c1, x−c1n1−1⟩ ≥ 0. Now we

have,

∥y − c′1∥2

=∥y − c1 + c1 − c′1∥2

=∥y − c2∥2 + ∥c1 − c′1∥2 + 2⟨y − c1, c1 − c′1⟩ − α

The second and third term in the above expression is non-negative. If α ≤ ∥c1−c′1∥2+2⟨y−c1, c1−c′1⟩,

then the point y is closer to c2 and should be in k2. This contradicts our earlier assumption and

concludes the proof. □

As discussed above, we assume that the adversary has access to a noisy version of the true

metric. In the following theorem we show that a spill-over adversarial sample under noisy metric

will spill-over under clustering with true metric under certain conditions.

Theorem 2.2.2. Let there be a point y which spilled over from k1 to k2 of the dataset X due to

a attack following Algorithm 1 with distance metric d′ : X ×X → R+. If the true distance metric

d : X ×X → R+ used for clustering by the defender satisfies

max{0, d(u, v)− ζ} ≤ d′(u, v) ≤ d(u, v) + ζ(2.3)

∀(u, v) ∈ X, and ζ ≥ 0, then, under certain conditions, y will spill-over in the clustering using metric

d as well.

Proof. Let the cluster centers for d (d′) be c1 (c′1) and c2 (c′2), and the clusters be k1 (k′1), and

k2 (k
′
2). We assume that the attacker can query to find out which point of k′1 is closest to c2. We use
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(a) (b) (c) (d)

Figure 2.1. Results on toy data after using Algorithm 1 for spill-over attack.

the attack used to prove Theorem 1, i.e., the attacker perturbs a point x from k′1, to the center of k′2.

Consequently, c′1 becomes c̄1′, c′2 remains the same, and another point y spills-over from k′1 to k′2.

After the attack, in the actual clustering using d, let the centers be represented by c̄1 and c̄2.

We will show that y will spill-over in the actual clustering using d as well, under certain conditions.

Now, we have before the attack:

(2.4) d′(y, c′2) > d′(y, c′1)

Using the triangle inequality twice on (2.4) we can write:

d′(y, c′2) > d′(y, c̄1
′)− d′(c̄1′, c′1)

d′(y, c̄2) + d′(c̄2, c
′
2) > d′(y, c̄1)− d′(c̄1′, c̄1)− d′(c̄1′, c′1)

Let γ = d′(c̄1
′, c′1) + d′(c̄1

′, c̄1) + d′(c̄2, c
′
2) ≥ 0, and using (2.3) we can write:

d′(y, c̄2)− d′(y, c̄1) > −γ

d(y, c̄2)− d(y, c̄1) > −γ − 2ζ(2.5)

If d(y, c̄2)− d(y, c̄1) < 0 then point y has spilled-over in the actual clustering too, and we can see

that the lower bound in (2.5) is negative as both ζ and γ are non-negative. Therefore, this ensures

that d(y, c̄2)− d(y, c̄1) is negative for a range of values of y. □

2.2.6. Results. We now present results for our attack for synthetic toy data and then for a

number of real-world datasets and traditional clustering models.
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2.2.6.1. Toy Example. We present the working of our attack algorithm consistent with the

assumptions in Theorem 2.2.1. We create 2-dimensional Gaussian clusters with standard deviations

of 1.45 and 0.75, and cluster centroids at (1, 0) and (5, 0), respectively. Using Algorithm 1 we find

the target point xt to perturb which is originally in k1. The clusters k1 and k2 generated along with

xt are shown in Figure 2.1a. The first cluster k1, the second cluster k2, and the target sample xt are

shown in red, green, and blue respectively.

It is important to note that the assumption taken in Theorem 2.2.1 regarding the target sample

also holds true as ⟨xt − c1, c2 − c1⟩ = 5.0511, where c1 and c2 denote the cluster centroids of k1 and

k2. Next, using the optimization procedure outlined in Algorithm 1, we perturb xt in such a way so

as to lead to spill-over. Figure 2.1b shows that the perturbed xt has changed cluster membership,

and there is one spill-over adversarial sample. Figure 2.1 also shows the equi-DC contours with

depth decreasing by 0.1, away from the cluster centers. The contours in Figure 2.1 show that the

adversarial sample is not an outlier. Figure 2.1a-2.1c show the equi-DC contours, and Figure 2.1d

shows the equi-DM contours. Note that DC correctly prescribes more outlyingness for points that

lie between two clusters, which do not belong to either cluster, as compared to points which belong

to one of the clusters. The spill-over adversarial sample has been highlighted in orange in Figure

2.1c. We find that the spill-over adversarial sample y satisfies the condition stated in Theorem 2.2.1,

i.e., ⟨xt − c1, y − c1⟩ = 1.2872 ≥ 0.

2.2.6.2. UCI Digits. The UCI Digits dataset [126] consists of 8× 8 images of handwritten digits

from 0 to 9. In these images each pixel is an integer between 0, and 16. Each image can be represented

by feature vectors of length 64. We test Ward’s clustering for this dataset since it clusters the digits

well. We use these images as inputs to the clustering algorithm. We apply Ward’s clustering on

two clustering problems: For clustering Digits 1 and 4 images, and clustering Digits 8 and 9 images.

For each case, the cluster information, parameter details, total misclustered samples, DM (x′t), and

the quantile of DM (x′t) with respect to DM (X), are listed in Table 2.1. Algorithm 1 starts with the

target sample from k1, and generates spill-over adversarial samples that switch cluster membership

from k1 to k2. For the Digits 1 and 4 clusters the spill-over adversarial images are shown in Figure

2.2, and for Digits 8 and 9, they are shown in Figure 2.3. For both the clustering problems, the

DM (X) quantile above which DM (x′t) lies, indicates that it cannot be an outlier.
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Table 2.1. UCI Handwritten Digits Dataset Results (Ward’s Clustering).

Digit clusters k1 k2 n1 n2 # Misclustered samples DM (x′t) DM (X) quantile
Digit 1 & 4 Digit 4 Digit 1 181 182 24 0.061 0.10
Digit 8 & 9 Digit 9 Digit 8 164 190 21 0.114 0.285

Figure 2.2. Misclustered images that switched clusters from the Digit 4 to the Digit
1 cluster (adversarially perturbed sample shown with red border).

Figure 2.3. Misclustered images that switched clusters from the Digit 9 to the Digit
8 cluster (adversarially perturbed sample shown with red border).

2.2.6.3. MNIST. To show the performance of Algorithm 1 we use the MNIST dataset [127] which

is an image dataset. We utilize small subsets of the original digit images, and use 200 images for

each digit. The digit images here are 28 × 28 grayscale images of digits from 0 to 9. For inputs

to the clustering, we flatten each image sample and get a feature vector of length m = 784. We

apply Ward’s clustering on two clustering problems: For clustering Digits 1 and 4 images, and

clustering Digits 2 and 3 images. For each of these, the cluster information, parameter details, total

misclustered samples, the perturbed target sample depth DM (x′t), and the quantile of DM (x′t) with

17



Table 2.2. MNIST Dataset Results (Ward’s Clustering).

Digit clusters k1 k2 n1 n2 # Misclustered samples DM (x′t) DM (X) quantile
Digit 1 & 4 Digit 4 Digit 1 192 208 11 0.067 0.49
Digit 2 & 3 Digit 3 Digit 2 176 224 2 0.13 0.828

Figure 2.4. Misclustered MNIST images that switched clusters from the Digit 4 to
the Digit 1 cluster (adversarially perturbed sample shown with red border).

Figure 2.5. Misclustered MNIST images that switched clusters from the Digit 3 to
the Digit 2 cluster (adversarially perturbed sample shown with red border).

respect to DM (X), are listed in Table 2.2. The attack algorithm starts with the target sample from

the k1 cluster and then generates spill-over adversarial samples that switch cluster membership from

k1 to k2. For the Digits 1 and 4 clusters the spill-over adversarial images are shown in Figure 2.4,

and for Digits 2 and 3 clusters they are shown in Figure 2.5. Here too, the DM (X) quantile range

that DM (x′t) lies in ensures that the perturbed adversarial sample cannot be detected as an outlier.

2.2.6.4. UCI Wheat Seeds Dataset. The UCI Wheat Seeds dataset [128] contains measurements

of geometric properties of three different varieties of wheat kernels: Kama, Rosa, and Canadian,

with 70 samples for each seed variety. Each sample has the following 7 features: Area of the kernel

A, perimeter of the kernel P , compactness C = 4πA/P 2, kernel length, kernel width, asymmetry

coefficient, and length of kernel groove. We use k-means clustering for clustering Kama and Rosa

wheat kernels. Cluster sizes for Rosa is n1 = 79, and for Kama is n2 = 61. The noise threshold ∆ is

selected using the outlier depth methodology described in the previous sections. Algorithm 1 starts

with the target sample in the Rosa cluster and generates 2 adversarial spill-over adversarial samples

which have switched cluster labels from the Rosa cluster (or cluster k1) to the Kama (or cluster

k2) cluster including the target sample. The original clustering with the target sample selected is
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Figure 2.6. Kama and Rosa wheat kernel clusters (target sample to be adversarially
perturbed in red) visualized using the area, perimeter, and compactness features.

shown in Figure 2.6, and is plotted in 3D using the area, perimeter, and compactness features. Here

DM (x′t) = 0.33 which is the 0.28 quantile of DM (X) which ensures that it will not be an outlier.

2.2.6.5. MoCap Hand Postures Dataset. The MoCap Hand Postures dataset [129] consists of 5

types of hand postures/gestures from 12 users recorded in a motion capture environment using 11

unlabeled markers attached to a glove. We only use a small subset of the data with 200 samples for

each cluster. For clustering, the possible features are each of the 11 markers’ X,Y, Z coordinates.

However, we only use the first 3 markers’ recorded X,Y, Z coordinates because due to resolution

and occlusion, missing values are common in the other markers’ data. Thus, we have a total of 9

features: Xi, Yi, Zi for each ith marker, where i = 1, .., 3. We use k-means clustering for clustering

the Point1 posture and the Grab posture. Cluster size for Grab posture is n1 = 209, and for Point1

posture is n2 = 191. Algorithm 1 starts with the target sample in the Grab posture cluster, and

generates 5 adversarial spill-over adversarial samples which have switched cluster labels from the

Grab cluster (k1) to the Point1 (k2) cluster including the target sample. The original clustering with

the target sample selected is shown in Figure 2.7, and is plotted in 3D using the Z1, Z2, Z3 marker

coordinates features. Here DM (x′t) = 0.325 is the 0.27 quantile of DM (X). This indicates that x′t is

not an outlier.

2.3. Evasion Attacks Against Deep Clustering Models

2.3.1. Preliminaries and Notation. Note that for a matrix A of size u× v, we can index

into row i as Ai,∀i ∈ [u], and index into a single value at row i and column j as Ai,j , ∀i ∈ [u], j ∈ [v].
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Figure 2.7. Point1 and Grab pose clusters (target sample to be adversarially
perturbed in red) visualized using the Z1, Z2, Z3 marker position features.

Moreover, ||.|| denotes the Euclidean (2-norm) norm of a vector. Since we are proposing a black-box

attack we will be defining deep clustering models in a more generalized manner that abstracts their

inner functioning. We defer the reader to [114] for more details on all the models analyzed. A

deep clustering model is denoted as C and operates on samples of the given dataset X consisting

of n samples and maps them to one of k clusters. As deep clustering models utilize deep neural

networks internally, they generate a set of softmax probabilities indicating cluster memberships,

denoted as M ∈ [0, 1]n×k. From this, the cluster labels can be obtained by taking the maximum

of the cluster probabilities. For a dataset sample Xi ∈ X, the cluster label can be obtained as

l = argmaxj∈[k]{Mi,j}. We denote the vector of cluster labels computed in this manner as L ∈ Nn×1.

Note that unlike supervised learning problems, the ground truth labels Y ∈ Nn×1 are not utilized

for training the model in deep clustering. However, these ground truth labels are used for evaluating

the performance of the model. That is, the output cluster labels L are evaluated in comparison

with the ground truth Y . Performance metrics such as Normalized Mutual Information (NMI) [130],

Adjusted Rand Index (ARI) [131], and Unsupervised Accuracy (ACC) [132] are commonly used in

deep clustering literature for this purpose. These metrics are defined analytically below:

ACC: This is the unsupervised equivalent of the traditional classification accuracy. Let there be

a mapping function ϕ that computes all possible mappings between ground truth labels and possible

cluster assignments2 for some m samples. Then we can define ACC as:

2Such a mapping function can be computed optimally using the Hungarian assignment algorithm [133].
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ACC = max
ϕ

∑m
i=1 1{Yi = ϕ(Li)}

m

NMI: Normalized Mutual Information is essentially a normalized version of the widely used

mutual information metric. Let I denote the mutual information metric [134], and E denote entropy

[134]. Then we can define NMI as:

NMI =
I(Y, L)

(1/2) ∗ [E(Y ) + E(L)]

ARI: The Adjusted Rand Index is based on the Rand Index, commonly used in statistical

literature [135]. Let R denote the "unadjusted" Rand Index, then we can write ARI as:

ARI =
R− E[R]

max(R)− E[R]

2.3.2. Threat Model. We now define the threat model for the adversary:

(1) The attacker has knowledge of the dataset X.

(2) The attacker carries out a black-box attack and does not know which deep clustering

model C is being used, but can query it to observe M (softmax cluster memberships), and

hence, L3. In adversarial attacks on (un)supervised models, this is often what constitutes a

black-box attack [137, 138, 139, 140].

(3) The goal of the attack is to provide minimally perturbed images (there is a noise threshold

that cannot be exceeded) as input to the deep clustering model. Upon doing so, the model

should miscluster these samples and the performance measured via the evaluation metrics

(ACC, NMI, ARI, etc) should significantly reduce post the attack.

2.3.3. Adversary’s Objective. The goal of the attacker is to input adversarial images to the

model and lead to a performance decrease, measured using metrics such as NMI, ACC, and ARI.

We cannot directly optimize post-attack M or L as the adversary does not possess ground truth

labels. Moreover, cluster labels generated by the model may not be the same as the ground truth

labels, thus requiring some notion of a mapping function, further complicating the problem. Instead

we will indirectly achieve this goal through another objective function.

3If only L can be observed it is a decision-based attack; if M can be observed it is a score-based attack [136].
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Let an input image be Xi ∈ X and through a single query the cluster probabilities Mi can be

obtained before the attack. To attack, the adversary will introduce a carefully crafted perturba-

tion/noise δ specific to this sample. The attacker queries the deep clustering model and obtains the

set of cluster probabilities for this sample. Abusing notation slightly, these are denoted as C(Xi + δ).

Assuming the original unperturbed cluster labels/probabilities accurately depict the cluster

representing the sample’s ground truth label, the attacker can simply generate the adversarial noise

via the following optimization problem:

(2.6) max
δ

||Mi − C(Xi + δ)|| s.t. ||δ|| ≤ ϵ

Here the constraint with ϵ is simply to ensure that the adversarial sample does not have unbounded

noise and remains realistic to a human observer. The objective function above ensures that the

cluster probabilities post the attack C(Xi + δ) are as distinct as possible to the cluster probabilities

Mi obtained before the attack. Then, assuming that prior to the attack the cluster labels were

the correct representative of the ground truth label Yi4, the deep clustering model will miscluster

the sample after the attack and performance (NMI, ACC, ARI) should reduce. If the adversary

introduces many such adversarial samples, the performance can thus be significantly affected5.

Our attack can be motivated via the following example: Recently, deep clustering has been

successfully applied to the problem of Human Activity Recognition (HAR) where wearable sensors

are used to record the user’s data [141] and their current "activity" is predicted using the clustering

model. While most research on HAR comprises of supervised approaches, often it is impossible

to collect and annotate data for this task, prompting the use of clustering. Moreover, the target

audience/users for HAR are generally elderly people [142] as it can be used to prevent unprecedented

health risks (such as falls, etc.). Given that deep clustering is being utilized for this task, an informed

adversary can use this to cause direct harm to the users if they wish to do so. If they can gain

control (i.e., query the system) of the target’s wearable device (through social engineering, security

4This is true for most samples in the dataset as clustering performance of the model prior to the attack is assumed to
be superlative, otherwise there is no reason to attack.
5Note that this is an untargeted attack. One could also consider targeted attacks by replacing Mi in the objective
with a k length vector where the target cluster entry is 1, and all other entries are 0.
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Figure 2.8. Adversarial samples generated by our attack (first 4 image pairs from
the left correspond to SPICE and the others to RUC).

flaws, etc.), they can generate adversarial samples for it using our attack. In this manner, even if

an individual needs immediate help, the attacker can use adversarial samples (which will likely be

misclustered) to make the cause (activity) seem benign. The contrary case is also problematic– the

adversary can generate adversarial samples for multiple devices that lead to "false alarms" solely for

anarchistic purposes. Defending against such an attack would also be significantly challenging.

2.3.4. Proposed Attack. We utilize a simple GAN based architecture for generating the

adversarial perturbation δ and solving the attack problem delineated in the previous section. There

are many different variations to using GANs for generating adversarial samples, such as AdvGAN

[143], AdvGAN++ [144], WPAdvGAN [145], CycleAdvGAN [46], among many others. For our

attack, we employ a vanilla GAN architecture consisting of deep neural networks for both the

Generator and Discriminator, similar to AdvGAN.

We utilize the Generator model G to generate the adversarial perturbation δ for a given input

image Xi ∈ X, i.e., G(Xi)→ δ. The Discriminator model D plays a similar role as for the original

GAN model [115] as it aims to ensure that the perturbed image is similar to the distribution of

input images.

We then rewrite our attack optimization problem in the context of the GAN architecture. The

loss for the attack objective can be written directly as in the optimization problem:

Lattack := EXi ||Mi − C(Xi + G(Xi))||

And we can simply reformulate the constraint on the norm of the adversarial noise as:
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Lconstraint := EXi min{ϵ− ||G(Xi)||, 0}

We also write the vanilla minimax GAN loss [115] as:

L := EXi [log(D(Xi)) + log(1−D(Xi + G(Xi))]

To train the Generator G and Discriminator D, we then optimize these combined losses by solving

the following saddle-point problem (where αa, αc are hyperparameters to control tradeoff):

max
D

min
G
{L − αaLattack − αcLconstraint}

Upon obtaining the trained Generator G, we can generate the adversarial perturbation as

δ = G(Xi) for any image Xi ∈ X provided as input. We then provide these adversarial images Xi+ δ

as input to the pre-trained deep clustering model C to obtain cluster membership confidence scores as

M ′
i = C(Xi+δ) after the attack. From Mi we know the original cluster label as Li = argmaxj∈[k]Mi,j

and similarly, we can obtain the cluster label of the adversarial image as L′
i = argmaxj∈[k]M

′
i,j .

If the optimization problem was solved successfully and the distance between Mi and C(Xi + δ)

is sufficiently large enough, we can have Li ̸= L′
i. Moreover, assuming that a mapping function ϕ

exists that maps the output cluster labels to the ground truth labeling, we know that: ϕ(Li) = Yi.

Since Li ̸= L′
i, we can conclude that ϕ(L′

i) ̸= Yi leading to misclustering and a drop in performance.

Remark. Note that since our attack objective is indirectly formulated, it is possible that

Mi and M ′
i are not sufficiently far apart even after the attack, leading to Li = L′

i. However, as

we find and our experiments show, this does not happen frequently in practice as our black-box

attack is highly successful at generating adversarial samples that disrupt the performance of all deep

clustering models considered. We have considered the following open-source deep clustering models

in experiments: CC [52], SPICE [51], SCAN [146], MiCE [147], NNM [148], RUC [53]. Figure 2.8

shows a few adversarial samples generated via our attack for the SPICE and RUC models on the

STL-10 dataset.
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2.3.5. Possible Defenses. We also employ some possible defense approaches to better gauge

the extent of our proposed attack. For this reason, we opt for two natural defenses that can be

utilized to mitigate an attack against deep clustering models:

2.3.5.1. In-processing Defense: Robust Deep Clustering. Adversarially retrained models (where

the learning process incorporates a joint adversarial loss along with the original loss) have been

shown to considerably mitigate adversarial attacks, and thus constitute a natural in-processing

defense approach. In the context of deep clustering, RUC and ALRDC utilize adversarial learning

to improve model robustness. However, we only consider RUC in this work for the following reasons:

1) RUC is an add-on module, and can be applied to any deep clustering model, 2) in contrast, the

ALRDC approach specifically works only to make the latent space robust to perturbations (which

most deep clustering models considered in this work do not possess), restricting its use, and 3)

unlike RUC, from our early experiments with ALRDC we found that it did not work well with

high-dimensional real-world image datasets such as CIFAR-10/CIFAR-100/STL-10, which we have

considered in this work6.

