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Abstract

GTPases regulate a multitude of essential cellular processes ranging from movement and

division to differentiation and neuronal activity. These ubiquitous enzymes operate by hydro-

lyzing GTP to GDP with associated conformational changes that modulate affinity for family-

specific binding partners. There are three major GTPase superfamilies: Ras-like GTPases,

heterotrimeric G proteins and protein-synthesizing GTPases. Although they contain similar

nucleotide-binding sites, the detailed mechanisms by which these structurally and function-

ally diverse superfamilies operate remain unclear. Here we compare and contrast the struc-

tural dynamic mechanisms of each superfamily using extensive molecular dynamics (MD)

simulations and subsequent network analysis approaches. In particular, dissection of the

cross-correlations of atomic displacements in both the GTP and GDP-bound states of Ras,

transducin and elongation factor EF-Tu reveals analogous dynamic features. This includes

similar dynamic communities and subdomain structures (termed lobes). For all three pro-

teins the GTP-bound state has stronger couplings between equivalent lobes. Network anal-

ysis further identifies common and family-specific residues mediating the state-specific

coupling of distal functional sites. Mutational simulations demonstrate how disrupting these

couplings leads to distal dynamic effects at the nucleotide-binding site of each family. Col-

lectively our studies extend current understanding of GTPase allosteric mechanisms and

highlight previously unappreciated similarities across functionally diverse families.

Author summary

GTPases are a large superfamily of essential enzymes that regulate a variety of cellular pro-

cesses. They share a common core structure supporting nucleotide binding and hydroly-

sis, and are potentially descended from the same ancestor. Yet their biological functions

diverge dramatically, ranging from cell division and movement to signal transduction and

translation. It has been shown that conformational changes through binding to different

substrates underlie the regulation of their activities. Here we investigate the conforma-

tional dynamics of three typical GTPases by in silico simulation. We find that these three

GTPases possess overall similar substrate-associated dynamic features, beyond their
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distinct functions. Further identification of key common and family-specific elements in

these three families helps us understand how enzymes are adapted to acquire distinct

functions from a common core structure. Our results provide unprecedented insights into

the functional mechanism of GTPases in general, which potentially facilitates novel pro-

tein design in the future.

Introduction

Guanosine Triphosphate Phosphohydrolases (GTPases) are ubiquitous molecular machines

mediating a variety of essential cellular processes [1]. Harnessing the GTP hydrolysis to modu-

late the affinity of partner molecule binding, GTPases transduce intracellular signals, control

cell division and differentiation, and direct protein synthesis and translocation [2–5]. In gen-

eral, GTP-bound GTPases in the active state are able to interact with partner effectors and reg-

ulate effector-mediated processes. GTP hydrolysis leads to the dissociation of GTPases from

effectors, whereas exchange of GDP for GTP activates GTPases and restarts the signaling or

protein synthesis cycle [6,7]. Two classes of accessory proteins are involved in regulating this

reaction cycle. GTPase-activating proteins (GAPs) accelerate the GTPase activity and the inac-

tivation of GTPases, whereas guanine nucleotide exchange factors (GEFs) promote GDP disso-

ciation and subsequent GTP binding, activating GTPases [8–10].

There are three major GTPase superfamilies: small Ras-like GTPase, heterotrimeric G pro-

tein α subunit (Gα) and protein-synthesizing GTPase. Both small and heterotrimeric G pro-

teins participate in signal transduction. As the primary coupling molecule to membrane

receptors, Gα together with its partner βγ subunits (Gβγ) mediate the very early stage signal

transduction initiated by extracellular stimuli. In contrast, small GTPase does not interact with

receptors directly and regulates more downstream events in the cascade. Finally, the protein-

synthesizing proteins participate in initiation, elongation and termination of mRNA transla-

tion. Underlying this functional difference are the low sequence identity (<20%) and overall

different molecular shapes among these three types of GTPases. In particular, whereas small G

protein consists of a single canonical Ras-like catalytic domain (RasD), Gα has an extra α-heli-

cal domain (HD) inserted and elongation factor EF-Tu has two extra β-barrel domains (D2

and D3) subsequent to the C-terminus (Fig 1). In addition, Gα can form a complex with Gβγ
and undergoes a cycle of altered oligomeric states during function.

In contrast to the functional and structural diversity, GTPases display significant conserva-

tion in the core structure of the catalytic domain. Small GTPase, Gα and EF-Tu contain a

RasD consisting of six β strands (β1-β6) and five α helices (α1-α5) flanking on both sides of

the β sheet (Fig 1). Three highly conserved loops named P-loop (PL), switch I (SI), and switch

II (SII) constitute the primary sites coordinating the nucleotide phosphates. This structural

similarity suggests that at a fundamental level small GTPase, Gα and EF-Tu may utilize the

same mode of structural dynamics for their allosteric regulation, which is likely inherited from

their common evolutionary ancestor [11,12]. However, it is currently unclear what are the gen-

eral atomistic mechanisms underlying GTPase allostery and how these common mechanisms

can be adapted to have specific function.

