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Abstract

A key function of categories is to help predictions about unob-
served features of objects. At the same time, humans often find
themselves in situations where the categories of the objects
they perceive are uncertain. How do people make predictions
about unobserved features in such situations? We propose a
rational model that solves this problem. Our model comple-
ments existing models in that it is applicable in settings where
the conditional independence assumption does not hold (fea-
tures are correlated within categories) and where the features
are continuous as opposed to discrete. The qualitative predic-
tions of our model are borne out in two experiments.

Keywords: Feature inferences, Categories, Concepts, Predic-
tions, Judgments, Rational Analysis, Bayesian Model

Introduction
According to J. Anderson, ‘The basic goal of categorization
is to predict the probability of various unexperienced features
of objects’ (Anderson, 1991). At the same time, humans of-
ten find themselves in situations where the categories of the
objects they perceive are uncertain. In this article, we propose
a computational model of feature prediction under uncertain
categorization. We consider settings where an individual per-
ceives some feature(s) of an object that belongs to a particular
domain and makes a prediction about the value of an unob-
served feature of the object. We assume that the individual
has organized her knowledge of the domain into categories.
We propose that the decision maker makes predictions ac-
cording to a posterior distribution derived by application of
Bayes’ theorem. As such, our model falls into the rational
analysis tradition (Anderson, 1991; Marr, 1982).

A number of prior papers have studied feature predic-
tion under uncertain categorization (e.g., Murphy & Ross,
1994, 2010a; Griffiths, Hayes, & Newell, 2012; Papadopou-
los, Hayes, & Newell, 2011). They led to interesting insights
about whether and how people use categories in making pre-
dictions about unobserved features. Most of the existing stud-
ies have considered settings in which features are discrete-
valued. As we explain below, a limitation of such settings is
that, in this context, it is difficult to distinguish whether peo-
ple do not use categories at all, or make an optimal use of the
categories. By contrast, we study a setting where features are
continuously-valued. In our setup, the predictions of a model
that makes optimal use of the categories (our rational model)
and a model that ignores categories altogether sharply differ.

Our model can be seen as an extension of the ‘inference
component’ of Anderson’s rational model of categorization

(Anderson, 1991). Just as in this landmark model, the de-
cision maker first relies on her knowledge of some feature
of the object to derive the posterior probabilities that the ob-
ject comes from each candidate category. Then, the decision
maker uses her knowledge of the structure of each category to
make predictions about the value of the unobserved feature.
Anderson’s model assumed that the within-category feature
correlation was zero – an assumption known as conditional
independence. Our model generalizes Anderson’s model to
settings where this assumption is relaxed. This extension ex-
pands the relevance of the rational model as there are many
settings where it does not hold (e.g., Murphy & Ross, 2010a).
In virtually all the settings where people believe that there
is a causal relationship between two variables (e.g. educa-
tional achievement and income, quality and price of con-
sumer goods), the corresponding mental representation in-
vokes a within-category correlation (Rehder & Hastie, 2004).

Existing Paradigm
In the experimental paradigm used in the vast majority of ex-
periments that focused on feature prediction with uncertain
categorization, participants are shown a set of items of var-
ious shapes and colors divided into small number of cate-
gories, typically 4 (Murphy & Ross, 1994). Then they are
told that the experimenter has a drawing of a particular shape
and were asked to predict its likely color (or similar ques-
tions about the probability of an observed feature given an ob-
served feature). An important characteristic of this paradigm
is that the categories are shown graphically to the participants.
The idea was to avoid complications related to memory and
category learning by participants.

Suppose the two features are X and Y and there are 4 cat-
egories. Participants are asked to estimate P(y | x), the pro-
portion of items with Y = y out of items with X = x. There
is some evidence participants’ predictions that are the same
as those implied by a model that focuses on just the ‘target’
category, that is, the most likely category given the observed
feature (Murphy & Ross, 1994). There is also some evi-
dence that participants sometimes make predictions that are
the same as those implied by a model that takes into account
multiple categories (Murphy & Ross, 2010a). Still, other ex-
periments have found evidence that participants do not pay
attention to categories at all but instead are sensitive to the
overall feature correlation (Hayes, Ruthven, & Newell, 2007;
Papadopoulos et al., 2011; Griffiths et al., 2012).
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A limitation of this paradigm pertains to the fact that the
features are discrete-valued. This implies that the predictions
of a model that ignores categories altogether or makes op-
timal use of the categories are exactly the same. This is a
consequence of the law of total probability. In this case, we
have

P(y | x) =
4

∑
c=1

P(c | x)P(y | cx), (1)

where P(c | x) is the proportion of items belong to c out of all
the items such that X = x, and P(y | cx) is the proportion of
items with Y = y out of the items that both are in c and have
X = x.