In our experimental results, we show that using our GAN based attack and RUC as the deep

clustering model C, we can disrupt its performance significantly as well. Once the generator has

learnt how to generate adversarial noise specific to RUC, it can easily degrade RUC’s clustering

ability. These results clearly indicate that there is a deficiency in current robust deep clustering

strategies, and the problem requires different solutions7.

2.3.5.2. Pre-processing Defense: Deep Learning Based Anomaly Detection. With advancements in

deep learning, the long-standing field of anomaly/outlier detection has also seen major advancements.

Further, due to the unsupervised nature of the deep clustering task (no labels), anomaly detection is a

suitable pre-processing approach for detecting adversarial samples. In particular, most deep learning

based anomaly detection models are trained on specific datasets and can detect out-of-distribution

samples with extremely high precision. For our experiments, we use a recently proposed self-

supervised deep anomaly detection approach SSD [150] which achieves state-of-the-art performance

on benchmarks when labeled training data is not present [151].

6In the ALRDC paper only MNIST [127] and Fashion-MNIST [149] were considered in their experiments.
7One simple but compute-intensive solution could be to jointly minimize the deep clustering loss on adversarial inputs
by using our trained adversarial noise generators, similar to traditional adversarial retraining.
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While a detailed description of SSD is beyond the scope of our work, the authors employ

contrastive self-supervised representation learning combined with a Mahalanobis distance based

threshold detector in the feature space to detect anomalies. In our experiments later we show that

even SSD is unable to detect a large majority of our adversarial samples. We further show that this is

likely due to the distribution of our adversarial samples in space, as they mimic the original samples

fairly well due to the norm constraint on the generator’s output. We use Principal Component

Analysis (PCA) [152] to analyze the adversarial and benign samples and find that their principal

components tend to be very similar. In this regard, anomaly detection approaches are also unable to

detect most of our generated adversarial samples (less than 1% in the best case; ≈ 14% on average).

2.3.6. Results. We now present results for the GAN based attack, describe the general effects

of the attack, and conduct a query complexity as well as a transferability analysis. Subsequently, we

also provide results for the attack when the aforementioned defense approaches are employed.

For our experiments, we utilize the following real-world image datasets: CIFAR-10 [153], CIFAR-

100 [154], and STL-10 [155]. These are commonly utilized in a majority of deep clustering literature.

For the models, we consider a number of state-of-the-art deep clustering models: SPICE [51], SCAN

[146], NNM [148], MiCE [147], and CC [52]. We also consider RUC [53], but discuss its results as

part of the defense experiments, later. Notably, SPICE and RUC (add-on to SCAN) are SOTA #1

and #2 for performance on the aforementioned datasets. For additional experiment details refer to

[12].

As part of our experiments, we generate adversarial images (adversarial set) using our attack

for all the images in the original test set. We show the performance metrics (ACC, NMI, ARI),

pre-attack (original images) and post-attack (adversarial images) for all the aforementioned models

and datasets in Table 2.3. Quite evidently, it can be observed that performance for all models is

significantly reduced post the attack. Note that since the GAN network generates fixed noise for the

same input, there is no variance in the obtained results. For hyperparameter (αa, αc, ϵ, etc.) values

for all experiments please refer to the appendix in [12].

2.3.6.1. Effects of the Attack. For all the deep clustering models, we find a general trend emerges

in how the models’ post-attack clusters differ from the clusters generated on the original test set.

In particular, performance on the benign images is generally very good– this can be observed in
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Table 2.3. Pre-attack and post-attack performance for deep clustering models.

Model CIFAR-10 CIFAR-100 STL-10
NMI ARI ACC NMI ARI ACC NMI ARI ACC

Pre-attack 0.70 0.64 0.79 0.43 0.27 0.43 0.76 0.73 0.85CC Post-attack 0.01 0.00 0.10 0.03 0.00 0.07 0.03 0.00 0.12
Pre-attack 0.73 0.69 0.83 0.45 0.29 0.44 0.56 0.46 0.62MiCE Post-attack 0.20 0.12 0.44 0.15 0.04 0.20 0.30 0.20 0.43
Pre-attack 0.75 0.71 0.84 0.48 0.32 0.48 0.70 0.65 0.81NNM Post-attack 0.30 0.09 0.41 0.18 0.01 0.15 0.22 0.07 0.25
Pre-attack 0.71 0.66 0.82 0.49 0.33 0.51 0.67 0.62 0.79SCAN Post-attack 0.27 0.06 0.48 0.10 0.01 0.14 0.16 0.02 0.22
Pre-attack 0.85 0.84 0.92 0.57 0.39 0.54 0.87 0.87 0.94SPICE Post-attack 0.23 0.10 0.36 0.12 0.02 0.15 0.14 0.00 0.16

RUC Pre-attack 0.83 0.81 0.90 0.55 0.39 0.53 0.78 0.74 0.87
Post-attack 0.26 0.08 0.33 0.23 0.05 0.26 0.25 0.07 0.30

Table 2.4. Query complexity of the attack.

Model CIFAR-10 CIFAR-100 STL-10
CC 5148 5382 2150

MiCE 2820 3142 2244
NNM 2320 11360 4660
SCAN 3100 2200 3080
RUC 3500 4000 3380

SPICE 2320 7520 2304

the confusion matrix for the SPICE model and STL-10 dataset in Figure 2.9a. Note that most of

the clusters are correctly defined and there are a few miclusterings. However, for the adversarial

images, we notice that there is a complete clustering breakdown– most images tend to get lumped in

a small number of select clusters, and the remaining few images create small-sized clusters. This

can also be seen in the confusion matrix in Figure 2.9b for SPICE on adversarial STL-10 images.

Most of the adversarial images are clustered as part of the "cat" cluster, despite being clustered

accurately before the attack. This trend is prevalent for the attack on all the models, and tends

to be more drastic for less performant deep clustering models, such as CC. This can be seen in

the confusion matrices shown in Figures 2.9c and 2.9d. For the confusion matrices for the other

models please refer to the appendix in [12]. A major takeaway from these results is that while deep

clustering models tend to work very well on “clean” data, simple adversarial samples exist that can

completely degrade performance. It is thus imperative that deep clustering model designers evaluate

their models against adversarial samples.
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Figure 2.9. Confusion matrices showcasing the effect of the attack for the SPICE/CC
models on STL-10.
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Figure 2.10. Performance versus adversarial perturbation norm (STL-10).

2.3.6.2. Query Complexity and Perturbation Analysis. We also measure query complexity of our

approach to analyze the cost associated with carrying out our attack in the real world. In this

black-box attack scenario, the query complexity is defined as the number of times the deep clustering

model is queried by the adversary. Thus, we can measure the number of times the Generator G

queries the clustering model C with an input batch, before the loss of the GAN network converges.

We present these results in Table 2.4 where the batch size is 256. It can be seen that the query

complexity of our attack is quite minimal for all models and datasets. In particular, the values

obtained for our method are comparable to the query complexity rates obtained by existing black-box

attacks against supervised learning models [137, 139]. Moreover, a smaller query complexity is

doubly beneficial in our case, because once the generator has been trained, we can use it to generate

the optimal perturbation for any images that belong to that input distribution without requiring

any additional queries to the clustering model.
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Figure 2.11. Transferability results showcasing post-attack (and pre-attack) NMI
for different source/target models.

We also analyze the effect of varying the noise penalty (via ϵ) on the extent to which the attack

degrades the performance of the deep clustering model. We depict the NMI, ARI, ACC for all the

models on the STL-10 dataset as a function of the norm of the generated perturbation in Figure

2.10. It can be observed that as the norm threshold is increased the attack becomes more successful

and the performance of the models is worsened, eventually plateauing close to 0.

2.3.6.3. Transferability Analysis. We undertake a transferability analysis to see whether ad-

versarial samples generated for one model transfer to other deep clustering models. We present

these results in Figure 2.11 for all our datasets as transferability matrices. In these, we show the

post-attack NMI for source and target models, along with the pre-attack NMI for each of the deep

clustering models. It can be seen that the overall transferability of most adversarial samples is high.

Note that SPICE (SOTA #1) is in general a much better deep clustering model than CC in terms of

performance. Interestingly however, we can see that SPICE’s adversarial samples do not transfer

well to CC and vice versa. It would be interesting to investigate the reasons for this occurrence in

future theoretical or empirical work.

2.3.6.4. Utilizing Robust Deep Clustering for Defense. As mentioned before, we utilize the RUC

add-on module as a first defense against our attack. As in the original paper, we utilize RUC with

SCAN as the deep clustering model and then carry out our GAN based attack against it. Similar to

previous experiments on the models, we measure the performance on a benign test set and then on

a corresponding adversarial set generated using our GAN attack. We find that our attack is also

successful against RUC, thus proving that RUC is not entirely robust to adversarial noise. This is

shown in Table 2.3. It can be seen that RUC is not a satisfactory defense approach for our attack.

However, note that the robustness of RUC is somewhat observable in our perturbation norm versus
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Figure 2.12. Results on using anomaly detection as a possible defense.

performance analysis shown in Fig 2.10. In general, it takes higher norm thresholds to reduce the

performance of RUC, although it is achievable without adding too much noise to the images. For

the transferability analysis shown in Fig 2.11, we find RUC behaves similar to SPICE, as RUC’s

adversarial samples are highly transferable across all models and datasets except for CC on the

CIFAR-10 and CIFAR-100 datasets.

2.3.6.5. Utilizing Deep Learning Based Anomaly Detection for Defense. We now present results

for SSD, the deep learning based anomaly detection approach, as a pre-processing defense to our

attack. In our experiments, we start with a test set of 8000 images for all of our datasets. For each

benign image Xi, we uniformly randomly either add adversarial noise to it or let it remain benign.

We do this over 100 trials and average our results to observe how many adversarial samples were

detected by the anomaly detection approach. We present these results in Fig 2.12a. We find that on

average the method detects 11.69%, 19.41%, and 11.71%, of adversarial samples for the CIFAR-10,

CIFAR-100, and STL-10 datasets, respectively. However, this is negligible compared to the large

number of adversarial samples being injected and remaining undetected. To analyze the reasons for

this occurrence, we compute the first 3 principal components of the adversarial set and the benign

set using PCA and present these in Fig 2.12b for SPICE. Visually, the principal components of a

large majority of adversarial samples are superimposed and interspersed amongst those of the benign

samples, showcasing the potency of our attack.
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Figure 2.13. NMI/ACC/ARI before and after the attack on Face++ API.

2.4. Attacking Face++: A Production-Level MLaaS Clustering Service

To showcase the disruptive capability of our attacks, we attack Face++, which provides an

extremely well-performing face clustering REST API service. At a high-level, the API performs

a basic face clustering task where it takes in as input a face dataset and seeks to cluster images

belonging to the same person together. We do not know the clustering algorithm/model being

utilized in the backend. Note that there is one significant difference here compared to the threat

model for open-source deep clustering models previously considered– we do not have access to cluster

memberships, but just the final set of labels. To overcome this problem, we attack Face++ by training

a surrogate open-source deep clustering model on the dataset and then generate adversarial samples

for this model using our GAN based attack pipeline. We then use these adversarial samples as input

to the Face++ API to conduct an evasion attack. Hence, our attack constitutes a transferability

attack via a surrogate model.

The Face++ API service functions as follows: we first create a new face album using the

createAlbum endpoint which gives us a facealbum_token as a response. Using this token, we add

the images for our dataset using the addimage endpoint, and then call the groupFace endpoint to

perform the clustering task. Finally, we obtain cluster labels for each image using the getAlbumDetail

endpoint, which returns group_ids as the integer cluster labels.

We now present our results for attacking Face++, a production-level face clustering API service.

Since the service only works with face images, we use the Extended Yale Face B [156] dataset for

these experiments. There are 28 persons in this dataset, i.e., k = 28 and 500 images for each person.

However, due to rate limits and the latency associated with uploading images using REST APIs,

we test the service by sending only 10 images per person, for a total of 280 images. Then, as only

cluster labels are outputted by the API, we resort to using a surrogate model for the attack via
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Figure 2.14. Adversarial samples for the Face++ attack.

transferability. We train a CC model as the surrogate on the entire Extended Yale Face B dataset

and then train our GAN network to generate the adversarial noise for a given image from the dataset.

Thus, we generate adversarial counterparts to the original 280 benign images and carry out the

attack. Subsequently, we observe the NMI/ACC/ARI pre-attack and post-attack.

Since the results obtained can be affected by which 10 representative images were picked for each

person in the test set, we randomize this selection process and take the average over 10 runs. As

can be seen in Figure 2.13, before the attack, the Face++ clustering API boasts stellar performance

on the test set, with average NMI ≈ 0.97. However, for the set of adversarial images, performance

of the API service degrades significantly, with the NMI dropping down to ≈ 0.62 on average. This

shows that our generated adversarial examples can disrupt the working of a high-performance

real-world service, even when we cannot query the model for memberships. We also show some

of the adversarial samples generated from original images, and how they have been misclustered

in Figure 2.14. Before the attack, most of the faces are clustered correctly, but after the attack

they only majorly belong to the B12 or B18 face clusters. Here too, we are observing the clustering

breakdown effect previously noted for the attack against open-source deep clustering models. For

more details regarding implementation and results, please refer to [12].
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CHAPTER 3

Fairness and Social Robustness in the Context of Machine Learning

In this chapter, we will explore fairness in ML by delving into two problems: fair clustering using

antidote data, and fair video summarization.

3.1. Fair Clustering Using Antidote Data

3.1.1. Introduction. With the increasing application of machine learning (ML) algorithms in

modern society, the design of fair variants to traditional ML algorithms is an important concern.

Vanilla ML algorithms do not account for the biases present in training data against certain minority

protected groups, and hence, might reinforce them. Furthermore, clustering has been widely used to

find meaningful structures, explanatory underlying processes, generative features, and groupings

inherent in a set of examples. It plays a significant role in most modern data science applications,

such as in medicine [157], vision [158], language modeling [159], financial decisions [160], and various

societal resource allocation problems. Thus, ensuring fairness with respect to protected groups is an

important issue for clustering algorithms.

Currently, many different group-level notions for fairness in clustering exist, such as balance

[85], proportionality [161], social fairness [104], among others. Traditionally, to make clustering

outputs fair with respect to a specific notion of fairness, fair variants to clustering algorithms need

to be proposed. Given that many different clustering algorithms exist, each fair variant proposed

requires individual analysis, and possesses different theoretical guarantees. Moreover, if fairness

notions or clustering algorithms are changed in a deployed real-world system, the corresponding

fair algorithms would also have to be reimplemented. Therefore, instead of coming up with new

fair algorithms for each fairness definition and each clustering algorithm, we propose an alternate

approach to ensuring fairness for clustering. Inspired by recent research on adversarial attacks and

data poisoning, we aim to augment the dataset with antidote data points such that when we use

vanilla clustering on this new combined dataset, fairness constraints are met. Thus, instead of
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changing the clustering algorithm to ensure fairness, we find an augmented dataset for which the

specified fairness constraints are met when vanilla clustering is undertaken on it. Our approach is

therefore applicable in very general case scenarios where group-level fairness on the original dataset

can be achieved for any arbitrary choice of center-based clustering algorithm and fairness definition.

Note that we aim to make clustering fair in the pre-clustering stage as opposed to the in-clustering

stage, unlike most research on fair clustering.

Data augmentation to improve fairness was first proposed by [18] for recommendation systems.

The authors coined the term antidote data for the data points added to the original dataset. However,

since recommendation systems and clustering algorithms differ widely, their problem formulation

and techniques do not translate to clustering. The antidote data problem for clustering is then as

follows: given a dataset U , can we compute (antidote) data V such that when we cluster on U ∪ V

we obtain a fair clustering output for a chosen fairness notion and clustering algorithm?

We answer this question in the affirmative by proposing a general bi-level formulation of the

antidote data problem for clustering. We also cannot reuse existing approaches for adversarial attacks

on clustering algorithms as our bi-level formulation requires the antidote data addition to lead to

very specific clustering outcomes that improve fairness irrespective of where points lie in clusters.

3.1.2. Problem Statement. The original dataset is denoted as U ∈ Rn×d. This is the

dataset we wish to augment with some antidote data points such that certain fairness constraints

are met when we cluster on the augmented dataset. Furthermore for a matrix M , let Mi and

M i denote the i-th row and i-th column respectively. To start, we first define the clustering

problem on U . A center-based clustering objective, C, takes in a dataset as input (such as U)

and outputs a set of k centers µ ∈ Rk×d, where k ≤ n. That is, a clustering objective induces

a k-partition set of the data, where each sample in the dataset is uniquely mapped to a center

µi ∈ µ where µ ∈ Rd. For example, the k-means clustering objective on U can be defined as

Ck-means(U) := µ = argminµ′∈Rk×d

∑
x∈U mini∈[k] ||x− µ′i||2.

We denote the group-level fairness notion as F : (µ,U)→ R. That is, the fairness notion takes as

input the set of centers from a clustering algorithm and the original dataset, and outputs a fairness

cost. The goal of improving fairness is to then minimize F . It is important to note that fairness will
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be evaluated only on the original real dataset U . Moreover, as we will see, all group-level fairness

notions can be defined this way.

The General Problem. We now state the antidote data problem for improving fairness. We

aim to add a set of data points V to U , such that when we cluster on U ∪ V and obtain centers µ,

F(µ,U) is less than some given value α. The cost of adding points can be defined as the size of set

V , and hence, we aim to add as few points as possible. The general bi-level optimization problem is

as follows:

(P1)

min
V, µ

|V |

s.t. F(µ,U) ≤ α

µ = C(U ∪ V )

Relaxation P1.R. We also consider a relaxed formulation of problem P1. This relaxation allows

us to propose algorithms that in turn also solve problem P1 indirectly. The idea is to fix the size

of the antidote dataset |V | ≤ V s for a given V s ∈ R, and optimize the fixed-set V so that we only

minimize F in the upper-level problem. Since minimizing the fairness cost is now the upper-level

objective, we can also omit writing it as a constraint using α:

(P1.R)

min
V, µ

F(µ,U)

s.t. µ = C(U ∪ V )

|V | ≤ V s

We now define the group-level fairness costs we use. Consider some g ∈ Z+ number of protected

groups that comprise U . Each protected group has an index j ∈ [g] and contains a certain number

of points of U . For simplicity of notation we also assume that a mapping function ψ(U, j) exists

which takes in as input U and an integer j, where 1 ≤ j ≤ g, and gives us the set of points of U

which belong to the protected group j. Now we can define the social fairness cost of Ghadiri et al

[104]. This was originally proposed for k-means clustering, but it fits well with any center-based

clustering objective where Euclidean distance is used as the clustering distance metric.
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Definition 3.1.1. (Social Fairness [104]). Let ∆(µ,U) =
∑

x∈U minµi∈µ ||x− µi||2 where U

is the original dataset and µ are cluster centers. Then the social fairness cost is defined as:

Fsocial(µ,U) = max
j∈[g]

{
∆(µ, ψ(U, j))

|ψ(U, j)|

}
Next we define the balance metric [85, 98]. Traditionally, balance is a fairness metric that is

not a cost, and is maximized. To fit within our framework, we frame it as a cost by multiplying

it with −1, and name it the balance cost. Again, for simplicity of notation, we assume a mapping

function ϕ(U, µ, i) exists which takes in as input U , µ, and a cluster label i ∈ [k] and gives us the

points in U which belong to cluster i. Note that obtaining cluster labels is trivial as for each x ∈ U

the corresponding label can be obtained as i = argmini′∈[k] ||x− µi′ ||.

Definition 3.1.2. (Balance Cost [98]). Let U be the original dataset and µ ∈ Rk×d be the

set of cluster centers. Define the following ratio R(i, j) = |ψ(U,j)|/|U |
|ψ(U,j)∩ϕ(U,µ,i)|/|ϕ(U,µ,i)| which signifies the

ratio between the proportion of points of group j in U and proportion of group j points in cluster i.

The balance cost Fbalance ∈ [−1, 0] is then defined:

Fbalance(µ,U) = − min
i∈[k],j∈[g]

{
min

{
R(i, j),

1

R(i, j)

}}
3.1.3. Proposed Approaches. We consider problem P1 under 2 different settings and provide

algorithms and analysis for each: (1) Convex C and Convex F , and (2) General C and General F .

While setting (1) comprises more of a toy problem as clustering objectives used in practice are rarely

convex, solving problem P1 for setting (2) is quite challenging. For the first setting with convex

functions, we can reduce the bi-level problem to a single-level optimization, allowing us to utilize

off-the-shelf solvers to obtain V . For the general setting, the antidote data problem is significantly

harder and we resort to using zeroth-order optimizers as part of our proposed solution to finding a

feasible V .