Recent computational and experimental studies have gained much insight into the allosteric

mechanisms of individual small and heterotrimeric G protein systems. Principal component

analysis (PCA) of crystallographic structures and molecular dynamics (MD) simulations char-

acterized the structural dynamics of small GTPase Ras and revealed an intriguing dynamical

partitioning of Ras structure into two lobes: the N-terminal nucleotide binding lobe (lobe1)

Structural dynamics of GTPases
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and the C-terminal membrane anchoring lobe (lobe2) [13,14]. Several allosteric sites were

identified in lobe 2 or between lobes, including L3 (the loop between β2 and β3), L7 (the loop

between α3 and β5), and α5. Importantly, α5 is the major membrane-binding site and has

been related to the nucleotide modulated Ras/membrane association [15]. In addition, binding

of small molecules at L7 has been reported to affect the ordering of SI and SII [16]. Intrigu-

ingly, recent studies of Gα have revealed nucleotide associated conformational change and

bilobal substructures in the catalytic domain largely resembling those in Ras [17,18]. The allo-

steric role of lobe 2, which contains the major binding interface to receptors, has also been well

established for Gα [18–27]. Furthermore, the comparison between G proteins and transla-

tional factors via sequence and structural analysis indicates a conserved molecular mechanism

of GTP hydrolysis and nucleotide exchange, and cognate mutations of key residues in the

nucleotide-binding regions showed similar functional effects among these systems [2,6,7,12].

Collectively, these consistent findings from separate studies support the common allosteric

mechanism hypothesis of GTPases and underscore a currently missing detailed residue-wise

comparison of the structural dynamics among different GTPase superfamilies.

In this study, we compare and contrast the nucleotide-associated conformational dynamics

between H-Ras (H isoform of Ras), Gαt (transducin α subunit) and EF-Tu (elongation factor

thermo unstable), and describe how this dynamics can be altered by single point mutations in

both common and family-specific ways. This entails the application of an updated PCA of

crystallographic structures, multiple long time (80-ns) MD simulations, and recently devel-

oped network analysis approach of residue cross-correlations [18]. In particular, we identify

highly conserved nucleotide dependent correlation patterns across GTPase families: the active

GTP-bound state displays stronger correlations both within lobe1 and between lobes, exhibit-

ing an overall “dynamical tightening” consistent with the previous study in Gα alone [18].

Detailed inspection of the residue level correlation networks along with mutational MD simu-

lations reveal several common key residues that are potentially important for mediating the

inter-lobe communications. Point mutations of these residues substantially disrupt the

Fig 1. Structural comparison of Ras, Gαt and EF-Tu reveals common canonical Ras-like domain. The Ras-like domains of Ras (A), Gαt (B) and EF-Tu (C) are

shown in cartoon and the extra domains in Gαt and EF-Tu are shown as gray tubes. Highly conserved regions (PL, SI, and SII) and helices (α1, α3, α4, and α5) are

labeled. The PDB IDs of these three structures are 5P21 (Ras), 1TND (Gαt) and 1TTT (EF-Tu).

https://doi.org/10.1371/journal.pcbi.1006364.g001
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couplings around the nucleotide binding regions in Ras, Gαt and EF-Tu. In addition, with the

same network comparison analysis, we identify Gαt and EF-Tu specific key residues. Muta-

tions of these residues significantly disrupt the couplings in Gαt and EF-Tu but have no or lit-

tle effect in Ras. Our results are largely consistent with findings from experimental

mutagenesis, with a number of dynamical disrupting mutants have been shown to have altered

activities in either Ras or Gα. Our new predictions can be promising targets for future experi-

mental testing.

Results

Principal component analysis (PCA) of Ras, Gαt/i and EF-Tu

crystallographic structures reveals functionally distinct conformations

Previous PCA of 41 Ras crystallographic structures revealed distinct GDP, GTP and intermedi-

ate mutant conformations [13]. Updating this analysis to include the 121 currently available

crystallographic structures (S1 Table) reveals consistent results but with two additional con-

formations now evident (Fig 2A). In addition to GDP (green in Fig 2A), GTP (red), and

mutant forms, GEF-bound nucleotide free (purple) and so-called ‘state 1’ forms (orange) are

now also apparent. In the GEF-bound form, the SI region is displaced in a distinct manner–

Fig 2. Principal component analysis of Ras, Gαt/i and EF-Tu crystallographic structures reveals distinct nucleotide-associated conformations. (A-C)

Projection of 121 Ras (A), 53 Gαt/i (B) and 23 EF-Tu (C) PDB structures (represented as squares; see also S1–S3 Tables) onto the first two PCs reveals different

conformational clusters corresponding to GTP (red), GDP (green), GEF (purple) and GDI (blue) bound states. A distinct cluster of GTP-bound structures in Ras

corresponds to the “State 1” state (orange). The inserted figures show that the first two PCs capture 76.1%, 65.4% and 97.7% of the total structural variances in Ras,

Gαt/i and EF-Tu, respectively. (D-F) The contributions of each residue to PC1 (brown) and PC2 (grey) show that the switch regions mainly correspond to the

accumulated structural differences in Ras (D) and Gαt/i (E). In addition to switch regions, Domain 2 and Domain 3 also contribute to the structure differences in

EF-Tu (F). The marginal black and grey rectangles with labels on top of them represent the location of alpha-helix and beta-strand secondary structures.

https://doi.org/10.1371/journal.pcbi.1006364.g002
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12Å away from the nucleotide-binding site coincident with the insertion of a helix of GEF into

the PL-SI cleft. The state 1 GTP-bound form was first observed via NMR and later high-resolu-

tion crystal structures were solved [28–30]. In contrast to the canonical GTP-bound conforma-

tion (red), the state 1 form (orange) lacks interaction between the two switches and the γ-

phosphate of GTP, resulting in a moderate 7Å displacement of SI away from its more closed

GTP conformation.