In order to estimate P(y | x), a participant that would ig-
nore the categories would consider all objects with X = x and
would respond with the proportion of objects with y among
all objects with x. A participant that would consider all 4 cat-
egories would compute the proportion of items with y among
the items with x in each category and then would compute
the weighted average by multiplying each of these numbers
by her estimates of P(c | x). The responses given by the two
participants would be exactly the same. It is therefore diffi-
cult to assess whether the participants use multiple categories
(but see Murphy and Ross (2010a) for an attempt to do so us-
ing post-prediction questions). When features are continuous,
however, the predictions of these two strategies differ.

A Rational Model for Predictions in
Continuous Environments

By contrast to the existing paradigm, we consider a setting
where the values of the two features are not discrete, but real-
valued random variables X (first feature) and Y (second fea-
ture). We assume the individual has organized her knowledge
of the domain of objects in a set of categories C . Following
recent work, we model mental categories using probability
distribution functions (pdfs) on the feature space (Ashby &
Alfonso-Reese, 1995; Sanborn, Griffiths, & Shiffrin, 2010).
Let c∈ C be a category. We denote by fc(x,y) the value of the
associated pdf at position (x,y) in the feature space, where x
denotes the value of the first feature and y denotes the value
of the second feature. This pdf denotes the prior belief of the
individual over positions given that she knows that an object
is from category c.

Now suppose that the individual observes that the first fea-
ture has value x and predicts the value of the second, unob-
served feature. We assume her predictions are driven by her
posterior on the value of the second feature given her obser-
vation of the first value of the first feature: f (y | x). How does
the individual compute this quantity, assuming that she does
not have a pre-existing mental representation of the (proba-
bilistic) relation between x and y?

We propose that the individual relies on her mental repre-
sentation of the categories to make the prediction. That is,
she will make use of the category pdfs she has in memory.
More precisely, we propose that the individual’s posterior be-
lief on the value of the second feature is a weighted sum of

the posteriors obtained for each possible category:

f (y | x) = ∑
c∈C

p(c | x) fc(y | x), (2)

where p(c | x) is the subjective probability that the object
comes from category c given the observed feature value x on
the first dimension and fc(y | x) is the marginal distribution
of value of the second feature, conditional on the fact that the
object is in category c and that its first feature has value x.

This model is realistic to the extent the agent can compute
the components of the RHS on the basis of her mental rep-
resentations. Here, we assume she does so by applying the
rules of probability calculus. First, consider the posterior dis-
tribution of Y given x and c. We have:

fc(y | x) =
fc(x,y)∫

v fc(x,v)dv
, (3)

Second, we assume the agent also computes the probabil-
ities that the item comes from each candidate category in a
way that is consistent with Bayes’ theorem. We have

p(c | x) = P(c) fc(x)
f (x)

=
P(c)

∫
v fc(x,v)dv

∑c∈C P(c)
∫

v fc(x,v)dv
, (4)

where P(c) is the prior on the category. This is the probability
that an object about which the individual has no information
comes from category c. In the category learning literature,
this term is frequently called the ‘category bias’.

The predictions of our model follow the rules of probability
calculus. Thus, our model makes rational predictions (given
the constraints imposed by the mental representation of the
categories). Next, we illustrate how the model works by an-
alyzing what happens when the category pdfs are bi-variate
normal distributions.