3.1.3.1. Warmup: Convex C and Convex F . For this setting, we assume that both C and F

are convex functions. Assuming convexity allows us to effectively reduce the bi-level problem

to a single-level form, which can then be provided to off-the-shelf convex/non-convex solvers for

optimization. In particular, we exploit the convexity of the functions by replacing the lower-level
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problem with its Karush-Kuhn-Tucker (KKT) optimality conditions as constraints for the upper-level

problem. Since the lower-level clustering problem is convex, the KKT conditions are necessary and

sufficient to ensure optimality [162].

As optimizing bi-level problems is in general NP-Hard [163], and problem P1 contains an NP-Hard

cardinality minimization problem [164] as the upper-level objective, we use the relaxed form P1.R to

indirectly solve P1. This involves fixing |V | as an input hyperparameter and optimizing V so as to

minimize F , without considering α. We then use the convexity of the lower-level problem to obtain

a single-level reduction from this bi-level problem by replacing the lower-level problem with its KKT

constraints. When we minimize this reduced single-level problem, we effectively minimize P1.R.

We describe our approach as Algorithm 2. We aim to solve problem P1.R using our algorithm,

and in each iteration try to find a suitable V to optimize using the reduced single-level problem

(obtained via KKT conditions). In each iteration of the algorithm, we start by fixing the size of V to

some Vs, and obtain F after optimizing V . If this fairness cost is less than α, we can exit, otherwise

we increase the size of V (denoted as Vs) by ξ ∈ Z+ for the next iteration and continue. Algorithm

2 can also exit if the constraint is not met, if a certain number of iterations are exceeded, or if |V |

grows to an unacceptable value. We omit these details from Algorithm 2 for simplicity, but they can

be easily implemented.

Not many widely used convex formulations for clustering algorithms exist except for sum-of-

norms (SON) clustering [165, 166], which is strongly convex. SON clustering has been shown to

be a convex relaxation to both k-means clustering [165] and hierarchical agglomerative clustering

[166]. Below, we analyze SON clustering in the context of Algorithm 2. For the fairness notion, we

utilize Fsocial which is clearly convex and well-defined for SON clustering. We first define the SON

clustering objective. It is important to note that we modify the notation– since the objective is

convex, the number of clusters are not discretely defined, but obtained via a regularization parameter

λ. Centers are represented as a Rn×d matrix as there is no explicitly defined k, but note there will

only be some unique k ≤ n centers decided by the parameterization of λ. The objective is as follows:

CSON(U) := µ = argminµ′∈Rn×d
1
2

∑n
j=1 ||Uj − µ′j ||2 + λ

∑
i<j ||µ′i − µ′j ||.

Let V (t)
s denote the size Vs of V in iteration t of Algorithm 2 (line 2). The number of centers

we have will be µ ∈ Rm×d where m = n+ V
(t)
s for U ∪ V . To derive the KKT conditions we first
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reformulate the objective. Consider an ordering of all (µi, µj) pairs where all i < j. We can let each

of the m centers µi be a node in a graph G. The created ordering essentially enumerates the list of

edges E for the graph G. We denote this ordering as O where we will have |E| = |O| = m(m− 1)/2.

We also denote the node-arc-incidence matrix [167] for (G,E) as I ∈ Rm×|O|. We can then rewrite

the SON objective, define the dual problem to the reformulation, and derive the KKT conditions.

We provide more detail on these next.

Consider the original strongly convex SON clustering objective:

(3.1) min
µ′∈Rn×d

1

2

n∑
j=1

||Uj − µ′j ||2 + λ
∑
i<j

||µ′i − µ′j ||

we create the ordering O, the graph G and define its node-arc-incidence matrix I [167] and then

reformulate the above objective:

(3.2) min
µ∈Rn×d, η ∈Rd×|O|

1

2
||µ− U ||2 + λ

∑
i∈O
||ηi|| s.t. µT I − η = 0

It can be verified that the above objectives are equivalent. We can even define the dual formulation

for the above primal problem (where ⟨, ⟩ denotes the matrix Frobenius inner-product):

(3.3)

max
θ∈Rn×d, ζ∈Rd×|O|

⟨UT , θ⟩ − 1

2
||θ||2

s.t. IζT − θ = 0

||ζi|| ≤ λ, ∀i ∈ O

Now, we discuss the KKT conditions. Since the SON objective is strongly convex, we can use

the reformulated primal and dual problems to arrive at the KKT conditions:

(3.4)

θ + µ− U = 0

η − P(η + ζ) = 0

µT I − η = 0

IζT − θ = 0
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Here P(.) refers to the proximal operator of the Euclidean norm, therefore P(η+ζ) = max{0, 1−
1

||η+ζ||}(η + ζ). Since we now have the KKT conditions we can undertake the single-level reduction

for problem P1.R.

For this we first have to substitute U for U ∪ V . So now we can use the KKT conditions by

replacing U with U ∪ V and n with m. The other variables will also then be: µ ∈ Rm×d, η ∈

Rd×|O|, θ ∈ Rm×d, ζ ∈ Rd×|O|. The original problem P1.R for CSON and Fsocial is:

(3.5)
min
V, µ

Fsocial(µ,U)

s.t. µ = CSON(U ∪ V )

Replacing equations 3.4 as constraints for the upper-level objective and removing the lower-level

objective gives us the single-level optimization problem:

min
V, µ, η, θ, ζ

Fsocial(µ,U)

s.t. θ + µ− (U ∪ V ) = 0

η −max{0, 1− 1

||η + ζ||
}(η + ζ) = 0

µT I − η = 0

IζT − θ = 0

Here, µ ∈ Rm×d, η ∈ Rd×|O| are the primal variables, and θ ∈ Rm×d, ζ ∈ Rd×|O| are the dual

variables. We also observe that replacing KKT conditions as constraints can introduce non-convexity.

All the constraints and objectives are convex, except for one: η−max{0, 1− (1/||η+ ζ||)}(η+ ζ) = 0.

To approximate this, we can replace it with an affine constraint as η− γ(η+ ζ) = 0 where 0 ≤ γ ≤ 1.

Then a convex solver such as CVX [168] can be used to solve the above problem. Finally, assuming

it takes time TKKT to solve the single-level problem, and a feasible antidote dataset V ∗ exists,

Algorithm 2 has a running time of O(TKKT|V ∗|/ξ).

3.1.3.2. General C and General F . In this setting, we make no assumptions about the clustering

objective C and the fairness cost F . In such a minimal assumption setting where group-level fairness

notions as well as center-based clustering objectives can vary widely, it is not trivial to propose
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Algorithm 2 Convex C and F
Input: U, C,F , Vs, ξ
Output: V

1: while true do
2: initialize V arbitrarily with |V | = Vs
3: reduce problem P1.R by replacing C(U ∪ V ) with its KKT conditions as constraints
4: solve this single-level problem for optimal V
5: if F(µ,U) ≤ α return V else Vs ← Vs + ξ
6: end while

Algorithm 3 General C and F
Input: U, C,F ,A, Vs, n′, ξ
Output: V

1: while true do
2: define µ← C(U ∪ V ) and f(V )← F(µ,U)
3: initialize V arbitrarily with |V | = Vs
4: optimize V using SRE(n′, f(V ),A)
5: obtain optimized V and F(µ,U) from SRE & A
6: if F(µ,U) ≤ α return V else Vs ← Vs + ξ
7: end while

algorithms with strong theoretical guarantees. Furthermore, some of the most popular and widely

utilized clustering algorithms such as k-means, hierarchical clustering, DBSCAN, etc. possess highly

non-convex objectives and are generally optimized via heuristic algorithms (such as Lloyd’s algorithm

[78] for k-means). In terms of fairness notions for clustering, balance is generally the most widely

used metric in proposing fair algorithms. As evident in Definition 3.1.2, it is both non-convex and

non-differentiable.

Furthermore, general bi-level optimization is NP-Hard; even for the simpler case when the

upper-level and lower-level problems are linear, a polynomial time algorithm that finds the global

optima of the bi-level problem might not exist [163]. Since we are dealing with possibly many

non-convex upper-level and lower-level problems in this setting, finding a global optima for P1 is

not a trivial task. We then resort to finding a locally optimal solution that satisfies our problem

constraints. To do this, we relax the NP-Hard upper-level problem which seeks to minimize the size

of the antidote dataset V . Similar to the convex setting, we are attempting to solve the relaxed

formulation P1.R (indirectly solving P1), where we fix |V | to some given value, and optimize V to

minimize F .
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To solve P1.R, we can use zeroth-order optimization algorithms (such as RACOS [169], CMAES [170],

IMGPO [171]). Let such an algorithm be denoted as A. Most zeroth-order optimization algorithms do

not scale well with problem input, and hence, cannot usually be applied to data with number of

samples n ≥ 1000 [172]. However, since our goal is to utilize antidote data on large-scale datasets,

the algorithm A cannot be applied directly to solve P1.R in practice. To circumvent this problem,

we propose using the Sequential Random Embedding (SRE) approach of [172], which can be used in

conjunction with the zeroth-order black-box optimizer A to solve P1.R. The SRE approach scales

the problem input by projecting it to a low-dimensional setting where it invokes A to solve the

optimization. SRE takes in as input the reduced dimension n′ ≪ n, the objective function f to

optimize, and zeroth-order optimization algorithm A. We defer the reader to [172] for more details

on SRE. In our experiments for this setting, we use RACOS [169] as the algorithm A, which is a

Sampling-and-Learning (SAL) framework.

Using the SRE approach, we propose Algorithm 3 for solving P1.R. We begin by defining the

nested function f to optimize (line 2) which takes in as input some V and outputs the fairness cost

F(µ,U) where µ is obtained via C(U ∪ V ). The basic idea is to fix |V | to some pre-defined starting

value Vs and optimize V using the SRE approach as the back-end (line 3-5). Then, if the constraint

F(µ,U) ≤ α is not met, we increase |V | by some small number ξ ∈ Z+ and repeat (line 6). Similar

to Algorithm 2, we can exit in the while loop after a certain number of iterations or if |V | ≫ |U |.

3.1.4. Results. We consider four real-world datasets commonly used to evaluate fair clustering

algorithms: adult [173], bank [174], creditcard [175], and Labeled Faces in the Wild (LFW) [176].

The adult dataset has 10000× 5 samples, and protected groups signify race (white, black, asian-pac-

islander, amer-indian-eskimo, other). The bank dataset has 45211×3 samples, and protected groups

signify marital status (married, single, divorced). The creditcard dataset has 30000× 23 samples,

and the protected groups signify education (higher and lower education). LFW has 13232×80 samples,

and the protected groups signify sex (male, female).

Since Algorithm 2 is solving a simple convex optimization problem, we omit its results here. For

the results, refer to the appendix in [15]. We compare Algorithm 3 against vanilla clustering and

state-of-the-art fair clustering algorithms and let k = 2. We also compare Algorithm 3 and other fair

clustering approaches in terms of clustering performance, using clustering performance metrics such
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Table 3.1. Comparing fairness costs of Algorithm 3 with vanilla clustering. (Consider
Combination #1 and the bank dataset as an example. The fairness cost for the
vanilla cluster centers µvanilla is F(µvanilla, U) = −0.3054 and α is set to this value to
improve on this fairness cost. After Algorithm 3 is run, V is obtained, with size |V | =
0.00011|U |. Cluster centers µ obtained by clustering on U ∪ V result in fairness cost
F(µ,U) = −0.3077. This is lower than F(µvanilla, U), leading to improved fairness.)

Clustering-Fairness Combination Dataset α |V |/|U | F(µvanilla, U) F(µ,U)

Combination #1:
Ck-means,Fbalance

adult -0.6119 0.001 -0.6119 -0.6196
bank -0.3054 0.00011 -0.3054 -0.3077

creditcard -0.8696 0.00017 -0.8696 -0.8715
LFW -0.8815 0.00075 -0.8815 -0.8821

Combination #2:
Ck-means,Fsocial

adult 5.3678 0.0005 5.3678 4.2104
bank 2.3432 0.00022 2.3432 2.3416

creditcard 19.740 0.00034 19.740 19.729
LFW 1406.3411 0.00076 1406.3411 1406.1676

Combination #3:
Cspectral,Fbalance

adult -0.6458 0.001 -0.6458 -0.6911
bank -0.4811 0.00022 -0.4811 -0.5489

creditcard -0.8384 0.00034 -0.8384 -0.8407
LFW -0.9279 0.00076 -0.9279 -0.9389

Table 3.2. Comparing fairness costs of Algorithm 3 with fair clustering algorithms.
(Reads similarly to Table 3.1.)

Clustering-Fairness Combination Dataset α |V |/|U | F(µSOTA, U) F(µ,U)

Combination #1:
Ck-means,Fbalance

adult -0.6059 0.001 -0.6059 -0.6196
bank -0.3065 0.00011 -0.3065 -0.3077

creditcard -0.8696 0.00017 -0.8696 -0.8715
LFW -0.8816 0.00075 -0.8816 -0.8821

Combination #2:
Ck-means,Fsocial

adult 4.2636 0.0005 4.2636 4.2104
bank 2.3135 0.1549 2.3135 2.3119

creditcard 18.998 0.19 18.998 18.998
LFW 1344.5468 0.3999 1344.5468 1344.5461

Combination #3:
Cspectral,Fbalance

adult -0.5973 0.001 -0.5973 -0.6911
bank -0.6086 0.5 -0.6086 -0.6899

creditcard -0.8407 0.38 -0.8407 -0.9990
LFW -0.9926 0.4 -0.9926 -0.9997

as the Silhouette coefficient [177], Calinski-Harabasz score [178], and the Davies-Bouldin index [179].

We use these metrics to unify comparisons across the different clustering algorithms considered

in experiments. For all experiments, we choose α to be the fairness cost of the algorithms being

compared against (vanilla clustering, fair algorithms) so as to improve on them. We let A be the

RACOS [169] algorithm, Vs = 10, n′ = 100, ξ = 1.

3.1.4.1. Comparison with Vanilla and Fair Clustering Approaches. Since Algorithm 3 can ac-

commodate general C and F , we experiment on 3 combinations: Combination #1 with Ck-means and

Fbalance, Combination #2 with Ck-means and Fsocial, and Combination #3 where C is unnormalized

spectral clustering, and F is Fbalance. The results when comparing against vanilla clustering are
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(b) Combination #2
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(c) Combination #3

Figure 3.1. Comparing clustering performance of Algorithm 3 with fair clustering
algorithms using Silhouette scores. (Higher scores indicate better clustering perfor-
mance. As can be observed, fair clusters obtained via Algorithm 3 achieve similar
clustering performance to SOTA algorithms, while providing improved fairness.)

shown in Table 3.1. Vanilla cluster centers are denoted as µvanilla and centers obtained via Algorithm

3 are denoted by µ. As can be seen we add very few antidote data points (|V |/|U |) and improve on

the fairness cost over vanilla clustering. For each of the combination settings considered, we also

compare against an equivalent state-of-the-art fair clustering algorithm. For Combination #1 we

consider the algorithm of Bera et al [98], for Combination #2 we consider the Fair-Lloyd algorithm

of Ghadiri et al [104], and for Combination #3 we consider the algorithm of Kleindessner et al [103].

Since the approach of [103] cannot handle large datasets, we subsample each dataset to 1000 samples

for Combination #3. The results are shown in Table 3.2, and centers obtained from fair clustering

algorithms are denoted as µSOTA. We find that we outperform fair algorithms in terms of lower

fairness costs.

3.1.4.2. Clustering Performance Comparison. For comparison, we use the widely utilized Silhou-

ette score [177] which lies between [−1, 1], with higher scores indicating better clustering performance.

We show the results in Figure 3.1 for each combination setting considered. The fair clusters of

Algorithm 3 used here are the same from Table 3.1. We observe that despite outperforming fair

algorithms in terms of fairness, we still exhibit competitive clustering performance.

3.2. Fair Video Summarization

3.2.1. Introduction. With the rapid growth of video content on the internet, there is an

increasing need to automatically summarize lengthy videos to provide users with a condensed

version that contains the most important information. This has led to the machine learning (ML)

vision task of automated video summarization, which entails generating a short, representative
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summary video (comprised of key-frames) of a longer input video that showcases its main content

and events. In recent years, deep learning (DL) based models have achieved the state-of-the-art

(SOTA) in video summarization by leveraging powerful feature representations and learning complex

relationships between video frames [19]. Furthermore, the video summarization task itself is employed

in several downstream practical applications, such as surveillance [180, 181], video retrieval [182, 183],

among others. Advancements made in video summarization can then directly impact and improve

performance on these downstream video analysis tasks.

The ML/DL community has also recently pivoted to studying model fairness as models can

exhibit harmful biases against minority groups and individuals [9]. These issues of unfairness have

been evidenced in many high-impact applications as well.1 Thus, with the growing use of video

summarization in numerous applications, it is extremely important to ensure that these automated

methods are fair and unbiased, both at the individual-level [186] and at the group-level [187] (such as

with regards to sensitive attributes like ethnicity and sex). However, no work has been undertaken

in fair video summarization, while significant progress has been made in developing fair models for

other tasks/fields in ML/DL [9, 14].

The major reason for this lack of development can be directly attributed to the lack of any video

summarization datasets containing individuals, and appropriate annotations reflecting their sensitive

attributes (such as sex and ethnicity). Current benchmark datasets used to train and evaluate video

summarization models are the TVSum [76] and SumMe [77] datasets. Both datasets consist of

user/home videos that do not primarily contain human subjects2 and lack information regarding

any protected groups or sensitive attributes. Thus, to bridge this gap hindering the development

of fair video summarization models and benchmark existing models for unfairness, we propose the

FairVidSum3 dataset, which consists of 34 videos4 containing multiple individuals spanning diverse

settings such as interviews, podcasts, and panel discussions. Unlike the other datasets, we provide

manual annotations for sensitive attributes (fairness) as well as frame importance scores (utility).

1Notable examples include Microsoft’s Tay chatbot that became racist and homophobic after training on user data
online [184], and the COMPAS tool which recommended that black individuals were more likely to reoffend compared
to other ethnicities, despite no statistical differences between the individuals themselves [185].
2With the exception of a few videos in TVSum which we manually annotate for fairness information.
3https://sites.google.com/view/fairvidsum
4Note that this is in line with the other datasets– SumMe consists of 25 videos, and TVSum consists of 50 videos.

44

https://sites.google.com/view/fairvidsum


We also propose and analytically define the fair video summarization problem, to allow for the

development of fair methods at the individual- and group-level. Furthermore, we propose novel

metrics to evaluate (un)fairness in current SOTA supervised and unsupervised video summarization

models and benchmark them. Finally, for completeness we also propose a novel unsupervised method

for fair video summarization named FVS-LP, which is a linear program [188] based baseline that

only optimizes for fairness.

3.2.2. The Video Summarization Problem. We first describe the standard video sum-

marization problem and discuss protocols for evaluating utility of trained models as well. In the

subsequent section, we introduce the fair video summarization problem, and provide an analytical

definition for it, along with evaluation metrics and motivating use-cases. Note that we only consider

unimodal video summarization models as these are more commonly used in the context of deep

learning [19].

3.2.2.1. Unsupervised Video Summarization. Let a video V consist of n framesX = {x1, x2, ..., xn}

where xi ∈ Rd. These are sampled at some frequency (usually 2 frames per second [19]) from V

and hence, n is generally large. Here, d is the dimension of the feature descriptor of the frame (for

example, this could represent features extracted per frame using a ResNet [189]). An unsupervised

video summarization model can then generally be denoted as Munsup that takes in as input a

summary length requirement k ≪ n and the original video frame set X, and outputs a set of key

frames constituting the video summary as S = {xj}kj=1 ⊆ X. That is, Munsup(X, k) = S, where

S ∈ Rk×d. The summary length budget k is generally set to be 15% of the original video length,

that is, k/n = 0.15.

3.2.2.2. Supervised Video Summarization. While unsupervised variants are better suited for

video summarization [19] since they model the application scenarios in a more realistic manner

(human-level annotations are hard to obtain), supervised models are employed as well. A supervised

model also takes in as input Y = {yi}mi=1 where 0 < yi ≤ 1 is an importance score given by a human

annotator for a corresponding frame xi ∈ X.5 Annotations are only obtained for a small subset of

5Importance score annotations are generally obtained between 1 (least important) and 5 (most important) and then
normalized to lie between 0 and 1.
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frames m since n can be quite large. Thus, for a supervised model, we can obtain a summary as

Msup(X, k, Y ) = S where |S| = k.