The first two PCs capture more than 75% of the total mean-square displacement of all 121

Ras structures. Residue contributions from SI and SII dominate PC1 and PC2 (Fig 2D). The

height of each bar in Fig 2D displays the relative contribution of each residue to a given PC.

PC1 mainly describes the opening and closing of SI–more open in GEF-bound and state 1

forms, and more closed in nucleotide bound structures. PC1 also captures smaller scale dis-

placement of L8 (the loop between β5 and α4), which resides 5Å closer to the nucleotide-bind-

ing pocket in the GEF-bound structures than the GTP-bound structure set. PC2 depicts SII

displacements and clearly separates GTP from GDP bound forms (red and green, respec-

tively). As we expect, the lack of γ-phosphate in the GDP releases SII from the nucleotide,

whereas in the GTP form SII is fixed by the hydrogen bond of the backbone amide of G60

with the γ-phosphate oxygen atom. This is also shown in the state 1 form where the hydrogen

bond is disrupted with SII moderately displaced from the nucleotide (4Å on average from the

canonical GTP group structures).

PCA of 53 available Gαt/i structures described recently (S2 Table) revealed three major

conformational groups: GTP (red in Fig 2B), GDP (green) and GDI (GDP dissociation inhibi-

tor; blue) bound forms [18]. The first two PCs capture over 65% of the total variance of Cα
atom positions in all structures. The dominant motions along PC1 and PC2 are the concerted

displacements of SI, SII and SIII in the nucleotide-binding region as well as a relatively small-

scale rotation of the helical domain with respect to RasD (Fig 2E).

PC1 separates GDI-bound from non-GDI bound forms. In GDI-bound structures the GDI

interacts with both the HD and the cleft between SII and SIII of the Ras-like domain, increas-

ing the distance between SII and SIII. Similar to Ras, PC2 of Gαt/i clearly distinguishes the

GTP and GDP-bound forms, where again the unique γ-phosphate (or equivalent atom in GTP

analogs) coordinates SI and SII. In addition, the SIII is displaced closer to the nucleotide, effec-

tively closing the nucleotide-binding pocket.

PCA of 23 available full-length EF-Tu structures reveals distinct GTP and GDP conforma-

tions (S3 Table). PC1 dominantly captures nearly 95% of the total structural variance of Cα
atom positions (Fig 2C). It mainly describes the dramatic conformational transition in SI as

well as the large rotation of two β-barrel domains D2 and D3 (Fig 2F). In the GTP-bound

form, the C-terminal SI is coordinated to the γ-phosphate and Mg2+ ion, forming a small helix

near SII. Meanwhile, D2 and D3 are close to RasD and create a narrow cleft with SI, serving as

the binding site for tRNA [31]. In the GDP-bound form, the C-terminal helix in SI unwinds

and forms a β-hairpin, protruding towards D2 and D3 [32]. The highly conserved residue T62

(T35 in Ras) of EF-Tu moves more than 10Å away from its position in the GTP form and loses

interaction with the Mg2+ ion. In addition, D3 rotates towards SI and D2 moves far away from

the Ras-like domain. In contrast to PC1, PC2 only captures a very small portion (3.59%) of the

structural variance in EF-Tu (Fig 2F). The major conformational change along PC2 is a small-

scale rotation of D2 and D3 with respect to RasD in the GTP form.

PCA of Ras, Gαt/i and EF-Tu demonstrates that the binding of different nucleotides and

protein partners can lead to a rearrangement of global conformations in a consistent manner.

In particular, within RasD, these three families display conserved nucleotide-dependent con-

formational distributions with major contributions from the switch regions. In the GTP-

bound form of these proteins, SI and SII are associated with the nucleotide through interacting

Structural dynamics of GTPases

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006364 November 9, 2018 5 / 19

https://doi.org/10.1371/journal.pcbi.1006364


with γ-phosphate. Despite these similarities, critical questions about their functional dynamics

remain unanswered: How does nucleotide turnover lead to allosteric regulation of distinct

partner protein-binding events? To what extent are the structural dynamics of these proteins

similar beyond the switch region displacements evident in accumulated crystal structures?

How do distal disease-associated mutations affect the functional dynamics for each family and

are there commonalities across families? In the next section, we report MD simulations that

address these questions, which are not answered by accumulated static experimental

structures.

MD simulations reveal distinct nucleotide-associated flexibility and cross-

correlation near functional regions

MD simulations reveal distinct nucleotide-associated flexibility at known functional regions.

Representatives of the distinct GTP and GDP-bound conformations of Ras, Gαt and EF-Tu

were selected as starting points for MD simulation. Five replicated 80-ns MD simulations of

these three proteins for each state (GTP and GDP totaling 2.4μs; see Materials and Methods)

exhibit high flexibility in the SI, SII, SIII/α3 and loop L3, L7, L8 and L9 regions (Fig 3A–3C).

The Cα atom root-mean-square fluctuation (RMSF) in Gαt shows that SI is significantly more

flexible in the GDP-bound state (Fig 3B). The C-terminal SI of Ras and EF-Tu, corresponding

to the shorter SI in Gαt, is also more flexible with GDP bound (Fig 3A & 3C). Interestingly,

the middle part of SI in Ras and EF-Tu show higher fluctuations in the GTP-bound state.