Suppose we have two categories (C = {1,2}) and that cat-
egories can be represented by bi-variate normal distributions
as follows:(

Xc
Yc

)
∼ N

((
µxc
µyc

)
;
(

σ2
xc ρcσxcσyc

ρcσxcσyc σ2
yc

))
, (5)

where µxc and µyc are the category means on the two fea-
tures, σxc and σyc are the standard deviations on the two fea-
tures and ρc is the within-category correlation for category
c. We first assume that there is no within-category correla-
tion, consistent with the conditional independence assump-
tion (Anderson, 1991). Then we consider the general case.

Model Predictions - with Conditional Independence
Assuming conditional independence amounts to assuming
ρc1 = ρc2 = 0. Some algebra leads to

f (y | x) = p(c1 | x) fµy1,σy1(y) + p(c2 | x) fµy2,σy2(y), (6)

where fµy,σy denotes the density of a normal distribution with
mean µy and standard deviation σy, p(c2 | x) = 1− p(c1 | x),
and

p(c1 | x) =
1

1+ eax2−bx+c
, (7)
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Figure 1: Categories used in Experiment 1. The solid lines
represent the mean of the posterior implied by our model and
the linear model. Participants were shown the level of ‘Rexin’
(x-axis) and were asked to predict the level of ‘Protropin’ (y-
axis). See column ‘True’ in Table 1 for parameter values.

with

a=
σ2

x2−σ2
x1

2σ2
x2σ2

x1
,b=

σ2
x2µx1−σ2

x1µx2

σ2
x2σ2

x1
,c=

σ2
x2µ2

x1−σ2
x1µ2

x2
2σ2

x2σ2
x1

+log
σx2

σx1
.

See Figure 1 for an illustration. The predictions made by
the model are sensitive to the relative positions of the cate-
gories and make a ‘smooth’ transition from one category to
the other. Due to the fact that it is essentially a version of An-
derson’s rational model (‘AM’), we will refer to this model as
‘Anderson’s model’ in subsequent discussions. Its predictions
are different from the predictions of other existing models.

Ignoring the Categories: Linear Model (LM) A simple
model that would ignore categories altogether would make
predictions according to a regression line with negative slope
(see Figure 1 for illustration).

Single Category - Independent Features (SCI) We refer
to the most likely category given the observed feature (x) as
the ‘target’ category (this is category 1 if p(c1 | x) > .5, as
per eq. 7). This is the same as the rational model, but with all
the weight on the target category (c∗). In this case, f (y | x) =
fc∗(y | x), where fc∗ = fµy1,σy1 if the target category is category
1, and fc∗ = fµy2,σy2 otherwise. The mean of the posterior
implied by this model follows a ‘step function’ where the two
steps are at y = µy1 and y = µy2 and the jump is situated where
x is such that p(c1 | x)= .5 (with the experimental parameters,
this is obtained for x = 65).

Model Predictions - General Case
When the conditional independence assumption does not
hold, the posterior is given by

f (y | x) = p(c1 | x) f
µyc1+

σyc1
σxc1

ρc1 (x−µxc1 ),σy1
(y)

+ p(c2 | x) f
µyc2+

σyc2
σxc2

ρc2 (x−µxc2 ),σy2
(y), (8)

Figure 2: Categories used in Experiment 2. The solid lines
represent the mean of the posterior implied by our model and
the linear model. The parameters are the same as for Figure 1,
except for the within-category correlations: ρR = ρM = 0.7.

where p(c1 | x) is given by the same equation as before (equa-
tion 7). See Figure 2 for an illustration. In this case, the pre-
diction of the second feature is influenced by the positions of
the categories as well as by the internal structure of the cat-
egories (the within-category correlation between X and Y ).
We will refer to this model as the rational model with possi-
ble correlation (RMC).

In the setting of the Figure 2, the mean of the posterior im-
plied by the linear model would be a downward slopping line.
The mean of the posterior implied by the Single Category -
Independent Features model would be a step function, just as
before. Another relevant comparison model is a model that
uses just the target category but is sensitive to within-category
feature correlations.

Single Category - Correlated Features (SCC) Let c∗

be the most likely category given the observation of the
first feature. We have f (y | x) = fc∗(y | x), where fc∗ =
f
µyc1+

σyc1
σxc1

ρc1 (x−µxc1 ),σy1
if the target category is category 1, and

fc∗ = f
µyc2+

σyc2
σxc2

ρc2 (x−µxc2 ),σy2
otherwise.