3.2.2.3. Evaluating Models. Trained video summarization models are evaluated based on the

agreement of the generated summary for a video with its ground truth summary obtained using

the annotated importance scores provided by a given user. Note that obtaining summaries from

the importance scores Y is also an optimization problem since we have a budget k for the length

of the summary. Usually, the 0/1 knapsack [190] problem is used to obtain user summaries in this

manner [54]. Thus, if we have u users who annotated video V , we will have summaries available

denoted as OV1 , OV2 , ..., OVu corresponding to each user. The given model generates a summary SV

for a particular video V . We can then obtain the precision and recall between each OVi and SV ,

denoted as pVi and rVi , respectively. To evaluate models, we then calculate the average pairwise

Fβ-measure averaged over all user summaries as follows:

(3.6) F Vβ =
1

u

u∑
i=1

(1 + β2)× pVi × rVi
(β2 × pVi ) + rVi

Usually, β is set to 1 [76], so we compute the average pairwise F V1 -measure for a given video V .

These values are then averaged over all videos V in the test set, and overall F̄1-measure is calculated.

Further, note that for the supervised setting, videos that are used for model training cannot be used

in the evaluation/test set. Hence, cross validation is generally undertaken [19] to create 80% (train)

- 20% (test) splits. Although this issue of train-test splits does not arise for unsupervised models, for

consistency, we follow the same protocol for evaluation of all models.

3.2.3. The Fair Video Summarization Problem. We now define the fair video summariza-

tion problem for a video V . Here, along with X, Y , and k, we are also given (fairness) information

regarding g individuals or protected groups as H = {H1, H2, ...,Hg} where Hj ∈ {0, 1}n and

Hj
i = 1 implies that individual/group j is present in frame i. Conversely, H i

j = 0 implies that

individual/group j is absent in frame i. Note that unlike importance scores these are not subjective

decisions, so we have discrete labels indicating individual/group presence in frames. Note that this

abstraction using Hj is very flexible, and can allow for the development of fair models that optimize
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for individual fairness or group fairness. For individual fairness this constitutes the idea that all

persons in the video should be represented in approximately the same proportions in the generated

summary as they appear in the entire video. For group fairness, this could constitute different

groups being represented in the same proportions in the summary frames as their proportions in the

overall video frames. For example, for ethnicity as the sensitive attribute, this would necessitate

proportional representation for each ethnicity in summary frames compared to total video frames.

This is the very notion of disparate impact [191] and ensures that no protected group or individual6

be adversely affected as a result of a predictive algorithm.

A fair video summarization modelMfair then also takes in as input H and generates summary

S for video V as Mfair(X, k,H) = S. Along with optimal utility performance, the model must

ensure that the proportion of appearance of entities represented by H are as close as possible to their

overall proportions in the video V . The supervised fair variant can also be defined similarly. As is

evident by our definition, in this work we only consider optimizing one type of H at a time (that

is, sex consisting of male/female appearances in frames). However, as our dataset has information

regarding multiple groups, this can be studied in future work.

3.2.3.1. Motivating Examples. Consider a platform such as YouTube [192]. For simplicity,

consider a set of news/podcast videos on the platform that have one male and one female host.

Summaries for these videos are generated on the platform as the user browses the homepage. Here

too, if a standard summarization model is used, there is no guarantee that the outputted video

summary will respect the appearance proportions of the male/female hosts in the original video. In

fact, even if the original video has 50%-50% appearance proportions for both male/female hosts, the

model might skew these proportions heavily in the generated summary. A fair video summarization

model instead would ensure that both male and female hosts appear in roughly the same amounts

as in the original video, leading to fair representation.

Consider another example– a video surveillance application which utilizes video summarization

models in the backend, such as in [180, 181] being used by law enforcement with multiple persons

appearing in the video. If a standard video summarization model is used, the generated summary

footage might have certain individuals appearing for large segments of the summary and might not

6For brevity, at times we use the term protected groups to also refer to the set of individuals, but this will be clear
from context.
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reflect their actual proportion of appearance in the overall video. As a result, this might lead to a

falsified description of the original footage. On the other hand, if a fair video summarization model

is used, the individuals would appear in the summary in the same proportions as in the original

video footage, and result in a more fair overview. The same arguments can be made with regards

to people from different ethnicities or gender appearing in the summary footage and preventing

discrimination and bias at the group-level.

3.2.3.2. Evaluating Unfairness. Now that we have described the fair summarization problem, it

is important to propose metrics for evaluating the discrepancies in fairness. Our basic goal is to

measure whether or not each entity constituting H follows the same proportions in the summary as

they do in the original video. To do so, we propose the SumBal metric, which is a modified version

of the Balance fairness metric generally employed in fair unsupervised learning tasks [14]:

(3.7)

SumBal(S,X,H) = min
Hg∈H

min
{
R(S,X,Hg),

1

R(S,X,Hg)

}
where R(S,X,Hg) =

n∑
i=1

Hg
i

n

/ ∑
xj∈S

Hg
j

k

Here, R(S,X,Hg) is the ratio of the proportion of appearances of group/individual g in the overall

video to the generated summary S. We take the minimum between R(S,X,Hg) and 1/R(S,X,Hg)

to account for both under-representation and over-representation cases. Finally, SumBal returns

the minimum over all groups/individuals and hence SumBal ∈ [0, 1]. We can take a simple example

where we have a video with two individuals, A and B. Person A appears in 20% of the video

frames and Person B appears in 50% of the frames, with 30% frames having no individuals. Now,

assume that we generate a summary using a model which has the following proportions– Person A

appears in 40% of the summary frames (over-representation) and Person B appears in 30% of the

summary frames (under-representation). Then the SumBal term for Person A would be calculated

as: min{0.2/0.4, 0.4/0.2} = 0.5 and for Person B would be calculated as min{0.5/0.3, 0.3/0.5} = 0.6.

Since we take the minimum over all groups/individuals to calculate SumBal for the video, we get

min{0.5, 0.6} = 0.5 and the violating individual (with lowest fairness) is Person A.

3.2.4. The FairVidSum Dataset.
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Figure 3.2. Video length distribution.

3.2.4.1. Collecting Videos. As mentioned before, our goal is to select videos that feature multiple

individuals in diverse settings that allow us to annotate and account for fairness information. Similar

to TVSum [76], we collect videos from YouTube [192]. We use the search terms “panel discussions",

“podcasts", “interviews", “debates", “news", “discussions", and combinations of these keywords.

Moreover, we restrict our videos to ones with a Creative Commons license, that lie between 1-4

minutes, and those that contain more than a single shot. Using this strategy we obtain 22 videos.

Moreover, while the SumMe dataset [77] has no videos that meet this criteria, TVSum has a set of

few videos (such as in the “documentaries" category) that we can use. In this manner, we also add

another 12 videos from TVSum to FairVidSum and annotate them for fairness information. Thus,

FairVidSum currently has a total of 34 videos, in line with current video summarization datasets.

For more details refer to appendix in [20].

3.2.4.2. Annotating Videos with Importance Scores. We follow much of the same procedure as

used in TVSum [76]. We employ 10 annotators who consist of individuals from diverse fields in either

graduate or post-graduate study. Annotators are first required to watch videos on mute in a single

setting to ensure that the annotation scores are only based on visual information [76]. Similarly, to

alleviate chronological bias [76], frames are shuffled randomly. Next, to obtain scores annotators

are shown uniformly sampled frames at 2 frames per second. Each annotator annotates every video

and is required to label the provided frames with a score between 1 (least important) to 5 (most

important) to be included in the summary. This task excludes the 12 TVSum additions as those

already possess annotation scores. In this manner, we obtain 15400 responses total over all videos.

Note that the number of annotators employed for this purpose is also satisfactory, as our annotation

consistency analysis will later show.
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3.2.4.3. Annotating Videos with Fairness Information. Other than these subjective annotations

for importance scores, part of our dataset requires objective annotations for individuals and their

sensitive attribute information. To do so we employ 4 annotators who collectively annotate all 34

videos with this information. Note that compared to annotation scores which are generally obtained

for a subset of frames, fairness information needs to be collected for the entire video to calculate

unfairness (such as using the SumBal metric). Thus, here, we annotate over 168120 frames total with

information regarding different individuals appearing in frames and their sensitive attributes with

respect to sex and ethnicity. For sex we annotate as Male/Female and for ethnicity we annotate for

White, Black, Middle Eastern, Asian, and Hispanic.

3.2.4.4. Distribution of Individuals and Sensitive Attributes Across Videos. We aim to analyze

the distribution of individuals appearing across videos. For this purpose, we randomly sample 8

videos out of 34, and plot the distributions of individuals as well as the distributions of sex and

ethnicity protected groups in those videos as a function of their video frames using violin plots. These

are visualized in Figure 3.3. It is evident that both the number as well as frame-level distribution

of individuals and protected groups varies widely across videos. This also demonstrates one of the

challenges associated with developing fair summarization models, as they need to be able to account

for fairness in many diverse application settings.

Next, we provide remaining violin plots for all videos in FairVidSum to visualize the distribution

of unique individuals (Figure 3.4), sex sensitive attribute (Figure 3.5), and ethnicity sensitive

attribute (Figure 3.6). These distributions highlight the importance and difficulty of summarizing

videos while ensuring fairness. The individual plots, in particular, showcase the most challenging

scenarios, as they contain videos (such as Vid. #24, #25, #30, #33) with numerous individuals

appearing in very limited frames. Consequently, any missing individuals would result in an unfair

summary and a SumBal score of zero. The plots emphasize the need to capture and represent

proportionality and fairness in the video summaries.

We also analyze group-level information for each video as a function of the annotation trend.

Here, we can visualize the mean importance score for a video as a function of the frame indices, while

also denoting sensitive attribute information for the frames. We demonstrate this for Video 19 and

sex as the protected group in Figure 3.7a and for Video 16 with ethnicity as the protected group in
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(a) Distribution of unique entities/individuals appearing across subset of videos.

(b) Distribution of sex sensitive attribute across subset of videos.

(c) Distribution of ethnicity sensitive attributes across subset of videos.

Figure 3.3. Violin plots showcasing the distribution of individuals and protected
groups / sensitive attributes across randomly sampled videos.

Figure 3.7b. It can be seen that group-level information varies widely, and there is little correlation

between importance scores and group-level information that would allow existing models to be fair.

3.2.4.5. Annotator Consistency. We now cover another aspect of our dataset– the annotations,

and their consistency. Annotator consistency with respect to video summarization is usually

measured using the Cronbach’s alpha (CA) [193]. A higher CA value indicates more consistency

among annotations. For FairVidSum, the CA value is 0.995. This is much higher than both SumMe

(CA=0.74) and TVSum (CA=0.81).

Annotator consistency can also be observed qualitatively for a given video. We can visualize this

as a heatmap with rows as individual annotators, columns as respective video frames, and each cell

thus representing the annotator’s importance score for that frame. We show this in Figure 3.8 for
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Figure 3.4. Violin plots showcasing the distribution of unique entities/individuals
appearing across all videos. Videos #3, #13, #14, #15 are discussed previously.

Video 19. It can be seen that for most frames, annotators agree on similar importance scores, also

indicating why the CA value is so high for FairVidSum.

3.2.5. The FVS-LP Fair Video Summarization Baseline. We now present our proposed

method for fair video summarization– the Fair Video Summarization Linear Program (FVS-LP)
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Figure 3.5. Violin plots showcasing the distribution sex sensitive attribute across
all videos. Here M denotes Male, and F denotes Female. Videos #1, #4, #6, #19
are discussed previously.

baseline which is a simple linear program [188] approach that only optimizes for fairness and selects

frames such that the group proportions in the selected summary are as close as possible to the group

proportions of the overall video. Let 0m and 1m denote an m length vector of all zeros and all

ones, respectively. We have a given video V and its set of frames X, along with the set of group

memberships H. First, we transform H to matrix form for formulating the LP. Let G ∈ {0, 1}n×g

be derived from H such that each row vector Gi ∈ {0, 1}g, i ∈ [n] represents a frame and each of

its entries are either 0 for absence or 1 for presence of a group in the frame. Let 0 ≤ x ≤ 1 be the
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Figure 3.6. Violin plots showcasing the distribution ethnicity sensitive attribute
across all videos. Here WH denotes White, BL denotes Black, and AS denotes Asian.
Videos #8, #9, #16, #22 are discussed previously.

optimization variable where each entry of x ∈ Rn indicates if a frame is selected in the summary,

then the LP can be written as Equation 3.8:

(3.8)

minimize 0⊤nx

subject to G⊤x = k · 1
n

n∑
i=1

Gi

1⊤nx = k

0 ≤ x ≤ 1.
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(a)

(b)

Figure 3.7. Mean importance (annotated) scores for (a) Video 19 with protected
group labels for sex and (b) for Video 16 with protected group labels for ethnicity.

Figure 3.8. Annotator consistency matrix for Video 19.
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Note that since we are only optimizing for fairness, we do not care about utility and our

optimization objective can simply be a vector of all zeros. Now, as is evident, the first constraint

simply ensures that the sum of the selected samples’ group memberships is equal to k times the

group proportions for the overall video. The second constraint ensures that the number of selected

samples must be exactly k. After solving the above LP for x, we can obtain the indices of summary

frames selected from the set of frames X by rounding the solution, as I = {i : round(xi) = 1}. Then,

we can get the summary S of video V as S = {Xi : ∀i ∈ I}.

3.2.6. Results. We now present results for benchmarking SOTA supervised and unsupervised

models on FairVidSum. We utilize the following unsupervised models: CA-SUM [73], AC-SUM-

GAN [74], SUM-GAN-AAE [75], SUM-GAN-SL [63], SUM-IND [62] and the following supervised

models: DSNet [71], VASNet [194], PGL-SUM [72]. Moreover, we also provide baseline results for a

randomly generated summary (Random) and a summary generated using the knapsack algorithm

on the average human annotated importance scores (Human). Finally, we also present results for

FVS-LP while optimizing for each protected group type (individual, sex, and ethnicity). For each

model/baseline, we provide the group members that achieve the minimum fairness values as well.

3.2.6.1. Training and Evaluation. We follow the standard evaluation procedure in existing video

summarization literature, which involves randomly splitting the entire dataset into multiple parts or

splits, typically 5, each split subjected to an 80:20 train/test partitioning [71, 72, 73, 74, 75, 194, 195].

The models are trained on the training set of a given split and subsequently evaluated on the

corresponding test set within the same split. The video distribution for all 5 train/test splits is as

follows:

• Split #1 Test set: Vid. #9, Vid. #11, Vid. #19, Vid. #25, Vid. #26, Vid. #34

• Split #2 Test set: Vid. #2, Vid. #8, Vid. #20, Vid. #24, Vid. #29, Vid. #32

• Split #3 Test set: Vid. #8, Vid. #18, Vid. #20, Vid. #24, Vid. #28, Vid. #33

• Split #4 Test set: Vid. #4, Vid. #8, Vid. #17, Vid. #18, Vid. #29, Vid. #30

• Split #5 Test set: Vid. #3, Vid. #15, Vid. #16, Vid. #20, Vid. #25, Vid. #28

The F1-measure evaluates the similarity between a model predicted summary and a user-defined

summary by assessing their overlap. The F1 scores are calculated for each individual video and then
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Table 3.3. Comparison of SOTA video summarization approaches on FairVidSum.
The utility and fairness averages are calculated across all five splits. The violating
groups that achieve the minimum fairness SumBal scores are also presented. Results
on FVS-LP (our fairness baseline) along with Random and Human baselines are also
provided. Blue/red indicates highest/lowest performance.

Model Type
Average

F1 Measure

SumBal (Sex ) SumBal (Ethnicity) SumBal (Individual)

Average Min Violating Average Min Violating Average Min Violating

Random - 14.92 0.9497 0.8814 Male (Vid. #30) 0.9468 0.6670 Asian (Vid. #33) 0.8747 0.6670 Person 13 (Vid. #33)

Human - 68.91 0.4605 0.0000 Female (Vid. #30) 0.5503 0.0000 Asian (Vid. #25) 0.2773 0.0000 Person 2 (Vid. #18)

CA-SUM [73] Unsupervised 62.78 0.5201 0.0000 Female (Vid. #30) 0.5468 0.0000 Asian (Vid. #24) 0.2441 0.0000 Person 4 (Vid. #8)

AC-SUM-GAN [74] Unsupervised 64.33 0.5176 0.0000 Female (Vid. #30) 0.5455 0.0000 Asian (Vid. #24) 0.2616 0.0000 Person 4 (Vid. #8)

SUM-GAN-AAE [75] Unsupervised 63.81 0.5222 0.1302 Female (Vid. #26) 0.5665 0.0000 Asian (Vid. #24) 0.2739 0.0000 Person 4 (Vid. #8)

SUM-GAN-SL [63] Unsupervised 64.92 0.5254 0.0000 Female (Vid. #30) 0.5661 0.0000 Asian (Vid. #24) 0.2550 0.0000 Person 4 (Vid. #8)

SUM-IND [62] Unsupervised 50.57 0.5677 0.0000 Female (Vid. #24) 0.5889 0.0000 Asian (Vid. #24) 0.2541 0.0000 Person 4 (Vid. #8)

DSNet [71] Supervised 63.69 0.5358 0.0000 Female (Vid. #30) 0.5478 0.0000 Asian (Vid. #24) 0.2706 0.0000 Person 1 (Vid. #25)

VASNet [194] Supervised 64.11 0.4622 0.0000 Female (Vid. #25) 0.5391 0.0000 Asian (Vid. #24) 0.2515 0.0000 Person 4 (Vid. #8)

PGL-SUM [72] Supervised 63.75 0.4804 0.1042 Female (Vid. #34) 0.5374 0.0000 Asian (Vid. #24) 0.2575 0.0000 Person 4 (Vid. #8)

FVS-LP (Sex ) Unsupervised 15.69 0.9987 0.9960 Female (Vid. #4) 0.7411 0.0000 Hispanic (Vid.#8) 0.3062 0.0000 Person 3 (Vid. #8)

FVS-LP (Ethnicity) Unsupervised 13.46 0.6642 0.0000 Female (Vid. #25) 0.9980 0.9822 Asian (Vid. #33) 0.2727 0.0000 Person 6 (Vid. #25)

FVS-LP (Individual) Unsupervised 14.13 0.9556 0.6289 Male (Vid. #28) 0.9471 0.6559 White (Vid. #19) 0.9932 0.9704 Person 6 (Vid. #25)

averaged over the entirety of a given split which are then averaged across all 5 splits. SumBal is also

evaluated per video, and the same procedure is followed to obtain averages.

3.2.6.2. Details on Model Training. We downsample videos to 1/2 frames per second as our video

frames are often repetitive. Following prior work, we utilize GoogleNet [196] (trained on ImageNet)

to extract frame features from the pool5 layer, which outputs a dimensionality of 1024. To ensure a

fair comparison, we employ the same splits for training/testing across all models. When training the

various models, we adhere to their original procedures, and generally employ default settings and

hyperparameters. Any alterations or adjustments made to the default training parameters are as

follows:

• AC-SUM-GAN: regularization_factor = 5.0, clip = 1.0, action_state_size = 8

• CA-SUM: block_size = 60, init_gain = 1.0, n_epochs = 200, clip = 1.0, lr = 1e-4, l2_req

= 1e-6, reg_factor = 5.0

• PGL-SUM: clip = 1.0, lr = 1e-4, l2_req = 1e-4

• SUM-GAN-AAE: clip = 1.0, hidden_size = 512, regularization_factor = 5.0, lr = 1e-5

• SUM-GAN-SL: clip = 1.0, hidden_size = 512, regularization_factor = 5.0

3.2.6.3. FairVidSum Benchmarking Results. Since we have 5 evaluation splits, we present average

results over all splits in Table 3.3. We also present results for the 5 individual evaluation splits as
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Table 3.4. Comparison of SOTA video summarization model on FairVidSum for
evaluation Split #1.

