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cluster. Although the corresponding Brodmann area for each cluster is determined 
based on the average Talaiarch coordinates of the component dipoles, the dipole 
locations for the individual components for each cluster are not all contained 
within the indicated Brodmann area. Individual dipoles for each component are 
shown in Figure 3.2. Components per subject column indicates both the average 
number of components per subject in the cluster, and the maximum components 
any single subject had in the cluster 

4.1 Results of one-way t-tests to assess if f0 ITC and f0 noise corrected power is 
significantly different from zero. Both f0 ITC and f0 noise corrected power would 
be expected to be greater than zero if the rhythms are inducing activity at f0. 

 
Figures 

 
2.1 Tap asynchronies at each stimulus position. The baseline asynchrony was 

normalized to 0 for all subjects and indicated by the dashed lines. Error bars show 
standard error. Note that the scale of the y axes are different between the 16 and 
66 ms perturbations. 

2.2 Normalized asynchronies for both auditory and visual conditions. The visual 
condition induced a nearly uniform relative correction while the auditory 
condition shows a separation between conditions primarily due to under and 
overcorrections. 

2.3 Grand average auditory and visual evoked ERPs at Fz and Oz, respectively. The 
auditory evoked ERPs are stimulus locked to the onset of a tone, while the visual 
evoked ERPs are stimulus locked to a flash. Both plots show wave forms evoked 
by + 66 perturbations, the − 66 perturbations, and a non-perturbed stimulus 

2.4 Auditory ERP at Fz time-locked to the tap onset for ± 66 ms perturbations and a 
non-perturbed reference. 

2.5 Auditory evoked potentials at Fz for both the perturbed conditions at time T, and 
corresponding reference (non-perturbed) condition at T-2 for each of the 4 
perturbation types. 

2.6 Visual evoked potentials at Oz for both the perturbed conditions at time T, and 
corresponding reference (non-perturbed) condition at T-2 for each of the 4 
perturbation types. 

2.7 Response locked waveforms from time T for the 4 perturbation types from the 
auditory condition. 

2.8 Visual condition waveforms at time T at Fz. (A) Visual response locked with the 
4 perturbation types. Note the large late positive waveforms that differentiate in 
latency by perturbation condition. (B) Visual stimulus locked waveforms at Fz. 
Note the extremely large late waveforms. These waveforms explain the large late 
waveforms in (A). 
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2.9 Clusters from the occipital lobe and their associated stimulus locked ERPs. (A) 
Cluster in the right Occipital Lobe. (B) Cluster in the left Occipital Lobe. (C) 
Stimulus locked ERP from the left Occipital cluster at time T for the ± 66 ms 
perturbations for both Auditory and Visual conditions. (D) Stimulus locked ERP 
from the right Occipital cluster at time T for the ± 66 ms perturbations for both 
auditory and visual conditions. 

2.10 Cluster centered around the pre-motor cortex and associated ERPs. (A) Clustered 
component dipoles centered approximately at 90the pre-motor cortex. (B) 
Stimulus locked ERP from pre-motor cluster at time T for the ± 66 ms 
perturbations for both Auditory and Visual conditions. (C) Response locked ERP 
from pre-motor cluster at time T for the ± 66 ms perturbations for both Auditory 
and Visual conditions. 

2.11 Cluster centered around the anterior cingulate and associated ERPs. (A) Clustered 
component dipoles centered approximately at the anterior cingulate. (B) Stimulus 
locked ERP from anterior cingulate cluster at time T for the ± 66 ms perturbations 
for both Auditory and Visual conditions. (C) Response locked ERP from anterior 
cingulate cluster at time T for the ± 66 ms perturbations for both Auditory and 
Visual conditions. 

3.1 Schematic of control and omission conditions for both auditory and visual 
metronomes, and depiction of the visual flash metronome stimuli. The fixation 
cross was always visible for both auditory and visual conditions, even when the 
flash appeared in the visual condition. 

3.2 Scalp topography and dipole locations of components for the nine clusters and the 
outlier cluster. Scalp topography includes activity from all four conditions. Blue 
dots indicate individual component dipole locations. Red dots indicate the average 
position 

3.3 Schematic for slope fitting and peak finding for beta activity. Slopes were fitted 
between the trough (between −300 and −100 ms) and 0. Peak beta was 
determined between −200 and 200 ms (range depicted in shaded area). Slopes 
were fitted for evoked and induced beta power, whereas peaks were found in 
evoked and induced beta power as well as in intertrial coherence in the beta range 

3.4 Significant channels for the induced beta tests to slopes fitted from the trough of 
beta power between −300 and −100 ms to the event onset at 0 ms. Channels 
labeled had p > 0.05 for the omission to control slopes comparison, and p < 0.05 
for the comparisons of the control to shuffled and omission to shuffled slopes. 
The circled channel indicates p < 0.05 for the post hoc comparison test as applied 
to the slopes fitted to the between the trough of beta power and onset for induced 
beta. 

3.5 Time–frequency dynamics in the parent cluster for visual (a,b) and auditory (c,d) 
conditions. Data shown are grand averages across all components in the parent 
cluster, which is made up of all components prior to clustering to present global-
level activity. Dotted lines in induced activity (a,c) indicate time–frequency 
values significantly different from baseline p < 0.01. Solid lines in evoked activity 
(b,d) indicate time–frequency values significantly different from baseline p < 
0.001. ERSP, event-related spectral perturbation 
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3.6 Time–frequency dynamics in selected clusters for visual (a,b) and auditory (c,d) 
conditions. Data shown are grand averages across all components in the indicated 
cluster. Dotted lines in induced activity indicate time–frequency values 
significantly different from baseline p < 0.01. Solid lines in evoked activity 
indicate time–frequency values significantly different from baseline p < 0.001. 
Induced and evoked ERSP values in response to visual rhythms from the parietal 
(a) and occipital (b) clusters, and ERSP values in response to auditory rhythms 
from the left sensorimotor (c) and right sensorimotor (d) clusters are depicted. 
ERSP, event-related spectral perturbation. 

3.7 Time course of induced and evoked beta activity, and intertrial coherence (ITC) in 
the beta band for selected clusters in response to visual (a,b) and auditory (c,d) 
rhythms. Standard error is indicated with shaded bars. Values in response to 
visual rhythms from the parietal (a) and occipital (b) clusters, and values in 
response to auditory rhythms from the left sensorimotor (c) and right 
sensorimotor (d) clusters are depicted. Note that evoked beta and ITC increase in 
anticipation of an event only in the left sensorimotor cluster (c). 

3.8 Mean beta peak times (a,b) and normalized beta peak power (c,d) for components 
in the parietal (a,c) and occipital clusters (b,d) in the visual condition. Induced 
activity for both clusters tended to peak prior to non-omitted flash onset and after 
omitted flash onsets, whereas the opposite pattern is seen in evoked activity and in 
intertrial coherence (ITC) (a,b). Normalized induced and evoked beta power 
peaks were higher in non-omission trials compared with omission trials in the 
parietal cluster (c), whereas only evoked beta power peaks were higher in non-
omission trials than omission trials in the occipital cluster (d). Box plots depict 
interquartile range with median values indicated by black bars and 95% 
confidence intervals indicated with notches. Significance differences are shown 
through bars where *p < 0.05, ***p < 0.001 

3.9 Mean beta peak times (a,b) and mean normalized beta peak power (c,d) for 
components in the left sensorimotor (a,c) and right sensorimotor clusters (b,d) in 
the auditory condition. In the left sensorimotor cluster (a) induced beta peaked 
prior to tone onset in the non-omission trials, but after expected onset in omission 
trials. Note that evoked and intertrial coherence (ITC) beta peak times appear less 
variable in response to omitted tone than to non-omitted tones in the left 
sensorimotor cluster (a), whereas beta peak times were especially variabile in the 
right sensorimotor cluster (b). Normalized beta peak power shows the same 
pattern in both left (c) and right (d) sensorimotor clusters with power lower in the 
evoked omission trials compared with the evoked non-omission trials and overall 
lower evoked power than induced power. Box plots depict interquartile range with 
median values indicated by black bars and 95% confidence intervals indicated 
with notches. Significance differences are shown through bars where *p < 0.05, 
**p < 0.01, ***p < 0.001 

3.10 Overview of clusters with evidence of predictive beta activity for auditory and 
visual rhythm processing indicated. Clusters within the blue area show predictive 
activity for only auditory rhythms, clusters within the yellow for only visual 
rhythms, and clusters within the green areas for both auditory and visual rhythms. 
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The type of predictive evidence is listed for each cluster with evidence for visual 
rhythms in yellow and auditory rhythms in blue. All predictive evidence was in 
induced beta activity except for auditory rhythms in the left sensorimotor cluster 
where evidence of predictive evoked beta activity was found. P, peak power 
evidence of predictive beta; S, slope evidence of predictive beta; T, peak time 
evidence of predictive beta. *Predictive evoked beta 

4.1 Example of left motor component from a single subject. Characteristic mu wave 
shape can be seen in the time-series data, which is present only during the non-
tapping conditions (a). The topography of the component suggests its source is 
from the left-motor cortex (b), while the spectral power shows the characteristic 
10 Hz power with a beta harmonic resultant from mu activity (c). Topographic 
plots of activity from the selected left motor components with activity of all 
components averaged together can be seen in the top topographic plot (d). All 
individual left-motor component plots are shown (e). 

4.2 (a) Box pots depicting the distribution of power in the mu range across conditions 
for both the grand-averaged and left-motor component activity. The center line of 
each box depicts the median and the notches reflect the 95% confidence interval. 
(b) Scalp topographic maps of the spectral power in the mu range (8 – 13 Hz) 
from channel data. Both auditory tap and visual tap conditions show a reduction 
in power over the left motor region compared to the non-tapping conditions. 

4.3 Frequency domain representation of noise-corrected power (a & b) and ITC (c & 
d) across conditions for both left motor components and grand-averaged data. 
Average f0 noise-corrected power is represented with the dark blue line, and 
shaded areas represent 95% confidence intervals for both left motor power (a) and 
grand-averaged power (b). Individual ITC is shown with thin black lines and 
average ITC is shown in red for both the grand average data (c) and left motor 
component data (d). 

4.4 Distribution of noise-corrected power at f0 (a) and f0 ITC (b). Scalp topography is 
shown of spectral power at f0 across conditions from channel data (c). The center 
line of each box depicts the median and the notches reflect the 95% confidence 
interval (a & b). * = p < 0.05. ** = p < 0.01. In the spectral topography plot (c), 
both auditory and visual modalities show fontal-central activity that is strongest in 
the tapping conditions, with relatively weak power over the left and right motor 
regions. 

4.5 Differences between musicians and non-musicians in f0 ITC for the left motor 
components (a) and f0 noise-corrected grand-averaged power (b). The center line 
of each box in each box plot depicts the median and the notches reflect the 95% 
confidence interval. While no direct differences were seen between musicians and 
non-musicians, tapping in synchrony to auditory rhythms had a greater effect in f0 
activity than compared to non-musicians as seen in ITC in the left motor 
components (a) and in the noise-corrected grand-averaged data 
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Abstract 
 
 Only humans and a few other species of animals share the ability to reliably 
entrain and synchronize to rhythms. Accurately synchronizing to rhythms, as in tapping a 
foot to a metronome, requires the ability to precisely predict the onset of each rhythmic 
event. Curiously, humans have much greater difficulty synchronizing to flashing visual 
rhythms compared to auditory rhythms, even when both stimuli contain exactly the same 
timing information. While it is known that the auditory system works in conjunction with 
the motor system for the timing processing needed for rhythm perception, it has not been 
clear how the visual system processes rhythm timing. In collaboration with my co-
authors, I present evidence to explain this discrepancy by showing the visual system has 
its own internal timing capabilities, which are separate than those utilized in auditory 
rhythms. I show that the visual system is able to detect perturbations of visual rhythms, 
but that error detection is not able to be translated into effective error correction in a 
synchronization task as is the case with auditory rhythms (Chapter 2). From an 
experiment in passive rhythm perception, I show evidence of visual  timing activity 
arising from the visual system, as well as evidence of separate timing networks for 
auditory and visual rhythm processing (Chapter 3). I also show evidence that visual 
system timing information, in the form of neural entrainment, is present in the motor 
system at similar levels as auditory neural entrainment. Although visual timing 
information is present in the motor system, it is not able to be utilized in the same 
capacity as auditory rhythm timing in the motor system (Chapter 4). Taken together, 
these results suggest the visual system is processing rhythm timing through a visual 
modality specific mechanism. This mechanism is not as capable for rhythm processing as 
the motor system utilized in auditory rhythm processing, which results in poorer visual 
rhythm timing capabilities for visual rhythms compared to auditory rhythms.  

This dissertation, Differences in Neural Mechanisms for Auditory and Visual 
Rhythm Processing, is submitted by Daniel C. Comstock in the summer of 2021 in partial 
fulfillment of the degree Doctor of Philosophy in Cognitive and Information Sciences at 
the University of California, Merced, under the guidance of Ramesh Balasubramaniam.  
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Prologue 
 
 Something common to nearly all humans is the ability to enjoy music, not just as 
a collection of sounds that are pleasant together, as is the case with wind-chimes, but as 
sounds that are connected through a consistent rhythm or meter. Further, humans can 
easily synchronize our movements to these sounds through dance. In fact, dancing to 
music can be observed in the very young and across cultures world-wide (Nettl, 2015; 
Savage et al., 2015). But what is so natural to humans does not appear to happen at all in 
most other animal species. The ability to entrain one’s movements to music rhythms 
seems to be limited to humans, and a small group of birds and mammals (Kotz et al., 
2018; Ravignani et al., 2019). All this begs the question, what is it that is special about 
humans and those other species that are able to synchronize their movements to rhythms?  
 The key to synchronizing to a rhythm is not to just move in time with that rhythm, 
but to predict the timing of rhythmic events. In other words, there needs to be a 
mechanism that can keep time internally that is flexible enough to quickly match the 
timing of an external rhythm. The need for this prediction is clear if you think of tapping 
your finger in time with a metronome: in order to tap on the beat, your finger has to begin 
its motion prior to the onset of that beat. But it is not just the movement that needs to start 
before beat occurs, as the transmission of the neural signal from your brain to your finger 
is not instantaneous, and can take over 100 ms (Merchant & Lafuente, 2014) Indeed, it is 
well established that when asked to tap in synchrony to a beat in what is called a 
sensorimotor synchronization task (SMS), most people will tap up to 50 ms before the 
beat! (Repp & Su, 2013).  
 Given humans ability to synchronize to auditory rhythms so closely, it can be 
somewhat surprising to find that the ability to synchronize to a rhythm is not consistent 
across the senses. This is most clear when comparing SMS capabilities between auditory 
and visual rhythms. Humans synchronize with greater precision to auditory rhythms, and 
are also capable of synchronizing to faster auditory rhythms than to visual rhythms 
(Repp, 2003). This difference doesn’t just exist during SMS tasks either, it is also seen in 
perceptual tasks where people are asked to tell the difference in speed between two 
rhythms, where auditory rhythms are judged much more accurately than visual rhythms 
(Silva & Castro, 2016).  

Interestingly, there is one major caveat to the differences seen between auditory 
and visual rhythm SMS capabilities. The studies that I have so far mentioned have all 
used simple rhythmic flashes of light as visual rhythms. If you ask a person to 
synchronize their movements with an object moving in a rhythmic pattern however, that 
person will be able to synchronize their movements with a level of precision that is 
comparable to their ability to synchronize to a similar auditory rhythm (Hove et al., 
2013a). Interestingly, this effect only applies to synchronization tasks as the benefit of a 
moving rhythmic stimulus is lost in a purely perceptual task (Silva & Castro, 2016).  
Additionally, if the trajectory of the moving object being synchronized with is not 
compatible with trajectory of the persons finger (e.g., a bar moving horizontally back and 
forth while a person’s finger moves vertically up and down), the precision of the SMS 
will be less than compared to a compatible trajectory (Hove & Keller, 2010; Hove et al., 
2010). Likewise, if you ask someone to synchronize to a rhythmically frequency 
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modulated siren, that person will have more difficulty synchronizing accurately than if 
they were asked to synchronize with a rhythmically equivalent auditory metronome 
(Hove et al., 2013b).  
 Even though it is clear that there are large differences across the senses in rhythm 
capabilities, it is not yet understood exactly why those differences exists. What is clear is 
that humans and at least a few other species appear to have specialized neural systems 
that allow for auditory rhythm perception and synchronization. A recent paper explored 
this issue by discussing two hypotheses that aim to explain this capability (Proksch et al., 
2020).  The first hypothesis is the Action Simulation for Auditory Prediction hypothesis 
(ASAP), which hypothesizes that auditory beat perception is achieved by simulating the 
beat in the motor system, and it posits that that auditory system and motor system are 
tightly linked through the dorsal auditory stream due to the vocal learning abilities 
present in humans (Patel & Iversen, 2014). The second hypothesis is the Gradual Audio 
Evolution hypothesis (GAE), which suggests that human auditory rhythmic timing 
capability evolved out of the interval timing capability that is common in primates 
through a cortico-motor-basil ganglia-cortical circuit (Merchant & Honing, 2014). While 
these two hypotheses differ on their explanations of how human auditory rhythm 
perception capabilities arose, they share the idea that the motor system is heavily 
involved in auditory rhythm processing, which has been reported in a number of other 
studies (Grahn & Brett, 2007; Chen et al., 2008a,b; Gordon et al., 2018). 
 The auditory-motor connection put forth in the ASAP and GAE hypotheses can 
help explain how the enjoyment of music and dance is a near universal human trait, as 
they posit a specific neural mechanism that evolved for those specific tasks. Since that 
motor connection is specific to the auditory system and not the visual system, these 
hypotheses could further explain why there is such a significant difference in rhythm 
processing capabilities between the sense modalities. But the issue of the role of the 
motor system in auditory and visual timing also applies beyond just rhythm perception. It 
also applies to non-rhythmic timing, such as in time perception.  

When most people think of time perception, they think of what is commonly 
known as interval timing, which is the ability to accurately perceive how much time has 
passed over a given duration. This can take place over range of time scales, from under a 
second to as long as years or even decades! But it turns out that timing is also an 
important aspect of many functions carried out in physiology across a wide range of time 
scales. For example, determining the direction of a sound one hears depends on the brain 
being able to determine the microsecond differences between that sound reaching one ear 
faster or slower than the other ear, and on longer other end of the spectrum we have 
rhythms that unfold over the case of a day, as in our circadian rhythms, or over the course 
of a month as with menstrual cycles (Merchant & Lafuente, 2014). But timing at those 
extremes seem to depend on specific mechanisms specialized to their specific task, while 
timing activity that occurs in the millisecond to second range, the range of timing 
important for movement and perception, may depend on a more generalized timing 
system, such as described by the GAE hypothesis (Merchant & Honing, 2014). Research 
into interval timing with monkeys strongly implicates the premotor cortex and SMA in 
interval timing for visual tasks (Merchant et al., 2013; Wang et al., 2018). While this 
finding does not guarantee that humans use the same mechanism for interval timing as 
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the monkeys in that study use, it does suggest that the motor system can be used in visual 
timing. When taken together with the evidence of the motor system involvement in 
auditory timing, it suggests that the motor system operates as a modality independent 
means of timing processing. Fitting with this idea, it has been proposed that the motor 
system works as prediction system across sensory modalities (Schubotz, 2007). If the 
motor system is able to operate as a modality independent timing center, and it is known 
to be involved in auditory rhythm perception, then the fact that visual rhythmic timing is 
not as precise as auditory rhythmic timing suggests that the auditory system is working in 
concert with the motor system for rhythm timing in a fashion that the visual system is not 
capable of.   

There still are a number of remaining questions, however. If auditory rhythm 
perception is facilitated by the audio-motor connection, through what mechanism is 
visual rhythm perception processed? Is it the case that the visual system itself is 
performing rhythm timing, or does the visual system also utilize the motor system, but in 
a less effective manner? Further, why is it that the type of stimuli used in a visual rhythm 
perception task (flashes vs moving stimuli) have such a large effect on visual SMS 
precision? Since auditory SMS capability can increase with training, as is the case with 
trained musicians, could training improve visual SMS capability to the level of auditory 
SMS? This dissertation does not aim to definitively answer these questions however, its 
aim is to provide enough context to make answering these questions easier, especially the 
question of which mechanisms are involved in rhythm perception. The central question 
this dissertation does attempt to answer is if the mechanisms of rhythm timing and 
perception are modality general or modality specific. In other words, are there separate 
mechanisms for rhythm timing for the different senses, or is there a single mechanism 
that the different senses have unequal access to.   

Through the work presented in this dissertation, I argue that the visual system is 
not utilizing the motor system for rhythmic timing the way the auditory system does, and 
instead is processing timing internally. This is due to the visual system and the circuits 
connecting it to the motor system being tuned to spatial processing for control of 
movements with continuous updating of spatial information. This is opposed to being 
tuned to discrete temporal events that need to be predicted without continuous updating, 
such as occurs in auditory rhythm timing. In chapter 1 my co-authors and I present a 
review of the differences in capabilities between auditory and visual rhythm SMS as well 
as the modality differences in the corresponding neural activation for such tasks 
(Comstock et al., 2018). In addition to the review, the chapter also includes a discussion 
of the how the different perceptual systems may interface with the motor system. The 
second chapter provides evidence of rhythm timing in the visual system that is not as tied 
into to the motor system as the auditory system through an experiment comparing the 
neural correlates of auditory and visual error correction during a SMS task (Comstock & 
Balasubramaniam, 2018). Chapter 3 shows further evidence of processing of visual 
timing by the visual system, as well as evidence of separate, but overlapping networks of 
timing activity for auditory and visual rhythm perception using an omission protocol 
during a purely perceptual task (Comstock et al., 2021). In chapter 4 we present evidence 
that neural entrainment within the motor cortex of visual rhythms is as strong, if not 
stronger, than auditory rhythms, which suggests that the differences seen between 
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auditory and visual SMS and rhythm perception are not due to the how the rhythms are 
captured as neural entrainment, but rather how the entrainment is utilized. In the final 
section, I discuss the findings from chapters 2-4 in relation to the existing literature on 
rhythm processing, and propose future directions for auditory and visual rhythm 
perception investigations.   
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Chapter 1 
 

1 Sensorimotor Synchronization with Auditory and Visual Modalities: 
Behavioral and Neural Differences 

 
 
 This chapter is a published review in which the behavioral and neural differences 
of SMS across modalities are described. In addition to modality differences, the 
mechanisms involved in rhythm perception, and their possible evolutionary origins are 
discussed. The chapter ends with speculation on why we see the modality differences 
described earlier, along with some suggestions for future research on the topic. 
 
Published as: 
Comstock, D. C., Hove, M. J., & Balasubramaniam, R. (2018). Sensorimotor 
synchronization with auditory and visual modalities: behavioral and neural 
differences. Frontiers in computational neuroscience, 12, 53. 
© 2018 Daniel Charles Comstock 
 
Abstract 

It has long been known that the auditory system is better suited to guide 
temporally precise behaviors like sensorimotor synchronization (SMS) than the visual 
system. Although this phenomenon has been studied for many years, the underlying 
neural and computational mechanisms remain unclear. Growing consensus suggests the 
existence of multiple, interacting, context-dependent systems, and that reduced precision 
in visuo-motor timing might be due to the way experimental tasks have been conceived. 
Indeed, the appropriateness of the stimulus for a given task greatly influences timing 
performance. In this review, we examine timing differences for sensorimotor 
synchronization and error correction with auditory and visual sequences, to inspect the 
underlying neural mechanisms that contribute to modality differences in timing. The 
disparity between auditory and visual timing likely relates to differences in the processing 
specialization between auditory and visual modalities (temporal vs. spatial). We propose 
this difference could offer potential explanation for the differing temporal abilities 
between modalities. We also offer suggestions as to how these sensory systems interface 
with motor and timing systems. 
 
1.1 Introduction 

Many behavioral studies have examined human timing ability in tasks of 
sensorimotor synchronization (SMS) where subjects synchronize their movements to an 
external rhythm. Comparisons between auditory metronomes and visual flashing 
metronomes reveal that movement synchronization is less variable and can occur at faster 
rates with auditory metronomes (Chen et al., 2002; Repp, 2003; Repp and Penel, 2004; 
Lorås et al., 2012). However, visuo-motor synchronization greatly improves when 
synchronizing with a moving periodic visual metronome (Hove et al., 2010). Adding a 
changing velocity profile to the moving visual metronome further reduces variability in 
SMS tapping (Hove et al., 2013a; Iversen et al., 2015), and Gan et al. (2015) suggests that 
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a more realistic velocity profile can bring visual SMS to be as temporally precise as 
auditory SMS, at moderate but not fast tempi. While most studies of SMS look at finger 
tapping, others have included synchronized circle drawing, gait, dancing, and eye 
movements in the context of modality-specific timing effects (e.g., Repp and Su, 2013). 

Studies on auditory and visual interference also suggest auditory timing is more 
prominent. When concurrent auditory metronomes and visual flashing metronomes are 
presented out-of-phase, the auditory sequences interfere with visuomotor timing, but not 
vice versa (Chen et al., 2002; Repp and Penel, 2002, 2004). The interference effect is 
considerably reduced with moving visual metronomes and is tied to training and 
experience as the auditory dominance is stronger in musicians and weaker in video 
gamers (Hove et al., 2013a). Similarly, auditory cues can improve visual temporal 
discrimination (Morein-Zamir et al., 2003; Parise and Spence, 2008). This effect only 
holds for the temporal domain however, as the visual system dominates when auditory 
and visual stimuli conflict in the spatial domain; spatial dominance in the visual modality 
is apparent in the well-known “ventriloquist effect” (Vroomen et al., 2001). 
 
1.2 Role of Error Correction in Timing 

Error correction is a crucial component of any SMS task. By inducing 
perturbations and errors in SMS, we can gain insight into the underlying timing 
mechanisms. A common method to induce errors in a SMS task is to occasionally perturb 
an otherwise isochronous metronome (Repp, 2000, 2001a,b; Praamstra et al., 2003; Repp 
and Keller, 2004; Jang et al., 2016; Jantzen et al., 2018). Error correction in SMS can be 
broken down into two distinct mechanisms: a phase-correction mechanism for correcting 
errors in relative phase, and a period-correction mechanism that corrects changes to the 
internal timekeeper period (Repp, 2001b; Repp and Keller, 2004). Period corrections 
require conscious awareness of the error as it involves a conscious updating of the 
internal rhythm; while a phase correction can happen even with errors too small for 
conscious awareness and does not involve updating the central timekeeper period and so 
is considered a more peripheral process than period correction (Repp, 2001b, 2005). An 
error corrected under the phase-correction mechanism is typically a gradual adjustment 
that occurs over several beats, while an error corrected under the period-correction 
mechanism will be evidenced by a pronounced correction, usually followed by a more 
gradual phase-correction-like pattern after the initial large correction (Repp, 2001b). 