Moreover, SII is more flexible in the GTP-bound state in Ras. Detailed inspection reveals that

Fig 3. Nucleotide specific residue fluctuations and cross-correlations of atomic displacements from molecular dynamics simulations. (A-C) The

ensemble averaged root-mean-square fluctuation (RMSF) reveals nucleotide dependent flexibilities that are consistent in the Ras-like domain of Ras (A), Gαt

(B) and EF-Tu (C). Residues with significant differences (p-value< 0.01) between GTP and GDP bound states are highlighted with dashed lines. (D-F) The

cross-correlations reveal stronger intra-lobe1 couplings between PL, SI and SII (red rectangles) and inter-lobe couplings between SII and SIII/α3 (blue

rectangles) in the GTP-bound state (upper triangle) for both Ras (D) and Gαt (E).

https://doi.org/10.1371/journal.pcbi.1006364.g003
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SII always stays away from the nucleotide during the GDP-bound state MD simulations,

whereas SII sometimes moves close to and interacts with the unique γ-phosphate of GTP, lead-

ing to higher flexibility in the GTP-bound state. In contrast, the flexibility of SII in Gαt has no

significant difference between states, whereas SII in EF-Tu is less flexible with GTP bound.

This is due to the relatively compact interactions between SII and the unique D2 and D3 in the

GTP-bound EF-Tu. In fact, D2 and D3 show extremely higher flexibility in the GDP state (Fig

3C). Overall, the nucleotide-dependent flexibility of RasD in Ras, Gαt and EF-Tu are quite

similar except for SII.

The cross-correlations of atomic displacements derived from MD simulations also manifest

conserved nucleotide-associated coupling in these three systems (Fig 3D–3F). In both Ras and

Gαt, significantly stronger couplings within the catalytic lobe 1 between PL, SI and SII can be

found only in the GTP-bound state (red rectangles in Fig 3D & 3E). Interestingly, a unique

inter-lobe coupling between SII and SIII/α3 also characterizes the GTP-bound state in both

systems (blue rectangles in Fig 3D & 3E). In EF-Tu, the intra-lobe 1 and inter-lobe couplings

are similar between states (red and blue rectangles in Fig 3F). Intriguingly, a lot of negative

correlations between D2 and RasD of EF-Tu are found in the GDP-bound state, indicating the

swing motion of D2 with respect to RasD during MD simulations (lower triangle in Fig 3F).

Correlation network analysis displays similar nucleotide-associated

correlation in Ras, Gαt and ET-Tu

Consensus correlation networks for each nucleotide state were constructed from the corre-

sponding replicate MD simulations. In these initial networks, each node is a residue linked by

edges whose weights represent their respective correlation values averaged across simulations

(see Materials and Methods). These residue level correlation networks underwent hierarchical

clustering to identify groups of residues (termed communities) that are highly coupled to each

other but loosely coupled to other residue groups. Nine communities were identified for Ras

and eleven for Gαt and EF-Tu (Fig 4). The two additional family specific communities not

present in Ras correspond to two regions of HD in Gαt and D2 and D3 in EF-Tu.

In the resulting community networks the width of an edge connecting two communities is

the sum of all the underlying residue correlation values between them. Interestingly, Ras, Gαt

and EF-Tu community networks can be partitioned into two major groups (dashed lines in

Fig 4) corresponding to the previously identified lobes for Ras and the RasD in Gαt [13,18].

The boundary between lobes is located at the loop between α2 and β4. In these proteins, lobe1

includes the nucleotide-binding communities (PL, SI and SII) as well as the N-terminal β1-β3

and α1 structural elements. Lobe2 includes α3-α5, L8 and the C-terminal β4-β6 strands.

Comparing the GTP and GDP community networks of these three proteins reveals com-

mon nucleotide-dependent coupling features. In particular, for Ras and Gαt, comparing the

relative strength of inter-community couplings in GTP and GDP networks using a nonpara-

metric Wilcoxon test across simulation replicates reveals common significantly distinct cou-

pling patterns (colored edges in Fig 4A & 4B). Within lobe1 stronger couplings between PL, SI

and SII are observed for the GTP state of both families. This indicates that the γ-phosphate of

GTP leads to enhanced coupling of these proximal regions. This is consistent with our PCA

results above, where PC2 clearly depicts the more closed conformation of SI and SII in the

GTP bound structures (Fig 2D & 2E). In addition, a significantly stronger inter-lobe correla-

tion between SII and α3 is evident for the GTP state of both families, which is not available

from analysis of the static experimental ensemble alone. This indicates that nucleotide turn-

over can lead to distinct structural dynamics not only at the immediate nucleotide-binding site

in lobe 1 but also at the distal lobe 2 region.

Structural dynamics of GTPases
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Intriguingly, similar patterns of intra and inter-lobe dynamic correlations are observed in

EF-Tu (Fig 4C). Within lobe1, significantly stronger correlations between PL-SI and PL-SII

are evident in the GTP state, although SI-SII coupling becomes weaker in this state. In fact, the

C-terminal β-hairpin of SI moves towards and interacts extensively with SII and D3 in the

GDP bound state, leaving the nucleotide-binding site widely open. Moreover, our results

reveal that SII and SIII/α3 of EF-Tu are more tightly coupled in the GTP state, resembling the

strong inter-lobe couplings in the GTP bound Ras and Gαt. It is worth noting that this con-

served structural dynamic coupling is evident only from the comparative network analysis and

is not accessible from PCA of crystal structures.