Model Type
Average

F1 Measure

SumBal (Sex ) SumBal (Ethnicity) SumBal (Individual)

Average Min Violating Average Min Violating Average Min Violating

Random - 14.74 0.9473 0.8818 Male (Vid. #26) 0.97 0.9415 White (Vid. #26) 0.8639 0.7477 Person 2 (Vid. #19)

Human - 67.08 0.4800 0.0000 Female (Vid. #25) 0.6717 0.0000 Asian (Vid. #25) 0.3080 0.0000 Person 1 (Vid. #25)

CA-SUM [73] Unsupervised 62.11 0.5104 0.1044 Female (Vid. #34) 0.6746 0.4292 Asian (Vid. #9) 0.3042 0.0000 Person 1 (Vid. #25)

AC-SUM-GAN [74] Unsupervised 63.99 0.4481 0.0000 Female (Vid. #25) 0.6467 0.0000 Asian (Vid. #25) 0.3261 0.0000 Person 1 (Vid. #25)

SUM-GAN-AAE [75] Unsupervised 63.44 0.4887 0.1302 Female (Vid. #26) 0.6921 0.4567 Asian (Vid. #9) 0.2952 0.0000 Person 1 (Vid. #25)

SUM-GAN-SL [63] Unsupervised 64.77 0.5298 0.2156 Male (Vid. #26) 0.7056 0.4567 Asian (Vid. #9) 0.2792 0.0000 Person 1 (Vid. #25)

SUM-IND [62] Unsupervised 49.47 0.5415 0.3868 Male (Vid. #26) 0.6641 0.4503 Asian (Vid. #9) 0.3019 0.0000 Person 1 (Vid. #25)

DSNet [71] Supervised 63.24 0.4432 0.1049 Female (Vid. #31) 0.6095 0.2742 Asian (Vid. #25) 0.3040 0.0000 Person 1 (Vid. #25)

VASNet [194] Supervised 66.14 0.3386 0.0000 Female (Vid. #25) 0.5866 0.0000 Asian (Vid. #25) 0.2800 0.0000 Person 1 (Vid. #25)

PGL-SUM [72] Supervised 65.18 0.4392 0.1042 Female (Vid. #34) 0.5869 0.2631 Asian (Vid. #34) 0.2701 0.0000 Person 1 (Vid. #25)

FVS-LP (Sex ) Unsupervised 17.03 0.9990 0.9975 Female (Vid. #25) 0.8357 0.6559 White (Vid. #19) 0.4417 0.0000 Person 3 (Vid. #19)

FVS-LP (Ethnicity) Unsupervised 12.13 0.3967 0.0000 Female (Vid. #25) 0.9993 0.9983 Asian (Vid. #25) 0.3186 0.0000 Person 3 (Vid. #19)

FVS-LP (Individual) Unsupervised 16.81 0.9562 0.8250 Male (Vid. #34) 0.8999 0.6559 White (Vid. #19) 0.9930 0.9704 Person 6 (Vid. #25)

Table 3.5. Comparison of SOTA video summarization models on FairVidSum for
evaluation Split #2.

Model Type
Average

F1 Measure

SumBal (Sex ) SumBal (Ethnicity) SumBal (Individual)

Average Min Violating Average Min Violating Average Min Violating

Random - 14.95 0.9837 0.9555 Female (Vid. #29) 0.9696 0.9199 Asian (Vid. #24) 0.8866 0.7417 Person 3 (Vid. #24)

Human - 65.00 0.4551 0.0000 Female (Vid. #24) 0.4768 0.0000 Asian (Vid. #24) 0.2909 0.0000 Person 1 (Vid. #24)

CA-SUM [73] Unsupervised 60.77 0.5449 0.0000 Female (Vid. #24) 0.4971 0.0000 Asian (Vid. #24) 0.1819 0.0000 Person 4 (Vid. #8)

AC-SUM-GAN [74] Unsupervised 62.41 0.5362 0.0000 Female (Vid. #24) 0.4573 0.0000 Asian (Vid. #24) 0.2634 0.0000 Person 3 (Vid. #24)

SUM-GAN-AAE [75] Unsupervised 61.49 0.5213 0.0000 Female (Vid. #24) 0.4658 0.0000 Asian (Vid. #24) 0.1835 0.0000 Person 4 (Vid. #8)

SUM-GAN-SL [63] Unsupervised 62.02 0.4958 0.0000 Female (Vid. #24) 0.4529 0.0000 Asian (Vid. #24) 0.1714 0.0000 Person 4 (Vid. #8)

SUM-IND [62] Unsupervised 49.80 0.6805 0.0000 Female (Vid. #24) 0.6940 0.0000 Asian (Vid. #24) 0.3570 0.0000 Person 1 (Vid. #2)

DSNet [71] Supervised 62.45 0.5661 0.0000 Female (Vid. #24) 0.5032 0.0000 Asian (Vid. #24) 0.2888 0.0000 Person 4 (Vid. #8)

VASNet [194] Supervised 60.53 0.4796 0.0000 Female (Vid. #24) 0.4676 0.0000 Asian (Vid. #24) 0.1963 0.0000 Person 4 (Vid. #8)

PGL-SUM [72] Supervised 61.04 0.4627 0.0000 Female (Vid. #24) 0.4300 0.0000 Asian (Vid. #24) 0.1881 0.0000 Person 4 (Vid. #8)

FVS-LP (Sex ) Unsupervised 15.30 0.9985 0.9968 Male (Vid. #24) 0.7033 0.0000 Hispanic (Vid. #8) 0.4183 0.0000 Person 1 (Vid. #2)

FVS-LP (Ethnicity) Unsupervised 14.70 0.8599 0.4721 Female (Vid. #29) 0.9981 0.9934 Asian (Vid. #24) 0.3755 0.0000 Person 1 (Vid. #2)

FVS-LP (Individual) Unsupervised 12.41 0.9714 0.8350 Male (Vid. #2) 0.9648 0.8350 Black (Vid. #2) 0.9963 0.9905 Person 2 (Vid. #2)

Tables 3.4 - 3.8 It can be observed that all the results exhibit similar trends. As can be seen in Tables

3.3 to 3.8 both unsupervised and supervised SOTA models tend to achieve high utility performance

computed in terms of the F1-measure (> 60) averaged over all videos and all splits.7 However, these

models have low fairness performance, with minimum SumBal scores for all three group types: sex,

ethnicity, and individuals most often tend to be 0 and generally < 0.5. Interestingly, the group

members that achieve the lowest fairness values across all splits and videos tend to consistently be

Female for sex as the protected group, Asian for ethnicity as the protected group, and Person 4

for individual fairness. We also present average SumBal scores which are higher at times, but have

7This utility performance is in line with SOTA results for TVSum and SumMe; refer to [19, 76] for details.
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Table 3.6. Comparison of SOTA video summarization models on FairVidSum for
evaluation Split #3.

Model Type
Average

F1 Measure

SumBal (Sex ) SumBal (Ethnicity) SumBal (Individual)

Average Min Violating Average Min Violating Average Min Violating

Random - 14.96 0.9477 0.8758 Female (Vid. #24) 0.8942 0.6670 Asian (Vid. #33) 0.8614 0.6670 Person 13 (Vid. #33)

Human - 67.61 0.4784 0.0000 Female (Vid. #24) 0.4518 0.0000 Asian (Vid. #24) 0.2097 0.0000 Person 2 (Vid. #18)

CA-SUM [73] Unsupervised 59.76 0.5547 0.0000 Female (Vid. #24) 0.3859 0.0000 Asian (Vid. #24) 0.1901 0.0000 Person 4 (Vid. #8)

AC-SUM-GAN [74] Unsupervised 61.68 0.6236 0.0000 Female (Vid. #24) 0.4123 0.0000 Asian (Vid. #24) 0.1999 0.0000 Person 4 (Vid. #8)

SUM-GAN-AAE [75] Unsupervised 61.63 0.5859 0.0000 Female (Vid. #24) 0.4291 0.0000 Asian (Vid. #24) 0.2779 0.0000 Person 1 (Vid. #24)

SUM-GAN-SL [63] Unsupervised 62.77 0.6211 0.0000 Female (Vid. #24) 0.4122 0.0000 Asian (Vid. #24) 0.2767 0.0000 Person 3 (Vid. #24)

SUM-IND [62] Unsupervised 44.79 0.5061 0.0000 Female (Vid. #24) 0.4214 0.0000 Asian (Vid. #24) 0.1481 0.0000 Person 4 (Vid. #8)

DSNet [71] Supervised 60.16 0.5448 0.0000 Female (Vid. #26) 0.4364 0.0000 Asian (Vid. #24) 0.2304 0.0000 Person 4 (Vid. #8)

VASNet [194] Supervised 60.93 0.5646 0.0000 Female (Vid. #24) 0.4551 0.0000 Asian (Vid. #24) 0.2858 0.0000 Person 1 (Vid. #24)

PGL-SUM [72] Supervised 59.15 0.5117 0.0000 Female (Vid. #24) 0.4086 0.0000 Asian (Vid. #24) 0.1965 0.0000 Person 4 (Vid. #8)

FVS-LP (Sex ) Unsupervised 17.03 0.9990 0.9968 Male (Vid. #24) 0.5242 0.0000 Hispanic (Vid. #8) 0.0939 0.0000 Person 3 (Vid. #8)

FVS-LP (Ethnicity) Unsupervised 16.06 0.7394 0.0000 Male (Vid. #33) 0.9951 0.9822 Asian (Vid. #33) 0.1387 0.0000 Person 4 (Vid. #8)

FVS-LP (Individual) Unsupervised 16.03 0.9371 0.6289 Male (Vid. #28) 0.9373 0.6499 White (Vid. #28) 0.9923 0.9731 Person 14 (Vid. #33)

Table 3.7. Comparison of SOTA video summarization models on FairVidSum for
evaluation Split #4.

Model Type
Average

F1 Measure

SumBal (Sex ) SumBal (Ethnicity) SumBal (Individual)

Average Min Violating Average Min Violating Average Min Violating

Random - 16.08 0.9324 0.8814 Male (Vid. #30) 0.9760 0.9043 White (Vid. #18) 0.8886 0.7253 Person 3 (Vid. #30)

Human - 76.51 0.3735 0.0000 Female (Vid. #30) 0.5895 0.0752 White (Vid. #30) 0.2522 0.0000 Person 2 (Vid. #18)

CA-SUM [73] Unsupervised 71.89 0.4336 0.0000 Female (Vid. #30) 0.6222 0.0750 White (Vid. #30) 0.2501 0.0000 Person 4 (Vid. #8)

AC-SUM-GAN [74] Unsupervised 74.02 0.4258 0.0000 Female (Vid. #30) 0.6222 0.2741 White (Vid. #30) 0.2026 0.0000 Person 4 (Vid. #8)

SUM-GAN-AAE [75] Unsupervised 72.49 0.5096 0.0000 Female (Vid. #30) 0.6994 0.4450 White (Vid. #29) 0.2823 0.0000 Person 4 (Vid. #8)

SUM-GAN-SL [63] Unsupervised 73.42 0.4458 0.0000 Female (Vid. #30) 0.6988 0.4450 White (Vid. #29) 0.2615 0.0000 Person 4 (Vid. #8)

SUM-IND [62] Unsupervised 60.96 0.5692 0.0000 Male (Vid. #29) 0.6363 0.2419 White (Vid. #29) 0.2004 0.0000 Person 4 (Vid. #8)

DSNet [71] Supervised 71.53 0.5743 0.0000 Female (Vid. #30) 0.6661 0.4450 White (Vid. #29) 0.2412 0.0000 Person 3 (Vid. #8)

VASNet [194] Supervised 69.95 0.4444 0.0000 Female (Vid. #30) 0.6470 0.2719 White (Vid. #30) 0.2055 0.0000 Person 4 (Vid. #8)

PGL-SUM [72] Supervised 70.03 0.5058 0.0000 Female (Vid. #30) 0.7343 0.4450 White (Vid. #29) 0.3027 0.0000 Person 4 (Vid. #8)

FVS-LP (Sex ) Unsupervised 16.69 0.9981 0.9960 Female (Vid. #4) 0.8231 0.0000 Hispanic (Vid. #8) 0.3169 0.0000 Person 3 (Vid. #4)

FVS-LP (Ethnicity) Unsupervised 14.49 0.5619 0.0000 Female (Vid. #4) 0.9994 0.9987 White (Vid. #18) 0.2257 0.0000 Person 2 (Vid. #4)

FVS-LP (Individual) Unsupervised 15.90 0.9762 0.8695 Male (Vid. #17) 0.9926 0.9621 White (Vid. #29) 0.9949 0.9820 Person 5 (Vid. #30)

very large variance showcasing that models are not inherently optimizing for fairness. The human

annotated summary also fares similarly to the SOTA models, as it is only annotated for performance.

Moreover, the randomly generated summary has very low utility performance scores– typically with

F1-measure values less than 15 which follows the fact that summary frames are picked completely at

random. However, the random summary has high fairness scores. We hypothesize that this is the

case because by picking frames uniformly at random, the probability that each group member is

picked according to their proportions is uniform in expectation. As a result, random frame selection

leads to improved fairness.
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Table 3.8. Comparison of SOTA video summarization models on FairVidSum for
evaluation Split #5.

Model Type
Average

F1 Measure

SumBal (Sex ) SumBal (Ethnicity) SumBal (Individual)

Average Min Violating Average Min Violating Average Min Violating

Random - 13.96 0.9375 0.8692 Male (Vid. #3) 0.9242 0.8692 White (Vid. #3) 0.8732 0.7020 Person 2 (Vid. #25)

Human - 68.34 0.5157 0.0000 Female (Vid. #25) 0.5615 0.0000 Asian (Vid. #25) 0.3257 0.0000 Person 1 (Vid. #25)

CA-SUM [73] Unsupervised 59.34 0.5567 0.0384 Female (Vid. #3) 0.5542 0.0384 Asian (Vid. #3) 0.2944 0.0000 Person 1 (Vid. #25)

AC-SUM-GAN [74] Unsupervised 59.56 0.5545 0.0390 Female (Vid. #3) 0.5890 0.0390 Asian (Vid. #3) 0.3159 0.0000 Person 1 (Vid. #25)

SUM-GAN-AAE [75] Unsupervised 60.01 0.5053 0.0401 Female (Vid. #3) 0.5460 0.0401 Asian (Vid. #3) 0.3304 0.0000 Person 1 (Vid. #25)

SUM-GAN-SL [63] Unsupervised 61.59 0.5346 0.0384 Female (Vid. #3) 0.5613 0.0384 Asian (Vid. #3) 0.2863 0.0000 Person 1 (Vid. #25)

SUM-IND [62] Unsupervised 47.81 0.5411 0.0390 Female (Vid. #3) 0.5287 0.0390 Asian (Vid. #3) 0.2629 0.0000 Person 1 (Vid. #25)

DSNet [71] Supervised 61.06 0.5506 0.0401 Female (Vid. #3) 0.5238 0.0411 Asian (Vid. #3) 0.2883 0.0000 Person 1 (Vid. #25)

VASNet [194] Supervised 62.99 0.4836 0.0000 Female (Vid. #25) 0.5393 0.0000 Asian (Vid. #25) 0.2897 0.0000 Person 1 (Vid. #25)

PGL-SUM [72] Supervised 63.37 0.4828 0.0000 Female (Vid. #25) 0.5274 0.0000 Asian (Vid. #25) 0.3304 0.0000 Person 1 (Vid. #25)

FVS-LP (Sex ) Unsupervised 12.42 0.9988 0.9975 Female (Vid. #25) 0.8192 0.5633 Black (Vid. #20) 0.2604 0.0000 Person 3 (Vid. #3)

FVS-LP (Ethnicity) Unsupervised 9.928 0.7632 0.0000 Female (Vid. #25) 0.9983 0.9974 Black (Vid. #28) 0.3052 0.0000 Person 3 (Vid. #3)

FVS-LP (Individual) Unsupervised 9.512 0.9367 0.6289 Male (Vid. #28) 0.9406 0.6499 White (Vid. #28) 0.9894 0.9704 Person 6 (Vid. #25)

Furthermore, we provide results for three versions of FVS-LP, each instantiated to optimize one

type of protected group/sensitive attribute. For each of these, FVS-LP achieves the highest fairness

performance across all models and baselines for the group it is optimizing for. However, it does not

lead to good utility performance, which is to be expected as it is only directly optimizing for fairness.

This implies that while there is a gap in fairness that can be optimized for, optimizing for both

fairness and performance is a non-trivial task. For future work, methods that jointly optimize both

fairness and utility can thus be proposed. Note that the trends between the average performance

and Split #1 are very similar, and this is also the case for the other evaluation splits. Generally, we

observe that supervised models tend to exhibit lower average SumBal values. This trend might be a

direct consequence of these models’ learning, which strive to closely align with human or ground

truth summaries that, as previously mentioned, are solely optimized for utility. This observation

further underscores the importance of incorporating a fairness evaluation and learning criterion in

the model design and training process. Another crucial insight from our benchmarking analysis is

the distinct difficulty in upholding individual fairness. This is clearly evident by the consistently

lowest average SumBal values (compared with sex and ethnicity) and predominant minimum values

of zero. A SumBal value of zero essentially indicates that a group or individual, though present in

the original video, has been completely excluded from the generated summary.
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CHAPTER 4

On the Interplay Between Adversarial and Social Robustness

In this chapter, we discuss problems at the intersection of adversarial and social robustness. This

direction has been relatively less explored, with the community often focusing on only one dimension

of robustness in individual works. In particular, for real-world applications, there is a dire need to

optimize for both adversarial and social robustness jointly. It is also important to propose general

approaches that can be used to improve upon adversarial and social robustness, while preserving

utility. Thus, to bridge this gap, we 1) investigate the robustness of fair clustering models under

adversarial influence, and 2) propose a generalized data selection framework for improving the

fairness, accuracy, and adversarial robustness of classification models.

4.1. Robust Fair Clustering

4.1.1. Introduction. ML models are ubiquitously utilized in many applications, including

high-stakes domains such as loan disbursement [197], recidivism prediction [198, 199], hiring and

recruitment [200, 201], among others. For this reason, it is of paramount importance to ensure that

decisions derived from such predictive models are unbiased and fair for all individuals treated [9]. In

particular, this is the main motivation behind group-level fair learning approaches [108, 202, 203],

where the goal is to generate predictions that do not disparately impact individuals from minority

protected groups (such as ethnicity, sex, etc.). It is also worthwhile to note that this problem is

technically challenging because there exists an inherent fairness-performance tradeoff [204], and

thus fairness needs to be improved while ensuring approximate preservation of model predictive

performance. This line of research is even more pertinent for data clustering, where error rates

cannot be directly assessed using class labels to measure disparate impact. Thus, many approaches

have been recently proposed to make clustering models group-level fair [15, 85, 91, 100]. In a nutshell,

these approaches seek to improve fairness of clustering outputs with respect to some fairness metrics,
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which ensure that each cluster contains approximately the same proportion of samples from each

protected group as they appear in the dataset.

While many fair clustering approaches have been proposed, it is of the utmost importance

to ensure that these models provide fair outputs even in the presence of an adversary seeking to

degrade fairness utility. Although there are some pioneering attempts on fairness attacks against

supervised learning models [106, 107], unfortunately, none of these works propose defense approaches.

Moreover, in the unsupervised scenario, fair clustering algorithms have not yet been explored from

an adversarial attack perspective, resulting in unsupervised fair clustering models being potentially

vulnerable to fairness attacks. This leads us to our fundamental research question:

Are fair clustering algorithms vulnerable to adversarial attacks that seek to decrease fairness

utility, and if such attacks exist, can we develop an adversarially robust fair clustering model?

We answer both these questions in the affirmative by proposing a novel black-box adversarial

attack against fair clustering models. Here the attacker can only perturb a small percentage of

protected group memberships and yet is able to degrade the fairness performance of SOTA fair

clustering models significantly. Through extensive experiments using our attack approach, we find

that existing fair clustering algorithms are not robust to adversarial influence, and are extremely

volatile with regards to fairness utility. We conduct this analysis on a number of real-world datasets,

and for a variety of clustering performance and fairness utility metrics. Finally, to achieve truly robust

fair clustering, we propose the Consensus Fair Clustering (CFC) model which is highly resilient

to the proposed fairness attack. To the best of our knowledge, CFC is the first defense approach

for fairness attacks, which makes it an important standalone contribution to the unsupervised ML

community.

4.1.2. Fairness Attack. In this section, we study the attack problem on fair clustering.

Specifically, we propose a novel attack that aims to reduce the fairness utility of fair clustering

algorithms, as opposed to traditional adversarial attacks that seek to decrease clustering performance

[26]. To our best knowledge, although there have been a few pioneering attempts investigating

fairness attacks [106, 107], all of them consider the supervised setting. Our proposed attack exposes

a novel problem prevalent with fair clustering approaches that has not been given considerable

attention yet– as the protected group memberships are input to the fair clustering optimization

62



problem, they can be used to disrupt the fairness utility. We study attacks under the black-box

setting, where the attacker has no knowledge of the fair clustering algorithm being used.

4.1.2.1. Preliminaries and Notation. Given a tabular dataset X={xi}∈Rn×d with n samples

and d features, each sample xi is associated with a protected group membership g(xi)∈[L], where L

is the total number of protected groups, and we denote group memberships for the entire dataset as

G={g(xi)}ni=1∈ Nn. We also have H = {H1, H2, ...,HL} and Hl is the set of samples that belong to

l-th protected group. A clustering algorithm C(X,K) takes as input the dataset X and a parameter

K, and outputs labeling where each sample belongs to one of K clusters [205]. That is, each point is

clustered in one of the sets {C1, C2, ..., CK} with ∪Kk=1Ck = X. Based on the above, a group-level

fair clustering algorithm F(X,K,G) [85] can be defined similarly to C, where F takes as input the

protected group membership G along with X and K, and outputs fair labeling that is expected to

be more fair than the clustering obtained via the original unfair/vanilla clustering algorithm with

respect to a given fairness utility function ϕ. That is, ϕ(F(X,K,G), G) ≤ ϕ(C(X,K), G). Note that

ϕ can be defined to be any fairness utility metric, such as Balance and Entropy [9, 14].