While error correction has been well documented in auditory SMS, relatively little 
work has investigated error correction in visual SMS. In a recent study comparing error 
correction for auditory and flashing visual sequences, we observed error corrections for 
perturbations in the auditory condition that were modulated by the direction of the 
perturbations, but no such modulation was found for perturbations in the visual condition 
(Comstock and Balasubramaniam, 2017a). This suggests the visual system may not 
engage in the same SMS timing mechanisms as the auditory system. Additional evidence 
for a discrepancy in error correction for auditory and visual sequences can be gleaned 
from the autocorrelation structure of adjacent taps: unlike auditory SMS, tapping with 
visual flashes does not produce a negative lag1 autocorrelation that can indicate of the 
presence of a robust central timekeeping and error-correction mechanism (Hove and 
Keller, 2010). However, visuomotor synchronization with moving and apparent-motion 
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metronomes do produce a negative lag1 autocorrelation, suggesting that a moving visual 
metronome may engage error correction (Hove and Keller, 2010; Hove et al., 2010); note 
that negative lag1 autocorrelation does not necessarily stem from error correction and can 
arise from other timing factors (e.g., Wing and Kristofferson, 1973). It remains unclear if 
error correction will occur with perturbations in moving visual metronomes or with larger 
phase perturbations in a flashing visual metronome. 
 
1.3 Underlying Physiology of the Auditory and Visual Timing System 
1.3.1 Brain Networks Involved in Timing Activity 

Investigating the neural underpinnings in auditory and visual timing is a massive 
undertaking due to the many different timing subprocesses and tasks, including: SMS, 
interval timing, rhythm perception, timing recall, time perception, etc. Excellent reviews 
of the brain mechanisms involved in various timing activities include: a review of neural 
activity in music production (Zatorre et al., 2007); a review of neural activity involved in 
time perception (Wiener et al., 2010); and an overview of neural activation in SMS as 
part of a larger review of SMS (Repp and Su, 2013). This body of work consistently 
demonstrates that temporal processing across tasks and sensory modalities relies heavily 
on the motor system. This motor network includes the supplemental motor area (SMA), 
primary motor cortex, lateral premotor cortex, anterior cingulate, basal ganglia, and 
cerebellum (Repp and Su, 2013). Auditory rhythm perception activates the motor system 
and is closely linked to movement (Janata et al., 2012; Iversen and Balasubramaniam, 
2016; Ross et al., 2016a,b). The SMA is also strongly implicated in motor timing (Coull 
et al., 2016; Merchant and Yarrow, 2016), and along with the pre-SMA could be a hub of 
motor timing (Schwartze et al., 2012). Subcortical regions are especially active during 
sub-second time perception (Wiener et al., 2010), sub-second interval timing (Repp and 
Su, 2013), and rhythm timing (Grahn and Rowe, 2009; Wiener et al., 2010; Coull et al., 
2011; Teki et al., 2011; Hove et al., 2013b). There is evidence of a dorsal auditory stream 
connecting the auditory cortex to the motor cortex through the posterior parietal cortex 
that plays a role in rhythm perception (Patel and Iversen, 2014; Ross et al., 2018). 
Interestingly this dorsal stream is also implicated in visual and tactile rhythm perception 
(Araneda et al., 2017; Rauschecker, 2017), adding to the idea of a common timing system 
tied to the motor system. Further evidence of the common timing system is found in a 
study of auditory and visual synchronization that dissociated modality and tapping 
stability –putamen activation was highest when synchronizing to auditory beeps, 
moderate with a frequency-modulated siren and with a moving visual metronome, and 
lowest with a flashing visual metronome, closely paralleling behavioral performance 
(Hove et al., 2013b). 

While visual SMS activates many of the same motor regions as auditory SMS 
(Hove et al., 2013b; Araneda et al., 2017), some activations are specific to the visual 
system. The visual cortex shows activity related to interval timing that follows the 
expected scalar property, such that size of timing errors measured in the visual cortex 
scale in proportion to size of the interval being timed as predicted by Weber's law 
(Shuler, 2016). Additionally, Zhou et al. (2014) found evidence that visual feature 
processing in the early visual cortex can contribute to duration perception, furthering the 
notion that at least some timing information is processed independently within the visual 
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cortex. Additionally, in visual rhythm perception, the visual cortex plays a role predicting 
rhythmic onsets (Comstock and Balasubramaniam, 2017b, 2018). The additional 
activations with visual timing tasks, taken together with behavioral results, suggest the 
timing accuracy in visual processing may be compared to the auditory system due to the 
additional computational demands of processing the higher complexity of visual spatial 
information along with temporal information. 
 
1.3.2 Role of Cortical Oscillations in Timing Encoding and Spreading Information 
Across the Brain 

In addition to looking at the networks and regions involved in temporal 
processing, a growing body of work shows the role of cortical oscillations in encoding 
timing across multiple frequency bands. Cortical oscillations play a role in connecting 
regions across the brain, with higher frequencies utilized for localized interaction and 
lower frequencies for longer range interaction (Sarnthein et al., 1998; Von Stein and 
Sarnthein, 2000). This pattern of oscillations is used to connect and calibrate disparate 
timing systems in the brain (Gupta and Chen, 2016). Oscillations relating to timing 
appear to arise from multiple context-specifc timing systems in the brain (Wiener and 
Kanai, 2016). The question is then how these functionally and anatomically disparate 
systems integrate and interact. It appears that oscillations from different timing systems 
are coordinated within the striatum (Matell and Meck, 2004; Gu et al., 2015). 

Beta band activity (~20 Hz) is tied to the motor system and several studies 
indicate beta's role in predicting timing of auditory rhythms (Fujioka et al., 2009, 2012, 
2015). Additionally, beta activity reflects top-down imposition of metrical structure on 
auditory rhythms (Iversen et al., 2009). Recently, beta activity has also been linked to 
timing predictions within the visual system in response to visual rhythms (Comstock and 
Balasubramaniam, 2017b). 

With rhythm perception, evidence shows that internal oscillations arise to match 
the fundamental frequency of the rhythm, and frequency of the meter (Nozaradan et al., 
2011), as well as to the frequency of imagined rhythms (Okawa et al., 2017). These 
findings align with the Neural Resonance Theory that posits neural rhythms synchronize 
to auditory rhythms, and these neural rhythms can influence attention, expectancy, and 
motor planning (Large and Snyder, 2009). As of yet, it is unclear if this same neural 
resonance to meter would arise with visual stimuli. 
 
1.3.3 Neural Underpinnings of Error Correction 

The neural correlates of error correction reveal more evidence for multiple 
interacting and overlapping timing mechanisms. Error detection of timing perturbations 
in auditory SMS tasks modulates the P1, N1, and N2 auditory ERP components 
depending on both the size and direction of the perturbation (Praamstra et al., 2003; Jang 
et al., 2016). Jantzen et al. (2018) also found a theta response stemming from the Pre-
SMA and anterior cingulate for error detection, an increase in theta coupling between the 
SMA and the motor cortex for late perturbations. In visual error detection, the visual P1 
component is reduced in latency only for large late perturbations (Comstock and 
Balasubramaniam, 2017a). Each of these instances show cortical activation specific to a 
type of perturbation, although these effects are generally limited to larger perturbations. 
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Smaller perturbations that elicit a phase-correction response are believed to be 
driven primarily by subcortical mechanisms. Applying repetitive TMS to downregulate 
motor and premotor cortices produced no effect on phase correction (Doumas et al., 
2005), whereas phase-correction was impaired by repetitive TMS to the cerebellum 
(Bijsterbosch et al., 2011). This fits with the suggestion that phase-correction is primarily 
subcortical based on evidence from how rapidly the movement trajectory changes after a 
perturbation (Hove et al., 2014). A possible network that exhibits the rapid timing 
required for the phase-correction response is a cortico-striatal circuit connecting the 
cerebellum to the SMA-striatal network via the thalamus (Kotz et al., 2016). 

The data on the neural underpinnings of error correction suggest multiple timing 
systems, each with specific roles, yet able to coordinate for rapid response. 
Commensurate with this idea is work suggesting the basal ganglia integrates various 
timing systems through oscillation comparators (Matell and Meck, 2004; Gu et al., 2015). 
The limited data on visual error correction, however, leave open how well this network 
can interface with the visual timing systems. 
 
1.4 Evidence the Auditory System has Privileged Access to Timing Systems 

Considering the auditory system's timing advantage along with the prominence of 
the motor system in timing processing, we suggest that the auditory system's advantage in 
timing stems from its stronger coupling to the motor system. Auditory timing compared 
to visual timing tasks often yield more activation in motor structures, such as the SMA 
and premotor cortex (Jäncke et al., 2000). Even when visual SMS tasks employed the 
modality-appropriate moving visual metronomes, audio-motor synchronization with 
auditory beeps yielded greater activation in the putamen (Hove et al., 2013b). Likewise, 
priming a visual rhythm with a similar auditory rhythm resulted in increased putamen 
activation compared to a visual rhythm alone, while a visual rhythm yielded no priming 
effect on an auditory rhythm (Grahn et al., 2011). The finding that the increased visual 
synchronization ability provided by a bouncing ball does not transfer to purely perceptual 
rhythm perception provides further evidence of the role of motor coupling in timing tasks 
(Silva and Castro, 2016). Additionally, the privileged link between auditory and motor 
systems can be seen in Parkinson's disease, a disorder that impairs movement due to cell 
loss within the basal ganglia (Davie, 2008). For example, Parkinsonian gait can improve 
when cued by an external rhythm, and these interventions are more effective when 
synchronizing with auditory metronomes than with flashing visual metronomes 
(Rochester et al., 2005; Arias and Cudeiro, 2008). 

Visual timing activities recruit timing centers within the visual system that, based 
on behavioral results, are less precise compared to the auditory timing system. In Jäncke 
et al. (2000), visual timing tasks resulted in increased activity in the right superior 
cerebellum, vermis, and right inferior parietal lobe compared to auditory timing tasks. 
Visual timing tasks also recruit areas MT, V5, and the superior parietal lobe, tying into 
the dorsal visual stream (Jantzen et al., 2005), and visual rhythm perception induces 
increased beta activity at event onsets arising from the visual cortex (Comstock and 
Balasubramaniam, 2017b). It is unclear if these timing activations in the visual system 
are the result of compensating for a weaker connection to the motor timing system. It 
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may be that the temporal processing in the visual system is additional processing of 
visual information required to interface with the motor system. 

While differences in coupling strength to the motor system are crucial for 
modality timing differences, other factors are likely. To that end, it is clear that the visual 
system is able to pick out high speed temporal information, for example, V1 will phase 
lock its input/output to up to a 100 Hz visual flashing stimuli (Williams et al., 2004). This 
suggest that entrainment is not easily transferred to the systems involved in time/rhythm 
perception, especially at the time frame usually involved in rhythm perception, indicating 
that the issue may be one of translation. A likely place for that translation would be 
within the dorsal pathway, which has been found to have neurons with high temporal 
resolution in macaques, with higher temporal resolution in the auditory dorsal stream 
(Rauschecker, 2017). If there is a higher temporal resolution of the auditory dorsal stream 
than in the visual dorsal stream, then it may give explanation as to why the visual system 
cannot synchronize at the higher frequencies achieved by the auditory system. Of course, 
it cannot be ruled out that the difference in temporal resolution is due to different levels 
of timing precision available to the dorsal stream. Reduced timing precision in the visual 
stream may be caused by increased necessary processing due to richer sensory input of 
the visual system compared to the auditory system. Indeed, greater processing 
requirements and longer processing time may help to account for the inability of the 
visual system to allow for synchronization at the higher tempos allowed by the auditory 
system. 
 
1.5 Role of the Vestibular-Tactile-Somatosensory System 

Another link between auditory and motor systems is that auditory rhythm 
perception may be tied to the vestibular-tactile-somatosensory (VTS) system, which is 
important for movement and dance, and therefore closely tied to the motor system and 
attuned to timing (Todd and Lee, 2015). In addition to its ties for movement, the VTS 
system is clearly tied to the auditory system with regards to rhythm perception (Phillips-
Silver and Trainor, 2005, 2007, 2008; Trainor et al., 2009), and through common neural 
activation (Araneda et al., 2017). These ties between the auditory and VTS system may 
be an additional factor in the dominance of the auditory system in the temporal domain. 

Since VTS rhythms are ubiquitous in fetal life through the mother's gait, heart 
rate, breathing, etc., and since these networks are tied into auditory rhythm systems, it is 
likely that the VTS system is heavily tied into the timing systems used in auditory rhythm 
perception and in motor rhythm production (Provasi et al., 2014). This is further 
strengthened by the fact that movement and rhythms are linked and proprioception (part 
of the VTS system) plays a large role in perception of rhythms that is tied into auditory 
rhythm perception and production (Trainor et al., 2009). Interactions between the VTS 
system with visual rhythm perception remains mostly unexplored at this point however, 
so it is unclear how much this system plays a supramodal role in the timing involved in 
rhythm perception/production, or if it is only tied to the auditory and motor rhythm 
timing systems. Further research in this area is needed to answer these questions. 
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1.6 Evolutionary Origins of Sensorimotor Synchronization 
In an evolutionary context, it makes sense that auditory and motor systems would 

be tightly interconnected. First, rhythms in language are critical for both perception and 
production and may be a driver of SMS ability (Patel, 2006). Beyond language, matching 
movement to sound is a necessary result of human evolution that allows for the social and 
cultural inclination of humanity via music (Hagen and Bryant, 2003; Brown and Jordania, 
2013). Dance is also tightly connected with music and culture and can provide a further 
explanatory account of human SMS capability and the connection between the motor and 
auditory systems (Fitch, 2016; Iversen, 2016; Laland et al., 2016; Ravignani and Cook, 
2016). 

Beyond humans, common adaptations appear to increase SMS ability in several 
non-human species capable of some level of audio-motor entrainment such as parrots 
(Patel et al., 2009), bonobos (Large and Gray, 2015), and sea-lions (Cook et al., 2013). 
Although some animals can exhibit rhythmic capabilities, some remarkably well like 
Ronan the sea-lion (Rouse et al., 2016), they are in some ways limited compared to 
humans (Patel and Iversen, 2014; Merker et al., 2015). Even though there are animals that 
can entrain to auditory rhythms, only humans appear to be naturally inclined to do so 
(Wilson and Cook, 2016). Finally, there is some evidence that non-human primates are 
able to synchronize their movements to predictable visual stimuli (Takeya et al., 2017), 
yet there has been much less research on visual SMS compared to auditory SMS in non-
humans. 
 
1.7 General Synthesis and Future Directions 

In looking at how the brain processes timing information, it is clear that many 
context sensitive mechanisms interact and coordinate to provide optimal timing output. 
Much of this interaction appears to happen within the motor system and likely involves 
the subcortical systems to coordinate the various mechanisms. Current research suggests 
that oscillations play a key role coordinating the interactions among various timing 
circuits. However, it is not clear if the various timing systems compute measures of time 
in the same way. When considering that auditory and visual systems take in very 
different kinds of information and use it in different ways, i.e., auditory has a stronger 
temporal precision, and visual has a strong spatial bias, it seems likely that the timing 
mechanisms themselves may greatly differ. 

Consider the difference between extracting timing information between a moving 
visual rhythm and an auditory rhythm. Moving visual stimuli contain more information 
than auditory stimuli, such that while entraining to auditory stimuli, prediction of the 
onset of the next event involves encoding the interval between two events and utilizing 
that information to predict the onset of the next event. With a moving visual rhythmic 
stimulus, that interval information is present, but so is information on 
position/velocity/acceleration. This means predictions of the onset of the next event can 
be made as part of a continuous process. The fact that even with this information, visual 
SMS is at best equal to auditory SMS except at fast speeds, begs the question as to why 
visual SMS is less capable. One possible explanation for this is that the visual system has 
to encode much more information, and further, encoding that information into a form that 
is usable by the motor network may require extra processing. This may explain the timing 
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activity found within the visual cortex during visual SMS. Even when there is a simple 
flashing metronome, there is a measure of timing activity originating from the visual 
cortex. Considering the reduced temporal ability with visual flashing metronomes, it 
suggests there may be a translation issue in harnessing a system not optimized to 
temporal processing the way the auditory system has been, resulting in a weaker 
connection to the motor timing network. 

Different timing systems likely employ varying mechanisms and computational 
principles that are appropriate to the time scale, cellular properties, and general needs of 
the system. Existing computational models that capture a range of these phenomena 
across levels include: pacemaker accumulator models, multiple oscillator models, 
memory trace models, random process models, ramping activity models, delay line 
models, and state space trajectory-based models (Addyman et al., 2016; Hass and 
Durstewitz, 2016). Such models help illustrate the variety of ways to process timing 
information within a neural network. Evidence also suggests that cells with specific 
timing mechanisms exist in the basal ganglia and cerebellum (Lusk et al., 2016), yet other 
areas with multiple functional properties also process timing, such as in the prefrontal 
cortex (Hyman et al., 2012) and hippocampus (MacDonald et al., 2011). The areas that 
have multiple functions, as in the hippocampus and prefrontal cortex, will then likely 
have different computational approach than more specialized timing structures. 

Given that there are multiple ways to process timing, and that many forms of 
cognition require some form of temporal processing, it would be surprising to find that 
timing mechanisms are not ubiquitous in the brain. This raises an important question. If 
many different timing mechanisms are available for a given task, and only one output 
(through action), how do neural systems arrive at the best timing information to use? A 
strong candidate explanation for this would implicate a mechanism that helps integration 
through an optimal Bayesian process (Hass and Durstewitz, 2016). Evidence from 
multimodal sensory integration suggests that when timing information is presented from 
multiple modalities, the modalities are combined and weighted based on reliability in a 
Bayesian optimal solution (Ernst and Banks, 2002). Since most timing related activity 
requires motor output, we would expect that the source of timing to be utilized would be 
determined before, or as that timing information becomes available to the motor system. 
This seems to make the case that the striatal cells operating as a comparator may be the 
seat of the Bayesian process to determine the optimal timing source for motor timing. 

Since there is some disparity in the amount of work on auditory and visual SMS 
error correction, there is a need to further study the error correction capabilities within 
visual SMS. It is currently unknown if visual error correction can be as fast as auditory 
error correction when dealing modality appropriate stimuli, such as a moving visual 
sequence or bouncing ball. Another major area of needed work is in understanding the 
mechanisms by which the Bayesian optimal timing source is chosen in cases where 
multiple sources are available. If timing mechanisms are as ubiquitous in the brain as 
evidence suggests, then there may be a variety of ways these mechanisms interface with 
the motor timing system to produce a single output. Further imaging and computational 
work is required to understanding this mechanism. 
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Chapter 2 
 

2 Neural responses to perturbations in visual and auditory metronomes during 
sensorimotor synchronization 

 
 
 This chapter consists of a published experiment comparing auditory and visual 
error-correction during a SMS task. The advantage of using an error correction task is 
that it allowed us to measure both sensory evoked and tap-evoked responses to 
interruptions in timing. The sensory evoked responses inform on the role the sensory 
cortices are playing during error monitoring, which are necessarily modality specific. 
The tap-evoked responses inform on the role of the motor and somatomotor systems 
during error monitoring, which are modality general with regard to the auditory and 
visual rhythms. By comparing these responses to the behavioral outcomes, we gain a 
better picture of how the auditory and visual systems are interacting with the motor 
system to facilitate rhythm processing. The results of this experiment provide evidence of 
visual system specific rhythmic timing processing, as well as suggest that visual timing 
information is not effectively communicated to the motor system in a way that could assist 
with error correction. 
 
Published as: 
Comstock, D.C. & Balasubramaniam, R. (2018). Neural responses to perturbations in 
visual and auditory metronomes during sensorimotor synchronization. 
Neuropsychologia http://doi.org/10.1016/j.neuropsychologia.2018.05.013. 
© 2018 Elsevier. Reproduced with permission. 
 
Abstract 

Tapping in synchrony to an isochronous rhythm involves several key functions of 
the sensorimotor system including timing, prediction and error correction. While auditory 
sensorimotor synchronization (SMS) has been well studied, much less is known about 
mechanisms involved in visual SMS. By comparing error correction in auditory and 
visual SMS, it can be determined if the neural mechanisms for detection and correction of 
synchronization errors are generalized or domain specific. To study this problem, we 
measured EEG while subjects tapped in synchrony to separate visual and auditory 
metronomes that both contained small temporal perturbations to induce errors. The 
metronomes had inter-onset intervals of 600 ms and the perturbations where of 4 kinds: ± 
66 ms to induce period corrections, and ± 16 ms to induce phase corrections. We 
hypothesize that given the less precise nature of visual SMS, error correction to perturbed 
visual flashing rhythms will be more gradual than with the equivalent auditory 
perturbations. Additionally, we expect this more gradual error correction will be reflected 
in the visual evoked potentials. Our findings indicate that the visual system is only 
capable of more gradual phase corrections to even the larger induced errors. This is 
opposed to the swifter period correction of the auditory system to large induced errors. 
EEG data found the peak N1 auditory evoked potential is modulated by the size and 
direction of an induced error in line with previous research, while the P1 visual evoked 
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potential was only effected by the large late-coming perturbations resulting in reduced 
peak latency. Looking at the error response EEG data, an Error Related Negativity (ERN) 
and related Error Positivity (pE) was found only in the auditory + 66 condition, while no 
ERN or pE were found in any of the visual perturbation conditions. In addition to the 
ERPs, we performed a dipole source localization and clustering analysis indicating that 
the anterior cingulate was active in the error detection of the perturbed stimulus for both 
auditory and visual conditions in addition to being involved in producing the ERN and pE 
induced by the auditory + 66 perturbation. Taken together, these results confirm that the 
visual system is less developed for synchronizing and error correction with flashing 
rhythms by its more gradual error correction. The reduced latency of the P1 to the visual 
+ 66 suggests that the visual system can detect these errors, but that detection does not 
translate into any meaningful improvement in error correction. This indicates that the 
visual system is not as tightly coupled to the motor system as the auditory system is for 
SMS, suggesting the mechanisms of SMS are not completely domain general. 
 
2.1 Introduction 

Tapping in synchrony to a rhythmic stimulus like a metronome involves the use 
of several key components of the sensorimotor system including time, prediction, and 
error correction. Finger tapping has been widely used to study sensorimotor functions and 
abilities, especially with auditory sensorimotor synchronization (Repp, 2005). Behavioral 
studies of finger tapping have contributed to our understanding of how movement 
trajectories contribute to error correction in motor timing (Balasubramaniam et al., 2004, 
Hove et al., 2014). Recently, neuroimaging techniques have also been used to build 
understanding of the neural basis of error correction in sensorimotor synchronization 
(SMS) using EEG (Praamstra et al., 2003, Jang et al., 2016) By studying the neural 
processes involved in visual and auditory SMS, the two modalities can be compared, and 
thus tested to see to what extent the neural mechanisms of SMS are modality specific or 
generalized. 

To understand the differences between auditory and visual SMS we must first 
understand the differing capabilities between the two. One of the largest differences is the 
greater variability of the timing of taps with visual SMS (Repp, 2005). In addition to the 
differences in tapping variability, there are different limits to the tempo at which a 
stimulus can be entrained to; an auditory metronome can be synchronized to an interonset 
interval (IOI) as low as 100 ms, while the lower IOI limit for accurate visual 
synchronization to a flashing stimulus is around 500 ms (Repp, 2005). Even though there 
are clear differences in synchronization ability between the visual and auditory domains, 
it remains to be seen exactly why those differences exist. 

Another important aspect of synchronizing movements to rhythmic stimulus is 
error detection and correction. Monitoring of the timing of each stimulus and of the 
synchronized movements is necessary to ensure continued synchronization. Since any 
movement action takes time from initiation to completion, the timing of each stimulus 
must be predicted in advance (Chen et al., 1998). The prediction of the onset of each 
oncoming event then allows for a comparison of the predicted timing with the actual 
timing for error detection in the stimulus. Errors of synchronization must be monitored 
for in addition to errors in the stimulus before error correction can occur. To study the 
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nature of error correction in SMS, occasional temporal perturbations in an otherwise 
isochronous stimulus have been used to induce errors (Thaut et al., 1998, Repp, 2000, 
Repp, 2001), and a two-level system of error correction has been put forward (Vorberg 
and Wing, 1996). The models posit that error correction falls into two types: Period 
correction and Phase correction. A period correction occurs in response to a large, 
noticeable error in timing, and involves updating a central time keeper. A phase 
correction takes place in response to a small error in timing that is below the conscious 
threshold and is thought to involve a more peripheral adaptive process (Repp, 2001, Repp 
and Keller, 2004). 

To understand the neural mechanisms involved in error correction in SMS, 
previous work on auditory error correction has shown a modulation of the auditory-
evoked potentials believed to modulate attention in response to errors in the timing of an 
otherwise isochronous auditory rhythm (Tecchio et al., 2000; Praamstra et al., 2003). The 
auditory evoked potentials, in this case the auditory P1 and N1, have shown that both the 
direction of the induced error, and the magnitude of the error modulate the components 
(Praamstra et al., 2003). In addition to the sensory evoked potentials, error induced 
potentials have been found in response to synchronization errors caused by perturbing the 
timing of a metronome (Praamstra et al., 2003). The error related components, the Error 
Related Negativity (ERN) and associated Error Related Positivity (Pe) have been shown 
to be indicative of detection of response errors, allowing for another measure of the error 
response (Yeung et al., 2004). 

This study explores the differences in auditory and visual SMS error correction, 
as well as the correlating neural substrates. By measuring EEG while synchronizing 
finger taps with separate auditory and visual flashing metronomes, both with occasional 
timing errors, we can measure behavioral and neural differences between the two sense 
modalities. We hypothesize that since the visual system does not facilitate the same 
temporal precision in synchronizing to a visual flashing metronomes as the auditory 
system facilitates with an auditory metronome that error correction in the visual system 
will be a more gradual phase correction, even for larger perturbations. We further expect 
this reduced error correction ability to be reflected in a diminished modulation of the 
visual evoked components compared to the auditory evoked components, as well as 
reduced error response components. 
 
2.2 Materials and methods 
2.2.1 Participants 

Ten subjects participated in the experiment (6 females; ages 18–34). All 
participants were right handed. Data from 4 additional subjects were collected but not 
included in analysis because they were unable to synchronize with the visual stimulus. 
All participants had normal hearing and normal or corrected vision. Participants gave 
informed consent after the experimental procedures where explained. This study was 
approved by the Institutional review board (IRB) for research ethics and human subjects. 
To estimate sample size, we used power computations for an analysis of variance using 
G*Power (Faul et al., 2009). Sample size estimation showed a minimum sample of 8 
subjects would be necessary for a large effect size (.4), as seen in previous experiments 
by Praamstra et al. (2003). In this study, all analyses were performed to detect a 
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significant effect at the α = .05 level, thus indicating that our sample size of 10 to be more 
than adequate. 
 