Experiment 1:
With Conditional Independence

Participants faced a feature prediction task that closely
matches the setting of the previous section. They learnt two
categories in a two dimensional feature space and then made
a series of predictions about the value of the second feature
on the basis of the value of the first feature of an item.

Design
To avoid the influence of unobserved prior knowledge, our
experiment used artificial categories. Participants had to as-
sume they were biochemists who studied the levels of two
hormones in blood samples coming from two categories of
animals. (see Kemp, Shafto, and Tenenbaum (2012) for a
similar setup). The hormones were called ‘Rexin’ and ‘Pro-
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tropin’ and the two categories of animals were ‘Mice’ and
‘Rats.’ Similarly to prior literature on feature prediction with
uncertain categorization and in order to avoid issues related
to memory, we provided the participants with visual repre-
sentations of the categories in the form of scatter plots of the
exemplars of the two categories. The data was generated on
the basis of eq. 5 and the parameters in the ‘True’ column of
Table 1 (see Figure 1).

The flow of the experiment was as follows: After reading
general instructions, participants were told their lab had a col-
lection of Rat blood samples. They were shown a scatter plot
of the levels of Rexin and Protropin in these blood samples
and given as much time as they wanted to study it. Then they
were asked to make a series of 13 successive predictions of
the likely level of Protropin given the level of Rexin found in
a blood sample (the scatter plot was visible on the computer
screen while participants made the predictions). We asked
participants to make these predictions so that they would be-
come familiar with the relation between the levels of Rexin
and Protropin (a positive within-category correlation). No
feedback was provided about the predictions. Then partici-
pants went through a similar procedure for the Mouse blood
samples. To conclude this learning stage, participants were
shown a graph with the Rat sample data and Mouse sample
data (the scatter plots of Figure 1, without the prediction of
the rational model).

In the next stage, participants were told that a batch of new
blood sample had just arrived at their lab and that these blood
samples had already been tested for Rexin. They were also
told that the ‘label on the blood sample has been erased and
thus you do not know if it belongs to a rat or a mouse.’ Partic-
ipants were asked to predict the likely level of Protropin for
48 blood samples. The question was ‘What is the likely level
of Protropin in this blood sample?’. Participants answered us-
ing a slider scale with minimal value 40, maximal value 90,
and increments of 1 unit.

Participants
29 participants were recruited via Amazon Mechanical Turk.
1 participant was eliminated due to a technical error that oc-
curred during the experiment.

Results
Models were estimated on a participant-by-participant basis
and evaluated in terms of the BIC criterion (minus the log-
likelihood minus a penalty increasing in the number of free
parameters). Table 1 reports the mean estimated parameter
values (across participants). They are close to the true pa-
rameter value, which suggests that collectively, participants
understood the task and behaved in a way generally consis-
tent with the predictions of the rational model.

We proceed to two model comparisons (see Table 2). In
the first comparison, we compare Anderson’s rational model
(AM), the single category independent feature model (SCI)
and the linear model (LM). Anderson’s model provides the
best fit for 64% of the participants, whereas the two other

Table 1: Estimated model parameters. Parameters were es-
timated separately for each participant. The values are the
mean estimated parameters across participants. AM: Ander-
son’s rational model, SCI: the single category independent
feature model; RMC: rational model with possible within-
category feature correlation; SCC: single category model
with possible within-category feature correlation; LM: linear
model.

Experiment 1

Param. True AM SCI RMC SCC LM
µx,R 80 78.5 77.5 81.5 82.1
µy,R 60 60.4 60.4 60.9 61.0
µx,M 50 48.2 47.5 49.2 52.0
µy,R 70 68.8 69.2 68.6 68.1
σx 10 7.1 7.4 7.5 12.5
σy 5 0.2 1.7 2.5 3.3
ρR = ρM 0 NA NA -0.1 -0.2
α 78 74.7
β -.2 -0.2
σ2 5.7 4.1
BIC NA 233.3 257.7 231.5 260.3 273.6