The common residue-wise determinants of structural dynamics in Ras, Gαt

and EF-Tu

Comparative network analysis highlights the common residue-wise determinants of nucleo-

tide-dependent structural dynamics. Besides correlations within lobe1, inter-lobe couplings

are also significantly stronger in the GTP state networks of Ras, Gαt and EF-Tu. Inspection of

the residue-wise correlations between communities reveals common major contributors to the

SII–α3 couplings in the three proteins (red residues in S4 Table). In particular, M72Ras in SII

Fig 4. Correlation network analysis reveals similar patterns of nucleotide-dependent couplings in Ras, Gαt and EF-Tu. (A) Network communities are

represented as colored circles with different radius indicating the number of residues within the community. The width of an edge is determined by the summation

of all residue level correlation values between two connected communities. Red and green edges indicate enhanced GTP or GDP couplings that are significantly (p-

value< 0.05) or more than two-fold stronger in one state than the other. All other lines are colored gray. Dashed lines with a light gray background represent the

two-lobe substructures. (B & C) Similar nucleotide-associated network patterns are evident in the GTP (top) and GDP (bottom) bound state of Gαt (B) and EF-Tu

(C), except for the SI and SII coupling.

https://doi.org/10.1371/journal.pcbi.1006364.g004
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and V103Ras in α3 act as primary contributors to inter-lobe correlations in Ras. Interestingly,

the equivalent residues in the other two systems, F211Gαt or I93EF-Tu in SII and F255Gαt or

V126EF-Tu in α3/SIII also contribute to the inter-lobe couplings. We further examined the

importance of these residues by MD simulations of mutant GTP-bound systems. Results indi-

cate that each single mutation M72ARas and V103ARas can significantly reduce the couplings

between SI and PL, indicating that these mutations disturb couplings at distal sites of known

functional relevance (Fig 5A & 5D). Moreover, the cognate mutations F211AGαt and F255Gαt

in Gαt not only decouple SI and PL but also SI and SII (Fig 5B & 5E). Similarly, the analogous

mutation I93AEF-Tu decreases the correlations between PL and SI, whereas V126AEF-Tu decou-

ples PL and SII (Fig 5C & 5F). The simulation results indicate that single alanine mutation of

residues contributing to SII-α3 couplings diminishes the couplings of the nucleotide binding

regions, and this allosteric effect is common in all the three proteins.

Inter-lobe couplings that are distal from the nucleotide binding regions are also shown to

be critical for the nucleotide dependent dynamics in Ras, Gαt and EF-Tu. By inspecting the

residue level couplings between L3 and α5, we identified common distal inter-lobe couplings

in the three proteins. Mutational simulations indicate that the substitutions K188AGαt and

D337AGαt significantly decouple SI from the PL and SII regions (Fig 6B & 6E). Interestingly,

the mutations K188AGαt and D337AGαt have been reported to cause a 6-fold and 2-fold

increase in nucleotide exchange, respectively, but no direct structural dynamic mechanism

was established [19]. We further tested mutations of analogous residues in Ras. We considered

both D47Ras and E49Ras as the equivalent residues to K188Gαt (due to the longer L3 region of

Ras), and R164Ras as the equivalent residue to D337Gαt. Both double mutation D47A/E49ARas

and single mutation R164ARas significantly reduce the correlations between PL and SI (Fig 6A

& 6D). We note that the functional consequences of mutating these residues in Ras has been

highlighted in a previous study, in which the salt bridges between D47/E49Ras in L3 and R161/

R164Ras in α5 were shown to be involved in the reorientation of Ras with respect to the plasma

membrane, and enhanced activation of MAPK pathway [15]. Moreover, substitutions of anal-

ogous residues R75AEF-Tu (L3) and D207AEF-Tu (α5) also significantly reduce the couplings

between PL and SI (Fig 6C & 6F). Our results indicate that the conserved interactions between

L3 and α5 are important for maintaining the close coordination of the distal SI, SII and PL

around the nucleotide, and this is common to these three proteins.

Network analysis identifies family-specific residue substitutions that can

also perturb structural dynamics

Comparison of the GTP-bound residue-wise networks of Ras, Gαt and EF-Tu reveals that the

N-terminus of α3 strongly couples SII only in Gαt and EF-Tu. In particular, we identified resi-

dues R201Gαt or A86EF-Tu (SII) and E241Gαt or Q115EF-Tu (α3) as underlying these strong cou-

plings (blue residues in S4 Table). These residues are specific to Gαt and EF-Tu because the

corresponding residues E62Ras in SII and K88Ras in α3 have no contribution in Ras (green resi-

dues in S4 Table). Mutational MD simulations indicate that substitutions E241AGαt and

Q115AEF-Tu have a similar drastic effect on the coupling of nucleotide binding regions (S1

Fig). In particular, the couplings between PL, SII and PL are all significantly reduced (S1B &

S1C Fig). We note that E241AGαt in Gαs (the α subunit of the stimulatory G protein for adeny-

lyl cyclase) was previously reported to impair GTP binding but the structural basis for this allo-

steric effect has been unknown [33,34]. Our results indicate that weakened correlations of the

nucleotide-binding regions in E241AGαt as a consequence of allosteric mutations in SIII/α3

and SII likely underlie the reported impaired GTP binding. Moreover, we identified residue