2.2.2 Task 

Participants were asked to tap in synchrony to separate auditory and visual 
metronomes with an inter-onset interval (IOI) of 600 ms. The 600 ms interval (standard 
IOI) was chosen because a faster visual metronome is difficult for most people to 
synchronize to (Repp and Su, 2013). In both sequences, there were occasional 
perturbations of the duration of the IOI. There were four types of perturbations; 
increasing the standard IOI by 16 ms, or by 66 ms; and decreasing the standard IOI by 
16 ms, or by 66 ms. The intervals were chosen based on the Praamstra et al. (2003) 
protocol and increased to scale with the larger IOI (600 ms compared to 500 ms), and due 
to the limitations of the 60 Hz monitor used in the study. 

The experiment was split into the auditory condition and the visual condition, 
with a counterbalanced design so half of the subjects did the auditory condition first, and 
half did the visual condition first, but never on the same day. Each half of the experiment 
consisted of 120 blocks, with each block consisting of sequences of 50 stimuli with a 
minimum of 3 s between each block. Each sequence contained 4 perturbations, with the 
perturbation in a given sequence always of one type. The temporal location of the 
perturbations was varied to avoid being predictable, with a minimum of 9 non-perturbed 
stimuli between perturbations. Subjects were given a 10-min break at the halfway point 
of each condition. The experiment began with applying the EEG cap after written consent 
was obtained. Subjects were then given written instructions for the experiment, and 
performed one practice block that contained shifts of each type before starting. 

The auditory stimuli consisted of 50 ms 1000-Hz pure tones with a 10 ms rise 
time and 30 ms fall time presented through headphones at a comfortable volume. The 
visual stimuli consisted of a 50 ms gray flash on a black screen. Subjects faced a monitor 
while seated with the screen 65 cm away from the participants’ head. For both conditions, 
the screen was black with a gray fixation cross consisting of two lines approximately 
3 mm wide and each 4 cm long arranged perpendicular to each other in a cross fashion, 
that remained constant. The flashes in the visual condition where a shade of gray lighter 
than the fixation cross and 3 cm x 3 cm square (as measured on screen) in the center of 
the screen. The flashes appeared behind the fixation cross so that the fixation cross was 
always visible. Gray was chosen instead of a brighter color to help reduce the after-image 
effect. Tapping was performed with the index finger of the right hand on a metal plate 
attached to a Makey Makey input device that records tapping by sending a small 
electrical signal to an output lead that the subject holds on their left hand. An input lead 
for the Makey Makey was then attached to a metal plate that the subject tapped. When 
the subject touched the metal plate, it completed a circuit in the Makey Makey which 
sends the signal to the computer to indicate a tap (Collective and Shaw, 2012). Subjects 
performed the task while seated in a comfortable chair. 

 
2.2.3 EEG data acquisition and processing 

EEG was continuously recorded with an ANT-Neuro 32 electrode cap with 
electrodes placed according to the 10–20 International electrode system and recorded at 
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1024 Hz. The EEG data were uploaded and processed with EEGLAB (Delorme and 
Makeig, 2004), and the ERP data processed using ERPLAB (Lopez-Calderon and Luck, 
2014). ERP data was preprocessed by first down sampling to 256 Hz, then applying a 
high pass filter with 6db cutoff at .1 Hz, followed by a low-pass filter with a 6db cutoff at 
56.25 Hz to eliminate 60 Hz line noise. Data were then examined and any bad sections 
removed by hand. Any bad channels were detected and removed using the probability 
measure within the ASR plugin for EEGLAB that compares channels with their 
surrounding channels (Mullen et al., 2015). The data were then re-referenced to the 
linked mastoids, and then ICA was performed using the infomax algorithm within 
EEGLAB (Bell and Senjnowski, 1995). Following ICA, the component data were 
examined and eye blink and eye movement components were rejected to clean the data of 
further artifacts. Data were epoched using ERPLAB centered around the onset of the 
perturbed stimulus and centered on the participants taps that corresponded to the 
perturbed stimuli. Each epoch was from − .5 s of the event onset to 1 s past the onset. In 
addition to removing blink and eye movement components, any epoch that had an eye 
blink during the stimulus onset was removed. 

For source localization, the EEG data down sampled to 256 Hz before being 
filtered with a high pass filter with a 6db cutoff at .5 Hz and a low pass filter with a 6db 
cutoff at 56.25 Hz. As specified in the earlier section, data were then examined again and 
bad sections removed by hand. Any bad channels were detected and removed using the 
probability measure within the ASR plugin for EEGLAB that compares channels with 
their surrounding channels. The data were then re-referenced to the linked mastoids. Then 
ICA was performed using the infomax algorithm within EEGLAB. Dipole source 
localization was performed using the Dipfit2 plugin that performs source localization by 
fitting an equivalent current dipole model using a non-linear optimization technique using 
a 4-shell spherical model (Kavanagk et al., 1978, Scherg, 1990). Data were epoched the 
same as with the ERP data. All components that had dipoles located outside of the brain 
model were rejected, as were all components with a dipole residual variance of greater 
than 15%. The epoched data were then clustered using a PCA method in EEGLAB with 
the K-means algorithm with the clustering based solely on the location of the equivalent 
dipoles for each component. The data were clustered into 12 clusters for both the 
stimulus-locked and response-locked data as that number fits closest to achieving 1 
independent component per subject per cluster. 
 
2.3 Results 
2.3.1 Behavioral data 

To analyze the average tap time asynchrony induced by the perturbations, we ran 
the tap-time asynchronies from T-3 to T + 6 for each perturbation condition and for both 
auditory and visual modalities in a within-subjects, repeated measures ANOVA. To get 
the tap time asynchrony values we first normalized the baseline by taking the average tap 
time asynchrony from T-4 to T-1 and subtracting it from the T-3 to T + 6. This procedure 
was used by Repp (2001) and was done to reduce inter-subject variability due to differing 
negative mean asynchronies since we are not interested in those inter-subject differences. 
The Auditory and Visual conditions were first analyzed separately with 3 factors: 
Direction (positive vs negative), Magnitude (66 ms vs 16 ms), and Position (the 10 levels 
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of position: T-3 to T + 6). These data are displayed in Fig. 2.1, where a large change in 
the amount of asynchrony can be seen after the perturbation at point T for each condition. 
 

 
Fig. 2.1 Tap asynchronies at each stimulus position. The baseline asynchrony was 
normalized to 0 for all subjects and indicated by the dashed lines. Error bars show 
standard error. Note that the scale of the y axes are different between the 16 and 66 ms 
perturbations. 
 

Similar to the results of Praamstra et al. (2003), we do not see a significant main 
effect of Magnitude or of Position in the Auditory condition. We do see an effect in 
Direction F(1,9) = 51.11, P < .001, ηp2 = .850, since the direction of the asynchrony 
changes with the direction of the perturbation. Additionally, there is an interaction 
between Direction and Position F(9,81) = 62.62, P < .001, ηp2 = .874 which is due to the 
large change in asynchrony at the position of the perturbation, T, in a direction 
determined by the direction of the perturbation. We also find an interaction between 
Direction and Magnitude F(9,81) = 7.43, P < .05, ηp2 = .452. In the visual condition we 
find no significant main effect of either Magnitude or Position, but we do see a main 
effect for Direction F(1,9) = 129.67, P < .0001, ηp2 = .935 as well as interactions for 
Direction and Position F(9,81) = 78.94, P < .001, ηp2 = .898, and for Direction and 
Magnitude F(9,81) = 33.89, P < .001, ηp2 = .790. 
 

In order to compare the results between the auditory and visual conditions we ran 
a within-subjects repeated measures ANOVA on the combined auditory and visual tap-
tone asynchrony data using 4 factors: Direction, Magnitude, Position, and Modality 
(auditory and visual). In this analysis, we found no significant main effects on Magnitude 
or Position. We found an effect of Direction F (1,9) = 204.36, P < .001, ηp2 = .958, 
interactions between Direction and Position F(9,81) = 425.71, P < .001, ηp2 = .979, 
Direction and Magnitude F (9,81) = 55.01, P < .001, ηp2 = .859, and a 3 way interaction 
between Direction, Position, and Magnitude F(9,81) = 159.66, P < .0001, ηp2 = .947. 
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This analysis also found a main effect of Modality F (1,9) = 11.48, P < .01, ηp2 = .561, 
which is a result of the more gradual corrections of the visual perturbations (interaction of 
Modality X Position F(9,81) = 2.03, P < .05, ηp2 = .184), and of the greater tendency for 
overcorrection in the Auditory negative perturbations and under-correction in the 
Auditory positive perturbations (interaction of Modality by Direction F(1,9) = 5.46, 
P < .05, ηp2 = .378, and 3 way interaction between Modality, Direction, and Position 
F(9,81) = 7.11, P < .0001, ηp2 = .441). 
 

In order to check if the corrections were happening more quickly for the larger 
perturbations, and to check if the direction effected the speed of the correction, the tap-
time asynchrony data were normalized from time points T to T + 6 for both Auditory and 
Visual conditions (Fig. 2.2). These data were analyzed using the same procedure and 
factors as the tap-time asynchrony data. The Auditory normalized asynchronies were 
spread out due to the amount of overcorrection in the negative perturbations and under-
correction in the positive overcorrections yielding a main effect of Direction F (1,9) 
= 23.98, P < .001, ηp2 = .727. This under and over correction subsequently washed out 
any significant effects on Magnitude or Position. There was an interaction between 
Direction and Magnitude F (1,9) = 12.42, P < .01, ηp2 = .580, likely driven by the effect 
of Direction. The Visual normalized asynchronies show only a main effect of Position 
F(5,45) = 26.76, P < .001, ηp2 = .748 as the correction was uniformly changing and only 
effected by Position. The clear difference between the Auditory and Visual normalized 
asynchronies is shown by the main effect of Modality F (1,9) = 13.65, P < .001, ηp2 
= .602 when an analysis of the two conditions combined were run. Additionally, the 
combined analysis shows a main effect of Direction F(1,9) = 24.23, P < .001, ηp2 = .729, 
and interactions between Direction and Magnitude F(1,9) = 11.08, P < .01, ηp2 = .552, 
Modality and Direction F(1,9) = 16.15, P < .001, ηp2 = .642, and a 3 way interaction 
between Direction, Magnitude, and Modality F(1,9) = 9.65, P < .05, ηp2 = .517. 
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Fig. 2.2. Normalized asynchronies for both auditory and visual conditions. The visual 
condition induced a nearly uniform relative correction while the auditory condition shows 
a separation between conditions primarily due to under and overcorrections. 
 
2.3.2 ERP waveforms 

We focused on several different waveforms in studying the neural underpinnings 
of error correction, starting with the auditory evoked potentials shown in averaged 
waveforms from Fz in Fig. 2.3. The stimulus locked waveform shows a P1 component 
peaking around 100 ms post stimulus followed by a negative going waveform (N1) 
around 130 ms, and then the positive P2 component peaking near 200 ms post stimulus. 
Additionally, in the − 66 condition there was a second negative peak following the N1 
around 170 ms which may be a mismatch negativity response (MMN). For the purposes 
of the current study, we focused on the auditory N1 component, which showed the 
strongest deviation in the + 66 condition. 
 
 

 
Fig. 2.3. Grand average auditory and visual evoked ERPs at Fz and Oz, respectively. The 
auditory evoked ERPs are stimulus locked to the onset of a tone, while the visual evoked 
ERPs are stimulus locked to a flash. Both plots show wave forms evoked by + 66 
perturbations, the − 66 perturbations, and a non-perturbed stimulus. 
 

To look at the visual evoked potentials seen in Fig. 2.3, we used the averaged 
waveform at Oz instead of at Fz, as this is the point where the primary visual attentional 
components can be best measured from. The wave forms consist of a large positive peak 
near 150 ms post stimulus (P1) followed by the negative N1 at around 180 ms. There is 
then a second positive waveform peaking between 200 and 250 ms labeled the P2. This 
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analysis focuses on the visual P1 wave, which like the auditory N1 was effected the most 
in the + 66 condition. 

The response evoked potentials, shown in Fig. 2.4, are measured at Fz. They 
consist of a large negative premovement wave followed by a large positive 
postmovement wave near 100 ms. Following Praamstra et al. (2003), we focus on the 
ERN, which would occur around 200 ms, and the associated Error Positivity (Pe) near 
300 ms. Since the tap time asynchrony was in the range of − 50 ms, there is some overlap 
with the frontal stimulus evoked components. This is especially pronounced in the visual 
response locked waveform as there is a large P3 component that overlaps with the 
expected onset of the ERN and Pe (Fig. 2.8). Since the P3 component is stimulus locked, 
but the response locked waves are locked to the tap time, the effect is a large positive 
wave in the visual response locked ERP not seen in the auditory response locked ERP. 
Since the expected stimulus time onset differs with the actual stimulus onset time in the 
perturbation conditions, the effect of the stimulus evoked waveforms on the response 
evoked waveforms is temporally shifted based on the size and direction of the 
perturbation. 

 

 
Fig. 2.4. Auditory ERP at Fz time-locked to the tap onset for ± 66 ms perturbations and a 
non-perturbed reference. 
 
2.3.3 Auditory-evoked potentials 

The AEPs were analyzed based on the difference in peak amplitude of the N1 
wave between the perturbation conditions and the corresponding non-perturbation 
reference condition seen in Fig. 2.5. The perturbation condition was at T, while the 
reference condition was always at T-2, and taken from the same blocks as its 
corresponding perturbation. The peak amplitude was measured using a local peak finding 
procedure within ERPLAB between 110 and 160 ms post stimulus onset using a 
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jackknife procedure. The jackknife procedure takes as many grand averages as there are 
subjects, with each grand average subtracting one subjects’ waveform. Applying this 
method has the advantage with non-linear measures, such as peak amplitude and peak 
latency, of reducing error variance, effectively reducing the probability of a Type II error 
while not increasing the likely-hood of a Type I error (Luck, 2014). These difference 
scores were then entered into a 2 factor within-subjects, repeated-measures ANOVA with 
the factors of Direction (+/- perturbations) and Magnitude (66 and 16). No comparisons 
were made between the auditory and visual ERPs due to the physical confound of the 
different stimulus types. This yielded main effects of Magnitude (1,9) = 325.58, P < .001, 
ηp2 = .973, and Direction (1,9) = 566.89, P < .001, ηp2 = .984, indicating that the N1 
wave was modulated by both the direction and magnitude of the perturbations, and was 
concurrent with Praamstra et al. (2003). Additionally, there was an interaction between 
Magnitude and Direction (1,9) = 297.37, P < .001, ηp2 = .971, due to the 66 ms 
perturbations having much larger effects than the 16 ms perturbations. These results are 
largely driven by the 66 ms perturbations and especially the + 66 perturbation which 
produced the most deviant N1. 
 

 
 
Fig. 2.5. Auditory evoked potentials at Fz for both the perturbed conditions at time T, and 
corresponding reference (non-perturbed) condition at T-2 for each of the 4 perturbation 
types. 
 
2.3.4 Visual-evoked potentials 

The VEPs were analyzed based on the difference in peak amplitude of the P1 
wave between perturbation conditions and their corresponding references in the same 
fashion as the auditory N1 was analyzed. The peak was measured using the local peak 
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function in ERPLAB between 100 and 190 ms post stimulus onset as seen in Fig. 2.6. 
The 2-way ANOVA showed a main effect of Direction (1,9) = 107.67, P < .001, ηp2 
= .923, and an interaction effect between Direction and Magnitude (1,9) = 114.49, 
P < .01, ηp2 = .927, but no significant main effect of Magnitude. These results are likely 
driven by the + 66 perturbation which resulted in a P1 wave of reduced latency. To test 
the differences in latency, additional analyses were performed using the differences 
between the local peak latency of the P1 scores of the perturbed and corresponding 
reference P1 waves. This analysis was done using a jackknife procedure and the 2-way 
ANOVA, showing significant main effects in both Magnitude (1,9) = 48.96, P < .001, 
ηp2 = .845, and Direction (1,9) = 36.42, P < .001, ηp2 = .802, as well as in the interaction 
between Magnitude and Direction (1,9) = 50.8, P < .001, ηp2 = .850. These results 
confirm that the P1 wave had a reduced latency in the + 66 condition. 
 

 
Fig. 2.6. Visual evoked potentials at Oz for both the perturbed conditions at time T, and 
corresponding reference (non-perturbed) condition at T-2 for each of the 4 perturbation 
types. 
 
2.3.5 Response-locked potentials 

The response-locked potentials from the auditory condition in Fig. 2.7 were 
measured at Fz. An inspection of Fig. 2.7 reveals a waveform similar to that as reported 
in Praamstra et al. (2003). To analyze the ERN, we measured the mean-amplitude 
between 180 and 220 ms of the waveforms and then took the difference of the mean-
amplitude between the perturbation condition and the corresponding reference from a 
non-perturbed tap at T − 2. Those difference scores were entered into a within-subjects, 
repeated measures 2-way ANOVA with the factors of Direction and Magnitude. We 
found no significant effects which is in contrast to the results reported by Praamstra et al. 
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(2003). The Pe that usually corresponds to the ERN, and appears in the + 66 auditory 
condition was analyzed in the same way as the ERN, except using a mean-amplitude 
window of 300–400 ms. Here we find a main effect of Direction (1,9) = 10.66, P < .05, 
ηp2 = .542 and a significant interaction between Direction and Magnitude (1,9) = 8.44, 
P < .05, ηp2 = .484, but no main effect of Magnitude. Since the Pe almost always 
corresponds to an ERN, these results suggest that the ERN was lost due to the confound 
of the auditory-evoked N1 and P2 waves, while the Pe was not effected due to its later 
onset. 
 

 
Fig. 2.7. Response locked waveforms from time T for the 4 perturbation types from the 
auditory condition. 
 

The response-locked waveforms in the visual condition Fig. 2.8(A) show a 
somewhat different looking waveform than compared to the auditory response-locked 
waveforms. This difference is due to the large frontal P3 component found in the visual 
stimulus locked potentials at Fz shown in Fig. 2.8B. The data were analyzed in the same 
fashion as the auditory response locked data. Once again in terms of the ERN, no 
significant effects were found, just as in the auditory data. In looking at the area of the Pe, 
a main effect was found of Direction (1,9) = 11.21, P < .01, ηp2 = .555, but no significant 
effect of Magnitude was discovered. This finding corresponds to the fact that the large 
visual evoked frontal P3 component would show up in the response locked data shifted 
according to perturbation, and is not taken as an indication of any Pe or corresponding 
ERN. 
 



  

  

25 

 
Fig. 2.8. Visual condition waveforms at time T at Fz. (A) Visual response locked with the 
4 perturbation types. Note the large late positive waveforms that differentiate in latency 
by perturbation condition. (B) Visual stimulus locked waveforms at Fz. Note the 
extremely large late waveforms. These waveforms explain the large late waveforms in 
(A). 
 
2.3.6 Source localization 

We investigated the underlying neural components of error detection and error 
correction using a clustering analysis of the dipoles localized from the individual 
independent components. The nature of dipole source localization on EEG data means 
that it does not have near the spatial precision as fMRI methods, however, when it is used 
in conjunction with evidence from other localization methods and neuroscience research 
it is a useful tool to determine the sources of the neural activity measured at the electrode 
level. The activity of the individual independent components with each cluster was 
averaged, resulting in an ERP for each cluster. This is to provide insight on the function 
of the components in relation to the ERPs generated at the scalp level. Our clustering 
analysis generated 12 clusters from 223 individual independent components left after 
artefactual components were rejected. Artefactual components consisting of blink and 
eye movement components were removed manually. Additionally, any component with a 
dipole residual variance greater than 15%, and any component with a dipole outside of 
the brain were also removed from the analysis. We focus on 4 clusters here; 2 centered in 
the occipital lobe, one in the premotor cortex, and one focused at the anterior cingulate. 

Looking at the clusters in the occipital lobe in Fig. 2.9, we see two similar 
components with one in the right occipital lobe and one in the left occipital lobe. The 
cluster in the right occipital lobe was consists of 19 independent components and the 
cluster in the left consists of 16 independent components. The ERPs in Fig. 9C and D are 
both time locked to the stimulus onset at time T for the ± 66 perturbations for both visual 
and auditory conditions. The ERPs generated are both consistent with the ERPs from the 
surface electrodes at Oz, confirming that the visual evoked P1 originates in the visual 
cortex. 
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Fig. 2.9. Clusters from the occipital lobe and their associated stimulus locked ERPs. (A) 
Cluster in the right Occipital Lobe. (B) Cluster in the left Occipital Lobe. (C) Stimulus 
locked ERP from the left Occipital cluster at time T for the ± 66 ms perturbations for both 
Auditory and Visual conditions. (D) Stimulus locked ERP from the right Occipital cluster 
at time T for the ± 66 ms perturbations for both auditory and visual conditions. 
 

The cluster centered on the premotor cortex in Fig. 1.10 consists of 19 
independent components. We generated 2 ERPs from components in this cluster; one 
time locked to the stimulus at time T (Fig. 10B), and one time locked to the tap onset at 
time T (Fig. 10C). Both ERPs contain the ± 66 perturbations for both auditory and visual 
conditions. For the Auditory stimulus locked ERP, we find negative going waveforms 
peaking at approximately 130 ms post stimulus onset and a following positive waveform 
peaking around 190 ms in the + 66 condition and near 240 ms in the − 66 condition. 
These peaks correspond roughly with Auditory N1 and P2 waves found in the channel 
electrodes at Fz. No such waveforms are found in the visual stimulus locked ERPs, 
suggesting that the premotor cortex may be playing a role in auditory error detection but 
not in visual error detection. The response locked ERPs show a pre-movement negativity 
for both Auditory and Visual conditions, and large post-movement positivity around 
100 ms in both Auditory conditions, with a smaller post-movement positivity in the 
visual conditions. 
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Fig. 2.10. Cluster centered around the pre-motor cortex and associated ERPs. (A) 
Clustered component dipoles centered approximately at the pre-motor cortex. (B) 
Stimulus locked ERP from pre-motor cluster at time T for the ± 66 ms perturbations for 
both Auditory and Visual conditions. (C) Response locked ERP from pre-motor cluster at 
time T for the ± 66 ms perturbations for both Auditory and Visual conditions. 
 

The cluster centered approximately on the anterior cingulate shown in Fig. 2.11 
consists of 19 independent components. We generated 2 ERPs from this cluster; one time 
locked to the stimulus at time T (Fig. 2.11B), and one time locked to the tap onset at time 
T (Fig. 2.11C). Both ERPs contain the ± 66 perturbations for both auditory and visual 
conditions. In the stimulus locked ERP, we see a waveform strongly resembling those 
detected at Fz in the auditory conditions (shown in Fig. 2.5) with similar auditory N1 and 
P2 peak latencies, showing a role for the anterior cingulate in auditory error detection. In 
the visual stimulus locked waveforms a negative wave with a peak near 150 ms post 
matches the anterior N1 measured at Fz for the visual stimulus shown in Fig. 8B, 
suggesting that there is some role for the anterior cingulate in error detection for visual 
stimuli. Looking at the response locked waveforms there is a pre-movement negativity 
followed by a post-movement positivity peaking near 100 ms post tap for both Auditory 
and Visual conditions. In the Auditory + 66 there is an additional peak near 330 ms, but 
none for the Auditory − 66 condition or for either visual condition. This peak corresponds 
with the Pe found in the Auditory response locked waveforms at Fz, suggesting a further 
role for anterior cingulate in error detection and correction. 
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Fig. 2.11. Cluster centered around the anterior cingulate and associated ERPs. (A) 
Clustered component dipoles centered approximately at the anterior cingulate. (B) 
Stimulus locked ERP from anterior cingulate cluster at time T for the ± 66 ms 
perturbations for both Auditory and Visual conditions. (C) Response locked ERP from 
anterior cingulate cluster at time T for the ± 66 ms perturbations for both Auditory and 
Visual conditions. 
 
2.4 Discussion 
2.4.1 Summary of results 

Our data show clear differences in error correction between auditory and visual 
sensorimotor synchronization. Within the tapping data, we show that changes in 
perturbation direction or magnitude do not affect the rate of correction in the visual 
condition. In the auditory condition, we find clear differences in rate of correction with 
the direction of the perturbations, which is largely attributed to the pronounced under- 
and overcorrection. Within both the AEPs and VEPs we find that the + 66 perturbations 
produce the largest effect. In the auditory condition we see pronounced N1 component 
for the + 66 condition at Fz, and in the visual condition we find a reduced latency for the 
visual P1 component at Oz. The – 66 condition produced what may be a MMN in the 
Auditory − 66 condition, while the visual − 66 condition resulted in a larger 
N1/attenuated P2 component. Looking at the response locked waveforms we only find 
evidence suggesting an ERN in the Auditory + 66 with the pronounced error positivity 
(Pe). The localization results suggest that the visual system is performing at least some of 
the timing activity of rhythm perception within the visual cortex, while the auditory 
timing of rhythm perception appears to be performed within the motor cortex. 
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Additionally, the anterior cingulate cortex is implicated in error monitoring for both the 
incoming stimuli and for errors made in response to perturbed stimuli. 
 
2.4.2 Differences between auditory and visual behavioral data 

The normalized asynchrony data show the visual correction is happening at the 
same rate regardless of the size or direction of the error. The gradual undifferentiated 
correction in the visual tapping data suggests that the visual system is only using a phase 
correction in response to the perturbations. The auditory data, on the other hand, show an 
effect of the direction in the normalized asynchrony of the data, which we suggest is due 
to the amount of undercorrection for the late coming perturbations and overcorrection for 
the early coming perturbations. While our data does not show a clear effect of the size of 
the perturbation on correction for auditory stimuli, several previous studies have shown 
this effect, suggesting a difference in phase correction and period correction (Repp, 2000, 
Repp, 2001, Praamstra et al., 2003). While our data do not clearly show the classical 
pattern of period correction, we suggest that the evidence from previous research shows 
the perturbations of ± 66 ms do induce period corrections. 
 
2.4.3 Stimulus locked ERPs 

The auditory evoked potential (AEP) of focus of this study is the N1, which is 
believed to signal detection of changes in the auditory environment (Hyde, 1997), and is 
linked to the modulation of attention such that an increase in N1 amplitude links with 
increased attention (Lange, 2013). The AEPs show a consistent pattern where the ± 16 ms 
perturbations produce no significant differences in wave forms, which suggests that the 
mechanisms connected to the auditory N1 are not sensitive to small phase correction 
inducing shifts, and therefore do not help to modulate attention in order to correct errors. 
Consistent with the findings in Praamstra et al. (2003), the larger magnitude errors of ± 
66 ms provoke effects on the N1 by increasing the N1 amplitude and thus suggest period 
correction is tied to the mechanisms responsible for the N1. In addition to the effects on 
the N1, in the – 66 perturbation we see a wave form that may be attributed to a Mismatch 
Negativity (MMN), which is thought to be a pre-attentional response to an auditory 
change great enough to affect a pertinent behavioral activity (Näätänen, and Winkler, 
1999). Previous research has shown that the MMN can be activated in response to an 
unexpectedly early tone in otherwise isochronous rhythms (Ford and Hillyard, 1981; 
Rüsseler et al., 2001). These effects suggest there may be different mechanisms of error 
direction depending on the direction of error. 