4.1.2.2. Threat Model. Take the customer segmentation [206, 207] problem as an example and

assume that the sensitive attribute considered is age with 3 protected groups: {youth, adult, senior}.

Now, we can motivate our threat model as follows: the adversary can control a small portion of

individuals’ protected group memberships (either through social engineering, exploiting a security

flaw in the system, etc.); by changing their protected group memberships, the adversary aims to

disrupt the fairness utility of the fair algorithm on other uncontrolled groups. That is, there would

be an overwhelming majority of some protected group samples over others in clusters. This would

adversely affect the youth and senior groups, as they are more vulnerable and less capable of enforcing

self-prevention. The attacker could carry out this attack for profit or anarchistic reasons.

Our adversary has partial knowledge of the dataset X but not the fair clustering algorithm F .

However, they can query F and observe cluster outputs. This assumption has been used in previous

adversarial attack research against clustering [11, 26, 79]). They can access and switch/change the

protected group memberships for a small subset of samples in G, denoted as GA⊆G. Our goal of the

fairness attack is to change the protected group memberships of samples in GA such that the fairness

utility value decreases for the remaining samples in GD=G\GA. As clustering algorithms [208]
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and their fair variants [103] are trained on the input data to generate labeling, this attack is a

training-time attack. Our attack can also be motivated by considering that fair clustering outputs

change with any changes made to protected group memberships G or the input dataset X. We can

formally define the fairness attack as follows:

Definition 4.1.1 (Fairness Attack). Given a fair clustering algorithm F that can be queried for

cluster outputs, dataset X, samples’ protected groups G, and GA ⊆ G is a small portion of protected

groups that an adversary can control, the fairness attack is that the adversary aims to reduce the

fairness of clusters outputted via F for samples in GD = G \GA ⊆ G by perturbing GA.

4.1.2.3. The Attack Optimization Problem. Based on the above threat model, the attack op-

timization problem can be defined analytically. For ease of notation, we define two mapping

functions:

• η : Takes GA and GD as inputs and gives output G = η(GA, GD) which is the combined

group memberships for the entire dataset. Note that GA and GD are interspersed in the

entire dataset in an unordered fashion, which motivates the need for this mapping.

• θ : Takes GD and an output cluster labeling from a clustering algorithm for the entire

dataset as input, returns the cluster labels for only the subset of samples that have group

memberships in GD. That is, if the clustering output is C(X,K), we can obtain cluster

labels for samples in GD as θ(C(X,K), GD).

Based on the above notations, we have the following optimization problem for the attacker:

(4.1) min
GA

ϕ(θ(O,GD), GD) s.t. O = F(X,K, η(GA, GD)).

The above problem is a two-level hierarchical optimization problem [209] with optimization

variable GA, where the lower-level problem is the fair clustering problem F(X,K, η(GA, GD)), and

the upper-level problem aims to reduce the fairness utility ϕ of the clustering obtained on the set of

samples in GD. Due to the black-box nature of our attack, both the upper- and lower-level problems

are highly non-convex and closed-form solutions to the hierarchical optimization cannot be obtained.

In particular, hierarchical optimization even with linear upper- and lower-level problems has been

shown to be NP-Hard [210], indicating that such problems cannot be solved by exact algorithms.
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We will thus resort to generally well-performing heuristic algorithms for obtaining solutions to the

problem in Eq. (4.1).

The aforementioned attack problem in Eq. (4.1) is a non-trivial optimization problem, where the

adversary has to optimize GA such that overall clustering fairness for the remaining samples in GD

decreases. Since F is a black-box and unknown to the attacker, first- or second-order approaches

(such as gradient descent) cannot be used to solve the problem. Instead, we utilize zeroth-order

optimization algorithms to solve the attack problem. In particular, we use RACOS [211] due to its

known theoretical guarantees on discrete optimization problems. Moreover, our problem belongs to

the same class as protected group memberships are discrete labels.

Remark. Note that in [17] we previously propose a theoretically motivated fairness disrupting

attack for k-median clustering; however, this cannot be utilized to tackle the current research problem

for the following reasons: (1) the attack in [17] only works for k-median vanilla clustering, thus not

constituting a black-box attack on fair algorithms, (2) the attack in [17] aims to poison a subset of

the input data and not the protected group memberships thus leading to a more common threat

model different from us. We also cannot use existing adversarial attacks against clustering algorithms

[11, 26] as they aim to reduce clustering performance and do not optimize for a reduction in fairness

utility. Thus, these attacks might not always lead to a reduction in fairness utility.

4.1.3. Results for the Attack.

4.1.3.1. Datasets. We utilize one synthetic and four real-world datasets in our experiments. The

details of our synthetic dataset will be illustrated below. The other datasets used are as follows–

MNIST-USPS : Similar to previous work in deep fair clustering [212], we construct MNIST-USPS

dataset using all the training digital samples from MNIST [127] and USPS dataset [213], and set

the sample source as the protected attribute (MNIST/USPS). Office-31 : The Office-31 dataset

[214] was originally used for domain adaptation and contains images from 31 different categories

with three distinct source domains: Amazon, Webcam, and DSLR. Each domain contains all the

categories but with different shooting angles, lighting conditions, etc. We use DSLR and Webcam

for our experiments and let the domain source be the protected attribute for this dataset. We also

conduct experiments on the Inverted UCI DIGITS [215] and Extended Yale Face B datasets [156].

65



(a) Pre-attack (b) Post-attack

Figure 4.1. Pre-attack and post-attack clusters of the SFD fair clustering algorithm
on the synthetic toy data. The labels of Cluster A and Cluster B are shown in
green and blue, and these samples in two clusters belong to GD. The ◦ and △
markers represent the two protected groups, and points in red are the attack points
that belong to GA. Observe that before the attack, the SFD algorithm obtains a
perfect Balance of 1.0. However, after the attack, once the attacker has optimized the
protected group memberships for the attack points, the SFD clustering has become
less fair with Balance = 0.5.

4.1.3.2. Fair Clustering Models. We include three state-of-the-art fair clustering algorithms: Fair

K-Center (KFC) [216], Fair Spectral Clustering (FSC) [103] and Scalable Fairlet Decomposition

(SFD) [100] for fairness attack, and these methods employ different traditional clustering algorithms

on the backend: KFC uses k-center, SFD uses k-median, and FSC uses spectral clustering.

We implemented the FSC, SFD, and KFC fair algorithms in Python, using the authors’ imple-

mentations as a reference in case they were not written in Python. To this end, we generally default

to using the hyperparameters for these algorithms as provided in the original implementations.

However, if needed, we also tuned the hyperparameter values so as to maximize performance on the

unsupervised fairness metrics (such as Balance) as this allows us to attack fairness better. Note that

this is still an unsupervised parameter selection strategy as Balance is a fully unsupervised metric,

as it takes only the clustering outputs and protected group memberships as input, which are also

provided as input to the fair clustering algorithms.1 Such parameter tuning has also been done in

previous fair clustering work [103, 217].

For SFD, we set the parameters p = 2, q = 5 for all datasets except DIGITS for which we set

p = 1, q = 5. For FSC we use the default parameters and use the nearest neighbors approach [208]

1Tuning hyperparameters using NMI/ACC or other performance metrics that take the ground truth cluster labels as
input, would violate the unsupervised nature of the clustering problem.
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for creating the input graph for which we set the number of neighbors = 3 for all datasets. For KFC

we use the default parameter value of δ = 0.1.

4.1.3.3. Protocol. Fair clustering algorithms, much like their traditional counterparts, are ex-

tremely sensitive to initialization [218]. Differences in the chosen random seed can lead to widely

different fair clustering outputs. Thus, we use 10 different random seeds when running the SFD,

FSC, and KFC fair algorithms and obtain results. We also uniformly randomly sampled GA and

GD initially to select these sets such that the fairness utility (i.e. Balance) before the attack is

a reasonably high enough value to attack. The size of GA is varied from 0% to 30% to see how

this affects the attack trends. Furthermore, for the zeroth-order attack optimization, we always

attack the Balance metric (unless the fair algorithm always achieves 0 Balance in which case we

attack Entropy). Note that Balance is a harsher fairness metric than Entropy and hence should

lead to a more successful attack. As a performance baseline, we also compare with a random attack

where instead of optimizing GA to reduce fairness utility on GD, we uniformly randomly pick group

memberships in GA.

4.1.3.4. Evaluation. We use four metrics along two dimensions: fairness utility and clustering

utility for performance evaluation. For clustering utility, we consider Unsupervised Accuracy (ACC)

[132], and Normalized Mutual Information (NMI) [130]. For fairness utility we consider Balance [85]

and Entropy [212]. These four metrics are commonly used in the fair clustering literature. Note

that for each of these metrics, the higher the value obtained, the better the utility. For fairness,

Balance is a better metric to attack, because a value of 0 means that there is a cluster that has 0

samples from one or more protected groups. Finally, the attacker does not care about the clustering

utility as long as changes in utility do not reveal that an attack has occurred. We define Balance

(the earlier definition was framed as a cost) and Entropy below for reference.

Balance: Balance is a fairness metric proposed by [85] which lies between 0 (least fair) and 1

(most fair). Let there be m protected groups for a given dataset X. Then, define rgX and rgk to be the

proportion of samples of the dataset belonging to protected group g and the proportion of samples

in cluster k ∈ [K] belonging to protected group g. The Balance fairness notion is then defined over

all clusters and protected groups as:
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Balance = min
k∈[K],g∈[m]

min{
rgX
rgk
,
rgk
rgX
}.

Entropy: Entropy is a fairness metric proposed by [212] and similar to Balance, higher values of

Entropy, mean that clusters have more fairness. Let Nk,g be the set containing the samples of the

dataset X that belong to both the cluster k ∈ [K] and the protected group g. Further, let nk be the

number of samples in cluster k. Then Entropy for group g is defined as follows:

Entropy(g) = −
∑
k∈[K]

|Nk,g|
nk

log
|Nk,g|
nk

.

Note that in this work, we take the average Entropy over all groups.

4.1.3.5. Performance on Toy Data. To demonstrate the effectiveness of the poisoning attack, we

also generate a 2-dimensional 20-sample synthetic toy dataset using an isotropic Gaussian distribution,

with standard deviation = 0.12, and centers located at (4,0) and (4.5, 0). Out of these 20 points, we

designate 14 to belong to GD and the remaining 6 to belong to GA. The number of clusters is set to

k = 2. These are visualized in Figure 4.1. We generate cluster outputs using the SFD fair clustering

algorithm before the attack (Figure 4.1a), and after the attack (Figure 4.1b). Before the attack,

SFD achieves perfect fairness with a Balance of 1.0 as for each protected group and both Cluster

A and Cluster B, we have Balance 4/8
7/14 = 1.0 and 3/6

7/14 = 1.0, respectively. Moreover, performance

utility is also high with NMI = 0.695 and ACC = 0.928. However, after the attack, fairness utility

decreases significantly. The attacker changes protected group memberships of the attack points, and

this leads to the SFD algorithm trying to find a more optimal global solution, but in that, it reduces

fairness for the points belonging to GD. Balance drops to 0.5 as for Cluster A and Protected Group

0 we have Balance 1/4
7/14 = 0.5, leading to a 50% decrease. Entropy also drops down to 0.617 from

0.693. Performance utility decreases in this case, but is still satisfactory with NMI = 0.397 and ACC

= 0.785. Thus, it can be seen that our attack can disrupt the fairness of fair clustering algorithms

significantly.

4.1.3.6. Performance on Real-World Datasets. We show the pre-attack and post-attack results

MNIST-USPS and Office-31 by our attack and random attack in Figure 4.2. It can be observed that

our fairness attack consistently outperforms the random attack baseline in terms of both fairness
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Figure 4.2. Attack results for MNIST-USPS & Office-31 (x-axis: % of samples
attacker can poison).

metrics: Balance and Entropy. Further, our attack always leads to lower fairness metric values than

the pre-attack values obtained, while this is often not the case for the random attack, Balance and

Entropy increase for the random attack on the FSC algorithm on Office-31 dataset. Interestingly,

even though we do not optimize for this, clustering performance utility (NMI and ACC) does not

drop significantly and even increases frequently. For example, NMI/ACC for FSC on Office-31

(Figure 4.2, Row 4, Column 3-4) and NMI/ACC for KFC on MNIST-USPS (Figure 4.2, Row 5,

Column 3-4). Thus, the attacker can easily subvert the defense as the clustering performance before

and after the attack does not decrease drastically and at times even increases. We also conduct

the Kolmogorov-Smirnov statistical test [219] between our attack and the random attack result

distribution for the fairness utility metrics (Balance and Entropy) to see if the mean distributions are
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Figure 4.3. Attack results for the Extended Yale Face B and Inverted UCI DIGITS
datasets (x-axis denotes % of samples attacker can poison).

significantly different. These results are shown in Table 4.2. We find that for the Office-31 dataset

our attack is statistically significant in terms of fairness values and obtains p-values of less than

< 0.01. For MNIST-USPS, the results are also statistically significant except for the cases when

the utility reduces quickly to the same value. For example, it can be seen that Balance goes to 0

for SFD on MNIST-USPS in Figure 4.2 (Row 1, Column 1) fairly quickly. For these distributions,

it is intuitive why we cannot obtain statistically significant results, as the two attack distributions

become identical. We also provide the attack performance on Inverted UCI DIGITS dataset [215]

and Extended Yale Face B dataset [156] in Figure 4.3.

Furthermore, to better compare our attack with the random attack, we present the results when

15% group memberships are switched in Table 4.1 for Office-31 and MNIST-USPS. As can be seen,
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Table 4.1. Results for our attack and random attack when 15% group membership
labels are switched.

Algorithms Metrics MNIST-USPS

Pre-Attack Our Attack Change (%) Random Attack Change (%)

Balance 0.286 ± 0.065 0.000± 0.000 (-)100.0 0.000± 0.000 (-)100.0
Entropy 3.070± 0.155 1.621± 0.108 (-)47.12 1.743± 0.156 (-)43.23

NMI 0.320± 0.033 0.302± 0.007 (-)5.488 0.301± 0.019 (-)5.847SFD

ACC 0.427± 0.040 0.378± 0.015 (-)11.54 0.374± 0.026 (-)12.35

Balance 0.000± 0.000 0.000± 0.000 (-)100.0 0.000± 0.000 (-)100.0
Entropy 0.275± 0.077 0.251± 0.041 (-)8.576 0.295± 0.036 (+)7.598

NMI 0.549± 0.011 0.544± 0.007 (-)0.807 0.552± 0.006 (+)0.491FSC

ACC 0.448± 0.012 0.457± 0.002 (+)1.971 0.455± 0.002 (+)1.510

Balance 0.730± 0.250 0.352± 0.307 (-)51.87 0.608± 0.237 (-)16.72
Entropy 2.607± 0.607 2.343± 0.444 (-)10.12 2.383± 0.490 (-)8.595

NMI 0.072± 0.024 0.076± 0.029 (+)5.812 0.076± 0.027 (+)5.330KFC

ACC 0.168± 0.026 0.176± 0.034 (+)4.581 0.174± 0.031 (+)3.419

Algorithms Metrics Office-31

Pre-Attack Our Attack Change (%) Random Attack Change (%)

Balance 0.484± 0.129 0.062± 0.080 (-)87.21 0.212± 0.188 (-)56.34
Entropy 10.01± 0.098 9.675± 0.187 (-)3.309 9.748± 0.181 (-)2.581

NMI 0.801± 0.050 0.768± 0.058 (-)4.110 0.795± 0.053 (-)0.726SFD

ACC 0.688± 0.082 0.624± 0.098 (-)9.397 0.668± 0.091 (-)2.908

Balance 0.041± 0.122 0.000± 0.000 (-)100.0 0.086± 0.172 (+)110.8
Entropy 9.538± 0.113 9.443± 0.178 (-)0.997 9.558± 0.226 (+)0.207

NMI 0.669± 0.014 0.693± 0.014 (+)3.659 0.693± 0.022 (+)3.711FSC

ACC 0.411± 0.014 0.452± 0.027 (+)9.904 0.447± 0.030 (+)8.817

Balance 0.250± 0.310 0.057± 0.172 (-)77.07 0.194± 0.301 (-)22.55
Entropy 9.997± 0.315 9.919± 0.189 (-)0.786 9.992± 0.250 (-)0.051

NMI 0.393± 0.064 0.391± 0.063 (-)0.483 0.393± 0.067 (-)0.160KFC

ACC 0.265± 0.048 0.266± 0.049 (+)0.032 0.265± 0.051 (-)0.162

Table 4.2. KS test statistic values comparing our attack distribution with the ran-
dom attack distribution for the Balance and Entropy metrics (** indicates statistical
significance i.e., p-value < 0.01).

Dataset Algorithm Balance Entropy

Office-31 SFD 0.889** 0.889**
Office-31 FSC 0.889** 0.778**
Office-31 KFC 0.889** 0.778**
MNIST-USPS SFD 0.222 0.222
MNIST-USPS FSC 0.000 0.778**
MNIST-USPS KFC 0.333 0.333

for all fair clustering algorithms and datasets, our attack leads to a more significant reduction in

fairness utility for both the MNIST-USPS and Office-31 datasets. In fact, as mentioned before,

the random attack at times leads to an increase in fairness utility compared to before the attack
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Figure 4.4. Our proposed CFC framework.

(refer to FSC Balance/Entropy on Office-31 ). In contrast, our attack always leads to a reduction

in fairness performance. For example, for the KFC algorithm and Office-31 dataset, our attack

achieves a reduction in Balance of 77.07% whereas the random attack reduces Balance by only

22.52%. However, it is important to note here that existing fair clustering algorithms are very volatile

in terms of performance, as the random attack can also lead to fairness performance drops, especially

for the SFD algorithm (refer to Figure 4.2 for visual analysis). This further motivates the need for

more robust fair clustering.

4.1.4. Fairness Defense: Consensus Fair Clustering. We now provide details on our defense

against the proposed attack. In accordance with the fairness attack defined as Definition 4.1.1, we

also provide a definition for robust fair clustering, followed by our proposed defense algorithm.

Definition 4.1.2 (Robust Fair Clustering). Given the dataset X, samples’ protected groups G,

and GA ⊆ G is a small portion of protected groups that an adversary can control, a fair clustering

algorithm F is considered to be robust to the fairness attack if the change in fairness utility on

GD = G \GA ⊆ G before the attack and after the attack is by a marginal amount, or if the fairness

utility on GD increases after the attack.

To achieve robust fair clustering, our defense utilizes consensus clustering [220, 221, 222, 223]

combined with fairness constraints to ensure that cluster outputs are robust to the attack. Consensus

clustering has been widely renowned for its robustness and consistency properties but to the best

of our knowledge, no other work has utilized consensus clustering concepts for fair clustering.
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Specifically, we propose Consensus Fair Clustering (CFC) shown in Figure 4.4, which first transforms

the consensus clustering problem into a graph partitioning problem, and then utilizes a novel

graph-based neural network architecture to learn representations for fair clustering. CFC has two

stages to tackle the attack challenge at the data and algorithm level. The first stage is to sample a

subset of training data and run cluster analysis to obtain the basic partition and the co-association

matrix. Since poisoned samples are a tiny portion of the whole training data, the probability of

these being selected into the subset is also small, which decreases their negative impact. In the

second stage, CFC fuses the basic partitions with a fairness constraint and further enhances the

algorithmic robustness.

First Stage: Generating Co-Association Matrix. In this first stage of CFC, we will

generate r basic partitions Π = {π1, π2, ..., πr}. For each basic partition πi, we first get a sub dataset

Xi by random sample/feature selection and run K-means [78] to obtain a basic partition πi. Such a

process is repeated r times such that ∪ri=1Xi = X. Given that u and v are two samples and πi(u) is

the label category of u in basic partition πi, and following the procedure of consensus clustering, we

summarize the basic partitions into a co-association matrix S ∈ Rn×n as Suv =
∑r

i=1 δ(πi(u), πi(v)),

where δ(a, b) = 1 if a = b; otherwise, δ(a, b) = 0. The co-association matrix not only summarizes

the categorical information of basic partitions into a pair-wise relationship, but also provides an

opportunity to transform consensus clustering into a graph partitioning problem, where we can learn

a fair graph embedding that is resilient to the protected group membership poisoning attack.

Second Stage: Learning Graph Embeddings for Fair Clustering. In the second stage of

CFC, we aim to find an optimal consensus and fair partition based on the feature matrix X, basic

partitions Π, and sample sensitive attributes G. The objective function of our CFC consists of a

self-supervised contrastive loss, a fair clustering loss, and a structural preservation loss.