E232Gαt as a Gαt-specific primary contributor to the inter-lobe couplings in SIII, which has no
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Fig 5. Mutations of common residue-wise determinants of structural dynamics between SII and α3 have similar effects in Ras, Gαt and EF-Tu. Mutations

M72ARas in SII (A) and V103ARas in α3 (D) significantly reduce the couplings between PL and SI. The counterpart mutations in Gαt and EF-Tu, F211AGαt in SII

(B), F255AGαt in α3 (E), I93AEF-Tu in SII (C) and V126AEF-Tu in α3 (F) have similar effects in the nucleotide-binding region–significantly reducing the couplings

between PL, SI and SII.

https://doi.org/10.1371/journal.pcbi.1006364.g005
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Fig 6. Mutations of common residue-wise determinants of structural dynamics between L3 and α5 have similar effects in Ras, Gαt and EF-Tu. Mutations

D47A/E49ARas in L3 (A) and R164ARas in α5 (D) significantly reduce the couplings between PL and SI. The counterpart mutations in Gαt and EF-Tu, K188AGαt in
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direct counterparts in Ras or EF-Tu due to the absence of SIII (purple residues in S4 Table).

The simulation of mutation E232AGαt shows diminished couplings between PL, SI and SII, as

well (S2A Fig). Similar effects of mutations R201AGαt and D234AGαt are also observed (S2B &

S2C Fig).

Mutations of the counterpart residues E62ARas and K88ARas result in no significant change

in the coupling of nucleotide binding loops in Ras (S1A Fig). Collectively these findings indi-

cate that in Gαt and EF-Tu both N- and C-terminal α3 positions dynamically couple with SII,

whereas in Ras the communication between α3 and SII is mainly through the C-terminus of

α3. In addition, our results suggest that SIII plays a unique role in Gαt not only mediating the

couplings between the two lobes but also allosterically maintaining the tight correlations

between SI, SII and PL.

Discussion

In this work, our updated PCA of Ras structures captures two new conformational clusters

representing the GEF-bound state and “state 1”, respectively, in addition to the canonical GTP

and GDP forms. By comparing the Ras PCA to PCA of Gαt/i and EF-Tu, we reveal common

nucleotide dependent collective deformations of SI and SII across G protein families. Our

extensive MD simulations and network analyses reveal common nucleotide-associated confor-

mational dynamics in Ras, Gαt and EF-Tu. Specifically, these three systems have stronger

intra-lobe1 (PL–SI and PL–SII) and inter-lobe (SII–SIII/α3) couplings in the GTP-bound

state. Meanwhile, with the network comparison approach we further identify residue-wise

determinants of commonalities and specificities across families. Residues M72Ras (SII),

V103Ras (α3), D47/E49Ras (L3) and R164Ras (α5) are predicted to be crucial for inter-lobe com-

munications in Ras. Mutations of these distal residues display decreased coupling strength in

SI–PL. Interestingly, the analogous residues in the other two proteins, F211Gαt/I93EF-Tu (SII),

F255Gαt/V126EF-Tu (α3), K188Gαt/R75EF-Tu (L3) and D337Gαt/D207EF-Tu (α5) also have impor-

tant inter-lobe couplings and show similar decoupling effects upon alanine mutations. Besides

the key residues that are common in the three systems, residues mediating inter-lobe couplings

only in Gαt and EF-Tu are identified. These include R201Gαt/A86EF-Tu and E241Gαt/

Q115EF-Tu, whose cognates in Ras do not have significant effect on the nucleotide-binding

regions upon mutation. In addition, Gαt specific residue E232Gαt in SIII (which is missing in

Ras and EF-Tu) is identified to be important to the couplings of the nucleotide-binding

regions. Importantly, some of our highlighted mutants (D47A/E49ARas, K188AGαt, D207AGαt

and R241AGαt) have been reported to have functional effects by in vitro experiments. Our anal-

ysis provides insights into the atomistic mechanisms of these altered protein functions.

Using differential contact map analysis of crystallographic structures, Babu and colleagues

recently suggested a universal activation mechanism of Gα [27]. In their model, structural con-

tacts between α1 and α5 act as a ‘hub’ mediating the communications between α5 and the

nucleotide. These contacts are broken upon the binding of receptor at α5, leading to a more

flexible α1 and the destabilization of nucleotide binding. According to their studies, however,

these critical α1/α5 contacts do not exist in Ras structures. Thus, they concluded that, unlike

Gα, α5 in Ras does not have allosteric regulation of the nucleotide. It is worth noting that

Babu’s work is purely based on the comparison of structures without considering protein

dynamics. In fact, our study indicates that functionally important communications may not be

directly observed from static structures. For example, the inter-lobe couplings between SII and

L3 (B), D337AGαt in α5 (E), R75AEF-Tu in L3 (C) and D207AEF-Tu in α5 (F) have similar effects in the nucleotide-binding region–significantly reducing the couplings

between PL, SI and SII.

https://doi.org/10.1371/journal.pcbi.1006364.g006
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SIII/α3 are not captured by PCA of structure ensemble, but they are clearly shown in our net-

work analysis of structural dynamics. By inspecting structural dynamics, we find that α5 in

Ras actually plays an allosteric role, in which point mutation (R164A) substantially disrupts

the couplings in the nucleotide binding regions. The potential salt bridges between D47/E49 in

L3 and R161/R164 in α5 are shown in S3 Fig.