The visual evoked potential (VEP) of focus for this study is the visual P1, which 
originates in the occipital lobe and is believed to be due to inhibitory processes resulting 
from thalamic input to the visual cortex (Kraut et al., 1985). The P1 is effected by 
changes in luminance, such as flashes. Additionally, the latency of the P1 peak has been 
shown to decrease in response to large changes in amount of luminance (Luck and 
Kappenman, 2011). Our data show the P1 was not responsive to any of the perturbations 
except for the + 66 condition, and only by way of a reduction in peak latency. The fact 
that the latency was reduced in the large, late coming perturbations suggests that the P1 
mechanism was primed or expecting the onset of the stimulus. This indicates that a 
measure rhythmic timing may be occurring within the visual cortex. 
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2.4.5 Subcortical and cortical processes 
In both the auditory and visual conditions, the evoked potentials only show 

responses to the large perturbations: both + and – 66 perturbations induced larger N1 
amplitudes in the auditory condition, and the + 66 condition reduced the latency of P1 in 
the visual condition. These evoked potentials originate in the cortex since the subcortical 
regions of the brain do not have the geometric neural alignment necessary to evoke event 
related potentials. Indeed, our source localization data suggest that the anterior cingulate 
is directly involved in the period-correction process, as would be expected from the 
known error monitoring role of the anterior cingulate (Botvinick et al., 2001, Botvinick et 
al., 2004, Ridderinkhof et al., 2004). So, while our data show that at least some of the 
processing of period-correction errors is happening at the cortical level, any phase 
correction processing is likely happening at the subcortical level, with previous research 
perhaps suggesting that the basal ganglia might play a large role in this process (Cameron 
et al., 2016, Grahn and Brett, 2009). 
 
2.4.6 The role of the ERN 

The ERN is known to arise in the result of making an error, even when that error 
is not reported. (Falkenstein et al., 2000, Olvet and Hajcak, 2008) The error positivity 
(Pe) often follows the ERN, but only when that error is consciously detected (Overbeek 
et al., 2005, Endrass et al., 2007). Although our data do not show a statistically 
significant ERN, they are suggestive of its existence as backed up by the large Pe found 
in the auditory + 66 condition. This is similar to what Praamstra et al. (2003) found where 
only the auditory + 50 condition elicited an ERN in their study. The fact that this error 
monitoring activity only arose from the large, late-arriving perturbation is likely due to 
the fact that synchronized tapping to auditory tones usually involves tapping roughly 
50 ms before the actual tone onset, or what is known as the negative mean asynchrony 
(Repp, 2005). Since the subjects are tapping slightly ahead of the expected onset, a late 
tone onset will seem slightly more deviant than it actually is, while an early tone onset 
will seem less deviant. In the case of the visual condition, there is a lack of evidence for 
the ERN which suggests there was simply not enough temporal acuity provided by the 
visual system to engage this error mechanism. 
 
2.4.7 Source analysis 

The clustering analysis done on the component dipoles suggest the visual system 
is processing the timing of the visual rhythmic flashes at some level in the visual cortex, 
as well as within the anterior cingulate. When looking at the timing of the evoked 
potentials between the visual cortex and the anterior cingulate for the large perturbations, 
we can see that both show large waveforms peaking at approximately the same point in 
time, suggesting that the two areas are tied together in the rhythmic timing and error 
monitoring of the visual flashes. We also find evidence that the anterior cingulate is 
involved in the error monitoring of the auditory stimuli as well as for monitoring 
response errors in tapping timing. This role of the anterior cingulate in error monitoring 
for both stimulus and response errors fits with the perceived role of the anterior cingulate 
as implicated in cognitive control functions that allow the brain to adapt behavior to 
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changing task demands and circumstances (Botvinick et al., 2001, Botvinick et al., 2004, 
Ridderinkhof et al., 2004) 
 
2.4.8 Visual error correction mechanism 

Many previous studies have shown that the auditory system is tightly coupled 
with the motor system for beat perception (Chen et al., 2006, Chen et al., 2008, Grahn 
and Brett, 2007, Grahn and Rowe, 2009). This coupling with the motor system results in 
strong synchronization abilities to auditory rhythms. An fMRI study by Hove et al. 
(2013a) showed that synchronizing to a visual flashing rhythm, as well as a moving 
rhythm activates basal ganglia linked to the motor network less strongly than comparable 
auditory rhythms, suggesting the visual system is not able to provide the necessary 
information to the motor system to allow for motor synchronization to flashing visual 
rhythms with the same level of accuracy seen with auditory rhythms. It is known that 
synchronization ability to a moving visual rhythm, e.g. a bouncing ball, is much closer to 
the ability to synchronize to an auditory rhythm (Hove et al., 2010, Hove et al., 2013b), 
although it is not clear that synchronizing movements to a moving stimulus is invoking a 
sense of rhythm in the same way as an auditory rhythm. Likewise, synchronizing to an 
auditory rhythm that consists of a frequency modulated siren also results in reduced 
synchronization ability compared to a normal rhythm (Hove et al., 2013a). Neither of 
these kinds of stimuli have been used in an error correction task, so the capabilities of 
error correction for these stimuli remain unknown. We do see evidence that the visual 
system can detect at least some errors with flashing stimuli based on the latency reduction 
of the visual P1 to the + 66 perturbations. Curiously, even though the visual system is 
detecting this error, it does not lead to any improvement in synchronization error 
correction. This suggests the visual system is simply not coupled to the motor system for 
rhythm entrainment in the same way that the auditory system is, and therefore explains 
why synchronization to flashing visual rhythms is much more difficult than 
synchronization to a similar auditory rhythm. It is important to underscore that we cannot 
conclude about other visual-motor coupling mechanisms (such as catching a ball or 
navigating in a cluttered environment) from the current experiment, so we are extending 
our findings only to predictive sensorimotor synchronization tasks of a rhythmic nature. 
It is also important to note that we are not making any specific comparisons between 
auditory and visual ERPs directly, since that would be akin to comparing two very 
different phenomena (Hillyard and Picton, 1987, Näätänen, 1975). Our comparisons are 
limited to the sensorimotor activity that is precipitated by error detection in each modality 
separately. 
 
2.5 Conclusion 

There are several key findings in this study. The suggestion that there is a MMN 
response for the − 66 auditory condition implies there may be separate mechanisms in 
play for detecting errors, depending on the direction of the errors. We also find that the 
anterior cingulate is implicated in error monitoring processes for the rhythmic timing of 
incoming stimuli as well as for responses in synchronization induced by perturbations in 
the otherwise isochronous rhythm. The lack of evidence for neural correlates of phase 
correction suggests that the processes involved in phase correction are subtle and likely 
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subcortical. Finally, the fact that it is difficult to entrain to a visual flashing rhythm is 
likely due to the visual system not being coupled to the motor system as strongly as the 
auditory system for these kinds of rhythmic entrainment tasks. It is also possible that 
there are separate mechanisms of visual synchronization, but this subject matter needs 
more study before those mechanisms may be determined. 
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Chapter 3 
 

3 Modality-specific frequency band activity during neural entrainment to 
auditory and visual rhythms 

 
 

Chapter 3 is a published experiment looking at the role of beta band activity in 
auditory and visual rhythm perception. The previous chapter looked at the timing 
mechanisms involved in a SMS task, but this chapter shifts focus to investigate modality 
differences in rhythm perception without interference of a motor task. The benefit of this 
approach is that it eliminates the possibility that the act of engaging the motor system in 
SMS to a rhythm may effectively off-load some of the temporal processing to the motor 
system. It is not a coincidence that musicians often tap their feet during performances to 
keep time; research has shown that moving to a rhythm increases the precision with 
which that rhythm is perceived (Manning & Schutz, 2013; Su & Pöppel, 2012). The 
results of this experiment provide further evidence of visual specific rhythmic timing 
mechanisms. 
 
Published as: 
Comstock, D. C., Ross, J. M., & Balasubramaniam, R. (2021). Modality-specific 
frequency band activity during neural entrainment to auditory and visual 
rhythms. European Journal of Neuroscience, (in press) 
© 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 
Reproduced with permission. 
 
Abstract 

Rhythm perception depends on the ability to predict the onset of rhythmic events. 
Previous studies indicate beta band modulation is involved in predicting the onset of 
auditory rhythmic events (Fujioka et al., 2009, 2012; Snyder & Large, 2005). We sought 
to determine if similar processes are recruited for prediction of visual rhythms by 
investigating whether beta band activity plays a role in a modality-dependent manner for 
rhythm perception. We looked at electroencephalography time–frequency neural 
correlates of prediction using an omission paradigm with auditory and visual rhythms. By 
using omissions, we can separate out predictive timing activity from stimulus-driven 
activity. We hypothesized that there would be modality-independent markers of rhythm 
prediction in induced beta band oscillatory activity, and our results support this 
hypothesis. We find induced and evoked predictive timing in both auditory and visual 
modalities. Additionally, we performed an exploratory-independent components-based 
spatial clustering analysis, and describe all resulting clusters. This analysis reveals that 
there may be overlapping networks of predictive beta activity based on common 
activation in the parietal and right frontal regions, auditory-specific predictive beta in 
bilateral sensorimotor regions, and visually specific predictive beta in midline central, 
and bilateral temporal/parietal regions. This analysis also shows evoked predictive beta 
activity in the left sensorimotor region specific to auditory rhythms and implicates 
modality-dependent networks for auditory and visual rhythm perception. 
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3.1 Introduction 
Perceiving a rhythm requires making predictions about the temporal onset of 

rhythmic events. This ability allows us to dance in time with music, play music with 
others, detect a musical beat, and notice when timing is off the beat. Common measures 
of rhythm perception are sensorimotor synchronization (SMS) tasks that involve 
synchronizing one's movements to rhythmic stimuli. Although most humans have little 
trouble synchronizing to auditory rhythms accurately, synchronizing to visual rhythms 
can be more variable. SMS to auditory rhythms are more reliable and adaptive (Chen et 
al., 2002; Lorås et al., 2012; Repp, 2003; Repp & Penel, 2004), compared with visual 
flashing rhythms (Comstock & Balasubramaniam, 2018; Repp & Su, 2013). However, 
when synchronizing movements with rhythmically moving visual stimuli such as a 
bouncing ball, synchronization accuracy improves, yet not to the level of auditory 
synchronization (Gan et al., 2015; Hove, Iversen, et al., 2013; Hove et al., 2010; Iversen 
et al., 2015). The reasons for the disparity in SMS accuracy across auditory and visual 
modalities are as of yet unclear, and a closer investigation of these mechanisms is 
required for a complete understanding of neural timing and synchronization processes. 
The present study aims to explore neurophysiological mechanisms of auditory and visual 
entrainment, particularly with regard to prediction of rhythmic events. 

Previous functional magnetic resonance imaging (fMRI) research has shown there 
is overlap in the structures involved between visual and auditory rhythm perception, 
particularly within the premotor cortex, putamen, and cerebellum (Araneda et al., 2017; 
Hove, Fairhurst, et al., 2013). Although these areas appear to play a supramodal role in 
rhythm perception, putamen activation is stronger for auditory rhythms than for visual 
rhythms, suggesting the auditory system may be more tightly connected to timing 
networks (Araneda et al., 2017; Hove, Fairhurst, et al., 2013). There is also evidence 
from fMRI research suggesting the visual system has its own in-house rhythm timing 
mechanisms with sources in the parietal lobes (Jäncke et al., 2000; Jantzen et al., 2005), 
and in MT/V5 (Jantzen et al., 2005). The visual cortex has also been implicated in visual 
rhythm timing through ERP work (Comstock & Balasubramaniam, 2018) and through 
psychophysics work (Zhou et al., 2014). Taken together, we interpret this literature as 
support for modality-dependent rhythmic processing mechanisms, although to our 
knowledge this has not yet been clearly shown with a targeted electroencephalography 
(EEG) study. 

Beyond modality-dependent rhythm processing, it has been suggested that neural 
timing mechanisms are task specific (Comstock et al., 2018; Wiener & Kanai, 2016). 
Evidence suggesting distinct aspects of rhythm timing and duration perception has been 
seen in the cerebellum through lesion work (Grube et al., 2010), and work using 
transcranial magnetic stimulation (TMS) (Grube et al., 2010), additional evidence is seen 
through TMS work involving the posterior parietal lobes (Ross et al., 2018) suggesting a 
specific role for duration timing in the cerebellum, whereas the posterior parietal cortex is 
involved in rhythm timing. Much of the evidence supporting predictive processing for 
rhythm comes through measures of neural oscillation within different frequency bands. 
This oscillatory modulation is believed to indicate communication between different 
regions of the brain, with lower frequency oscillations involved more in communication 
between regions that are farther away from each other, and higher frequencies involved 
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more in localized communication (Sarnthein et al., 1998; Von Stein & Sarnthein, 2000). 
Furthermore, Bastos et al. (2015) have shown in non-human primates using 
electrocorticography (ECoG) that activity in the gamma and theta bands are involved in 
feedforward, or bottom-up visual processing, whereas the beta band is involved in 
feedback, or top-down visual processing. Michalareas et al. (2016) have shown similar 
results in human visual cortical areas with gamma involved in bottom-up processing and 
alpha and beta involved in top-down processing by correlating human 
magnetoencephalography (MEG) data with corresponding macaque neural anatomy. 
Interestingly, Michalareas et al. (2016) also found that alpha and beta top-down 
processing affects the ventral and dorsal visual stream areas differently, by shifting dorsal 
stream activity higher in the functional hierarchy of visual processing, whereas ventral 
stream downward. If frequency band activity relates to specific top-down or bottom-up 
processing networks, then by measuring frequency band activity during different rhythm 
timing tasks we can find markers of the networks involved, supporting different networks 
for different tasks. Neural oscillations within different frequency bands are therefore a 
rich source of information for investigating timing networks. 

Neural mechanisms of auditory rhythm perception have been suggested to rely on 
strong interactions between motor systems and auditory cortices (Iversen & 
Balasubramaniam, 2016; Janata et al., 2012; Repp & Su, 2013; Ross, Iversen, et al., 
2016; Ross, Warlaumont, et al., 2016), possibly mediated through projections in parietal 
cortex (Patel & Iversen, 2014; Ross et al., 2018). Communication across these networks 
could be carried out through frequency band-specific oscillatory activity. Activity in the 
beta band (14–30 Hz) is of primary interest as it has been shown to play a role in 
prediction and timing for auditory rhythms using EEG (Snyder & Large, 2005) and MEG 
(Fujioka et al., 2009, 2012, 2015), as well as being implicated in the onset of movements 
(Kilavik et al., 2013). 

Snyder and Large (2005) found differentiation between induced and evoked 
activity in EEG high beta and low gamma bands (20–60 Hz), where induced activity was 
defined as not phase locked to a stimulus onset and evoked activity was defined as phase 
locked to the stimulus onset. By presenting subjects with a sequence of tones with 
occasional tones omitted, Snyder and Large found induced activity was similar in tone 
trials and omitted tone trials, indicating expectation for the tones in the sequence, 
whereas evoked activity was greatly reduced when there was no tone. Fujioka et al. 
(2009) used a similar omission paradigm with MEG and found induced beta from 
auditory cortices decreased after tone onset and increased in anticipation of the expected 
tone onset. A later MEG study showed the rate of beta increase in anticipation of tone 
onset is dependent on the tempo of the stimulus, whereas beta decrease following tone 
onset is consistent across multiple tempi (Fujioka et al., 2012). Fujioka et al. (2012) 
additionally found cortico-cortical coherence that followed the tempo of the rhythms 
between auditory cortices and sensorimotor cortex, supplementary motor area (SMA), 
inferior-frontal gyrus, and cerebellum. 

The role of beta activity in visual rhythm perception is less studied. However, 
beta band amplitude modulation arising from the motor cortex has also been implicated 
in visually mediated temporal cues indicating expectation in a study using an implanted 
multielectrode array in the primary motor cortex (Saleh et al., 2010). More recently, 
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Varlet et al. (2020), showed cortico-muscular coupling of beta-band activity induced by 
audio-visual rhythms between EEG recorded over motor areas and EMG recorded from 
finger muscles pressing down on a force sensor. Significantly, the coupling appeared to 
be modulated by the tempo of the rhythm and peaked roughly 100 ms prior to each tone 
in the sequence. Interestingly, the study did not find significant cortico-muscular 
coupling in response to separate auditory or separate visual rhythms. Although Saleh et 
al. (2010) and Varlet et al. (2020) suggest involvement of beta band modulation in visual 
rhythm perception, the role of beta band activity in visual rhythm perception remains 
unclear. 

To investigate predictive mechanisms of rhythm perception across modalities, we 
used EEG to record beta band modulation during auditory and visual rhythms. To 
separate out the stimulus response activity from activity related to temporal prediction of 
the stimulus we used an omission paradigm similar to that used by Snyder and Large 
(2005) and Fujioka et al. (2009). Given that previous studies have indicated involvement 
of sensory and motor-related beta in rhythm perception (Fujioka et al., 2012, 2015; Varlet 
et al., 2020) we describe all Beta band activity. Because EEG activity smears at the scalp 
it can be difficult to separate out concurrent sources of activity. We used independent 
component analysis (ICA) as a blind source separation method in an attempt to 
distinguish sensory and motor related activity. 

Based on the assumption that beta oscillations play a general role in top-down 
processing, we hypothesized that we would find induced beta power modulation for both 
auditory and visual modalities following the same pattern seen in Fujioka et al. (2009). 
Specifically, we hypothesized we would find an induced increase in beta in anticipation 
of the onset of each rhythmic stimulus event, and also prior to the expected onset of an 
omitted event (omission onset), followed by a sharp decrease in beta power after event 
onset, but not after omission onset. Furthermore, we expected that evoked beta power 
would increase only in response to stimulus onset and not in anticipation of omission 
onset based on the findings of Snyder and Large (2005). Because the motor system has 
been implicated in both auditory and visual rhythm perception, and evidence of motor 
related beta for rhythm perception has been seen for auditory rhythms (Fujioka et al., 
2012, 2015), and implicated in visual rhythms (Varlet et al., 2020), we expected to find 
motor related predictive beta activity for both auditory and visual modalities. To explore 
modality-specific characteristics of predictive beta without prior assumptions about 
visual and auditory mechanism or network contributions to predictive beta, we performed 
an exploratory ICA-based clustering technique using component spatial information 
(dipole locations and scalp topographies) to group similar sources that were shared across 
subjects. To avoid bias in cluster interpretation, we present and describe in detail all 
clusters. 
 
3.2 Materials and Methods 
3.2.1 Participants 

A total of 18 subjects participated in the experiment (11 female, average age of 
23.6 (20–34)) with one being rejected after data collection for poor signal to noise ratio. 
All participants were right-handed and had typical hearing and typical or corrected 
vision. The experimental protocol was carried out in accordance with the Declaration of 
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Helsinki. This study was approved by the UC Merced Institutional Review Board for 
research ethics and human subjects, and all participants gave informed consent prior to 
testing. 
 
3.2.2 Task 

After subjects gave written consent, they were seated and fitted with a 32 
electrode EEG cap. Subjects were then tasked with watching isochronous flashing visual 
rhythms or listening to isochronous auditory rhythms. Both kinds of rhythms had an 
interonset interval (IOI) of 600 ms, and both had occasional omissions of single tones or 
single flashes. The rhythms were broken into stimulus trains with each train consisting of 
100 tones or flashes with 7 omitted tones or flashes placed randomly within the train. The 
location of the omitted tones or flashes in the stimulus trains were constrained such that 
there must be at least 8 tones or flashes between each omission. There were 20 stimulus 
trains per condition for a total of 140 omissions in each condition. Subjects completed all 
of the stimulus trains in one modality, followed by all of the stimulus trains in the other 
modality, in design counterbalanced across subjects. Before the omission conditions, 
subjects were presented with a condition with no omissions consisting of 140 tones or 
flashes. The non-omission stimulus trains were of the same modality as the omission 
stimulus trains that would follow. This design resulted in 140 trials for each of the four 
conditions (tone non-omission, tone omission, flash non-omission, flash omission; Figure 
3.1). 

To ensure that subjects were attending to the rhythms, after each train a shorter 
sequence of 5 tones or flashes was presented at a slightly slower or faster tempo than the 
experimental train, and subjects were asked to determine if the shorter rhythm was slower 
or faster than the preceding rhythm. The number of correct responses and response times 
were recorded and used to determine if subjects were adequately attending to the stimulus 
trains. 
 

 
Fig. 3.1. Schematic of control and omission conditions for both auditory and visual 
metronomes, and depiction of the visual flash metronome stimuli. The fixation cross was 
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always visible for both auditory and visual conditions, even when the flash appeared in 
the visual condition 
 

The auditory metronome consisted of 1,000 Hz tones lasting 50 ms with a 10 ms 
rise and 40 ms fall time, generated using Audacity digital audio software. The visual 
metronome consisted of light gray square flashes 3 × 3 cm lasting 50 ms each. In both 
cases, there was a black screen with a dark gray fixation cross in the center of the screen 
where the lines were approximately 3 mm wide and 4 cm long. The visual flashes always 
appeared behind the fixation cross so that the cross never disappeared when the flash 
appeared behind it. 

The stimuli were presented using Paradigm experimental stimulus presentation 
software (Perception Research Systems, 2007) on a 60 Hz monitor, which was 
approximately 65 cm from the subject's head. Subjects responded to any prompts using a 
keyboard placed on a desk in front of the chair they were seated in. 
 
3.2.3 EEG data acquisition and processing 

Electroencephalography was continuously recorded using an ANT-Neuro 32 
channel amplifier with the ANT-Neuro 32 electrode Waveguard cap. The electrodes were 
situated according to the 10–20 International system and EEG was recorded with a 
sampling rate of 1,024 Hz. The data were then processed using the EEGLAB v14.1.1 
toolbox (Delorme & Makeig, 2004) within MATLAB 2019. Channel locations were 
added using the standard location montage for the Wavegaurd cap. EEG data were first 
pruned by hand to remove sections between stimulus train blocks. This was done to 
remove any break periods between trains. Following pruning, the data were down-
sampled to 256 Hz and then a high-pass filter with a 2 Hz passband edge and 6 dB cutoff 
at 1 Hz was applied. A low-pass filter with a 50 Hz passband edge and 6 dB cutoff at 
56.25 Hz was applied to remove 60 Hz line noise. Bad channels were rejected that had 
activity with lower than 0.8 correlation with their surrounding channels with the 
maximum channels rejected for any one subject being 5 (M = 2.71, MAD = 1.31). 
Rejected channels were then interpolated using spherical interpolation. We then removed 
single-channel artifacts using artifact source reconstruction (ASR), which has been 
shown to effectively remove large-amplitude or transient artifacts in the data (Chang et 
al., 2018; Mullen et al., 2015). ASR was performed using a conservative burst criterion 
parameter of 50 SDs. After ASR was run, we then re-referenced the data to average. To 
separate out non-brain artifacts and for the source-level analysis, we ran ICA using the 
AMICA ICA algorithm (Palmer et al., 2012). Dipole source localization was performed 
on the resulting components using the MNI head model, and two dipoles were fit where 
appropriate instead of one using the FitTwoDipoles plug in (Piazza et al., 2016). ICA 
components were checked to find eye blink and cardiac components, which were marked 
for later rejection. The remaining independent components were used for source analysis. 

We then segmented the continuous data into four long epochs for the 
experimental conditions: Non-omission visual flashes, non-omission auditory tones, 
visual omissions, and auditory omissions. The non-omission conditions came from the 
non-omission stimulus train block that preceded the omission block. Each condition was 
epoched from −1.67 s prior to each tone/flash to 1.67 s following the tone/flash. Epoch 
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length was determined by calculating the window size needed for the later time/frequency 
calculations, so the resulting time/frequency data would span ±1.5 s from the tone or 
flash onset of interest. The omission groups were epoched in the same way in relation to 
omission events. Following epoching, epochs were checked for blinks that occurred 
during either event onset (for the non-omission conditions) or expected onset (for the 
omission conditions) as defined as a 50 μV or larger spike in frontal electrodes within 
±100 ms of onset or expected onset. After epochs with eye blinks at event onset, or 
expected onset, were rejected, eye blink components determined by AMICA marked 
earlier were then rejected. Remaining epochs with amplitude spikes greater than ±500 μV 
were then rejected. Finally, epochs that were deemed improbable were rejected by 
computing the probability distribution of values across the epochs for individual channels 
and across all channels. Any epoch that contains data values >6 SDs for the channel or 2 
SDs for all electrodes was rejected. One subject was rejected due to having more than 
50% of their total epochs being rejected. For the remaining 17 subjects there were 140 
possible epochs per condition per subject for the four conditions: visual non-omission (M 
= 123.24, max = 136, min = 96, MAD = 13.27), visual omission (M = 116.59, max = 
132, min = 74, MAD = 18.19), auditory non-omission (M = 118.29, max = 136, min = 
92, MAD = 14.24), auditory omission (M = 109.06, max = 129, min = 66, MAD = 
20.12). 
 
3.2.4 Clustering procedure 

Electroencephalography activity measured at the electrode level is smeared across 
the scalp making it difficult to separate out signals from different sources. Because we 
are interested in time-sensitive neural activity from both sensory and motor areas that 
occur simultaneously, we focus our analysis on the source-level activity of components. 
To compare independent components across subjects, we performed a cluster analysis 
using k-means clustering based on the component dipole locations and component scalp 
topographies using EEGLAB’s clustering tools (Delorme & Makeig, 2004). Using both 
dipole locations and scalp topographies allows for clusters that are more consistent across 
subjects than can be computed using a single measure (Onton et al., 2006). This 
clustering approach avoids statistical double dipping by excluding the measures of 
interest (event-related spectral perturbation [ERSP] and intertrial coherence [ITC]), and 
focusing only on the spatial features of the components. Dipole location and scalp 
topography were weighted equally, and PCA was applied to the component scalp 
topography data reducing the number of dimensions to 3, matching the number of 
dimensions in the dipole locations and therefore reducing the overall number of 
dimensions to cluster. To ensure non-brain sources, including muscle activity and 
channel noise, were excluded from clustering, only components with dipoles located 
within the head and with a residual variance of less than 15% were used resulting in a 
total of 289 total brain components across 17 subjects. The group of all 289 components 
prior to clustering constitute the parent cluster, which we used to look at global-level 
activity. To determine the appropriate number of clusters, we applied three measures for 
cluster number optimization (Calinski-Harabasz, Silhouette, and Davies-Bouldin) for 
between 5 and 30 clusters. The Calinski-Harabasz and Silhouette methods indicated the 
optimal number of clusters was 9, whereas the Davies–Bouldin method indicated an 
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optimum number of 13. We used nine clusters to maximize the number of unique 
subjects per cluster, plus one outlier cluster with components with positions of more than 
3 SDs from any of the cluster centers. The resulting nine clusters (Figure 3.2; Table 3.1) 
averaged 31.88 components per cluster with a standard deviation of 7.17, which were 
made up from 15.78 subjects on average, standard deviation 0.97. The outlier cluster 
consisted of three components from two subjects. No cluster had more than five 
components from any one subject. Table 3.1 shows the individual makeup of each 
cluster. 
 