Self-supervised Contrastive Loss. To learn a fair graph embedding using X,S, and G, we use

a few components inspired by a recently proposed simple graph classification framework called

Graph-MLP [224], which does not require message-passing between nodes and outperforms the

classical message-passing GNN methods in various tasks [225, 226]. Specifically, it employs the

neighboring contrastiveness and considers the R-hop neighbors to each node as the positive samples,

and the remaining nodes as negative samples. The loss ensures that positive samples remain closer

73



to the node, and negative samples remain farther away based on feature distance. Let γuv = SRuv and

S is the co-association matrix, sim denote cosine similarity, and τ be the temperature parameter,

then we can write the loss as follows:

(4.2) Lc(Z, S) := −
1

n

n∑
i=1

log

∑n
a=1 1[a̸=i]γia exp(sim(Zi, Za)/τ)∑n
b=1 1[b̸=i] exp(sim(Zi, Zb)/τ)

.

Fair Clustering Loss. Similar to other deep clustering approaches [43, 212], we employ a clustering

assignment layer based on Student t-distribution and obtain soft cluster assignments P . We also

include a fairness regularization term using an auxiliary target distribution Q to ensure that the

cluster assignments obtained from the learned embeddings z ∈ Z are fair. We abuse notation

slightly and denote the corresponding learned representation of sample x ∈ X as zx ∈ Z. Also let

pxk represent the probability of sample x ∈ X being assigned to the k-th cluster, ∀k ∈ [K]. More

precisely, pxk represents the assigned confidence between representation zx and cluster centroid ck in

the embedding space. The fair clustering loss term can then be written as:

(4.3) Lf (Z,G) := KL(P ||Q) =
∑
g∈[L]

∑
x∈Hg

∑
k∈[K]

pxk log
pxk
qxk
,

where pxk = (1+||zx−ck||2)−1∑
k′∈[K](1+||zx−ck′ ||2)−1 and qxk =

(pxk)
2/

∑
x′∈Hg(x)

px
′

k∑
k′∈[K](p

x
k′ )

2/
∑

x′∈Hg(x)
px

′
k′

.

Structural Preservation Loss. Since optimizing the fair clustering loss Lf can lead to a degenerate

solution where the learned representation reduces to a constant function [212], we employ a well-

known structural preservation loss term for each protected group. Since this loss is applied to

the final partitions obtained we omit it for clarity from Figure 4.4 which shows the internal CFC

architecture. Let Pg be the obtained soft cluster assignments for protected group g using CFC, and

Jg be the cluster assignments for group g obtained using any other well-performing fair clustering

algorithm. We can then define this loss as originally proposed in [212]:

(4.4) Lp :=
∑
g∈[L]

||PgP⊤
g − JgJ⊤

g ||2.
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Table 4.3. Pre/post-attack performance when 15% group membership labels are
switched for Office-31 and MNIST-USPS datasets.

Algorithms Metrics Office-31 MNIST-USPS

Pre-Attack Post Attack Change (%) Pre-Attack Post Attack Change (%)

Balance 0.609± 0.081 0.606± 0.047 (-)0.466 0.442± 0.002 0.373± 0.090 (-)15.54
Entropy 5.995± 0.325 6.009± 0.270 (+)0.229 2.576± 0.088 2.626± 0.136 (+)1.952

NMI 0.690± 0.019 0.698± 0.013 (+)1.236 0.269± 0.007 0.287± 0.008 (+)6.749CFC

ACC 0.508± 0.021 0.511± 0.018 (+)0.643 0.385± 0.002 0.405± 0.015 (+)5.343

Balance 0.484± 0.129 0.062± 0.080 (-)87.21 0.286± 0.065 0.000± 0.000 (-)100.0
Entropy 10.01± 0.098 9.675± 0.187 (-)3.309 3.070± 0.155 1.621± 0.108 (-)47.19

NMI 0.801± 0.050 0.768± 0.058 (-)4.110 0.320± 0.033 0.302± 0.007 (-)5.488SFD

ACC 0.688± 0.082 0.624± 0.098 (-)9.397 0.427± 0.040 0.378± 0.015 (-)11.54

Balance 0.041± 0.122 0.000± 0.000 (-)100.0 0.000± 0.000 0.000± 0.000 (-)100.0
Entropy 9.538± 0.113 9.443± 0.178 (-)0.997 0.275± 0.077 0.251± 0.041 (-)8.576

NMI 0.669± 0.014 0.693± 0.014 (+)3.659 0.549± 0.011 0.544± 0.007 (-)0.807FSC

ACC 0.411± 0.014 0.452± 0.027 (+)9.904 0.448± 0.012 0.457± 0.002 (+)1.971

Balance 0.250± 0.310 0.057± 0.172 (-)77.07 0.730± 0.250 0.352± 0.307 (-)51.87
Entropy 9.997± 0.315 9.919± 0.189 (-)0.786 2.607± 0.607 2.343± 0.444 (-)10.12

NMI 0.393± 0.064 0.391± 0.063 (-)0.483 0.072± 0.024 0.076± 0.029 (+)5.812KFC

ACC 0.265± 0.048 0.266± 0.049 (+)0.032 0.168± 0.026 0.176± 0.034 (+)4.581

The overall objective for CFC algorithm can be written as Lc+αLf +βLp, where α, β are parameters

used to control trade-off between individual losses. CFC can then be used to generate hard cluster

label predictions using the soft cluster assignments P ∈ Rn×K .

4.1.5. Results for the Defense. To showcase the efficacy of our CFC defense algorithm,

we utilize the same datasets and fair clustering algorithms considered in the experiments for the

attack section. Specifically, we show results when 15% of protected group membership labels can be

switched for the adversary in Table 4.3 (over 10 individual runs) for MNIST-USPS and Office-31.

The results for Inverted UCI DIGITS and Extended Yale Face B datasets show similar trends and are

provided in Table 4.4. Here, we present pre-attack and post-attack fairness utility (Balance, Entropy)

and clustering utility (NMI, ACC) values. We also denote the percent change in these evaluation

metrics before the attack and after the attack for further analysis. The detailed implementation and

hyperparameter choices for CFC are as follows:

• The hyperparameters such as number of basic partitions r, temperature parameter τ in

the contrastive loss Lc, dropout in hidden layers, number of training epochs, the activation
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Table 4.4. Pre/post-attack performance when 15% group membership labels are
switched for DIGITS and Yale datasets.

DIGITS Yale
Algorithms Metrics Pre-Attack Post Attack Change (%) Pre-Attack Post Attack Change (%)

Balance 0.145± 0.002 0.266± 0.189 (+)83.62 0.176± 0.027 0.047± 0.067 (-)73.22
Entropy 1.963± 0.022 2.096± 0.153 (+)6.758 5.472± 0.669 6.196± 0.441 (+)13.22

NMI 0.225± 0.004 0.187± 0.013 (-)16.72 0.142± 0.004 0.170± 0.013 (+)20.16CFC

ACC 0.287± 0.006 0.270± 0.008 (-)6.132 0.099± 0.003 0.108± 0.007 (+)9.381

Balance 0.021± 0.002 0.000± 0.000 (-)100.0 0.000± 0.000 0.000± 0.000 (-)100.0
Entropy 2.781± 0.286 0.000± 0.000 (-)100.0 3.757± 0.358 3.351± 0.277 (-)10.81

NMI 0.281± 0.005 0.371± 0.032 (+)32.21 0.159± 0.009 0.170± 0.007 (+)7.206SFD

ACC 0.395± 0.014 0.417± 0.038 (+)5.440 0.095± 0.004 0.101± 0.005 (+)6.733

Balance 0.000± 0.000 0.000± 0.000 (-)100.0 0.000± 0.000 0.000± 0.000 (-)100.0
Entropy 0.345± 0.000 0.345± 0.000 (-)0.000 3.907± 0.137 3.793± 0.060 (-)2.912

NMI 0.571± 0.004 0.571± 0.004 (-)0.000 0.375± 0.004 0.373± 0.005 (-)0.530FSC

ACC 0.317± 0.003 0.317± 0.003 (-)0.000 0.277± 0.004 0.277± 0.004 (-)0.171

Balance 0.653± 0.290 0.188± 0.167 (-)71.14 0.000± 0.000 0.000± 0.000 (-)100.0
Entropy 3.356± 0.138 3.128± 0.193 (-)6.815 10.92± 0.744 10.19± 0.742 (-)6.730

NMI 0.069± 0.012 0.062± 0.010 (-)9.184 0.122± 0.006 0.138± 0.006 (+)13.08KFC

ACC 0.182± 0.020 0.179± 0.017 (-)1.333 0.080± 0.006 0.088± 0.004 (+)10.50

function, and fair clustering algorithm used to generate J for structural preservation loss

Lp are set to be the same across all datasets.

• These are r = 100, τ = 2, dropout = 0.6,# epochs = 3000, Gaussian Error Linear

Unit [227] is used as the activation function, and we use SFD with default parameters for

generating J since it runs faster than other fair clustering algorithms.

• The dimension of the hidden layer is set to 256 for all datasets except for DIGITS since

DIGITS has only 64 features and hence we use the hidden layer dimension as 36 for it.

• We tune the other hyperparameters for the different datasets to optimize for fairness

performance. Using grid based search we set the following parameters for the given

datasets: for Office-31 we have R = 1, α = 1, β = 100; for MNIST-USPS we have

R = 2, α = 100, β = 25; for Yale we have R = 2, α = 50, β = 10; and for DIGITS we have

R = 2, α = 10, β = 50.

As can be seen in Table 4.3, our CFC clustering algorithm achieves fairness utility and clustering

performance utility superlative to the other SOTA fair clustering algorithms. In particular, CFC

optimizes for fairness utility and clustering performance utility jointly, which is not the case for the

other fair clustering algorithms. Post-attack performance of CFC on all datasets is also always better
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Figure 4.5. (A) Histogram representing the distribution of Balance of the Basic
Partitions (BPs) before the attack and after the attack. (B) Visualization of the
consensus matrix before the attack. (C) Visualization of the consensus matrix after
the attack.

compared to the other fair algorithms where Balance often drops close to 0. This indicates that

fairness utility has completely been disrupted for these algorithms and the adversary is successful.

For CFC, post-attack fairness and performance values are at par with their pre-attack values, and at

times even better than before the attack. For example, for Entropy, NMI, and ACC metrics, CFC

has even better fairness and clustering performance after the attack than before it is undertaken on

both the Office-31 and MNIST-USPS datasets. Balance also decreases only by a marginal amount.

Whereas for the other fair clustering algorithms SFD, FSC, and KFC, fairness has been completely

disrupted through the poisoning attack. For all the other algorithms, Entropy and Balance decrease

significantly with more than 10% and 85% decrease on average, respectively. Next, we analyze CFC

in-depth with regards to its stages and overall robustness.

4.1.5.1. Analyzing the Consensus Clustering Stage of CFC. We undertake some additional

analysis that sheds light on why the performance of CFC remains largely unaffected by the proposed

fairness attack. We begin by analyzing the first stage of the CFC pipeline, i.e., the consensus matrix

generation stage. In Figure 4.5(A), we plot the distribution of basic partitions’ (BPs) Balance values

before our fairness attack and after our fairness attack on Office-31, as a histogram. Note that

r = 100, which means that we have 100 basic partitions. It can be seen that before the attack

there are more BPs with 0 Balance values, and after the attack these partitions actually decrease.

Specifically, the mean Balance of the BPs shifts from 0.3 before the attack to 0.35 after the attack.

Moreover, the partition at the 20th percentile has Balance 0 before the attack, but 20th percentile
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BP improves to a Balance of 0.14 after the attack. This indicates that the simple basic partition

generation strategy will alleviate the negative impact of a fairness attack.

Moreover, it is beneficial to use consensus between BPs as a means of ensuring robustness, i.e,

our model is able to generalize from the performance of a number of different clustering results to

obtain more robust results. This can also be observed through Figures 4.5(B) and 4.5(C), where we

plot the pre-attack and post-attack consensus matrices obtained for Office-31, respectively. Visually,

both these matrices look similar, indicating that the consensus matrix is largely unaffected by the

attack. Note that for the size of these matrices (n× n, where n = 1, 293 is the number of samples in

the Office-31 dataset), the norm of their difference equals to 19.335, which is relatively small with

respect to the number of samples. This indicates that consensus clustering results as part of the first

stage are independent of the attack, and hence, can be used to ensure highly resilient and robust

performance on the dataset before and after the attack.

4.1.5.2. Analyzing Overall Adversarial Robustness of CFC. Next, we conduct experiments on

comparing the performance of CFC with the other SOTA fair clustering algorithms. For ease of

understanding, we plot the ratio between the mean post-attack and pre-attack values as a function

of the percentage of protected group membership labels switched by the attacker. Thus, the ratio is

mathematically defined as Mean Post-Attack Value
Mean Pre-Attack Value . Then, note that higher values of the ratio, indicate

more robust performance with regards to fairness metrics such as Balance or Entropy.

We present these results in Figure 4.6. As can be observed, the CFC ratio values are always

much higher than the other algorithms for all the attack percentages and for the fairness metrics

Balance and Entropy. This is especially observable for certain datasets (such as Yale), where Balance

for all other fair algorithms is consistently 0, but CFC is still able to obtain clustering solutions with

desirable fairness utility before and after the attack. It is also worthwhile to note that for Office-31

and MNIST-USPS, fairness performance is highly robust as the ratio trends tend to be approximately

1.0, or >1.0, with little to no decrease in utility after the attack. For the NMI and ACC metrics, we

find that the ratio is generally distributed very close to 1.0, indicating that clustering performance is

very similar before and after the attack. This means that in general, it is hard to tell whether or

not a fairness attack has occurred based on clustering performance. This makes it challenging for

the defender to defend against such an attack, further mandating the need for robust fair clustering
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Figure 4.6. Post/Pre attack ratio trends for CFC and other fair clustering algorithms
(we do not plot curves for which pre-attack values are 0). X-axis denotes the % of
samples attacker can poison.

algorithms like CFC. Also note that for some algorithms, pre-attack and/or post-attack values are

consistently 0, and we omit their trends from the figure since they are indeterminate.

4.2. Enhancing Classifier Performance and Interpretability through Influence-Based

Data Selection

4.2.1. Introduction. ML models have become essential tools in various societal applications

for automating processes and generating insights [228, 229]. Along with the choice of model

79



type/architecture, data is a critical component of the learning process, and the quality and quantity

of training data have significant impacts on the model performance [230]. Despite this, current

research mainly focuses on proposing high-performing model architectures or learning approaches

while keeping the training data fixed. However, it is evident that not every sample in the training set

augments model performance. Furthermore, the same data sample could be beneficial or detrimental

to performance depending on the type of model being used [230]. Therefore, in this work, we aim

to answer the research question "what data benefits the learning model in a certain aspect?" and

select suitable training data to improve model performance with respect to utility,2 fairness, and

adversarial robustness.

Our work relates to but contrasts with the research on data valuation. Data valuation aims

to assign a monetary value or worth to a particular set or collection of data, whereas our research

investigates how data can be utilized to enhance a model. Data valuation can be performed in a

variety of ways, such as using cooperative game theory (Shapley-value or Banzhaf index) [231, 232,

233, 234, 235] and reinforcement learning [236]. Shapley-value based data valuation approaches and

their variants [231, 232] are model-agnostic, while our approaches are customized to the specific

model being used. Moreover, these Shapley-value based approaches require the model to be retrained

and evaluated multiple times, where even the most efficient known non-distributional algorithms [232]

require O(
√
n log(n)2) model retraining steps, and n is the number of training samples. Furthermore,

the current Shapley-value based frameworks can only estimate the data value in utility, leaving their

estimations for fairness and robustness incomplete and unclear. Reinforcement learning-based data

valuation [236] faces similar issues due to its complex design and poor convergence [237].

Our work is also closely related to other work on data influence, such as the seminal paper

on influence functions by Koh and Liang [22], and influence-based data reweighing for improving

fairness [238]. However, these methods only seek to trace model predictions back to the data, and

do not directly answer our research question, which is to identify and interpret the feature space

for improving the model’s performance. Unlike these methods, our data selection approaches can

uniquely handle scenarios where data is unlabeled such as in active learning applications. Moreover,

our work considers utility, fairness, and robustness under diverse application scenarios, and our data

2We interchangeably use utility and accuracy in this section.
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selection strategy can even boost the performance of influence-based methods such as [238]. Our

work utilizes influence functions as a tool and extends their applicability to diverse domains and

scenarios not considered previously [22].

Finally, our work also conceptually relates to several data-related areas, such as data efficiency,

feature selection, active learning, and antidote data. Data efficiency approaches [239, 240, 241, 242]

aim to accelerate deep model training by pruning data, which is beyond the scope of our work. Feature

selection approaches [243, 244] aim to select important features for training, but are limited in scope

as they only work for utility. Active learning [24, 245] partially aligns with our research question, as it

involves selecting unlabeled data points to be annotated and added to the training set for improving

model performance. However, its applicability is limited to this specific scenario, while our work

considers a broader range of applications, including this one. Antidote data approaches [15, 18, 27]

aim to add generated data to the training set for mitigating unfairness but cannot be used to

interpret the usefulness of existing data points.

In summary, we propose data selection strategies based on influence functions [22] to improve a

given classifier with respect to utility, fairness, and robustness. Our key idea is to use tree-based

influence estimation models to understand and interpret which sample features contribute positively

or negatively to the model’s performance with respect to desired evaluation functions on a validation

set. Additionally, we design a data selection strategy to achieve performance improvements. Our

approaches can be utilized in multiple practical scenarios, where practitioners can either select data

by trimming the existing training set, or by identifying and annotating new beneficial samples to

include as part of the training set.

4.2.2. Preliminaries and Background. Here we first introduce influence functions and

elaborate on how to use them to measure the sample influence on utility, fairness, and robustness.

Influence Functions. Given a training set Z = {(xi, yi)}ni=1 and a classifier trained using

empirical risk minimization by a loss function ℓ, we have the optimal parameters of the classifier θ̂ =

argminθ∈Θ
1
n

∑n
i=1 ℓ(xi, yi; θ). Influence functions [22] measure the effect of changing an infinitesimal

weight of samples on a validation set, based on an impact function f evaluating the quantity of

interest, such as utility, fairness, and robustness. Downweighting a training sample xj by a very

small fraction ϵ leads the model parameter to θ̂(xj ;−ϵ) = argminθ∈Θ
1
n

∑n
i=1 ℓ(xi, yi; θ)−ϵℓ(xj , yj ; θ).

81



The actual impact of such a change can be written as I∗(xj ;−ϵ) = f(θ̂(xj ;−ϵ)) − f(θ̂), where

f(θ̂(xj ;−ϵ)) can be obtained by retraining the model without xj . Assuming l is strictly convex and

twice differentiable, and f is also differentiable, the actual impact can be estimated without the

expensive model retraining by I(xj ;−ϵ) = limϵ→0 f(θ̂(xj ;−ϵ))− f(θ̂) = ∇θ̂f(θ̂)
⊤H−1

θ̂
∇θ̂ℓ(xj , yj ; θ̂),

where Hθ̂ =
∑n

i=1∇2
θ̂
ℓ(xj , yj ; θ̂) is the Hessian matrix of ℓ and is invertible since ℓ is assumed to be

convex. If we set ϵ = 1
n and n is large (n→∞), we can write I(xj ;− 1

n) = I(−xj). Thus, we can

measure the influence of removing sample xj from the training set.

Within the framework of influence functions, we instantiate the impact functions used to measure

utility, fairness, and adversarial robustness of the model on a validation or test set.

Measuring Influence on Utility. If we instantiate the impact function f to calculate the loss

value on a validation set V , we can measure a training sample influence on utility as follows:

(4.5) Iutil(−xi) =
∑

(x,y)∈V

∇θ̂ℓ(x, y; θ̂)
⊤H−1

θ̂
∇θ̂ℓ(xi, yi; θ̂).

Measuring Influence on Fairness. Similarly, we can instantiate the impact function f by

group fairness [84, 187, 246], such as demographic parity (DP) or equal opportunity (EOP) to measure

influence on fairness. Consider a binary sensitive attribute defined as g ∈ {0, 1} and let ŷ denote the

predicted class probabilities. The fairness metric for DP is defined as: fDP-fair(θ̂, V ) =
∣∣EV [ŷ|g =

1]− EV [ŷ|g = 0]
∣∣ and for EOP as: fEOP-fair(θ, V ) =

∣∣∣EV [l(x, y; θ)|y = 1, g = 1]− EV [l(x, y; θ)|y =

1, g = 0]
∣∣∣. Based on that, we can calculate the training sample influence on fairness as follows:

(4.6) IDP-fair(−xi) = ∇θ̂f
DP-fair(θ̂, V )⊤H−1

θ̂
∇θ̂ℓ(xi, yi; θ̂).

(4.7) IEOP-fair(−xi) = ∇θ̂f
EOP-fair(θ̂, V )⊤H−1

θ̂
∇θ̂l(xi, yi; θ̂).