A previous study of Ras GTPases via an elastic network model–normal mode analysis

(ENM-NMA) revealed similar bilobal substructures and found that functionally conserved

modes are localized in the catalytic lobe1, whereas family-specific deformations are mainly

found in the allosteric lobe2 [35]. The subsequent study via MD, in constrast, indicated that

the conformational dynamics of Ras and Gαt are distinct, especially in the GDP state [36]. We

note that in that study only a single MD simulation trajectory was analyzed, which is insuffi-

cient to assess the significance of the observed difference. Moreover, few atomistic details were

given in that work. In our study, we make improvements by building ensemble-averaged net-

works based on multiple MD simulations instead of a single trajectory. This increases the

robustness of the networks and largely reduces statistical errors. In addition, our correlation

analysis provides residue wise predictions of potential important positions that mediate com-

munications between functional regions. Overall, separation of functionally conserved and

specific residues in conformational dynamics provides us unprecedented insights into protein

evolution and engineering.

Materials and methods

Crystallographic structures preparation

Atomic coordinates for all available Ras, Gαt/i and EF-Tu crystal structures were obtained

from the RCSB Protein Data Bank [37] via sequence search utilities in the Bio3D package ver-

sion 2.2 [38,39]. Structures with missing residues in the switch regions were not considered in

this study, resulting in a total of 143 chains extracted from 121 unique structures for Ras, 53

chains from 36 unique structures for Gαt/i and 34 chains from 23 unique structures for EF-Tu

(detailed in S1–S3 Tables). Prior to analyzing the variability of the conformational ensemble,

all structures were superposed iteratively to identify the most structurally invariable region.

This procedure excludes residues with the largest positional differences (measured as an ellip-

soid of variance determined from the Cartesian coordinate for equivalent Cα atoms) before

each round of superposition, until only invariant “core” residues remained [40]. The identified

“core” residues were used as the reference frame for the superposition of both crystal struc-

tures and subsequent MD trajectories.

Principal component analysis

PCA was employed to characterize inter-conformer relationships of both Ras and Gαt/i. PCA

is based on the diagonalization of the variance-covariance matrix, S, with element Sij built

from the Cartesian coordinates of Cα atoms, r, of the superposed structures:

Sij ¼ <ðri� <ri>Þ> �<ðrj� <rj>Þ>;

where i and j enumerate all 3N Cartesian coordinates (N is the number of atoms being consid-

ered), and <�> denotes the average value. The eigenvectors, or principal components, of S

correspond to a linear basis set of the distribution of structures, whereas each eigenvalue

describes the variance of the distribution along the corresponding eigenvector. Projection of

the conformational ensemble onto the subspace defined by the top two largest PCs provides a

low-dimensional display of structures, highlighting the major differences between conformers.
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Molecular dynamics simulations

Similar MD simulation protocols as those used in [18] were employed. Briefly, the AMBER12

[41] and corresponding force field ff99SB [42] were exploited in all simulations. Additional

parameters for guanine nucleotides were taken from Meagher et al. [43]. The Mg2+�GDP-

bound Ras crystal structure (PDB ID: 4Q21), Gαt structure (PDB ID: 1TAG) and EF-Tu struc-

ture (PDB ID: 1TUI) were used as the starting point for GDP-bound simulations. The Mg2+�

GNP (PDB ID: 5P21), the Mg2+�GSP (PDB ID: 1TND) and the Mg2+�GNP (PDB ID: 1TTT)

bound structures were used as the starting point for GTP-bound simulations of Ras, Gαt and

EF-Tu, respectively. These structures were identified as cluster representatives from PCA of

the crystallographic structures. Prior to MD simulations, the sulfur (S1γ)/nitrogen (N3β) atom

in the GTP-analogue was replaced with the corresponding oxygen (O1γ) / oxygen (O3β) of

GTP. All Asp and Glu were deprotonated whereas Arg and Lys were protonated. The proton-

ation state of each His was determined by its local environment via the PROPKA method [44].

Each protein system was solvated in a cubic pre-equilibrated TIP3P water box, where the dis-

tance was at least 12Å from the surface of the protein to any side of the box. Then sodium ions

(Na+) were added to neutralize the system. Each MD simulation started with a four-stage

energy minimization, and each stage employed 500 steps of steepest descent followed by 1500

steps of conjugate gradient. First, the atomic positions of ligands and protein were fixed and

only solvent was relaxed. Second, ligands and protein side chains were relaxed with fixed pro-

tein backbone. Third, the full atoms of ligands and protein were relaxed with fixed solvent.

Fourth, all atoms were free to relax with no constraint. Subsequent to energy minimization,

1ps of MD simulation was performed to increase the temperature of the system from 0K to

300K. Then 1ns of simulations at constant temperature (T = 300K) and pressure (P = 1bar)

was further performed to equilibrate the system. Finally, 80ns of production MD was per-

formed under the same condition as the equilibration. For long-range electrostatic interac-

tions, particle mesh Ewald summation method was used, while for short-range non-bonded

Van der Waals’ interactions, an 8Å cutoff was used. In addition, a 2-fs time step was use. The

center-of-mass motion was removed every 1000 steps and the non-bonded neighbor list was

updated every 25 steps.