 
Fig 3.2. Scalp topography and dipole locations of components for the nine clusters and 
the outlier cluster. Scalp topography includes activity from all four conditions. Blue dots 
indicate individual component dipole locations. Red dots indicate the average position 
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Table 3.1 
 

Cluster Information 

Cluster Subjects
  

Components Components 
per Subject 

Mean 
R.V. % 

Mean Tal 
Coordinates 

Corresponding Brodmann Area of 
Mean Coordinates 

1 - Left 
Frontal  

15 20 Avg = 1.33 
Max = 3 

5.88% X: -31 Y: 45 Z: 14 Left Area 10 

2 - Left 
Sensorimotor
  

16 36 Avg = 2.19 
Max = 4 

5.86% X: -53 Y: -12 Z: 
19 

Left BA 1 / 4 (Primary Sensory / 
Primary Motor) 

3 - Midline 
Central  

17 35 Avg = 2.06 
Max = 3 

6.54% X: -12 Y: -12 Z: 
51 

Left BA 6 

4 - Right 
Sensorimotor 

16 34 Avg = 2.13 
Max = 4 

5.21% X: 49 Y: -9 Z: 30 Right BA 4 (Primary Motor) 

5 - Right 
Frontal  

17 39 Avg = 2.29 
Max = 4 

7.07% X: 18 Y: 32 Z: 20 Right BA 8 / 9 

6 - Left 
Temporal / 
Parietal  

15 28 Avg = 1.87 
Max = 4 

4.49% X: -42 Y: -58 Z: 
13 

Left BA 39 (Angular Gyrus) 

7 - Occipital  14 24 Avg = 1.71 
Max = 3 

4.52% X: -4 Y: -87 Z: -5 Left BA 18 (Visual Assoc) 

8 - Parietal  16 42 Avg = 2.63 
Max = 5 

4.42% X: 10 Y: -58 Z: 45 Right BA 7  

9 - Right 
Temporal / 
Parietal  

16 29 Avg = 1.81 
Max = 3 

3.42% X: 41 Y: -61 Z: 7 Right BA 19 / 37 (Peristriate Area 
/ Fusiform Gyrus 

10 - (Outlier) 2 3 Avg = 1.5 
Max = 2 

7.03% X: 10 Y: -31 Z: -
19 

Null 

 
 
Table 3.1. Information containing the component make-up of the nine clusters and outlier 
cluster. Although the corresponding Brodmann area for each cluster is determined based 
on the average Talaiarch coordinates of the component dipoles, the dipole locations for 
the individual components for each cluster are not all contained within the indicated 
Brodmann area. Individual dipoles for each component are shown in Figure 3.2. 
Components per subject column indicates both the average number of components per 
subject in the cluster, and the maximum components any single subject had in the cluster 
 
3.2.5 Time–frequency analysis 

Time–frequency analysis was completed for each subject at each channel and for 
each component used in the clustering analysis. The resulting time–frequency 
representations were then averaged across subjects for the individual channels in each 
condition and averaged across the components for each cluster for each condition. 
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Induced and evoked time–frequency representations were calculated to determine the 
different roles they play during the rhythm perception task as they have been found to 
play different roles in auditory rhythm perception (Snyder & Large, 2005). Induced 
activity was calculated for each trial by first removing the mean of activity (ERP) from 
each trial so only non-phase locked activity remains, and then averaging the resulting 
time–frequency computations across trials. Evoked activity was calculated on the mean 
of the activity (ERP) to focus on the phase locked activity. All three time–frequency 
calculations were performed using the same parameters. The time–frequency calculations 
were computed with the newtimef function in EEGLAB (Delorme & Makeig, 2004) 
using 85 linear spaced Morlet wavelets between 8 and 50 Hz with a fixed window size of 
300 ms resulting in 2.4 cycles at 8 Hz and scaling up to 15 cycles at 50 Hz. The 300 ms 
window size was chosen to ensure the time–frequency representation from each 
individual stimulus was not contaminated by either surrounding stimuli, which were 600 
ms apart. The convolution used the minimum step size for the sample rate of 256 Hz 
resulting in 772 evenly spaced steps with a step length of 3.9 ms. Baselines were 
computed separately for each condition using a relative to the mean baseline with a 
period of −1,200 to −600 ms from the stimulus or omitted stimulus onset, dependent on 
condition. This baseline period consisted of one complete 600 ms stimulus cycle for both 
the omission and control conditions, allowing us to focus on the oscillatory dynamics 
between stimulus events. Separate baselines for each condition were used to minimize 
effects of individual variation and of differences that might arise between omission and 
non-omission conditions due to habituation to stimuli in the unvarying and longer blocks 
in the non-omission conditions. Although a common baseline would allow us to 
determine overall power differences between conditions in the frequency bands, our 
focus is on the changes in power that occur within condition within the timeframe of each 
stimulus train as described later in the slope analyses description. These computations 
were used to determine the ERSP values in terms of dB, such that the ERSP plots show 
shift in power from baseline at each time point. 

To ensure changes in evoked activity were due to stimulus-driven phase shifts, we 
additionally calculated phase coherence across trials using the ITC measure in the 
newtimef function of EEGLAB (Delorme & Makeig, 2004). ITC is calculated by 
extracting the phase angle at each time–frequency point for each trial and comparing the 
phase angles across trials for coherence providing a coherence measure between 1 and 0, 
where 1 indicates complete coherence across trials for a given time–frequency point, and 
0 indicates no coherence across trials. The ITC calculation required an additional time–
frequency computation of the data using the same parameters as was done for induced 
activity except there was no subtraction of the ERP. 

Beta activity was extracted from the ERSP values by averaging the power at each 
step between 14 and 30 Hz. Beta ITC was extracted using the same procedure except 
applied to ITC values instead of ERSP values. 
 
3.3 Analysis 
3.3.1 Attention behavioral task 

To assess if attention was maintained evenly between the two modalities, we 
analyzed the behavioral data from the attention task for the two omission conditions. 
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Both auditory (94.72%) and visual (88.61%) conditions showed a correct response rate 
well above chance. To assess the differences between the auditory and visual conditions, 
the number of correct responses and response times were assessed using paired t tests. 
There was a significant difference in number of correct attention trials between the 
auditory (M = 18.94, SD = 1.09) and visual (M = 17.65, SD = 1.69) conditions; t(16) = 
−2.72, p = 0.015 which we ascribe to the visual rhythm task being more difficult than the 
auditory rhythm task. There was no significant difference in response time measured in 
ms between auditory (M = 1,405.04, SD = 572.09) and visual (M = 1,495.99, SD = 
585.94) conditions; t(16) = 0.66, p = 0.52. 
 
3.3.2 Event-related spectral perturbations 

To determine if ERSP power was being significantly modulated by the stimuli 
and omissions, permutation statistics comparing ERSP power values to baseline values 
using unpaired t tests with 2,000 permutations testing for significance were performed. 
False discovery rate (FDR) correction was used to correct for multiple comparisons with 
alpha values being the computed p-value for each time–frequency point using a 
parametric FDR algorithm (Benjamini & Hochberg, 1995). 
 
3.3.3 Beta band slope analysis 

Although significance testing in ERSP power can indicate significant power 
modulations in response to stimuli, we are interested in the dynamics of beta band 
activity following findings that indicate beta power rises to peak at the expected onset of 
an auditory tone followed by a trough after a tone, where the rate of the rise beta power, 
yet not the fall, is dependent on the tempo of the stimuli (Fujioka et al., 2012). Since we 
hypothesized that rise in beta activity is related to the timing of the rhythmic stimuli, we 
would see beta power rise prior to the expected onset of the omitted stimuli at the same 
rate as beta would rise prior to the non-omitted stimuli. Furthermore, by investigating the 
slope of activity prior to the omission onset, we have a measure that is less likely to be 
affected by activity due to a response to the omission. To test this hypothesis, two slopes 
were fitted in the averaged beta activity for each subject for each condition based on a 
least squares measure in a procedure similar to that performed by Meijer et al. (2016). 
The first slope started at −300 ms prior to stimulus or omission onset and ended at 
stimulus or omission onset (0 ms). Using −300 ms as the starting point was chosen as the 
halfway point between stimuli. Because there is considerable variation across subjects in 
slope activity, a second slope was fitted starting at the lowest measured activity between 
−300 and −100 ms and ending at stimulus or omission onset. Although comparing the 
slopes of the omission and non-omission condition could tell us if the two slopes are 
significantly different, our goal is to show that the two slopes are not significantly 
different and in fact are very similar. One way to show this is to compare against a third 
condition. To provide the third condition for comparison, we shuffled the ERSP data used 
to find slopes in the control condition for each subject at each channel, and for each 
component for each cluster, and then extracted beta band power and fitted slopes. Fitting 
a slope to the beta band extracted from the shuffled ERSP power results in an effective 
slope of 0, which we use to compare the other slopes to. For the shuffled condition, ERSP 
power values along the entire time axis of each epoch of each frequency step were 
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randomly shuffled 1,000 times using the randperm function in Matlab. Beta band power 
for each time point was then extracted from resulting shuffled ERSPs, the same as done 
with the non-shuffled ERSPs. Slopes were then fitted in the same way as with the non-
shuffled data, except that instead of finding the minimum beta power between −300 and 
−100 ms for the shuffled condition, we used the same starting point used in the non-
shuffled control condition for the corresponding subject or component. Figure 3.3 depicts 
slope fitting to beta band from the trough to 0 ms. 
 

 
Fig 3.3. Schematic for slope fitting and peak finding for beta activity. Slopes were fitted 
between the trough (between −300 and −100 ms) and 0. Peak beta was determined 
between −200 and 200 ms (range depicted in shaded area). Slopes were fitted for evoked 
and induced beta power, whereas peaks were found in evoked and induced beta power as 
well as in intertrial coherence in the beta range 
 

Four sets of t tests were used to determine if the fitted slope of beta activity prior 
to the onset of a tone or flash was equivalent to the fitted slope of beta activity prior to 
the expected but omitted onset of a tone or flash for both induced and evoked activity and 
for both the slopes fitted from −300 ms to onset and for the slopes fitted to the trough 
between −300 and −100 ms and onset. FDR correction was used to correct for multiple 
comparisons for all t tests using the method described in Benjamini and Hochberg (1995) 
with alpha set to 0.05. The first three analyses were performed using paired t tests 
comparing: the slopes of the omission conditions to the slopes of the non-omission 
conditions, the slopes of the non-omission conditions to the slopes of the shuffled 
conditions, and the slopes of the omission conditions to the slopes of the shuffled 
conditions. If beta power is being modulated such that it shows anticipation of the 
stimulus we would expect both the omission and control fitted slopes to indicate beta 
power is rising prior to stimulus onset, and therefore be significantly different from the 
shuffled fitted slopes, which are effectively flat. Additionally, we would expect the 
omission and non-omission fitted slopes to not be significantly different from each other 
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as they both rise in anticipation of the incoming event regardless if that event is omitted 
or not. 

Showing that a fitted slope in the omission condition is not significantly different 
than a fitted slope in the non-omission condition, and that both omission and non-
omission-fitted slopes are significantly different than the shuffled slopes is not sufficient 
to claim that the slopes in the omission and non-omission conditions are equivalent. This 
is because a comparison between significant results and non-significant results is not 
necessarily significant (Gelman and Stern, 2006), and therefore, an additional test is 
required. To assess the viability of the comparison between the two results, we applied a 
post hoc comparison test as used in Abbott and Shahin (2018). The test calculated if the 
slope of the non-omission condition + the slope of the shuffled condition – 2 × the slope 
of the omission condition was significantly different from zero using a t test with the 
same FDR correction as used for the other t tests at each channel and each cluster. With 
these four tests, we show the beta slope is showing anticipation of the next event and that 
the slope of the omission condition is equivalent to the slope of the non-omission 
condition if: (a) the omission and non-omission slopes are not significantly different, (b) 
both the omission and non-omission slopes are significantly different from the shuffled 
(flat) slope, (c) the post hoc comparison test of the three slopes is significant showing 
omission and non-omission slopes are equivalent. 
 
3.3.4 Evoked and induced comparison 

To further understand the different roles evoked and induced beta play in the 
temporal aspects of auditory and visual rhythm processing, we applied an additional 
exploratory analysis that measured peak power and peak time in response to both present 
and omitted tones and flashes similar to performed by Snyder and Large (2005). To make 
the comparison, ERSP power P was converted from dB to μV2 and normalized using the 
formula: Pnorm = (P − Pmin)/(Pmax − Pmin). This normalization conversion resulted in 
values between 0 and 1 and was applied to ERSP values for both evoked and induced 
activity for each individual component for each cluster, after which beta power was 
extracted in the same manner as done for the slope analyses. Peak power and peak time 
were determined by finding the time and normalized power of the peak power between 
±200 ms of the expected event onset. Paired t tests were then run on each cluster as well 
as the parent cluster to determine the roles evoked and induced activity within each 
cluster. All t tests used FDR correction to account for multiple comparisons (Benjamini 
& Hochberg, 1995). 
 
3.3.5 Intertrial coherence 

While measuring induced and evoked activity allow us to contrast our results to 
the work from Snyder and Large (2005), neither measure provides a direct measure of the 
changes in phase coherence in relationship to the omission and non-omission onsets. We 
use ITC to confirm that the evoked activity we measure is due to phase coherence by 
comparing peak times of beta ITC with peak times of beta induced and evoked activity. 
The same procedure was used to extract beta coherence and find peaks as was used to 
find the peaks in induced and evoked beta activity. Paired t tests comparing ITC beta 
peak times with induced and evoked peak times were then run on each cluster including 
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the parent cluster. All t tests used FDR correction to account for multiple comparisons 
(Benjamini & Hochberg, 1995). 
 
3.3.6 Baseline comparison 

To assess potential differences in habituation to the stimuli, an analysis was 
performed on the computed baseline levels across non-omission and omission conditions 
within each modality. Although differences in baselines would not provide direct 
evidence to invalidate results from the slope, beta peak time, or ITC analyses, differences 
in baselines between conditions could account for reported differences in beta peak 
power between omission and non-omission conditions. Separate paired t tests comparing 
the baseline spectrum in the beta band were computed for each cluster for both induced 
and evoked activity. All t tests used FDR correction to account for multiple comparisons 
(Benjamini & Hochberg, 1995). Baseline power for the comparisons was taken directly 
from the time–frequency calculations used in the previous analyses and averaged across 
the beta band (14–30 Hz) to match the other beta band analyses we report. 
 
3.4 Results 
3.4.1 Channel-level beta slope analysis 

Figure 3.4 depicts the results of these tests at the electrode level show that only 
channel P8 meets the criteria for the four tests for visual beta: p > 0.05 for the omission to 
non-omission slopes comparison, p < 0.05 for the comparisons of the non-omission to 
shuffled and omission to shuffled slopes, and p < 0.05 for the post hoc comparison test as 
applied to the slopes fitted to the between the trough of beta power and onset for induced 
beta. Additional channels met the first three criteria but did not reach significance in the 
post hoc test for the induced trough-fitted slope for both visual and auditory conditions. 
No channels met these criteria for the slopes fitted at the fixed values between −300 ms 
and onset for the visual condition for induced or evoked beta. No auditory channels met 
the four criteria for any of the conditions. 
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Fig 3.4. Significant channels for the induced beta tests to slopes fitted from the trough of 
beta power between −300 and −100 ms to the event onset at 0 ms. Channels labeled had p 
> 0.05 for the omission to control slopes comparison, and p < 0.05 for the comparisons of 
the control to shuffled and omission to shuffled slopes. The circled channel indicates p < 
0.05 for the post hoc comparison test as applied to the slopes fitted to the between the 
trough of beta power and onset for induced beta 
 
3.4.2 Cluster-level analyses 

To better separate sensory and timing related activity and to investigate the 
sources of timing-related activity, we performed the remaining analyses at the cluster 
level. Due to the large number of tests results from our analyses at the cluster level, we 
focus on four clusters of interest: the parietal and occipital clusters for the visual 
condition, and the left and right sensorimotor clusters for the auditory condition. In the 
visual condition, we focus on the parietal cluster as it shows the strongest visual 
predictive beta results while producing a beta time course very similar to two of the other 
posterior clusters: the left and right temporal/parietal clusters. We focus on the occipital 
cluster for the visual condition as its activity is mostly likely to arise from the visual 
cortex, yet its markers of predictive activity are not as pronounced as with the other 
posterior clusters. The left and right sensorimotor clusters are of interest as they are the 
only clusters that show predictive beta activity exclusively in the auditory modality, and 
additionally suggest hemispheric differences in auditory rhythm processing. In addition 
to these clusters, we also present results from the parent cluster for both sensory 
modalities to provide a global-level view of the beta activity. The test results from all 
clusters for both modalities, along with figures, are available in Supporting Information. 
 
3.4.3 Event-related spectral perturbations 

In the parent cluster containing all components, we find increased evoked power 
following both visual and auditory stimulus onset, but not in response to visual or 
auditory omission onsets (Figure 3.5). Induced activity from the visual condition in the 
parent cluster not only increases significantly and peaks roughly at stimulus onset but 
also increases at omission onset, particularly in the low beta range. This pattern is also 
seen in the posterior clusters for visual activity, especially in the parietal cluster (Figure 
3.6a). In the occipital cluster, visual induced beta peaks much closer to the stimulus onset 
and prior to the omission onset (Figure 3.6b). Visual-evoked activity for the parietal and 
occipital clusters follows the same pattern seen in the parent cluster. ERSP power 
modulation is less pronounced in response to auditory rhythms compared with visual 
rhythms in the parent cluster with both induced (Figure 3.5c) and evoked (Figure 3.5d) 
measures. Modulation of induced activity appears stronger in response to auditory 
rhythms in the right sensorimotor cluster (Figure 3.6d) than the left sensorimotor cluster 
(Figure 3.6c). Evoked beta modulation in response to auditory rhythms is relatively weak 
but appears less affected by an auditory omitted event than seen with the visual clusters, 
especially in the left sensorimotor cluster (Figure 3.6c). 
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Fig 3.5. Time–frequency dynamics in the parent cluster for visual (a,b) and auditory (c,d) 
conditions. Data shown are grand averages across all components in the parent cluster, 
which is made up of all components prior to clustering to present global-level activity. 
Dotted lines in induced activity (a,c) indicate time–frequency values significantly 
different from baseline p < 0.01. Solid lines in evoked activity (b,d) indicate time–
frequency values significantly different from baseline p < 0.001. ERSP, event-related 
spectral perturbation 
 

 
Fig. 3.6. Time–frequency dynamics in selected clusters for visual (a,b) and auditory (c,d) 
conditions. Data shown are grand averages across all components in the indicated cluster. 
Dotted lines in induced activity indicate time–frequency values significantly different 
from baseline p < 0.01. Solid lines in evoked activity indicate time–frequency values 
significantly different from baseline p < 0.001. Induced and evoked ERSP values in 
response to visual rhythms from the parietal (a) and occipital (b) clusters, and ERSP 
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values in response to auditory rhythms from the left sensorimotor (c) and right 
sensorimotor (d) clusters are depicted. ERSP, event-related spectral perturbation 
 
3.4.4 Beta slope analysis 

Slopes were fitted to the cluster-level beta activity with the four previously 
described tests applied. Figure 3.7 shows the time course of visual beta activity in the 
parietal (a) and occipital (b) clusters and auditory beta activity for the left (c) and right (d) 
sensorimotor clusters for both induced and evoked activity. At the cluster level in the 
visual modality two clusters plus the parent cluster met the criteria in induced activity for 
the slopes fitted to −300 to 0 ms: right temporal/parietal and parietal clusters. The left 
temporal/parietal cluster met the criteria for three of the slope tests but not for the 
contrast. No auditory clusters met the criteria for induced activity with a fixed slope. 
Slopes fitted to the trough (between −300 and −100 ms) and 0 ms for induced beta 
activity in the visual condition resulted in five clusters plus the parent cluster meeting the 
criteria for the four slope tests: midline central area, right frontal, left temporal/parietal, 
parietal region, and right temporal/parietal clusters. The occipital cluster met the first 
three slope criteria in the visual modality for the trough-fitted slope in induced activity. 
The parietal and the parent cluster met all four criteria for the auditory condition for 
trough-fitted slopes to induced beta. All other clusters except the midline central area 
cluster met the first three slope criteria for auditory-induced beta trough-fitted slopes. 
 

 
Fig. 3.7. Time course of induced and evoked beta activity, and intertrial coherence (ITC) 
in the beta band for selected clusters in response to visual (a,b) and auditory (c,d) 
rhythms. Standard error is indicated with shaded bars. Values in response to visual 
rhythms from the parietal (a) and occipital (b) clusters, and values in response to auditory 
rhythms from the left sensorimotor (c) and right sensorimotor (d) clusters are depicted. 
Note that evoked beta and ITC increase in anticipation of an event only in the left 
sensorimotor cluster (c). 
 

Slopes fitted to evoked beta at the cluster level resulted in the parent cluster for 
both auditory and visual modalities, and the left sensorimotor cluster for the auditory 
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modality meeting all four slope criteria for the trough-fitted slopes. The midline central 
area cluster, right sensorimotor, and parietal cluster met the first three criteria for the 
trough-fitted slope tests in both modalities. the left temporal/parietal and left frontal 
cluster in the auditory and visual modalities, respectively, met the first three slope criteria 
for the trough-fitted slopes. No cluster met any of the necessary criteria in the slopes 
fitted between −300 and 0 ms to evoked beta activity. All slope measures and tests for the 
visual and auditory slopes can be found in the Tables S1 (visual) and S2 (auditory). 
 
3.4.5 Induced and evoked beta peaks 

Test values presented here are for the parent cluster containing all components 
unless otherwise indicated. For a full listing of all test values and statistics for each 
cluster, refer to Tables S3 (visual peak times), S4 (visual peak power), S5 (auditory peak 
times), and S6 (auditory peak power). Figure 3.8 shows the distribution of visual beta 
peak times and power for the parietal and occipital clusters. Figure 3.9 shows the 
distribution of auditory beta peak times and power for the left and right sensorimotor 
clusters. In the visual modality, evoked peak times for the control condition were 
generally after flash onset (M = 68.49 ms, SD = 122.18) and later than omission peak 
times (M = 11.04 ms, SD = 133.51); t(288) = 5.43, p = <0.001. Visual-induced peak 
times for the control condition tended to fall prior to onset (M = −12.95 ms, SD = 
120.03), whereas omission peak times fell after expected onset (M = 28.74 ms, SD = 
129.27); t(288) = −4.47, p = <0.001. Both tests were also significant for the midline 
central area and parietal cluster, with the left temporal/parietal cluster significant in 
induced activity and the right temporal/parietal cluster significant for evoked. The evoked 
control peak was significantly later than the induced control peak; t(288) = 8.06, p = 
<0.001. This difference was also reflected in the midline central area, right frontal, left 
temporal/parietal, occipital, parietal, and right temporal/parietal clusters. Evoked and 
induced omission peak times were not significantly different in the parent cluster (t(288) 
= −1.67, p = 0.164) or any other cluster. To determine if the differences in control and 
omission peak times across induced and evoked activity were relative for each kind of 
activity, a further test compared the difference in evoked control and omission peak times 
(M = 57.44 ms, SD = 178) to the difference in induced control and omission peak times 
(M = −41.68 ms, SD = 158.43), revealing the relative shifts were significantly different; 
t(288) = 7.03, p = <0.001. A significant relative difference was also seen in the midline 
central area, left temporal/parietal, occipital, and parietal clusters. 
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Fig. 3.8. Mean beta peak times (a,b) and normalized beta peak power (c,d) for 
components in the parietal (a,c) and occipital clusters (b,d) in the visual condition. 
Induced activity for both clusters tended to peak prior to non-omitted flash onset and after 
omitted flash onsets, whereas the opposite pattern is seen in evoked activity and in 
intertrial coherence (ITC) (a,b). Normalized induced and evoked beta power peaks were 
higher in non-omission trials compared with omission trials in the parietal cluster (c), 
whereas only evoked beta power peaks were higher in non-omission trials than omission 
trials in the occipital cluster (d). Box plots depict interquartile range with median values 
indicated by black bars and 95% confidence intervals indicated with notches. 
Significance differences are shown through bars where *p < 0.05, ***p < 0.001 
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Fig. 3.9. Mean beta peak times (a,b) and mean normalized beta peak power (c,d) for 
components in the left sensorimotor (a,c) and right sensorimotor clusters (b,d) in the 
auditory condition. In the left sensorimotor cluster (a) induced beta peaked prior to tone 
onset in the non-omission trials, but after expected onset in omission trials. Note that 
evoked and intertrial coherence (ITC) beta peak times appear less variable in response to 
omitted tone than to non-omitted tones in the left sensorimotor cluster (a), whereas beta 
peak times were especially variabile in the right sensorimotor cluster (b). Normalized 
beta peak power shows the same pattern in both left (c) and right (d) sensorimotor 
clusters with power lower in the evoked omission trials compared with the evoked non-
omission trials and overall lower evoked power than induced power. Box plots depict 
interquartile range with median values indicated by black bars and 95% confidence 
intervals indicated with notches. Significance differences are shown through bars where 
*p < 0.05, **p < 0.01, ***p < 0.001 

 
The same tests were run on the auditory beta peak times, revealing that evoked 

auditory peak times for control (M = 10.64 ms, SD = 122.49) and omission (M = −2.23 
ms, SD = 131.29) and induced auditory peak times for control (M = 0.35 ms, SD = 129.6) 
and omission (M = 6.7 ms, SD = 135.51) conditions were generally close to onset time 
and not significantly different from each other across all clusters and all tests except for 
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the left sensorimotor cluster, where evoked control peak time (M = 64.96, SD = 124.59) 
was significantly later than induced control peak time (M = −23.44, SD = 122.23); t(34) 
= 3.27, p = 0.006 (Figure 3.9a). The difference between evoked control and omission 
peak times (M = 35.38, SD = 167.02) and the difference between induced control and 
omission peak times (M = −45.42, SD = 151.1) was also found to be significant in the left 
sensorimotor cluster; t(34) = 2.39, p = 0.047 (Figure 3.9a). 