Measuring Influence on Adversarial Robustness. We can also measure which points

contribute to adversarial robustness (or vulnerability) using influence functions. To do so, we first

define an adversary– any attack approaches to craft adversarial samples can be used including

black-box, white-box, among others. Here we consider a white-box adversary [247] specific to linear
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models, which can be easily extended to other models and settings, such as FGSM [248], GDA [249],

PGD [37]. To craft an adversarial sample, we take each sample x of the validation set V and perturb

it as x′ = x− γ θ̂⊤x+b
θ̂⊤θ̂

θ̂, where θ̂ ∈ Rd are the linear model coefficients, b ∈ R is the intercept, and

γ > 1 is a parameter that controls the amount of perturbation added.

Since the decision boundary is a hyperplane, we simply move each sample orthogonal to it by

adding minimal perturbation. In this manner, we can obtain an adversarial validation set V ′ which

consists of x′ for each sample x of V . The class labels y remain unchanged. Now, we can compute

adversarial robustness influence for each training sample as follows:

(4.8) Irobust(−xi) =
∑

(x′,y)∈V ′

∇θ̂ℓ(x
′, y; θ̂)⊤H−1

θ̂
∇θ̂ℓ(xi, yi; θ̂).

Extension to Non-Convex Models. A current limitation of influence functions is that they

require the model to satisfy strict convexity conditions, implying its Hessian is positive definite and

invertible, and that it is trained to convergence [22]. To extend influence functions to non-convex

models, several possible solutions exist: (1) a linear model (logistic regression) can be used as a

surrogate on the embeddings obtained via the non-convex model [238]; (2) a damping term can be

added to the non-convex model such that its Hessian becomes positive definite and invertible [250];

and (3) depending on the learning task and output predictions specific influence functions can

be derived from first principles [251, 252]. Here, we adopt the aforementioned first strategy for

non-linear models.

4.2.3. Proposed Approaches. We now present Algorithm 4 for influence estimation via trees

to interpret how data samples and feature ranges impact model performance with respect to utility,

fairness, and robustness. Additionally, we propose Algorithm 5 for trimming training samples to

improve model performance given a budget.

4.2.3.1. Estimating the Influence of Samples. Influence functions can efficiently estimate the

data impacts in various aspects. To further provide their interpretations, we employ decision trees

to uncover which sample features contribute positively or negatively to the model’s performance

with respect to desired evaluation functions. Additionally, to address the issue of the tree depth on
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interpretability, we further utilize hierarchical shrinkage [253] to regularize the tree. We present our

approach for influence estimation in Algorithm 4, where it takes as input a regularization parameter

λ, training set Z, validation set V , and a desired influence function definition IF for samples in Z

on V . Specifically, we iterate over each training set tuple (xi, yi) ∈ Z and create a new regression

dataset M where the regressor is [xi, yi] (block matrix notation implies appending yi to the end

of xi) and the response variable is computed via IM (−xi). Note that we append the label to our

dataset since influence estimation is dependent on class labels.

Algorithm 4 : Influence Estimation Via Trees

Input: Training set Z, Validation set V , Influence function IF , Hyperparameter λ
Output: Influence Estimator Tree ĥ

1: initialize M ← ∅.
2: for (xi, yi) ∈ Z do
3: qi ← [xi, yi] //appending label to xi
4: M ←M ∪ {(qi, IF (−xi))}
5: end for
6: train h using CART [254] on M .
7: return ĥ by using hierarchical shrinkage [253] on h with λ.

Then, we train a regression tree h using CART [254]. To ensure that the tree is interpretable

while preserving performance, we utilize hierarchical shrinkage [253] post-training. For our tree

h and for a given sample qi in the dataset M , let its leaf-to-root node path in the tree denote as

tw ⊂ tw−1 ⊂ ... ⊂ t0. Here tw represents the leaf node and t0 is the root node. Then we define two

mapping functions for ease of readability: ϕ and ξ. The function ϕ takes as input a tree node and

returns the number of samples it contains. The function ξ takes as input the query sample q and

the tree node t and outputs the average predictive response for q at node t. The overall regression

tree prediction model for qi can then be written as: h(qi) = ξ(qi, t0) +
∑w

j=1 ξ(qi, tj)− ξ(qi, tj−1).

The hierarchical shrinkage regularizes the tree h by shrinking the prediction over each tree node by

the sample means of its parent nodes, ĥ(qi) = ξ(qi, t0) +
∑w

j=1
ξ(qi,tj)−ξ(qi,tj−1)

1+λ/ϕ(tj−1)
.

4.2.3.2. Data Trimming for Supervised Models. We present Algorithm 5 for trimming training

datasets which takes as input training data sample-label tuples as Z, validation set V , an influence

function definition IF for samples in Z on set V , and a budget b for the number of samples to remove.

Our algorithm outputs the trimmed dataset Z ′. The goal is to remove samples from the dataset

that have negative influence. In Line 1 we initialize the sets J , K, and Z ′. Then, in Lines 2-4 we
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Algorithm 5 : Data Trimming

Input: Training set Z, Validation set V , Influence function IF , Budget b
Output: Trimmed Dataset Z ′

1: initialize J ← ∅, K ← ∅, Z ′ ← ∅.
2: for (xi, yi) ∈ Z do
3: J ← J ∪ {IF (−xi)} //on set V
4: K ← K ∪ {i}
5: end for
6: sort J in ascending order.
7: sort K using J .
8: b′ ←

∑
1j<0,j∈J , K ← K:min{b,b′}

9: return Z ′ ← Z ′ ∪ {xi},∀i /∈ K,xi ∈ Z.

populate J with the influence values of samples in J , and K with the indices of these samples. We

then sort J in order of increasing positive influence, and K according to the sorted order obtained

via J . In Line 8 we trim K by only selecting the first min{b, b′} indices where b′ is the total number

of negative influence samples. Finally, we select only those samples to be part of Z ′ that do not

have indices in K and return Z ′.

4.2.4. Results for Conventional Classification. In this section, we present results for our

algorithms presented in the previous section. We first verify the correctness of our algorithms on

synthetically generated toy data. We analyze how our influence estimation algorithm can be used to

visualize and interpret regions of positive or negative influence, and trim the training set to improve

accuracy, fairness, and robustness on the validation set. We then demonstrate the effectiveness of our

algorithms on test sets of four real-world datasets and greatly improve their performance, especially

for fairness and robustness.

4.2.4.1. Correctness Verification on Toy Data. We demonstrate the correctness of our proposed

methods on toy data. We generate 150 train and 100 validation samples using two isotropic 2D-

Gaussian distributions and apply a logistic regression model for the binary classification. Based on

that, we analyze the training sample positive/negative impact on model’s accuracy, fairness and

robustness in Figure 4.7 A, D, and G, respectively. The green regions denote the positive influences,

while the pink regions denote the negative influences. These regions indicate the feature values

derived from training samples that affect the linear model either positively or negatively for the

function of interest. In Figure 4.7 A, most samples contribute positively for utility, and hence lead
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Figure 4.7. Correctness verification on toy data for utility (accuracy), fairness, and
robustness functions. (+) class samples are denoted in blue, (-) class samples are
denoted in orange, majority group samples are denoted by ◦ and minority group
samples are denoted by ×. A, D, and G show the training set with the original
logistic regression decision boundary, and we visualize the influence regions generated
by our tree model from Algorithm 4 as positive (light green) or negative (light red)
for each function: utility/fairness/robustness. B, E, and H denote the points to be
trimmed as identified by Algorithm 5 for each function type. C and D denote the
validation set and how we obtain improved accuracy and fairness performance on it
after trimming. I denotes the adversarial validation set and how post trimming we
can improve performance on adversarial data.

to positive influence regions. Similarly, in Figure 4.7 D, most of the samples are harmful for fairness

as the (+) class has a large number of majority group samples and the (-) class has a large number

of minority samples. Thus, most of the regions identified are of negative influence on fairness. To
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Figure 4.8. Double y-plot of our trimming method on the test sets of Adult, Bank,
CelebA, and Jigsaw Toxicity. The left y-axes present algorithmic accuracy, fairness,
and robustness, while the right y-axes present the influence value of the trimmed
samples. Higher values indicate better accuracy and robustness, while lower values
indicate better fairness. The blue lines represent the performance of our trimming
method, while the red lines represent the performance with random trimming.

further validate the sample impact, we use Algorithm 5 with a budget b = 10 to obtain the points

to be trimmed, shown in Figure 4.7 B, E, and H. We then remove these points from training set,

resulting in significant performance improvement on the validation set for each function of interest,

as shown in Figure 4.7 C, F, and I. Notably, the robustness is significantly improved from 0.01 to

0.42 by simply removing the identified points. Additionally, Figure 4.7 I shows an adversarial set

with perturbed samples, where adversarial points crowd around the original decision boundary and

are difficult to classify accurately.

4.2.4.2. Algorithmic Performance on Real-World Datasets. We demonstrate the performance of

our proposed methods on multiple real-world datasets, consisting of two tabular datasets Adult [173]

and Bank [174], one visual dataset CelebA [255], and one textual dataset Jigsaw Toxicity [256]. For

CelebA we utilize extracted features provided by the dataset authors, and for Jigsaw Toxicity we

extract text embeddings via the MiniLM transformer model [257]. We set sex (male/female) as the

sensitive attribute for Adult, Bank, CelebA, and ethnicity (black/other) for Jigsaw Toxicity. Note
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Figure 4.9. Double y-plot of our trimming method on the test sets of Adult, Bank,
CelebA, and Jigsaw Toxicity for the MLP Neural Network as the base learning model.
The left y-axes present algorithmic accuracy, fairness (DP), and robustness, while
the right y-axes present the influence value of the trimmed samples. Higher values
indicate better accuracy and robustness, while lower values indicate better fairness.
The blue lines represent the performance of our trimming method, while the red lines
represent the performance with random trimming.

that influence for these experiments is only measured on the validation set. Using logistic regression

as the learning model, we present results on test sets of these datasets in Figure 4.8, along with

influence value magnitudes corresponding to trimmed samples for each function type. Results with

using MLP as the learning model are presented in Figure 4.9 and exhibit similar trends.

In Figure 4.8, we demonstrate the effect of increasing the budget b of our trimming approach

(up to 5% of training data) for each function and compare it to a baseline that randomly removes b

samples from the training set.3 The results show that our methods are able to improve fairness (DP)

and robustness significantly, while the random baseline fails to do so. This is particularly evident for

datasets where large fairness disparities exist, except for Bank. Additionally, we are able to achieve

significant improvements in accuracy on the fully adversarial test set for all datasets, indicating that

our trimming can improve the model’s robustness by effectively selecting training samples. However,

3We fail to compare with Shapley-value based data valuation methods [231] in utility due to their prohibitively long
execution time on our datasets.
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Figure 4.10. Performance of fairness and utility of several fairness algorithms under
distribution shift. A greener background denotes a better solution in terms of both
accuracy and fairness.

we observe that trimming does not lead to much improvement in accuracy for most datasets, except

for Bank, where we obtain a 10% increase. We conjecture that the current logistic regression models

may already achieve optimal performance on the other datasets, as indicated by the quick decrease

in utility influence value, which suggests little room for further improvement. This also implies that

we may not require as much training data to achieve similar utility results.

4.2.5. Application Scenarios Beyond Conventional Classification. We extend the con-

ventional classification setting of the previous section by conducting extensive experiments that cover

various practical use cases in deployment and maintenance scenarios, such as correcting fairness

in distribution shift, combating fairness poisoning attacks, defending against adaptive adversaries

undertaking evasion attacks, online learning with streaming batch data, and analyzing unlabeled

sample effectiveness for active learning. We thus demonstrate the effectiveness of our influence-

based estimation and trimming methods in improving model performance across diverse application

scenarios either by trimming the training set, or by identifying new beneficial samples to add to it.

4.2.5.1. Mitigating Unfairness Under Distribution Shift. We demonstrate how our proposed

method can serve as an effective fairness intervention and enhance the current methods under

distribution shift. Fairness-specific distribution shifts [258] occur when the distribution of sensitive

attributes (and class labels) between the training and test sets have drifted apart, resulting in severe

issues of unfairness on the test set. Although it is a newly emerging direction, some pioneering

attempts [258, 259, 260] have been taken to address the change in bias between the original and
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test distribution. Typically, these methods have access to some samples from the test set to study

the change in bias. In our experiments, these samples can constitute the validation set V given

that the validation and test set are correlated with each other. Here we employ multiple fair

intervention approaches as baselines– such as Correlation Shift [258], FairBatch [261], Robust Fair

Logloss Classifier (RLL) [262], Influence-based Reweighing [238], and vanilla logistic regression.

We use the ACS Income [263] dataset and construct three different distribution shift scenarios–

time-based, location-based, time&location-based. In all three scenarios, we use the same training

data constituting California (2014) data with 18000 samples, while the test sets consist of 6000

different samples: for time-based shift, this comprises California (2018) data, for location-based shift,

it is Michigan (2014) data, and for the time&location-based shift, we use Michigan (2018) data. We

set the budget b = 600 which constitutes only 3.33% of the training set.

We present results as fairness-accuracy plots in Figure 4.10. We show that our trimming based

approach can greatly improve fairness under distribution shift even when utilized with the vanilla

model, making it competitive with the fairness intervention baselines. Moreover, except for the

vanilla model (Figure 4.10 A&C), our trimming approach with the fairness intervention methods

improves their accuracy significantly as well. This demonstrates the generalizability of our approach,

as it can be used as a pre-processing step to boost the performance of other mitigation strategies.

4.2.5.2. Combating Poisoning Attacks Against Unfairness. We use our influence-based trimming

approach as an effective defense for mitigating poisoning attacks against fairness. Recently, several

attacks [21, 107, 264] have been proposed to reduce fairness of learning models. Random Anchoring

Attack (RAA) and Non-random Anchoring Attack (NRAA)[107] are two representative ones. These

first select a set of target points to attack, and then poison a small subset of the training data

by placing additional anchoring points near the targets with the opposite class label. The target

samples are uniformly randomly chosen in RAA, while NRAA selects “popular" target samples that

result in the maximization of bias for all samples in the test set post the attack. Here we follow

the original implementations of RAA and NRAA and use their same datasets including German

[265], Compas [266], and Drug [267]. Since all these are different sizes we set the trimming budget

b ≤ 10% of training samples and the attacker’s poisoning budget is 10% of training samples.
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Table 4.5. Performance of fairness poisoning attacks

Method German Compas Drug

DP ACC DP ACC DP ACC

Before 0.117 0.670 -0.281 0.652 0.371 0.668

RAA -0.029 0.655 -0.060 0.630 0.225 0.657
RAA + Ours 0.000 0.650 -0.082 0.643 0.090 0.616

NRAA 0.268 0.665 0.168 0.652 0.501 0.665
NRAA + Ours 0.005 0.650 0.048 0.654 0.142 0.657

Figure 4.11. Defending with our trimming method against adaptive evasion attacks
on four datasets.

Table 4.5 shows the results obtained. Our trimming approach is a useful approach for combating

fairness-reducing poisoning attacks, as it improves fairness (and utility for Compas) performance

compared to the metric values obtained before and after the attacks. It is also significant to note

that there are currently no well-performing defenses proposed for the aforementioned attack in the

supervised setting [21]. Our trimming approach thus shows promise as potentially the first defense

against such attacks as it improves fairness significantly without sacrificing utility. Also note that

since the defender does not know how many points the attacker poisons, the goal here is not to

discover poisoned samples, but maximizing performance on the test set compared to both pre-attack

and post-attack performance by trimming a small number of samples.

4.2.5.3. Defending Against Adaptive Evasion Attacks. In addition to fairness shifts and poisoning

defense, we show how the influence-based trimming approach can help defend against an adaptive

adversary [268, 269] that conducts evasion attacks on the given learning model. Here, adaptive refers

to the adversary being able to target the given defense. In our case, the attacker can randomly
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select test samples to conduct the attack. Notably, this is significantly different from our robustness

analysis results, where we create an adversarial set using all test samples and then trim samples

to optimize robustness accuracy. Here we defend by choosing to trim the training set by a fixed

amount, but we have no knowledge of what samples are adversarial during inference.

We use the attack described previously to attack logistic regression. The attacker is adaptive

to randomly choose between 5-25% of the test set samples to perturb. Correspondingly, we let

the defender trim only 2.5% of the training set using Algorithm 5. We repeat these experiments

between the attacker and defender over 10 runs for the 4 real-world datasets. In Figure 4.11, we plot

the pre-attack accuracy, the post-attack accuracy distribution, as well as the post-attack accuracy

distribution after trimming the training set and retraining the model, on the test set. These results

indicate that trimming the training set after the attack can be a viable defense. With just 2.5% of

the training data trimmed, we find that we can increase performance well beyond pre-attack values,

and hence, mitigate the threat of the attack.

4.2.5.4. Online Learning with Streaming Data and Noisy Labels. So far, we considered classifica-

tion problems with a fixed training set. In this part, we consider the online classification setting

with streaming batch data. Online learning is a popular choice when learning models need to be im-

plemented on memory constrained systems, or to combat distribution shift [25, 270]. Online learning

assumes that the training data arrives in sequential batches and the learning model trains/updates

on each batch sequentially. Here we reuse the 4 real-world datasets and trim samples in each batched

stream of data using Algorithm 5. Note that we estimate influence over each batch independently.

To make the setting more practical, we consider that the data stream might consist of noisy class

labels– where one-third of samples that arrive in a batch have noisy labels flipped from the original

ground truth labels. We set the trimming budget b to be 10% of the batch size, and train on 10

sequential batches of data. We then measure test set accuracy with and without trimming each

batch for both the online models. Figure 4.12 A-D show the performance of logistic regression and

linear Support Vector Machines (SVMs) [271] trained in an online manner with Stochastic Gradient

Descent [272] with and without our trimming processing. It can be seen that trimming combined

with our influence estimation model can lead to much better performance for all the given datasets

(except Bank) and learning models.
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Figure 4.12. A - D: Online learning with noisy labels using logistic regression
and linear Support Vector Machines with and without our influence-based trimming
strategy on four datasets; E: Comparison of different active learning strategies on
the Diabetic Retinopathy dataset.

4.2.5.5. Active Learning. Finally, we employ our approaches for active learning by choosing

beneficial samples for annotation. Active learning[24] constitutes a small labeled training set, and

a large pool of unlabeled samples, where the goal is to pick samples from the unlabeled set for

annotation and then retrain the model on the combined data for boosting performance. It is generally

employed in fields where annotation is very expensive to undertake, such as in medicine and health.

Here, we use a linear SVM as our learning model since a number of active learning strategies

work optimally for SVM models [273]. We simulate an active learning use-case, following prior

work [274, 275], by using the Diabetic Retinopathy [276] dataset. The dataset consists of 1151 retina

images of patients and can be used for predicting whether they suffer from diabetic retinopathy or

not. We use the image features as extracted in [277]. In this setting, there are 10 rounds of querying

for annotations, where each round allows for 10 samples to be annotated. As a result, by the end of

the final round we will have an additional 100 labeled samples available. We consider the following

baselines for active learning– random sampling, entropy sampling [278], margin sampling [279], and

uncertainty sampling [280]. For our influence-based sampling, since we do not have access to labels

in the unlabeled set, we train our tree estimation model (Algorithm 4) without labels. Then we use

the estimator to predict the influence of the unlabeled samples. Out of these we select the 10 highest

influence samples available in each round for labeling. Note that unlike the other baselines, our

influence-based sampling is deterministic over multiple runs since our tree estimator is deterministic

when provided the same input. We present the results for this experiment in Figure 4.12 E over 5 runs.

It can be seen that our influence-based sampling generally outperforms the other baselines in most

rounds, and ends up with the best performance after the final round, demonstrating its effectiveness.
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CHAPTER 5

Conclusion

In this thesis, we have formulated and investigated various learning problems centered around

robust and fair ML/DL. Primarily, we study adversarial robustness (model security), social robustness

(model fairness), and the interplay between these two dimensions of robustness for numerous learning

models and application pipelines. Our work aims to pave the way for analyzing model robustness, and

for developing models that can improve robustness along one or more dimensions– thus accelerating

the integration of these models into society. For adversarial robustness, we propose novel poisoning

and evasion attacks against deep and traditional unsupervised classification models, and also showcase

how our attacks can be used in the real-world by attacking a production-level ML-as-a-Service face

clustering API. For social robustness, we study alternate approaches to generalized fair clustering

via data augmentation, and formulate the fair video summarization problem. We also provide new

datasets and preliminary methods for the latter. Finally, we study two problems at the intersection

of adversarial and social robustness– undertaking secure and fair data clustering, and utilizing

influence-based data selection approaches for individually optimizing classifier fairness, accuracy, and

robustness. Through these contributions, we seek to galvanize efforts exploring model robustness for

novel and traditional problem settings alike.
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