Experiment 2
µx,R 80 79.3 79.9 79.6 80.1
µy,R 60 60.8 60.9 61.2 60.8
µx,M 50 47.4 49.9 47.1 50.4
µy,R 70 69.3 69.1 68.7 68.7
σx 10 3.3 9.9 5.8 10.1
σy 5 5.8 5.0 3.0 4.9
ρR = ρM 0.7 NA NA 0.5 0.5
α 73 66.8
β -.12 -0.03
σ2 6.7 6.7
BIC NA 316.1 317.1 246.2 285.9 326.6

models provide the best fit for just 18% of the participants.
This suggests that most participants generally took into ac-
count the two categories when predicting the value of the
second feature. Also, they displayed the “smooth” transition
between the categories predicted by Anderson’s model.

In the second comparison we included two additional mod-
els: a version of the rational model with possible within-
category feature correlation (RMC) and a version of the sin-
gle category model with possible within-category feature cor-
relation (SCC). If people behave rationally, according to the
task environment, these models should perform more poorly
than their equivalents with 0 within-category feature corre-
lation. This is because the true correlation is 0, and these
models have the correlation coefficient as one more free pa-
rameter. They should suffer some penalty in term of the BIC.
We find that Anderson’s model provides the best fit for 36%
of the participants, about half as many as in the previous com-
parison. The rational model with within-category correlation
(RMC) provides the best fit for 46% of the participants. The
other models are the best fitting model for very few partici-
pants. These numbers suggest that a number of participants
behaved as if there were some within-category feature corre-
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lation despite the fact there was none. This could be because
it is hard for people to grasp the concept of randomness or the
absence of a pattern (Nickerson, 2002). Moreover, Grice’s
maxim of quantity suggests that participants might not ex-
pect the experimenter to show a graph that communicates an
absence of relation (Grice, 1975).

Despite this pattern of behavior, this analysis suggests that
most participants considered the two categories, because the
two models with smooth transitions between categories (AM
and RMC) provide a much better fit than the models that fo-
cus on a single category of the linear model (LM). Next, we
adapt this design to a setting with positive within-category
correlation. In this case, our rational model (RMC) and An-
derson’s model (AM) make distinct predictions.

Experiment 2:
With Positive Within-Category Correlation

In addition to testing our model in a setting without condi-
tional independence, we wanted to see whether we could ma-
nipulate the propensity of participants to rely on just the target
category or the two candidate categories. Many of the studies
that had found that participants tend to rely just on the target
category included a question that asked participants about the
most likely category of the stimulus before making their pre-
dictions. There is evidence that the wording of this question
affects the propensity to rely on one or multiple categories
when making predictions (Murphy & Ross, 2010b; Murphy,
Chen, & Ross, 2012; Hayes & Newell, 2009). We included a
similar manipulation in our study.

Design
The design of the experiment was the same as in Experiment
1, but with a within-category feature correlation of .7 (see
Figure 2). There were 3 conditions. In the control condi-
tion, participants were just asked to predict the second fea-
ture value upon seeing the value fo the first feature, as in Ex-
periment 1. In the ‘MC condition’, participants were asked
about the most likely category before predicting the value of
the second feature. This was multiple choice question: ‘From
which animal did the blood sample come from?’. The choices

Table 2: Percentage of participants whose feature predictions
were best fit by each of the candidate models.

Experiment 1 Experiment 2
Comparison Condition

Model (1) (2) MC SL Control
AM: Anderson 64% 36% 0% 0% 4%
SCI: Single Cat. 18% 4% 0% 0% 0%
Indep. Features
SCC: Single Cat. 0% 17% 24% 25%
Corr. Features
RMC: Rat. Mod. 46% 72% 69% 63%
Corr. Features
LM: Linear 18% 14% 10% 7% 8%
Nb part. 28 28 29 29 24

were ‘Mouse’ and ‘Rat’. In the ‘SL condition’, participants
were asked the same question, but answered using a continu-
ous slider that went from ‘Definitely a Mouse’ (left) to ‘Pos-
sibility a rat or a mouse’ (middle) to ‘Definitely a Rat’ (right).
We predicted that the SL condition would make people more
aware of the uncertainty about the category of the item and
thus increase their propensity to rely on two categories, at
least as compared to what happens in the MC condition.