Visual modality-evoked control peak values (M = 0.631, SD = 0.141) were 
greater than evoked omission peak values (M = 0.366, SD = 0.163); t(288) = 20.04, p = 
<0.001. Similarly, visual modality-induced control peak values (M = 0.753, SD = 0.117) 
were greater than induced omission peak values (M = 0.664, SD = 0.136), although to a 
lesser degree; t(288) = 9.58, p = <0.001. The comparison tests across visual omission and 
non-omission peak values within evoked and induced activity were significant for all 
clusters. Comparisons across evoked and induced peak values for visual beta indicated 
induced non-omission peaks were generally larger than evoked non-omission peaks; 
t(288) = −13, p = <0.001. This comparison was found to be significant for all clusters 
except the occipital cluster (Figure 8d). Comparisons across visual beta evoked and 
induced omission-fitted peak values indicate induced omission peak values are greater 
than evoked omission peak values for the parent cluster; t(288) = −23.99, p = <0.001, and 
all other clusters. A comparison between the difference in evoked non-omission and 
omission peak power (M = 0.264, SD = 0.224) and the difference between induced non-
omission and omission peak power (M = 0.089, SD = 0.157) indicated a greater relative 
difference was seen in evoked activity for the parent cluster (t(288) = 11.24, p = <0.001), 
as well as for clusters 3 (mid central), 5 (right frontal), 8 (parietal), and 9 (right 
temporal/parietal). 

Running the same tests on auditory peak values show auditory evoked non-
omission peak power (M = 0.592, SD = 0.125) was significantly greater than auditory 
evoked omission peak power (M = 0.442, SD = 0.146) for the parent cluster (t(288) = 
13.24, p = <0.001), and all other clusters except for the midline central area cluster. 
Auditory-induced non-omission peak power (M = 0.73, SD = 0.099) was slightly larger 
than auditory-induced omission peak power (M = 0.677, SD = 0.124), and significantly 
so for the parent cluster (t(288) = 5.72, p = <0.001), as well as for the midline central 
area, occipital, and right temporal/parietal clusters. A comparison across auditory-evoked 
and auditory-induced non-omission peak power reveals induced non-omission peak 
power is significantly greater in the parent cluster (t(288) = −15.65, p = <0.001), as well 
as in all other clusters except the left frontal cluster. Auditory-induced omission peak 
power was found significantly larger in the parent cluster (t(288) = −20.27, p = <0.001), 
as well as all other clusters. Comparing the difference in evoked non-omission and 
omission peak power (M = 0.15, SD = 0.193) and the difference between induced non-
omission and omission peak power (M = 0.053, SD = 0.156) revealed a greater relative 
difference in evoked activity that was significant in parent cluster (t(288) = 6.51, p = 
<0.001), as well as for the left sensorimotor, right sensorimotor, right frontal, and parietal 
clusters. 
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3.4.6 Intertrial coherence 
The time course of ITC in the beta band for the parietal and occipital clusters in 

the visual condition, and in the left and right sensorimotor clusters in the auditory 
condition is depicted in the bottom row of plots in Figure 3.7, where ITC can be 
compared against evoked and induced beta activity. The distribution of ITC peak times 
for the aforementioned clusters are depicted in Figures 3.8a,b (visual) and 3.9a,b allowing 
for a comparison against evoked and induced peak times. No significant differences were 
found between ITC beta peak times and evoked beta peak times for either auditory or 
visual conditions in any cluster. Comparisons between ITC beta peak times and induced 
beta peak times showed induced beta peaked prior to the peak in ITC beta in the non-
omission condition in the visual modality in the parent cluster (t(288) = 8.5, p = <0.001), 
left temporal–parietal cluster (t(27) = 3.7, p = 0.012), right temporal–parietal cluster 
(t(28) = 5.28, p = <0.001), parietal cluster (t(41) = 5.59, p = <0.001), occipital cluster 
(t(23) = 9.83, p = <0.001), and right frontal cluster (t(38) = 3.46, p = 0.015). 
Additionally, ITC beta peaked earlier than induced beta in the visual omission condition 
in the parent cluster (t(288) = −2.83, p = 0.042). There were no significant differences 
between induced beta peak times and ITC beata peak times in the auditory conditions. 
Non-omission ITC beta peaked later than omission ITC beta in the visual modality in the 
parent cluster (t(288) = 7.7, p = <0.001), left temporal–parietal cluster (t(27) = 3.17, p = 
0.035), right temporal–parietal cluster (t(28) = 4.79, p = <0.001), parietal cluster (t(41) = 
4.81 p = <0.001), occipital cluster (t(23) = 5.72, p = <0.001). In the auditory condition, 
non-omission ITC beta peaked later than omission ITC beta in the parent cluster (t(288) = 
3.16, p = 0.017). 
 
3.4.7 Baseline activity 

The comparison of baseline power revealed no significant differences in the 
majority of the tests. The comparisons that do show differences are predominantly 
relegated to the parent cluster, and the left and right frontal clusters for both modalities. 
Additional differences were seen in the visual modality in induced beta in the parietal 
cluster and evoked beta for the occipital cluster. All instances of significant differences 
between baselines show reduced power in the non-omission baseline compared with the 
omission baseline with the exception of the occipital cluster. All test values and statistical 
results of the baseline analysis are listed in the supplemental Tables S7 and S8. 
 
3.5 Discussion 
3.5.1 Summary of results 

Using an IC cluster-based approach for isolating network-level beta band activity, 
we describe predictive timing in a modality-specific way. Analyses on the slopes of beta 
activity from the parent clusters reveal evidence for both induced and evoked predictive 
timing in auditory and visual modalities at the global level. The slopes of beta activity 
from individual clusters indicates evidence of induced predictive timing in the visual 
modality in posterior regions: left and right temporal/parietal clusters, and parietal 
cluster; the midline central cluster, and from the right frontal cluster. Slope-based 
evidence for induced predictive timing in the auditory modality was found in the parietal 
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cluster. Cluster-specific evidence of evoked predictive timing in slope measures was seen 
only in the auditory modality, in the left sensorimotor cluster. 

It would be expected, based on Snyder and Large (2005), that evoked beta peak 
power would be significantly lower for omission events compared with tone or flash 
events and that there would be no significant difference in induced beta peak power 
between omission events and tone or flash events. This pattern was seen much more 
prominently in the auditory modality, specifically in the parietal, left and right 
sensorimotor, left and right frontal, and left temporal/parietal clusters. A significant 
difference would additionally be expected between how much evoked beta peak power 
shifted between non-omission and omission conditions and how much induced beta 
power shifted between non-omissions and omissions. This significant difference was 
replicated in several clusters: the parietal cluster, left and right sensorimotor clusters, and 
the right frontal cluster, thus providing strong evidence for auditory-induced beta playing 
a predictive role in networks of those regions. There were a few differences in the peak 
times in auditory beta across both induced and evoked activity and conditions. The 
significant shift in peak time from tone to omitted tone trials between induced and evoked 
beta for the right sensorimotor cluster follows the expected pattern of induced beta 
peaking later in response to an omitted tone than in response to a non-omitted tone. The 
evoked beta peaked earlier in response to an omitted tone than in response to a non-
omitted tone. Although not significant, we find it interesting that the opposite pattern 
with beta peak time appears in the left sensorimotor cluster: induced beta peaked slightly 
earlier in response to omitted tones than in response to tones, yet evoked beta peaked 
slightly later in response to the omitted tones than in response to the tones. This is in 
concordance with what would be expected if evoked beta was playing a predictive role, 
and when taken in conjunction with the slope evidence of predictive evoked activity in 
the left sensorimotor cluster suggests the existence of significant hemispheric differences 
in auditory rhythm processing mechanisms. The findings indicating no significant 
difference between auditory evoked beta peak times and ITC beta peak times suggests the 
hemispheric differences seen in the sensorimotor clusters are a result of phase resetting in 
the beta band anticipating the onset of the auditory event. The baseline analyses showing 
no significant differences for the sensorimotor and parietal clusters indicate the beta peak 
power differences are not due to any habituation effect. Although we do see a baseline 
difference in the right frontal cluster, the baseline differences only directly affect the non-
omission to omission comparisons, and not the within condition comparisons, for 
example, non-omission-induced beta peak power compared with non-omission-evoked 
beta peak power. Furthermore, when taking into account that the beta peak power results 
of the right frontal cluster closely match those reported by Snyder and Large (2005), they 
are likely to represent a genuine effect, indicating auditory beta timing in a left frontal 
region. 

Differences in evoked and induced beta power in response to visual non-
omissions and omissions did not provide clear evidence of predictive beta as seen in the 
auditory case, except for in the shift of peak power between evoked and induced activity 
from flash-to-flash omission in the parent, parietal, midline central, right frontal, and 
right temporal/parietal clusters. Interestingly, a look at differences in peak times does 
provide stronger evidence suggesting separate roles for evoked and induced beta for the 
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parietal, right and left temporal/parietal, and occipital clusters. In these clusters, the 
evoked beta peak came earlier in response to omitted flashes than to non-omitted flashes, 
whereas induced beta peaked later in response to omitted flashes than to non-omitted 
flashes, which is what would be expected if induced beta activity was playing a 
predictive role, whereas evoked beta was only responsive to stimuli. The significant 
differences between ITC beta peak times and induced beta peak times in the left and right 
temporal-parietal clusters, parietal cluster, and occipital cluster combined with the no 
significant differences between ITC and evoked beta peak times add further evidence for 
the role of predictive beta activity. Although we do see baseline differences in the visual 
modality for the parietal, occipital, and right frontal clusters, those differences do not 
provide evidence to invalidate our findings because the slope-based and beta peak time 
evidence from those clusters would not be directly affected by baseline differences. 
Taken together with the slope results, we interpret these findings as evidence of induced 
beta playing a predictive role in visual rhythm perception similar to that reported in 
previous studies for auditory-induced beta (Fujioka et al., 2009, 2012, 2015; Snyder & 
Large, 2005). The overall pattern indicates induced beta power rising in anticipation of an 
incoming tone or flash. In response to the flash onset, we see phase resetting in the beta 
band as indicated by increased ITC, resulting in increased evoked activity. This increase 
in evoked activity appears to act as a marker to reset the anticipatory timing seen in 
induced beta such that induced beta power drops before beginning its rise in anticipation 
of the next event. When an event is omitted, there is little to no phase resetting seen and 
so induced beta continues to rise and plateau before eventually falling until the next event 
causes the induced beta power to drop further and thus restarting the cycle. 

If we take together the findings from the beta slope tests and the beta peak power 
and time tests, we find evidence of predictive visual beta in the left and right 
temporal/parietal clusters, the occipital cluster, the midline cluster, the parietal cluster, 
and the right frontal cluster. These tests show evidence of predictive auditory beta in the 
left and right sensorimotor clusters, the right frontal cluster, and parietal cluster. The 
results taken all together suggest the existence of modality independent, but possibly 
overlapping networks for rhythm timing (Figure 3.10). 
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Fig. 3.10. Overview of clusters with evidence of predictive beta activity for auditory and 
visual rhythm processing indicated. Clusters within the blue area show predictive activity 
for only auditory rhythms, clusters within the yellow for only visual rhythms, and clusters 
within the green areas for both auditory and visual rhythms. The type of predictive 
evidence is listed for each cluster with evidence for visual rhythms in yellow and auditory 
rhythms in blue. All predictive evidence was in induced beta activity except for auditory 
rhythms in the left sensorimotor cluster where evidence of predictive evoked beta activity 
was found. P, peak power evidence of predictive beta; S, slope evidence of predictive 
beta; T, peak time evidence of predictive beta. *Predictive evoked beta 
 
3.5.2 Predictive beta band activity 

Beta modulation has been shown to play a role in a wide range of activities 
including top-down control on sensorimotor systems (Arnal et al., 2011; Engel & Fries, 
2010; Haegens & Golumbic, 2018; Picazio et al., 2014), facilitating long-range 
communication between cortical regions (Kilavik et al., 2013; Kopell et al., 2000) such as 
between sensorimotor and peripheral areas (Fujioka et al., 2015), and is suggested to play 
a role in encoding temporal intervals (Wiener & Kanai, 2016). Beta band activity also 
correlates with motor behavior, with power attenuation just before and during movements 
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(see Kilavik et al., 2013 for review). Considering the suggested role, the motor cortex has 
in timing and predictive processing (Patel & Iversen, 2014; Schubotz et al., 2000), the 
role of beta in imposing general top-down control, and its role in facilitating 
communication with sensorimotor peripheral systems, it is not surprising that beta 
activity appears to play a role in rhythm perception and prediction. 

Beyond the link to sensorimotor behavior, beta activity is known to play a role in 
auditory rhythm perception. Frontocentral-induced beta and gamma modulation occurs 
with the onset of rhythmic events and can be seen at the expected onset of an omitted 
event (Snyder & Large, 2005). Fujioka et al. (2012) found that beta power arising from 
the auditory cortices increases before tone onset in an isochronous rhythm at a rate 
dependent on the tempo of the rhythm and attenuates following the tone at a constant rate 
not dependent on the tempo of the rhythm. Beta activity has also been seen to play a role 
in maintaining beat and meter (Fujioka et al., 2015). Consistent with these findings, we 
find evidence of auditory-induced beta power peaking in anticipation of both tones and 
omitted tones, with the strongest evidence coming from the parietal, left and right 
sensorimotor, and right frontal clusters. Because the source of neural activations are more 
difficult to localize using EEG than MEG, some caution is needed in interpreting the 
location of these sources. However, given other findings suggesting predictive induced 
beta arising from frontocentral regions using EEG (Snyder & Large, 2005), and from the 
auditory cortices, sensorimotor cortices, and parietal cortices using MEG (Fujioka et al., 
2012, 2015), we believe the regions indicated by the cluster locations are reasonable 
interpretations of the source of the predictive beta we measured. It is of note that we did 
not find evidence of predictive beta that we could tie clearly to the auditory cortex. This 
may be a limitation of the EEG IC cluster approach we used; it has been put forth that 
signals arising from the auditory cortex are more suited to being measured by MEG than 
EEG (Destoky et al., 2019). 

When looking at beta modulation in the visual domain, we see a beta power 
increase at the expected onset of an omitted flash in multiple clusters. Comparing beta 
modulation in anticipation of the visual onset between the omission and non-omission 
conditions shows induced beta power increasing prior to onset, followed by a sharp 
power drop-off, but only after flash onset, and not following omission onset. Although 
we expected to find predictive beta activity in the visual domain, it was surprising to see 
evidence of predictive induced beta modulated more clearly and across more clusters in 
the visual domain than in the auditory domain because the timing aspects of rhythm 
perception in the auditory domain are thought to be more precise as evinced by less 
variability in auditory SMS compared to visual SMS (Repp, 2005, Repp & Su, 2013). 
The discrepancy between auditory and visual beta modulation may be due to auditory 
signals being more suited to measurement from MEG than from EEG (Destoky et al., 
2019), resulting in a comparatively reduced measurement of beta modulated by auditory 
rhythms. The apparent size difference between the auditory and visual cortex may play an 
additional role. 

The clusters that show evidence of predictive beta activity for the visual modality 
do not perfectly overlap with what is seen in the auditory modality. In the sensorimotor 
clusters, we only find evidence of auditory predictive beta in bilateral sensorimotor 
clusters, and not visual predictive beta. There is evidence of visual predictive beta in the 
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midline cluster, which contains dipoles localized to the premotor regions. This may 
indicate motor system involvement and would be in line with research suggesting the 
medial premotor region plays a role in predictive timing in primates across sensory 
modalities (Merchant et al., 2013). However, this begs the question of why the same 
activity was not seen in the auditory modality if premotor timing activity is not modality 
specific. A possible explanation is given by work reporting that a greater number of cells 
in the primate SMA respond to visual timing cues than to auditory timing cues (Merchant 
et al., 2015), although it is not clear if this finding extends to humans or if it is specific to 
the primates involved in that study. It is also of interest that we find predictive visual-
induced beta activity from the slope analysis in left and right temporal/parietal junction 
and parietal clusters, but not in the occipital cluster. Given the difficulty in localizing 
sources with EEG, and the component distribution of the four posterior clusters, it is 
likely the left and right temporal/parietal and parietal clusters contain activity arising 
from cortical patches within the occipital cortex. Considering the distribution of 
components, and the faster rebound in induced beta power in the occipital cluster (Figure 
3.5b), we consider it likely that activity from early processing areas of the visual cortex 
(e.g., V1) are more strongly represented in the occipital cluster than the surrounding 
posterior clusters. This, however, cannot be confirmed with the spatial limitations of EEG 
and will require a methodology with greater spatial precision to test. 

Although beta power modulation in response to visual rhythmic flashes has been 
seen before (Meijer et al., 2016; Saleh et al., 2010), to our knowledge this is the first time 
it has been shown predicting the onset of an omitted event. However, it has been 
questioned whether beta modulation is even related to temporal prediction at all (Meijer 
et al., 2016). Meijer et al. (2016) investigated beta activity with a rhythmic visual task 
and found beta power modulation in response to isochronous visual rhythms of different 
tempi (IOI’s of 1,050, 1,350, 1,650 ms), yet the rate of beta power modulation was the 
same regardless of the tempo used. This is different from what was found by Fujioka et 
al. (2012) in their study of auditory beta modulation, where the rate of beta power prior to 
tone onset was modulated by the tempo of the rhythm. Meijer et al. (2016) interpreted 
their result as evidence that beta activity is not playing an entraining role in the visual 
system, suggesting instead that the beta peaks seen may be caused by rebounding activity 
in response to the flash, peaking roughly 900 ms after event onsets. The current study 
provides the contrary evidence and suggests that beta modulation may be playing a role 
in prediction of the onset of visual events because the beta modulation during the 
omission could not be in response to any event and instead must be responding to the 
timing of the expected onset of the flash. Induced beta peaks <50 ms after the omission 
onset, or 650 ms after the onset of the prior stimulus (Figure 3.4), which is much earlier 
than would be expected for beta power rebound in response to the flash event, as 
described by Meijer et al. (2016). We suggest the reason for the discrepancy between 
Meijer et al.’s (2016) findings and those findings reported here may be due to their use of 
relatively slow tempi compared with the 600 ms IOI of this study. Additionally, the task 
used in the Meijer et al. (2016) study was much more complicated than simply attending 
to the timing of the rhythms as in our task and demanded more attention and possibly 
competing resources. There is evidence that sub-second timing and supra-second timing 
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use different networks (see Wiener et al., 2010 for a review). We, therefore, suggest beta 
synchronization may only be playing a predictive role in the sub-second time scale. 
 
3.5.3 Contribution of the motor system 

Previous studies have described induced beta modulation to auditory rhythms 
arising from sensorimotor cortices (Fujioka et al., 2012, 2015). There is also evidence 
that auditory timing appears to rely on motor cortex (Iversen & Balasubramaniam, 2016; 
Janata et al., 2012; Repp & Su, 2013; Ross, Iversen, et al., 2016; Ross, Warlaumont, et 
al., 2016) and motor networks with nodes in the parietal lobes, cerebellum, and basal 
ganglia (Levitin et al., 2018; Patel & Iversen, 2014; Repp & Su, 2013). This motor 
network activity could indicate that the motor system is playing an important role in 
predicting the timing of events in auditory rhythms, often discussed in the context of 
evolution of social activities such as dance and language (Fitch, 2016; Iversen, 2016; 
Patel, 2006). The auditory beta modulation from the sensorimotor clusters we present 
here is consistent with the narratives of the previous literature on the involvement of the 
motor system for auditory timing. This can be contrasted with our findings from the 
visual system where there is no evidence of predictive beta timing in the bilateral 
sensorimotor clusters and instead evidence in the mid-central cluster that may be related 
to activity arising from the SMA. 

In the auditory modality, we found evoked predictive beta timing activity in the 
left sensorimotor cluster (Figure 3.6a), yet we found evidence of induced predictive 
timing activity in the right sensorimotor cluster (Figure 3.7a). The asymmetrical beta 
activity seen in the two sensorimotor clusters specific to the auditory conditions suggests 
hemispheric specialization specific to auditory processing. A recent meta-analysis on 
neural activation during music listening shows consistent MRI activation in the right but 
not left primary motor cortex during music listening tasks (Gordon et al., 2018). 
Interestingly, they found that studies that asked the subjects to move a body part while 
listening elicited stronger activity in the right primary motor cortex than studies using 
passive listening tasks. Others describe a left hemisphere role (Pollok et al., 2008) or non-
motor-dominant hemisphere role (Kaulmann et al., 2017; Yadav & Sainburg, 2014) for 
motor timing. Similarly, for language perception there appears to be hemispheric 
specialization in the auditory cortices, with the left hemisphere specialized in temporal 
changes and the right hemisphere in spectral changes (Zatorre & Belin, 2001; Zatorre et 
al., 1992). Specifically, it has been shown that activity in the left anterolateral superior 
temporal sulcus (STS) corresponds to processing of temporal aspects of speech 
perception, whereas perception of spectral features of speech are associated with the 
same structure in the right hemisphere (Obleser et al., 2008). Our results support bilateral 
motor contributions to auditory timing, although the mechanism that results in predictive 
evoked activity in the left hemisphere and induced beta activity in the right hemisphere 
may be distinct. In particular, the predictive evoked activity seen in the left sensorimotor 
cluster suggests a timing mechanism driving phase resetting at the expected tone onset 
not seen in the right sensorimotor cluster or any other cluster. 
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3.5.4 Limitations and future directions 
The current study reveals that timing and prediction for visual rhythm perception 

could use non-motor networks. We cannot say what role, if any, the motor system plays 
in visual timing. A closer look at the connections between visual and motor systems is 
needed to elucidate the issue. Using moving visual rhythms as opposed to flashing visual 
rhythms may elicit a different picture of activation as the visual system is better tuned to 
discerning temporal information when movement is present (Hove, Iversen, et al., 2013). 

Another limitation of the current study is that we did not use multiple tempi. 
Having only one tempo makes it unclear how much the change in time course of neural 
activations is related to the tempo. Using multiple rhythms with different tempi would 
allow for a clearer differentiation between tempo-dependent aspects of timing. If those 
tempi spanned both sub-second and supra-second interstimulus intervals, this would also 
provide insight to the temporal limits to the mechanisms in visual rhythm perception. 

Although we see frequency band-specific oscillatory modulation during rhythm 
perception, caution should be used in assuming this is the brain's mechanism of timing. 
There is evidence for multiple mechanisms for timing (for review see Comstock et al., 
2018; Wiener & Kanai, 2016; Wiener et al., 2010), and here we describe one reflection of 
these processes. Oscillatory dynamics likely reflect more broadly the mechanism for 
spreading information between or across networks, and timing perception is only a subset 
of neural communication happening during these tasks. 

Additional investigation is needed into the differences seen between left and right 
motor contributions to auditory timing. Although the differences suggest possible 
functional lateralization in auditory rhythm perception, it is unclear if those differences 
are driven by handedness (Kaulmann et al., 2017; Yadav & Sainburg, 2014) or other 
factors (Pollok et al., 2008). Future studies are needed to look more closely at specific 
hemispheric contributions. 

The inherent low spatial resolution of EEG limits how confidently we can draw 
conclusions about neural sources. We describe broad cortical source regions/networks in 
lieu of more focal sources with respect to this methodological limitation but argue that 
the ICA-based cluster analysis leads to reasonable spatial and functional grouping of 
neural activity likely from common sources. That being said, we cannot speak with 
certainty about the exact cortical sources of the activity we describe. A method with 
better spatial resolution that retains fine temporal resolution, such as MEG or ECoG, 
would provide better source resolution for predictive rhythm perception networks. 

The baseline differences we find in some clusters suggest habituation to the non-
omission condition not seen in the omission condition. Although these baseline 
differences do not directly impact many of the analyses used, nor impact our main 
findings, they do suggest that future studies should be designed in such a way to avoid 
unequal habituation to the signal. We also cannot rule out the possibility that unequal 
baselines could reflect differences in neural activation that may have indirect effects on 
neural dynamics. We think it unlikely that such differences would impact neural activity 
in such a way to impact our findings; however, study designs that avoid this possible 
confound would produce stronger results. 

Finally, the nature of this work was primarily to investigate and explore predictive 
timing markers across auditory and visual modalities in beta activity. Although the 
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exploratory work is often a necessary step in surveying the landscape of a given problem, 
it can be prone to interpretive biases. For this reason, the exploratory portions of our 
work should be taken primarily as a guide for further experiments to understand 
predictive beta activity and differences between the mechanisms of auditory and visual 
rhythm perception. 
 
3.6 Conclusions 

We investigated the mechanisms of prediction for auditory and visual rhythms 
using an omission paradigm. In confirmation of our hypotheses, the results described here 
support theories of predictive timing in both visual and auditory modalities, that can be 
observed in beta band oscillatory activity. Using an exploratory ICA spatial cluster-based 
approach, our results also support that visual and auditory prediction for rhythmic events 
may be subserved by modality-specific cortical networks, although we cannot rule out the 
possibility that both auditory and visual networks are subserved by a common subcortical 
network. We describe all clusters resulting from the blind source separation technique in 
detail, and these results suggest induced beta activity predicting the expected onset of 
visual rhythmic events bilaterally in temporal/parietal clusters, in a dorsal medial cluster, 
a parietal cluster, and a right hemisphere frontal cluster. We also show evidence for 
induced beta activity predicting the expected onset of rhythmic auditory events bilaterally 
in sensorimotor clusters, in a parietal cluster, and in a right hemisphere frontal cluster, 
and evidence for evoked auditory predictive timing in a left motor cluster. These findings 
suggest that auditory timing may involve hemisphere-specific activity, and reliance on 
motor networks not seen in visual timing. 
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Chapter 4 
 

4 Comparative Motor System Entrainment to Auditory and Visual Rhythms  
  
 
 This chapter consists of an experiment designed to determine the role of the motor 
system in auditory and visual rhythm perception during both SMS and purely perceptual 
rhythm perception. While the previous experiments provided evidence of visual system 
specific timing processing in ERP activity (chapter 2), and in beta-band oscillations 
(chapter 3), this experiment focuses on measuring the frequency of a rhythm (i.e., a 
rhythm with a beat every 1 second would have a frequency of 1 Hz) in the neural activity 
arising from the motor cortex. This focus is based on the idea that synchronization to, 
and perception of, a rhythm of a given frequency should induce neural entrainment at 
that frequency. Since the motor system is known to be involved in rhythm processing and 
is suggested to be more strongly connected to the auditory system for rhythm perception 
than for visual rhythm perception, we expected to find evidence of stronger entrainment 
from auditory rhythms in the motor system than from visual rhythms, yet we found the 
opposite instead. Given that rhythm perception is generally worse for visual rhythms than 
auditory rhythms, we take this finding to suggest that how entrainment is utilized to 
perceive or synchronize to a given rhythm is just as important as the entrainment itself.  
 