We performed a total of 1,920 ns of MD simulation and analyzed results from multiple pro-

duction phase 80ns simulations for each of our 3 systems, including the wild type in two nucle-

otide states along with 5 mutant ras, 8 mutant Gαt and 5 mutant EF-Tu systems (see full listing

in S5 Table). The RMSD time courses for the above systems is shown in S4 Fig.

Correlation network construction

Consensus correlation networks were built from MD simulations to depict dynamic couplings

among functional protein segments. A weighted network graph was constructed where each

node represents an individual residue and the weight of edge between nodes, i and j, represents

their Pearson’s inner product cross-correlation value cij [45] during MD trajectories. The

approach is similar to the dynamical network analysis method introduced by Luthey-Schulten

and colleagues [46]. However, instead of using a 4.5Å contact map of non-neighboring resi-

dues to define network edges, which were further weighted by a single correlation matrix, we

constructed consensus networks based on five replicate simulations in the same way as

described before [18].

Network community

Hierarchical clustering was employed to identify residue groups, or communities, that are

highly coupled to each other but loosely coupled to other residue groups. We used a
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betweenness clustering algorithm similar to that introduced by Girvan and Newman [47].

However, instead of partitioning according to the maximum modularity score, which is usu-

ally used in unweighted networks, we selected the partition closest to the maximum score but

with the smallest number of communities (i.e. the earliest high scoring partition). This

approach avoided the common cases that many small communities were generated with

equally high partition scores. The resulting networks under different nucleotide-bound states

showed largely consistent community partition in Ras, Gαt and EF-Tu, with differences

mainly localized at the nucleotide binding PL, SI, SII and α1 regions. To facilitate comparison

between states and families, the boundary of these regions was re-defined based on known

conserved functional motifs. Re-analysis of the original residue cross-correlation matrices

with the definition of communities was then performed. Only inter-community correlations

were of interest, which were calculated as the sum of all underlying residue correlation values

between two given communities satisfying that the smallest atom-atom distance between cor-

responding residue pairs was less than 4.5Å (for Gαt and EF-Tu) or 6 Å (for Ras) for more

than 75% of total simulation frames. A larger cutoff was selected for Ras because the overall

residue level correlations are weaker in Ras. A standard nonparametric Wilocox test was per-

formed to evaluate the significance of the differences of inter-community correlations between

distinct states.

Supporting information

S1 Fig. Mutations of distal Gαt and EF-Tu specific residues perturb structural dynamics at

nucleotide binding regions. In each panel, networks of wild type GTP-bound (WT-GTP, top)

and mutant GTP-bound (MU-GTP, bottom) are compared. Red and blue edges indicate

enhanced WT or MU couplings that are significantly (p-value <0.05). All other lines are col-

ored gray. Specific mutations E241AGαt (B) and Q115AEF-Tu (C) in α3 dramatically reduce the

couplings between the functional regions PL, SI and SII, whereas the counterpart mutation

K88ARas (A) has minor effects.

(TIF)

S2 Fig. Mutations of distal Gαt specific residues perturb structural dynamics at nucleotide

binding regions. In each panel, networks of wild type GTP-bound (WT-GTP, top) and

mutant GTP-bound (MU-GTP, bottom) are compared. Red and blue edges indicate enhanced

WT or MU couplings that are significantly (p-value<0.05). All other lines are colored gray.

Gαt specific mutations E232AGαt (A) in SIII dramatically reduce the couplings between the

functional regions PL, SI and SII. Similar effects of mutations R201AGαt (B) and D234AGαt (C)

are also observed in Gαt.

(TIF)

S3 Fig. The potential salt bridges between D47/E49 in L3 and R161/R164 in α5 in Ras-GTP

wild type. The L3 loop and helix α5 are shown as secondary structure cartoons in blue and

green respectively. The side chains of the noted residues are highlighted, with oxygen atoms in

red and nitrogen atoms in blue. Labeled distances are in the unit of Angstrom (Å).

(TIF)

S4 Fig. The RMSD time-course plots of all 24 MD simulation systems. In each system, the

five simulation replicates are shown in five different colors.

(TIF)

S1 Table. Analyzed crystallographic structures of Ras.

(DOCX)

Structural dynamics of GTPases

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006364 November 9, 2018 15 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006364.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006364.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006364.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006364.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006364.s005
https://doi.org/10.1371/journal.pcbi.1006364


S2 Table. Analyzed crystallographic structures of G protein α subunit.

(DOCX)

S3 Table. Analyzed crystallographic structures of EF-Tu.

(DOCX)

S4 Table. Residue-wise contributions to inter-community couplings. The numbers repre-

sent the residue-wise contributions to inter-community couplings. For example, the sum of

correlations between residue M72 in SII and all residues in SIII/ α3 is 1.19 (after filtering by

contact map). The first row contains common counterpart residues (red) connecting SII and

SIII/α3 in three proteins. The second row contains family-specific functional residues: residues

in Gαt and EF-Tu (blue) contribute to the dynamic correlations between SII and SIII/α3,

whereas their counterparts in Ras (green) have no contributions. The third row contains Gαt

specific residue in SIII, which has no counterparts in the other two proteins.

(DOCX)

S5 Table. Summary of systems simulated.

(DOCX)
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