Participants
102 participants were recruited via Amazon Turk. 20 par-
ticipants were eliminated from the analysis because their re-
sponses seemed very inconsistent with the stimuli.1

Results
We fitted the 5 candidate models on a participant-by-
participant basis and compared them in terms of the BIC cri-
terion (see Tables 1 & 2). The rational model (RMC) pro-
vided the best fit to the data in all 3 conditions (it is the best
fitting model for 60 to 70% of the participants). For about
20% of the participants, the best fit is a model that focuses on
the most likely category (SCC or SCI).

Comparisons of the percentage of participants for whom
the best fit is the rational model or a single category model do
not show meaningful differences across categories. In order
to uncover differences, we estimated a quasi-rational model
with a free parameter that characterizes the propensity to rely
on multiple categories. This model assumes that the posterior
is given by

f (y | x) = p(c1 | x)α f
µyc1+

σyc1
σxc1

ρc1 (x−µxc1 ),σy1
(y)

+ p(c2 | x)α f
µyc2+

σyc2
σxc2

ρc2 (x−µxc2 ),σy2
(y), (9)

where α > 0. When α = 1, the model reduces to the rational
model (eq. 8). When α is high, the model becomes close
to the single-category correlated feature model (SCC), and
when α is close to 0, the model gives about equal weight
to both categories, irrespective of the value of the observed
feature.

Maximum Likelihood Estimations on a participant-by-
participant basis give the following proportions of partici-
pants with α higher than 1: MC condition: 83%, SL condi-
tion: SL: 62% and control condition: 71%. These proportions
are all significantly higher than 50% but not significantly dif-
ferent from each others (one-sided binomial tests with level
of .05). Although the differences are not large, the ranking
of the three proportions is consistent with our expectations.
Maybe more significantly, the fact that α is higher than 1 for

1For each participant, we regressed the Y values (the predictions)
on X (the values of the first feature, shown to them). Those partic-
ipants for whom the regression coefficient was significantly posi-
tive were dropped from the analysis. The reason is that the rational
model can fit such pattern of predictions well with µy,R > µy,M . But
such pattern can hardly be considered rational given given the true
values of µy,R and µy,M (µy,R < µy,M - see Figure 2). Ancillary anal-
yses with all the participants lead to similar results.

726



most participants in all conditions suggests that most partic-
ipants gave more weight to the target category than what is
prescribed by the rational model.

Discussion

Model comparisons suggest that the rational model provides
an appropriate characterization of the behavior of a large pro-
portion of the participants, when compared to other models.
This implies that most participants consider the two candidate
categories when making predictions about the unobserved
feature. This might seem surprising in light of the existing
evidence gathered by Murphy, Ross and colleagues that the
majority of participants tend to rely on just the target category
(in their experiments about 25% of the participants rely on
multiple categories). But our analyses with the quasi-rational
model suggest that most participants in fact give too much
weight to the target category, at least compared to the pre-
scription of the rational model. Seen with this lens, our results
are not inconsistent with the prior findings, but rather refine
them and extend these to a different experimental paradigm.

Discussion & Conclusion
Our rational model implies that when the category of the item
is uncertain, participants should give some weight to the pre-
dictions implied by membership in the two candidate cate-
gories. This should be the case both under conditional in-
dependence or when there is within-category feature correla-
tion. Our empirical results suggest that a majority of partici-
pants behaved according to this qualitative prediction. At the
same time, most but not all participants gave too much weight
to the most likely category. This is broadly in line with prior
empirical findings in the literature on category-based feature
prediction.

Our model is a computational model and, as such, it does
not specify how people might perform the computations that
lead to these predictions (Marr, 1982). Nosofsky (2015) re-
cently proposed an algorithmic model that achieves such pre-
dictions when the features are discrete-valued. Adapting this
exemplar model to the case where feature values are continu-
ous is an interesting avenue for further research.

Finally, a potential limitation of our experiments is that
people were watching the data (the scatter plots) when mak-
ing the predictions. A possible interpretation of our findings
is thus that people engaged in some elaborate form of curve
fitting on the basis of what they were looking at. A natural
next step is to run similar experiments where participants first
learn the categories and then make feature predictions on the
basis of memorized categories.
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