 Abstract 
 Perception of, and synchronization to, auditory rhythms is known to be more 
accurate than with visual rhythms. The motor system is known to play a role in the 
processing of timing information for auditory rhythm perception, but it is unclear if the 
motor system plays the same role for visual rhythm perception. One demonstrated 
component of auditory rhythm perception is neural entrainment at the frequency of the 
auditory rhythm. In this study we use EEG to measure entrainment of both auditory and 
visual rhythms from motor cortex while subjects either tapped in synchrony with, or 
passively attended the presented rhythms. In order to isolate activity from motor cortex, 
we used independent components analysis to first separate out neural sources, then 
selected components using a combination of component topography, dipole location, mu 
activation, and beta modulation. This process took advantage of the fact that tapping 
activity will result in reduced mu power, and characteristic beta modulation that helped 
select motor components. Our findings indicate neural entrainment in the motor system 
was stronger for visual rhythms than auditory rhythms, and strongest during for the 
tapping conditions for both modalities. We also find no difference in mu power across 
modalities. These findings indicate that the generally greater rhythm perception 
capabilities of the auditory system over the visual system do not depend entirely on 
neural entrainment in the motor system.  
 
4.1 Introduction 
 Human capability for sensorimotor synchronization (SMS) to auditory rhythms 
has been shown to be more precise than SMS to visual rhythms (Repp, 2003), but the 
exact reasons why are yet to be uncovered. It has been shown through fMRI work that 
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activation of motor structures are more pronounced for auditory rhythms than for visual 
rhythms during SMS tasks as (Hove et al., 2013b). This has led to the suggestion that the 
auditory system is more tightly tied to the motor system for temporal processing, such as 
needed for rhythm perception, than the visual system. In previous works, we have 
suggested that a corollary to this is that the visual system performs some rhythm 
processing in house (Comstock & Balasubramaniam, 2018; Comstock et al; 2018; 
Comstock et al 2021). Based on that suggestion, we would expect to see differences in 
electrophysiological measures of rhythm processing in the motor system between 
auditory and visual rhythms that match those seen in fMRI data.  

It has been demonstrated using EEG that listening to auditory rhythms elicits an 
increase in power and phase coherence at the frequency of the beat of the rhythm (f0), 
that is measured most strongly over frontal-central regions (Nozaradan et al., 2011, 
2012a, 2012b), and this signal is increased during an SMS task (Nozaradan et al., 2015). 
Likewise, it has long been known that the visual system can elicit power at the rhythm of 
visual flashes in what are dubbed steady-state visually evoked potentials (SSVEPs) (for 
review see Vialatte et al., 2010). It is unclear to what extent actvitiy at f0 induced for 
auditory rhythms and visual rhythms would both be present in the motor system. If the 
auditory system is more tightly tied to the motor system than the visual system however, 
we would expect measures of power and phase coherence in the motor system to be 
stronger for auditory rhythms than visual rhythms. 

Many previous EEG studies investigating activity from the motor system have 
attempted to isolate motor system activity by selectively measuring activity from 
channels that lie over motor regions (Pfurtscheller & Neuper, 1994; Pfurtscheller et al., 
1997; McFarland et al., 2000). One downside of this approach is that EEG activity 
arriving at the scalp level is a mix of all sources of activity in the brain (Makeig et al., 
2004). Independent components analysis (ICA) has been shown to be an effective method 
of separating out sources of neural activity in the brain (Delorme et al., 2012). While the 
blind source separation of ICA allows for separating out sources, a method of selecting 
appropriate sources for each study is needed. Since this study aims to determine the role 
of the motor cortex in rhythm processing, a clear marker of motor system activity will be 
needed.  

Mu rhythms are a well-known marker of motor system activity, which are 
rhythms originating from the motor cortex in the range 8-13 Hz (Pfurtscheller & Lopes 
da Silva 1999). Mu rhythms are known to play a role in inhibition of movement and have 
been shown to increase in power, or what is termed event-related synchronization (ERS), 
during movement suppression, and decrease power, or event-related desynchronization 
(ERD), during movements (Pfurtscheller & Neuper, 1994; Pfurtscheller et al., 1997; 
McFarland et al., 2000) as well as during movement imagery (McFarland et al., 2000). A 
study designed with a sufficient motor task, and a non-motor task could be expected 
induce modulation of mu rhythms that would likely be isolated as independent 
components.  

A further benefit of looking at mu rhythms for a study designed to investigate the 
role of the motor system in auditory and visual rhythm processing is that it is speculated 
that mu rhythms may additionally serve as markers of rhythm perception. In preliminary 
work, we showed that listening to music while remaining still results mu ERS relative to 



  

  

65 

silence (Ross et al., 2016). That study was motivated by the premise in the ASAP 
hypothesis that the motor system is simulating the beat in music (Patel & Iversen, 2014). 
If the motor system is simulating the beat, then one could expect corresponding mu ERS 
to inhibit any movement that might arise from the beat simulation. Although there has 
been at least one study showing mu ERD during music listening, there is reason to doubt 
the results are purely due to listening music (Wu et al., 2016). The effect in that study 
may be due to motor imagery, as the ERD was seen in trained pianists while they listened 
to piano pieces they were familiar with, and therefore may have been imagining the 
movements required to play the pieces. As the study did not test non-musicians, nor 
musicians with music they were not familiar with, it cannot be confirmed that the mu 
ERD was a result of simply attending or processing of music.  

In this study we used EEG to measure changes in mu rhythms and activity at the 
beat frequency (f0) induced by attending to isochronous auditory or visual rhythms. 
Based on the idea that the auditory system is more tightly connected to the motor system 
than the visual system for temporal processing, and that listening to music induces mu 
ERS as an inhibitory effect against beat simulation, we hypothesized that mu ERS would 
be greater for auditory rhythms than visual rhythms during non-tapping conditions. 
Additionally, we hypothesized that activity at f0, as measured by power and phase 
coherence, would reflect auditory rhythms more strongly than visual rhythms in the 
motor cortex. Since previous work has shown that music training can increase neural 
responses to music (Bangert & Altenmüller 2003), including measures of activity at f0 
(Doelling & Poeppel, 2015), we recorded each subjects music training experience to 
check if differences in music training play a role in measured differences in rhythm 
perception. Therefore, we hypothesized that subjects with music training will show 
stronger Mu and f0 measures for rhythms compared to subjects without music training. 
 
4.2 Materials and Methods 
4.2.1 Participants 
 21 subjects participated in the experiment (11 female, M = 21.62 years, SD = 
3.58). Data from 3 subjects were not used, 2 for computer error and 1 due to poor signal 
to noise ratio resulting in no discernable motor components. 10 subjects reported have 
some musical training (M = 6.6 years training, SD = 3.21). All subjects had typical 
hearing and typical or corrected vision, and reported being right handed. This study was 
approved by the UC Merced Institutional Review Board for Research Ethics and Human 
subjects, and was carried out in accordance with the Declaration of Helsinki. All 
participants gave informed consent prior to testing. 
  
4.2.2 Task 
 Subjects were seated and fitted with a 32 electrode EEG cap, and were presented 
with 16 stimulus trains with each train consisting of 40 events. 8 of the trains were of 
auditory tones (1000 Hz sine wave, 50 ms duration with 10 ms rise and 30 ms fall), and 
the other 8 being visual flashes (light grey flash with 50 ms duration). For both tones and 
flashes the subjects faced a black computer screen with a grey fixation cross at the center 
that remained visible during both flashes and tones. All stimuli were presented with an 
interonset interval of 600 ms, resulting in beat frequency (f0) of 1.667 Hz. Subjects were 
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either instructed to tap in synchrony to the tones or flashes using their right index finger, 
or to attend the stimuli while remaining motionless. Tap times were not recorded. The 
resulting four groups of stimulus trains (auditory tapping, auditory no tapping, visual 
tapping, visual no tapping) were presented as separate blocks, with each block having 
stimuli from only one condition. The order of the groups was randomized with the 
exception that the 2 groups from each modality were always presented one after the 
other, and the tapping order was preserved across modalities, e.g., visual no tapping, 
visual tapping, auditory no tapping, auditory tapping. In order to ensure subjects were 
actively attending the stimuli, subjects were presented with an additional short test-
stimulus train immediately following each stimulus train, and were asked to compare the 
tempos of the stimulus train with the short test stimulus train. The test-stimulus train was 
always of the same modality as the stimulus train it followed, with tempo that was either 
slightly slower or faster than the preceding train was presented. After the test-stimulus 
train was presented, subjects were tasked with reporting if the later train was faster or 
slower than the previous train.  
 
4.2.3 EEG Processing 
 EEG data were processed using EEGLAB 2021 (Delorme & Makeig, 2004) and 
Matlab 2020b. Data were first downsampled from 1024 to 256 Hz, then high pass filtered 
with passband edge at 1 Hz and -6 dB cutoff at .5 Hz. Data were then pruned to remove 
all sections of data that did not contain stimuli events, after which the data were inspected 
and bad channels were removed. Spherical interpolation was used to fill the removed 
channels, after which ASR correction was used to fix noisy bursts in single channels. 
Data were then referenced to average and ICA was applied using the AMICA algorithm 
(Palmer et al., 2012). After ICA Dipoles were fitted to the resulting components. Eye 
blink, eye movement, and heart artifact components were selected by hand for each 
subject and removed from the data. 
 The independent components from each subject were then inspected using the IC 
Label toolbox (Pion-Tonachini et al., 2019) to visualize and help determine which 
component corresponded to the left hemisphere primary motor cortex for each subject 
based on the following criteria: Scalp topography and dipole location indication that the 
component source was in the left motor cortex, evidence of mu ERS in the spectral 
power, evidence of mu ERS in the time series based on the distinctive mu wave shape, 
mu modulation based on condition (mu ERD during tapping conditions). Left primary 
motor cortex components were found for all but 1 subject, resulting in 18 subjects. An 
example of a motor component can be seen in figure 4.1, along with the scalp topography 
of all selected motor components. Further confirmation of the veracity of the motor 
components was made by inspecting and comparing beta power modulation between the 
tapping and no tapping conditions, as beta band power attenuation from the motor cortex 
is known to occur during movement onset (Pfurtscheller & Lopes da Silva, 1999).  
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Fig. 4.1. Example of left motor component from a single subject. Characteristic mu wave 
shape can be seen in the time-series data (a), which is present only during the non-tapping 
conditions (b). The topography of the component suggests its source is from the left-
motor cortex (c), while the spectral power shows the characteristic 10 Hz power with a 
beta harmonic resultant from mu activity (d). Topographic plots of activity from the 
selected left motor components with activity of all components averaged together can be 
seen in the top topographic plot (e). All individual left-motor component plots are shown 
(f). 
 

Two separate time-frequency calculations were performed on the processed 
component data: an analysis to inspect beta power modulation, and an analysis to 
calculate phase coherence in the lower frequencies. To calculate beta power modulation, 
the data were epoched into 3 second epochs centered on the stimulus. Single-trial time-
frequency analysis was performed on the resulting epochs using Morlet wavelets between 
8 and 35 Hz with a constant wavelet length of 500 ms achieved using 4 cycles at 8 Hz 
and scaling up to 17.5 cycles at 35 Hz. A divisive baseline consisting of the entire epoch 
length for each condition was used to highlight power modulation of each frequency. The 
resulting time-frequency activity was used solely to confirm that the selected motor 
components did indeed correspond to motor activity. 

 A second time-frequency calculation was performed on the un-epoched trials 
using Morlet wavelets between 1.066 and 14.066 Hz with a constant wavelet length of 
6563 ms seconds achieved using 7 cycles at 1.066 Hz and 92.31 cycles at 14.066 Hz. The 
frequencies used were linearly spaced at 0.1 Hz intervals so that the beat frequency of 
1.666 Hz could be captured. No baseline was used so that power could be compared 
across all 4 conditions. Using the un-epoched data allowed for a wider window, removing 
potential edge artifacts that can arise from using a narrow window, and additionally 
allowed for better bandwidth resolution with a resulting constant bandwidth for each 
frequency of .3 Hz. Intertrial Phase Coherence (ITC) was calculated by extracting the 
phase angles from the time-frequency calculations and epoching them centered on each 
stimulus (+/- 300 ms), in a similar manner as implemented by Doelling & Poeppel 
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(2015). ITC was then calculated as phase coherence across epochs for each condition at 
each time-frequency point for each component. Average ITC at each frequency was then 
calculated by averaging across time. To extract power, a discrete Fourier transform was 
applied to the un-epoched data between 1 and 40 Hz with a frequency resolution of 
0.0439 Hz. Mu power was extracted as the averaged power between 8 and 13 Hz. To 
extract power induced by the beat frequency, signal power for the individual frequencies 
were noise corrected by subtracting the average power of the neighboring frequencies (+ 
0.088 to 0.132 Hz and – 0.088 and 0.132 Hz) in a similar fashion as used by Nozaradan et 
al (2011).  
 
4.2.4 Statistical Analysis  
 Analyses were carried out on the selected motor components as well as on grand 
average activity to assess overall activity without location bias. The grand averages were 
calculated for each subject for each condition, and consisted of the averages of the 
measures of all components. To investigate if the rhythms induced a significate neural 
response at f0, one sample t-tests were used for both noise-corrected f0 power and f0 ITC 
for each condition and for both the grand averaged data and motor component data. If 
there were no induced effect, it would be expected that the noise corrected f0 power and 
f0 ITC would be expected to be zero.  

To compare changes in mu power, noise corrected f0 power and f0 ITC across the 
four conditions, separate 3 by 2 repeated measures ANOVAs were used with within-
subject factors being modality (audition and vision), and tap condition (no tapping and 
tapping), and a between subject factor of music training (No musical training, some 
musical training). Post-hoc pairwise comparisons were made where appropriate based on 
ANOVA results using Bonferroni adjustments. 
 
4.3 Results  
4.3.1 Mu Power   
 Analysis of power in the mu frequency range (8 to 13 Hz) for grand averaged data 
revealed a main effect only of modality F(1,16) = 15.428, p = 0.004, np2 = 0.409. Post-
hoc comparisons revealed power in the mu frequencies for auditory control (M = 53.405, 
SD = 4.691) was greater than visual control (M = 52.625, SD = 3.794), p = 0.028, and 
power for auditory taps (M = 53.38, SD = 4.677) was greater than visual taps (M = 
52.302, SD = 53.904), p = 0.004 (Figure 4.2a). Power in the auditory modality (M = 
54.019, SD = 4.757) was also greater than power in the visual modality (M = 52.846 SD = 
43.937), p = 0.013 for musicians, but not for non-musicians. 

Analysis of power in the mu frequency range for the left motor component data 
revealed opposite results, with a main effect only of tap condition F(1,16) = 13.973, p = 
0.002, np2 = 0.466. Post-hoc comparisons revealed mu power for auditory control (M = 
40.162, SD = 5.26) was greater than auditory taps (M = 37.457, SD = 4.415), p = 0.003, 
and power for visual control (M = 39.696, SD = 4.945) was greater than visual taps (M = 
37.372, SD = 4.736), p = 0.006 (Figure 4.2a).  Reduction of power in the mu frequency 
range over the left motor region in the scalp topography in the tapping conditions 
compared to non-tapping corroborates the findings of the left motor components (Figure 
4.2b). 



  

  

69 

 
Fig 4.2.  (a) Box pots depicting the distribution of power in the mu range across 
conditions for both the grand-averaged and left-motor component activity. The center line 
of each box depicts the median and the notches reflect the 95% confidence interval. (b) 
Scalp topographic maps of the spectral power in the mu range (8 – 13 Hz) from channel 
data. Both auditory tap and visual tap conditions show a reduction in power over the left 
motor region compared to the non-tapping conditions.  

 
4.3.2 Beat induction at f0 

One-sample t-tests of ITC at f0 indicated all conditions induced significant phase-
coherence for both grand averaged and left motor component data (table 4.1, figures 4.3c 
& 4.3d). Tests of noise corrected power at f0 also indicated significance activity for all 
conditions (table 4.1, figures 4.3a & 4.3b). 

 
Table 4.1  

One-way t-test rests of activity at f0 

 
Table 4.1. Results of one-way t-tests to assess if f0 ITC and f0 noise corrected power is 
significantly different from zero. Both f0 ITC and f0 noise corrected power would be 
expected to be greater than zero if the rhythms are inducing activity at f0. 
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Fig. 4.3.  Frequency domain representation of noise-corrected power (a & b) and ITC (c 
& d) across conditions for both left motor components and grand-averaged data. Average 
f0 noise-corrected power is represented with the dark blue line, and shaded areas 
represent 95% confidence intervals for both left motor power (a) and grand-averaged 
power (b). Individual ITC is shown with thin black lines and average ITC is shown in red 
for both the grand average data (c) and left motor component data (d). 
 
4.3.3 Power  
 Analysis of power at f0 for the grand averaged data show main effects for both 
modality F(1,16) =5.434, p = 0.033, np2 = 0.254, and for the tap condition F(1,16) 
=14.627, p = 0.001, np2 = 0.478, and a three-way interaction between modality, tap 
condition, and music training F(1,16) =4.751, p = 0.045, np2 = 0.229. Post-hoc 
comparisons across modalities show f0 power from the auditory non-tapping condition 
(M = 2.192, SD = 1.6) was lower than for the auditory tapping condition (M = 3.26, SD = 
1.91), p = 0.026, while f0 power for the visual non-tapping condition (M = 3.238, SD = 
1.622) was also lower than f0 power for visual tapping (M = 4.478, SD = 1.859) p = 
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0.009. Comparisons of noise-corrected f0 power across modalities suggest that auditory 
induced f0 power was lower than visual induced f0 power for both non-tapping and 
tapping conditions, but neither difference reached significance (p < 0.094, p < 0.052, 
respectively) (figure 4.4a), 
 Post-hoc tests to explain the three-way interaction showed that only non-
musicians had significant effects of modality on f0 power (Auditory: M = 2.485, SD = 
1.385; Visual: M = 4.1, SD = 1.55; p = 0.018), and only in the tapping condition power 
(Auditory Tapping: M = 2.574, SD = 1.793; Visual Tapping: M = 4.884, SD = 1.853; p = 
0.004). Further tests showed that f0 power induced by tapping was greater than not 
tapping for musicians (Tapping: M = 4.043, SD = 1.47; Non-Tapping: M = 2.539, SD = 
1.07.; p = 0.005), but only in the auditory modality (Auditory Tapping: M = 4.116., SD = 
1.793; Auditory Non-Tapping: M = 1.938, SD = 1.632; p = 0.008). Non-musicians 
showed a similar, but just above significant, result across tapping conditions (Tapping: M 
= 3.729, SD = 1.467; Non-Tapping: M = 2.855, SD = 1.069; p = 0.051). Different from 
the musician group, the non-musicians showed a significant effect across tapping only for 
the visual modality (Visual Tapping: M = 4.884., SD =1.853; Visual Non-Tapping: M = 
3.315, SD =1.67; p = 0.01) (figure 4.5b). 
 Analysis of power at f0 for the left motor component data shows a main effect 
only for the tapping conditions F(1,16) =20.315, p < 0.001, np2 = 0.559. Post-hoc 
comparisons across tapping conditions show f0 power from the auditory non-tapping 
condition (M = 1.525, SD =2.588 ) was lower than for the auditory tapping condition (M 
= 4.823, SD =4.078 ) p = 0.014, and f0 power for the visual non-tapping condition (M 
=1.996 , SD = 3.433) was also lower than f0 power for visual tapping (M = 5.559, SD = 
3.367) p < 0.001 (figure 4.4a).  
 Examination of the scalp topography of f0 power indicates power peaking in the 
frontal-central region for auditory conditions, with stronger activity for the auditory 
tapping condition than the auditory not-tapping condition. Similar activity in the 
topography is seen in the visual conditions except there is additional stronger activity 
peaking over the posterior regions that does not appear to change between tapping 
conditions. (figure 4.4c) 
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Fig 4.4. Distribution of noise-corrected power at f0 (a) and f0 ITC (b). Scalp topography 
is shown of spectral power at f0 across conditions from channel data (c). The center line 
of each box depicts the median and the notches reflect the 95% confidence interval (a & 
b). * = p < 0.05. ** = p < 0.01. In the spectral topography plot (c), both auditory and 
visual modalities show fontal-central activity that is strongest in the tapping conditions, 
with relatively weak power over the left and right motor regions.  
 
4.3.4 ITC  
 Analysis of ITC for grand averaged data revealed main effects for modality 
F(1,16) =8.835, p = 0.009, np2 = 0.356, and for the tap condition F(1,16) =15.702, p = 
0.001, np2 = 0.495. There was no significant effect of music training. Post-hoc 
comparisons across modalities revealed that non-tapping auditory ITC (M = 0.291, SD = 
.027) was lower than non-tapping visual ITC (M = 0.329, SD = 0.045), p = 0.007, and 
tapping auditory ITC (M = 0.34, SD = 0.06) was also lower than tapping visual ITC (M = 
0.375, SD = 0.083), p = 0.048. Comparisons across tapping conditions revealed that 
tapping resulted in higher ITC than non-tapping for both auditory (p = 0.004), and visual 
(p = 0.005) modalities (figure 4.4b) 
 Analysis of ITC for the left motor components data revealed main effects for 
modality F(1,16) =5.366, p = 0.034, np2 = 0.251, and for the tap condition F(1,16) 
=17.659, p < 0.001, np2 = 0.525. Post-hoc comparisons across modalities revealed that 
non-tapping auditory ITC (M = 0.246, SD = .136) was lower than non-tapping visual ITC 
(M = 0.398, SD = 0.152), p = 0.005, but only for non-musicians (Auditory Non-Tapping: 
M = 0.255, SD =0.136; Visual Non-Tapping: M = 0.431, SD =0.15; p = 0.01). 
Comparisons across tapping conditions revealed that tapping resulted in higher ITC for 
both auditory (p = 0.003), and visual (p = 0.006) modalities compared to non-tapping, but 
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this effect was only seen in musicians (Auditory Tapping: M = 0.563, SD =0.241; 
Auditory Non-Tapping: M = 0.234, SD =0.144; p = 0.007). (Visual Tapping: M = 0.569, 
SD =0.204; Visual Non-Tapping: M = 0.357, SD =0.154; p = 0.008). (figures 4.4b & 5a) 
 
 

 
Fig 4.5.  Differences between musicians and non-musicians in f0 ITC for the left motor 
components (a) and f0 noise-corrected grand-averaged power (b). The center line of each 
box in each box plot depicts the median and the notches reflect the 95% confidence 
interval. While no direct differences were seen between musicians and non-musicians, 
tapping in synchrony to auditory rhythms had a greater effect in f0 activity than 
compared to non-musicians as seen in ITC in the left motor components (a) and in the 
noise-corrected grand-averaged data (b) 
 
4.4 Discussion 
4.4.1 Summary of Results 
 In this experiment, we compared the effects of synchronizing to, or passively 
attending, auditory and visual rhythms on neural activations at the beat frequency and on 
mu rhythms. Our results show clear activation of the beat frequency for both auditory and 
visual rhythms across both ITC and noise-corrected power, suggesting both modalities 
can entrain rhythms at the beat frequency in neural populations (figure 4.3). We 
additionally show strong differential activation at the beat frequency and in mu power 
between tapping in synchrony to auditory and visual rhythms compared to passively 
attending the rhythms, where tapping in synchrony increases both power and phase-
coherence at the beat frequency (figure 4.4), while decreasing mu power (figure 4.2). 
Surprisingly, we find evidence of stronger induced activation at the beat frequency from 
visual rhythms over auditory rhythms, most prominently in ITC measures, yet see no 
evidence of differential activation of mu rhythms across modalities. Although we do 
report greater auditory activity compared to visual activity in mu range for the grand 
averaged data, it is likely this result is due to increased alpha power over visual cortex 
specific to the auditory task (figure 4.2b). This would be expected given posterior alpha is 
known to decrease during tasks requiring visual attention (Fox & Snyder, 2011; 
Niedermeyer, 1997), such as in the visual conditions of this studly. Inspections of the 



  

  

74 

spectral topography plots of power at f0 indicate that f0 power is most modulated by 
tapping in the frontal-central regions for both modalities, while both visual conditions 
show relatively high f0 power posteriorly (figure 4.4c). While we make no direct 
statistical comparisons between the activity from the left-motor components and grand-
averaged data, it does appear that power at the beat frequency is seen in the motor 
components clearly only when tapping, as opposed to in all cases in the grand averaged 
data (figures 4.3a & 4.3b). Yet when looking at the ITC at f0, there appears to be stronger 
activation for all conditions in the motor components compared to the grand averaged 
data (figures 4.3c & 4.3d). Finally, we find no main effects of music training in our 
measures, yet we do find that musicians tapping in synchrony to rhythms appears to have 
a stronger effect on f0 activity than compared to non-musicians, especially in the auditory 
modality (figure 4.5).  
 
4.4.2 Mu Power 
 Mu rhythm activity is thought to increase during movement suppression 
(Pfurtscheller & Neuper, 1994; Pfurtscheller et al., 1997), and has been argued that it can 
serve as a marker for rhythmic timing processing (Ross et al., 2016a), based on the idea 
that the motor system is simulating the beat (Iversen & Patel, 2014; Ross et al., 2016b), 
and that the work of simulating the beat may require suppression to prevent movements 
related to beat simulation. Existing work made it unclear if attending rhythms would 
result in mu ERS or ERD however – one study has reported ERD (Wu et al., 2016).), yet 
another study suggests otherwise (Ross et al., 2016a). While this experiment cannot 
answer the question of whether rhythms increase mu activity directly as we had no quiet 
condition to test against, our results provide further insight into the role of mu activity.  

It is well known that humans synchronize with greater precision and across a 
greater range of tempi to auditory rhythms than to visual rhythms (see Repp & Su, 2013 
for review). One prominent explanation is that the auditory system is tightly tied into the 
motor system to use the motor system for auditory rhythmic timing processing (Iversen & 
Patel, 2014; Ross et al., 2016b), while more recent work has suggested that the visual 
system is able to do some rhythmic timing in house (Comstock & Balasubramaniam, 
2018; Comstock et al., 2021). Under those conditions, and given the assumptions of beat 
stimulation, one would expect auditory rhythms to elicit stronger mu activity than visual 
rhythms, yet we find no difference. Further, if the motor system and auditory rhythm 
timing are tightly tied together, and that mu activity can serve as a marker of rhythmic 
processing, it could be expected that musical training would result in greater mu activity 
than compared to non-musicians. Yet, we find no significant effect on mu activity from 
music training and therefore cannot confirm that expectation.  

These results can be interpreted in several ways. The strongest interpretation is as 
evidence against the idea of beat simulation within the motor cortex. Another possibility 
that cannot be dismissed is that isochronous rhythms used in this study did not modulate 
mu activity in the same way music would. This could be due to the isochronous rhythms 
simply not driving motor beat simulation in a way that would differentiate between 
auditory and visual rhythms. Additionally, given that motor imagery has been shown to 
reduce mu activity (McFarland et al., 2000), and exposing pianists to piano pieces that 
have played will result in mu ERD (Wu et al., 2016), it is possible that the simple 
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isochronous rhythms induced motor imagery for both auditory and visual rhythms, 
therefore counteracting any mu ERS due to inhibition of movement from beat simulation. 
A final consideration on the mu results is that mu activity arising from the primary motor 
cortex is known to be modulated by the premotor areas including SMA (Ulloa & Pineda, 
2007). Given that the SMA has been implicated in rhythm processing (Iversen & Patel, 
2014; Merchant & Honing, 2014; Ross et al., 2016b), and since this study did not isolate 
pre-motor or SMA activity, it may be pre-motor activity would show the differentiation 
we hypothesized between modalities. 
 
4.4.3 Activity at f0 
 Numerous studies have shown neural activation at the beat frequency of a rhythm 
in power and phase coherence measures using a frequency tagging approach (Nozaradan 
et al., 2011, 2012a, 2012b, 2015; Doelling & Poeppel, 2015). Likewise, visual rhythms 
have been long known to entrain to flashing rhythms as (Vialatte et al., 2010).), although 
visual rhythms studies usually look at activity higher frequency ranges, e.g. 10 to 12 Hz, 
rather than at the lower frequencies used for SMS or auditory rhythm perception tasks. A 
recent study (Varlet et al 2020) has shown that audio-visual rhythms can elicit beta-
coherence between EMG activity from a subject’s non-moving finger and EEG activity 
over the cortical motor region that was stronger than elicited by audio rhythms alone, 
suggesting that information of the timing of the visual rhythms is present in the motor 
system, even when the subject is instructed to remain motionless. Counter to our 
hypothesis, the f0 activity localized to the left motor cortex in the current study show 
greater ITC for visual rhythms than auditory rhythms arising from the selected motor 
components, although we find no modality differences in the motor component data in 
mu activation or in power.  In the grand-averaged data there is also evidence of greater f0 
activity for visual rhythms in both ITC and in noise corrected power. This finding 
suggests that differences in SMS and rhythm perception capabilities between auditory 
and visual rhythms is not due greater entrainment ability of one modality over the other, 
but rather in how that entrained activity is utilized. 

We consider it an interesting finding that the modality differences seen in left 
motor ITC were significant only in non-musicians, and only in the non-tapping 
conditions, which is similar to effects seen in the grand-average noise-corrected power 
data, where only non-musicians showed significant modality differences, but only in 
tapping conditions. Likewise, differences between tapping and non-tapping conditions 
were significant in left-motor ITC only in trained musicians, and significant for both 
modalities. While not conclusive, as we measured no main effect of music training, nor 
any significant differences between the musician and non-musician groups, these findings 
suggest music training allows musicians to entrain more equally to auditory and visual 
rhythms than non-musicians, while also benefitting more strongly from engaging the 
motor system during SMS than non-musicians. One curious result from the grand 
averaged noise corrected power is that tap condition differences were significant for 
musicians only for auditory rhythms, while significant for non-musicians only for visual 
rhythms. Inspection of the data (figure 4.5b) suggests that the boost to entrainment from 
tapping to auditory rhythms was greater than that experienced by non-musicians, which 
would be expected given the training musicians have in entraining to auditory rhythms. 



  

  

76 

Why non-musicians would show a difference across tapping conditions for visual 
rhythms while musicians do not show that difference is unclear, however. 

 
4.4.4 Limitations and Future Directions 

  One major limitation of this study is in its use of isochronous rhythms, and 
interpreting the resultant frequency domain activity. There has been controversy over 
whether or not activity at the beat frequency of a rhythm represents neural entrainment to 
a rhythm, or if the activity at the beat frequency is essentially an artifact from applying an 
FFT to rhythmic stimulus to evoked potentials (Capilla et al., 2011; Novembre & 
Iannetti, 2018; Rajendran & Schnupp, 2019). One way around the issues is to use 
syncopated or metered stimuli that would produce little or no increase in frequency 
power at the frequency of interest (Lenc et al., 2019, Nozaradan et al., 2018). As this 
study was designed to use as simple stimuli as possible, one needs to take care to not over 
interpret the results. Indeed, it is possible that greater f0 activity seen in visual rhythms 
compared to auditory rhythms is simply due to the evoked potentials to visual stimuli 
being generally more pronounced than those evoked from similar auditory stimuli. 
However, this concern applies primarily only to the grand-averaged f0 ITC and noise-
corrected power, as it is unlikely that the activity measured from the components isolated 
in the left motor cortex would contain sensory evoked artifacts as those components are 
not sourced in either auditory or visual regions.  

Another concern for this study was that the musically trained participants had a 
wide range of experience, and none were professional musicians. Even so, an effect of 
music training on our makers of rhythm processing was apparent. We suspect that 
comparing professional musicians with non-musicians may produce much clearer results, 
as well as provide further insight into how music training may carryover timing 
processing from the auditory modality to the visual modality. 
 
4.5 Conclusions 
 We showed that mu rhythm activity in response to passively attending and 
synchronizing to simple isochronous rhythms is not modulated by the modality of that 
rhythm. Further we find evidence that entrainment to visual rhythms may be stronger 
than auditory rhythms, even though humans are generally able to perceive and 
synchronize to auditory rhythms more precisely than to visual rhythms. This suggests  
that how the entrainment activity is utilized by the motor system is just as important as 
the entrainment activity itself. Finally, we see evidence that music training can alter 
measures of entrainment, although the exact nature of the interaction is not clear. These 
results suggest further investigation is needed into both the differences between auditory 
and visual rhythm processing mechanisms, and the effect of music training on those 
mechanisms. 
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Epilogue 
 

The primary question motivating this dissertation was whether or not there is a 
common mechanism for auditory and visual rhythm timing. In chapter 1 we showed that 
previous research indicated activity related to visual timing has been found arising from 
the visual system, and suggested this may be evidence of a visual specific timing 
mechanism. In chapter 2 we showed evidence of the visual system reacting to timing 
errors in rhythmic visual flashes, suggesting that timing information is being processed 
within the visual system. Importantly, that timing activity did not correspond to a 
response-based error correction signal, nor improved error correction in tapping in the 
way equivalent auditory timing information did. This finding suggests the visual system 
and motor system are not effectively communicating rhythmic timing information as 
would be expected if the two systems were working in concert to process the timing of 
visual flashing rhythms.  

Chapter 3 showed evidence of the prediction of the timing of flashes in the visual 
system in the beta-band. We interpret the beta-band modulation as attentional modulation 
of the sensory cortices to aid in the processing of imminent predicted events. As a similar 
pattern of activity in the beta band has been found emanating from the auditory cortex in 
response to auditory rhythms (Fujioka et al, 2009, 2015), the visual beta band activity 
does not by itself constitute clear evidence of visual system specific rhythm timing 
processing. Fujioka et al, (2015) proposed that the auditory beta modulation is driven due 
by interaction between the motor system and auditory system to modulate attention in the 
auditory cortex. Given the general lower precision of visual rhythm perception, it would 
be expected that visual system beta modulation would be less pronounced compared to 
auditory beta modulation.  The striking strength and clarity of the visual beta modulation 
from posterior sources suggests that the visual system is perfectly capable of rhythm 
timing, but that rhythm timing is not able to be utilized in the way that auditory rhythm 
timing is. The additional results in the chapter showing modality specific timing 
activation across different regions of the brain provide further evidence in line with 
separate auditory and visual networks of timing activity.  

In chapter 4 we show evidence of neural entrainment of visual rhythms within the 
motor system that is as strong, if not stronger than the entrainment induced by auditory 
rhythms. This finding was surprising considering the difficultly with which humans 
synchronize to visual flashing rhythms compared to comparable auditory rhythms. With 
that in mind, we suggest our findings indicate that visual rhythms are easily entrained and 
communicated to the motor system, yet the motor system is unable to utilize that 
entrainment in the same fashion that auditory induced neural entrainment is. This 
interpretation is bolstered by the finding that the visual system is able to phase lock with 
up to 100 Hz visual flashing rhythms (Williams et al., 2004), which is well outside the 
normal range of SMS (Repp & Su, 2013), and therefore well outside of the range likely to 
be driven by the motor system. 

The evidence of modality specific rhythmic timing presented in these experiments 
leaves many unanswered questions. The biggest of which is why the visual system’s 
entrainment of visual rhythms are not able to be properly utilized by the motor system? 
One important factor likely lies in the notion of modality appropriateness of the stimuli 
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that was briefly touched upon in chapter 1. Synchronization to rhythmic moving visual 
stimuli is improved over flashing stimuli of equivalent rhythm, likewise, synchronization 
to an auditory metronome is more precise than compared to a rhythmically equivalent 
frequency modulated siren (Hove et al., 2013b). In this case, as the synchronization 
capability was modulated by stimuli appropriateness, so was activity in the putamen, 
where greater activity corresponded to better synchronization and vise-versa. Another 
example of modality appropriateness can be seen in patients with Parkinson’s disease, 
where exposure to auditory rhythms can improve patients gait more than visual flashing 
rhythms (Rochester et al., 2005; Arias and Cudeiro, 2008). Visual spatial rhythms, as in 
lines marked out on the floor, also improve the gait of Parkinson’s patients, but the effect 
requires constant and dynamic updating of the stimuli (Azulay et al., 1999). When the 
lines are presented intermittently through strobe light effect, the improved gait largely 
goes away. These cases make it clear that the visual system interfaces with the motor 
system much more effectively with continuous timing information, in form of moving 
stimuli, than with discrete visual timing events, such as flashes. Likewise, the auditory 
system interfaces with the motor system more effectively with discrete timing events, 
such as a metronome, than with continuous timing events, such as a frequency modulated 
siren. In the cases where stimuli are modality appropriate, the sensory system and the 
motor system work together, with the motor system likely providing top-down timing 
prediction, and the sensory system providing bottom-up updates that correct for errors in 
timing. This experiment presented in chapter 2 expresses this process neatly, where errors 
induced into an auditory metronome resulted in a marked motor system response and 
updated prediction. In the visual case, there was a response to the timing error from the 
visual system, but the visual system was not able to effectively communicate that error to 
the motor system, resulting in no pronounced correction.  

I postulate that the reason moving visual rhythms are more appropriate than 
flashing rhythms is due to visual-motor interaction being optimized for actively 
navigating the environment rather than extracting temporal information. The processing 
of timing information needed for updating motor actions is based on the continuous 
feedback from the visual system, allowing for dynamic corrections. Since discrete visual 
timing events, like flashing rhythms, are relatively rare in the environment, and much 
more so in our evolutionary past, there is no need for the kind of optimized timing 
systems seen in auditory rhythm timing. Yet a mechanistic explanation for this 
phenomenon is still missing.  

In addition to a mechanistic explanation for the problem of how modality 
appropriateness effects rhythm timing, there are several questions that will need to be 
answered by future work. One question, mentioned earlier in chapter 1, is if there are 
multiple timing systems in the brain, how is one timing system chosen over another for a 
given timing event. Hass and Durstewitz (2016) suggest that the best timing mechanism 
would be determined in a Bayesian optimal manner, which is backed up by work 
showing that when multimodal timing information is present that the most optimal 
modality is utilized (Ernst and Banks, 2002). This would suggest that timing information 
is chosen from one modality at a time, however, there is evidence of increased neural 
entrainment when timing information is presented from multimodal auditory and visual 
rhythms compared to single modality rhythms (Nozaradan et al., 2012b; Varlet, et al., 
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2020). The results from the experiment in chapter 4 suggest that neural entrainment of a 
rhythm is not enough however. One explanation for why this may be is presented in 
model of the role of the motor system in beat perception that suggests both phase and 
tempo need to be taken into account, and that confidence in beat tempo and phase are 
expressed by striatal dopamine levels in auditory-motor timing (Cannon & Patel, 2020). 
This model further postulates that the SMA is involved in the relative timing between 
auditory events that is updated at each event. As the auditory system is already utilizing 
the motor system for rhythm timing, it makes sense that SMS to auditory rhythms can be 
performed with the precision that it is. It also suggests that if the visual system can utilize 
the motor system for timing, SMS to visual rhythms would improve as well. The finding 
that moving visual rhythms improve SMS precision over flashing rhythms, yet don’t 
show that level of improvement over flashing rhythms during pure rhythm perception 
tests (Silva & Castro, 2016) suggests it is possible for the visual system to use the motor-
system for timing, but that it is not always the case. It is likely then, that confidence is 
lower for flashing visual rhythms compared to auditory rhythms, or moving visual 
rhythms, as the SMA is better served to processes the relative timing processing needed 
to compute phase.  

The findings in this dissertation may have implications for several areas beyond 
just rhythm perception and SMS tasks. There has long been a debate about the nature of 
time perception itself, with some suggesting a single central mechanism for time 
perception, others suggesting multiple specialized mechanisms, and still others positing a 
distributed mechanism (Ivry & Spencer, 2004). A hybrid possibility has also been 
suggested in which there are overlapping networks involved in the processing of time 
perception and timing processing where the network is modulated based on modality and 
context of the timing task (Wiener et al., 2010, Wiener & Kanai, 2014).  This framework 
posits the SMA and inferior frontal gyrus as central to all timing tasks, with sub-second 
timing involving sub-cortical structures, supra-second timing involving cortical 
structures, and the sensory cortices involved dependent on sensory modality of the 
timing. The experimental results indicating the visual rhythm processing within the visual 
system presented in this dissertation provide evidence supporting the idea of a hybrid 
distributed timing network.  

Another area outside of SMS and rhythm perception to consider is that of 
language processing. The hierarchical structure of language has been shown to be 
reflected in the temporal aspects of language processing in the cortex (Ding et al., 2016, 
2017). Presenting auditory recordings of sentences at a fixed rate where each syllable has 
a fixed results in increased evoked power at the syllable, phrase, and sentence level. 
Crucially, presenting similar recordings of nonsense syllables resulted in increased 
evoked power only at the syllable level. This hierarchical processing is similar to the 
hierarchical processing seen in the processing of metered rhythms (Nozaradan et al., 
2011, 2012a), and fits well the notion that rhythm processing developed through vocal 
learning as presented in the ASAP hypothesis (Patel & Iversen, 2014). However, studies 
looking for evidence of hierarchical processing during the processing of written language 
have yet to presented. Likewise, studies investigating the visual systems ability to process 
metered rhythms are also currently lacking. If it is the case that the hierarchical 
processing evident while processing spoken language is due to language processing and 
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not simple auditory encoding, as suggested by the results from Ding et al., (2016, 2017), 
it could be expected that similar results would be found during the processing of written 
language.  

While the work presented here provides evidence of modality specific rhythmic 
timing, and the speculation provided suggests a possible partial explanation, there are still 
experiments that should be done to strengthen the claim. For example, the experiment in 
chapter 3 showed beta activity rising in anticipation of a visual flash, but only a single 
rhythm was used. If beta activity is reflecting prediction, then an experiment using 
several rhythms of different tempi should result in the rate that beta rises to be modulated 
by the tempo of the rhythm. Another needed experiment is an error correction experiment 
using moving visual rhythms. If the visual system can utilize the motor system during an 
SMS task to moving rhythms, we should see error correction responses similar to those 
seen in the auditory error correction task both behaviorally and in neural responses. Using 
the same stimuli in purely perceptual experiment should provide different results 
however, where there should be a clear response to errors in the auditory rhythm, yet 
little response to errors in the moving visual rhythms. A further useful experiment would 
be to use a syncopated visual rhythm to measure visual neural entrainment against. 
Ideally, the stimuli should be designed so that a frequency analysis would reveal no 
power at the beat frequency, as that way any neural activity measured at the beat 
frequency could not be due the rhythmic transient evoked responses, and instead must be 
the result of neural entrainment.  

One area where experiments would be useful to further uncover the mechanisms 
of rhythm timing is in the role of the SMA. As it seems the SMA plays a key role in how 
the motor system computes timing, it would be advantageous to isolate SMA activity in 
response to auditory and visual rhythm perception. An approach similar to how motor 
activity was isolated using mu rhythms in the fourth chapter of this dissertation may be 
useful to determine how the SMA is being activated during different types of visual 
rhythm perception tasks. This may be especially important as the SMA has been 
implicated in nearly all types of timing (Wiener et al., 2010). If the SMA is involved in 
all types of timing, it may be that both auditory and visual timing would elicit similar 
responses in SMA activity, which would provide evidence of overlapping timing 
networks. 

One shortcoming of the experiments described so far is they lack causal 
explanatory power. Measuring neural activation during a rhythm timing task does not 
prove that activation is a necessary component of rhythm processing. Historically, this 
issue has been solved by studying lesion patients. For example, a study looking at the role 
of subcortical structures on rhythm processing involving two groups of patients: one with 
basal ganglia lesions, and the other with cerebellar lesions. In this study, cerebellar 
patients showed poorer rhythm tracking for fast rhythms, indicating the cerebellum is 
important for fast rhythm processing, while basal ganglia patients showed poorer rhythm 
tracking for complex rhythms, indicating the basal ganglia are important for processing 
complex and metered rhythms (Nozaradan et al., 2017). While lesion studies are useful, 
access to patients with lesions is not always practical, additionally, neural lesions are 
rarely in a clearly defined region or structure that allows for clear interpretation. A way 
around the issue is to use stimulation techniques such as transcranial magnetic 
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stimulation (TMS), which can be used to disrupt, or down-regulate cortical structures in 
the brain. For example, a study using TMS has been shown that the posterior parietal 
cortex plays a role in phase processing of auditory through down-regulating that area and 
measuring performance in a phase detection task (Ross, et al., 2018). A useful experiment 
to understand the difference in auditory and visual rhythm processing would be to use 
TMS to down-regulate motor structures and then measure neural entrainment using EEG 
in response to auditory and visual rhythms as was done in chapter 4. If the entrainment 
response is reduced after motor system down-regulation, it would provide clear evidence 
of a role for the motor system in rhythm processing.  

The experiments I have just described may strengthen the claims made in this 
dissertation, but the mechanistic questions can likely only be solved through a 
combination of further empirical studies (including patient and animal studies) and 
modelling studies. I have attempted to lay out a few experiments that may provide a 
means to better understand the mechanisms involved, at least at the neural circuit level. 
Ultimately though, I believe that the mechanics of auditory and visual timing are likely 
more similar than not, even though I have shown evidence of modality specific timing. I 
must therefore conclude that full understanding of how visual rhythm processing works, 
will likely also involve full understanding of auditory rhythm processing, such that 
progress in one domain can be counted as progress in both.  
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Appendix A - Supplemental Materials for Chapter 3 
 
Figures: 
Figures from each cluster are provided, separated by visual and auditory conditions. Each 
figure contains component dipole position figures; induced and evoked ERSP figures; 
induced, evoked and ITC time course activity in the beta band; and box plots showing 
peak times of induced, evoked, and ITC activity in the beta band; box plots showing peak 
power for normalized induced and evoked beta activity. In the ERSP plots a significant 
difference from baseline is indicated with dotted lines for p < 0.01 in the induced ERSP 
plots and p < 0.001 in the evoked ERSP plots. Standard error is indicated by shaded areas 
in induced, evoked, and ITC time course activity in beta band plots. Significant 
differences are denoted in the box plots (* = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
Notches in the bars in the box plots indicate 95% confidence intervals, and median values 
are indicated with the black line.   
 
 
 
 
 
 
 
 
 
 



  

  

96 

 
 
 



  

  

97 

 



  

  

98 

 
 
 



  

  

99 

 
 
 



  

  

100 

 
 
 



  

  

101 

 
 
 



  

  

102 

 
 
 



  

  

103 

 
 
 



  

  

104 

 
 
 



  

  

105 

 
 
 



  

  

106 

 
 
 



  

  

107 

 
 
 



  

  

108 

 
 
 



  

  

109 

 
 
 



  

  

110 

 
 
 



  

  

111 

 
 
 



  

  

112 

 
 
 



  

  

113 

 
 
 



  

  

114 

 
 
 



  

  

115 

 
 
 
 



  

  

116 

Supplemental Table 1 

 
Visual Slope statistics for each cluster for induced and evoked slopes. Contrast values are 
calculated as the control slope + the shuffle slope – (2 * omission slope). The contrast test 
compares the contrast values to zero. Degrees of freedom were the same for each of four 
t-tests on the same row. P-values displayed are FDR corrected. 
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Supplemental Table 2 

 
 
Auditory Slope statistics for each cluster for induced and evoked slopes. Contrast values 
are calculated as the control slope + the shuffle slope – (2 * omission slope). The contrast 
test compares the contrast values to zero. Degrees of freedom were the same for each of 
four t-tests on the same row. P-values displayed are FDR corrected. 
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Supplemental Table 3 

 
Visual peak times for beta activity within +/- 200 ms of event or omission onset. 
Difference values are calculated as the difference between control and omission times. 
Control to omission tests comparisons are made for both induced and evoked activity. 
Induced to evoked test comparisons are made for both control and omission conditions. 
Induced to evoke difference tests are made between the difference values calculated. 
Degrees of freedom were the same for each of the t-tests on the same row. P-values 
displayed are FDR corrected. 
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Supplemental Table 4 
 

 
 
Normalized visual peak power for beta activity within +/- 200 ms of event or omission 
onset. Difference values are calculated as the difference between control and omission 
times. Control to omission tests comparisons are made for both induced and evoked 
activity. Induced to evoked test comparisons are made for both control and omission 
conditions. Induced to evoke difference tests are made between the difference values 
calculated. Degrees of freedom were the same for each of the t-tests on the same row. P-
values displayed are FDR corrected. 



  

  

120 

Supplemental Table 5 

 
 
Auditory peak times for beta activity within +/- 200 ms of event or omission onset. 
Difference values are calculated as the difference between control and omission times. 
Control to omission tests comparisons are made for both induced and evoked activity. 
Induced to evoked test comparisons are made for both control and omission conditions. 
Induced to evoke difference tests are made between the difference values calculated. 
Degrees of freedom were the same for each of the t-tests on the same row. P-values 
displayed are FDR corrected. 
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Supplemental Table 6 

 
Normalized auditory peak power for beta activity within +/- 200 ms of event or omission 
onset. Difference values are calculated as the difference between control and omission 
times. Control to omission tests comparisons are made for both induced and evoked 
activity. Induced to evoked test comparisons are made for both control and omission 
conditions. Induced to evoke difference tests are made between the difference values 
calculated. Degrees of freedom were the same for each of the t-tests on the same row. P-
values displayed are FDR corrected 
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Supplemental Table 7 

 
 
Tests for differences in baselines for the visual modality for both induced and evoked 
activity for each cluster. Baseline values are from the beta band and extracted from the 
time-frequency calculations used to calculate beta peak power. P-values displayed are 
FDR corrected.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Visual Baselines
Control Omission T-Tests

Clusters mean sd mean sd df ts 	

0 - Parent Induced 0.56 4.12 0.95 4.29 288 -4.52 0.000

Evo!ed -18.89 5.22 -18."6 5.1# 288 -0.9" 0.541

1 - $. %rontal Induced -0.21 #.82 1.02 #."1 19 -#.10 0.024
Evo!ed -21.19 #.90 -20.05 #.9" 19 -2.8# 0.042

2 - $. &otor Induced -0.0# #.9# 0.#5 #.69 #4 -1.2" 0.#"8
Evo!ed -20.96 #.9# -20.29 4.#5 #4 -1.## 0.#"8

# - &idline Central Induced -1.01 4.85 -0.80 5.09 #4 -1.56 0.#1#
Evo!ed -21.12 5."0 -20.88 6.2" #4 -0.66 0."29

4 - '. &otor Induced 0.6" #.5" 0."9 #.86 ## -0.4# 0."98
Evo!ed -20.09 4.2# -19.51 4.#9 ## -1."4 0.24#

5 - '. %rontal Induced -0.#9 4.41 0.59 4.61 #8 -#.11 0.022
Evo!ed -21.10 5.16 -20.#8 4."8 #8 -1.68 0.256

6 - $. Tem(oral)Parietal Induced 1.99 #.6" 1.92 4.#1 2" 0.25 0.8##
Evo!ed -1".16 4.#4 -1".09 4.40 2" -0.18 0.8"#

" - Occi(ital Induced 1.0" #.68 1.20 #."5 2# -0.54 0."6"
Evo!ed -14.4# 4.#6 -15."" 5.2" 2# #.62 0.012

8 - Parietal Induced 0.99 4.51 1.44 4."6 41 -#."9 0.008
Evo!ed -1".26 5.#6 -1".81 5.4" 41 2.0# 0.142

9 - '. Tem(oral)Parietal Induced 2.24 #.26 2.#9 #."2 28 -0.66 0."29
Evo!ed -15.59 4.#9 -15.9" #.92 28 0.9" 0.541
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Supplemental Table 8 

 
Tests for differences in baselines for the auditory modality for both induced and evoked 
activity for each cluster. Baseline values are from the beta band and extracted from the 
time-frequency calculations used to calculate beta peak power. P-values displayed are 
FDR corrected.  
 
 

Auditory Baselines
Control Omission T-Tests

Clusters mean sd mean sd df ts 	

0 - Parent Induced 0.65 4.36 0.98 4.17 !88 -3.4! 0.008

"#o$ed -!0.!9 4.46 -19.56 4.!5 !88 -4.67 0.000

1 - %. &rontal Induced -0.09 3.57 1.!! 3.53 19 -!.63 0.058
"#o$ed -!1.08 3.86 -19.01 4.!5 19 -3.14 0.0!4

! - %. 'otor Induced -0.03 3.99 0.85 3.45 34 -!.13 0.1!8
"#o$ed -!0.77 4.01 -19.69 3.4! 34 -!.04 0.14!

3 - 'idline Central Induced -0.87 5.16 -0.76 5.18 34 -0.96 0.541
"#o$ed -!1.61 5.11 -!1.!7 4.78 34 -0.94 0.541

4 - (. 'otor Induced 0.5! 4.0! 0.59 3.61 33 -0.!8 0.833
"#o$ed -19.7! 3.88 -!0.00 4.00 33 0.68 0.7!9

5 - (. &rontal Induced -0.35 4.59 0.61 4.64 38 -3.04 0.0!!
"#o$ed -!1.!1 4.55 -19.74 4.78 38 -3.31 0.015

6 - %. Tem)oral*Parietal Induced 1.90 4.00 1.81 3.89 !7 0.41 0.798
"#o$ed -19.07 4.56 -18.9! 4.18 !7 -0.35 0.81!

7 - Occi)ital Induced 0.68 3.47 0.80 3.40 !3 -0.40 0.798
"#o$ed -!0.91 4.38 -!0.17 3.95 !3 -1.33 0.378

8 - Parietal Induced 1.41 4.77 1.53 4.74 41 -1.30 0.378
"#o$ed -19.68 4.76 -19.00 4.57 41 -1.89 0.18!

9 - (. Tem)oral*Parietal Induced !.74 3.9! !.36 3.65 !8 1.38 0.378
"#o$ed -18.61 4.!6 -18.1! 3.56 !8 -0.96 0.541




