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ABSTRACT OF THE THESIS 

 

Empirical Test of Applicability of Donoho and Gavish’s Method in Determining 

the Number of Factors in Factor Analysis 
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Master of Science in Statistics 
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Professor Yingnian Wu, Chair 

 

 

Donoho and Gavish (2013) proposed a method of recovering a matrix by 

selecting singular values above a hard threshold. In their paper, 4/√3 is proved to 

be asymptotic MSE-optimal choice of hard threshold. We empirically test the 

applicability of Donoho and Gavish’s method in factor analysis with simulated 

datasets and assess its asymptotic property when both the matrix and sample size 

grow while keeping the true number of factors fixed. 
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Empirical Test of Applicability of Donoho and Gavish’s Method in 

Determining the Number of Factors in Factor Analysis 

Abstract 

Donoho and Gavish (2013) proposed a method of recovering a matrix by 

selecting singular values above a hard threshold. In their paper, 4/√3 is proved to be 

asymptotic MSE-optimal choice of hard threshold. We empirically test the 

applicability of Donoho and Gavish’s method in factor analysis with simulated 

datasets and assess its asymptotic property when both the matrix and sample size 

grow while keeping the true number of factors fixed. 

Introduction 

Factor analysis has been a useful tool in many fields such as psychology and 

economics and the selection of number of factors in factor analysis has been a critical 

issue. There have been a few criteria for determining the number of factors to retain. 

The Eigenvalue-greater-than-one rule (Guttman, 1954; Kaiser, 1960, 1970)) suggests 

that eigenvectors with eigenvalues of the correlation matrix greater than 1 should be 

used to represent the number of factors. It is simply saying that factor analysis should 

extract factors whose eigenvalue is greater than average (Nunnally & Bernstein, 1994).   

However, this approach tends to severely overestimate the number of components 

(Awick & Velicer 1986). Horn (1965) proposed Parallel Analysis, which generates a 

large number of random datasets with the same pattern of the real dataset for 

determining which number of factors is most appropriate. Velicer (1976) proposed 

Minimum Average Partial (MAP), which was shown to underestimate the true number 

of factors (Hayton et al., 2004). Zwick and Velicer (1986) compared the four methods 

with simulated datasets and found Parallel Analysis and MAP are more accurate than 
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the other two. 

Selecting the number of factors is also an important issue in Bayesian Factor 

Analysis. The AIC (Akaike, 1973) and BIC (Schwarz, 1978) information criteria have 

been widely used, and some other selection procedures like Bozdogan (1987) and 

Shegemasu (1999) have also been developed. Hirose et al. (2011) proposed the GBIC 

method, which avoids improper solutions caused by the maximum likelihood 

estimation and was found to be more accurate than BIC (Hirose et al., 2011). 

Donoho and Gavish’s (2013) study assumes X is an m by n matrix , whose rank 

is relatively small to its size, Y is the observed noisy m-by-n matrix, and Y = X + σZ, 

where σ is a scalar and Z has independent, identically distributed entries with zero 

mean and unit variance. They proposed that the recovery of X can be achieved by 

selecting singular values above a hard threshold. In their paper, (4/√3)√𝑛σ is proved 

to be asymptotic MSE-optimal choice of hard threshold when σ is known.  

Donoho and Gavish’s method can be applied to the recovery of covariance 

matrix and correlation matrix when the assumptions are met. However, in the 

situation of factor analysis when the covariance matrix Σ is based on equal unique 

variances, thus meeting the DG conditions, the assumption no longer holds in the 

correlation matrix P = diag(Σ)−1/2(Σ)diag(Σ)−1/2. DG’s method is probably not 

applicable to factor analysis and data transformation or other methods should be 

proposed to meet the conditions. 

In the paper, we apply DG’s method to determining the number of factors in 

factor analysis in the special case of equal unique variances that should meet the DG 

conditions, and compare this approach with another hard threshold method, the 

eigenvalue-greater- -than-one rule, using simulated datasets.  

Design  

For the simulations, we start with Gaussian data matrix generated from a given 

covariance matrix Σ, with loading structure Σ = ΛΦΛ′ + Ψ2,  
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 , and Ψ2 = Ι       

 

Λ is a factor loading matrix and Ψ2 represents the covariance matrix with 

errors with equal unit variance. Σ represents the covariance structure of a model with 

15 variable and 5 factors. Therefore, the sample covariance matrix will be a 15*15 

matrix and the X matrix to be recovered is of rank 5.  

In order to simulate the situation of growing matrix size and sample size, we then 

generate datasets with number of variables p=15, 30, 45, sample size N=100, 300, 

1000, 5000, respectively. In the case of 30 variables, the factor loading matrix  Λ 

equals Λ5×30 , and in the case of 45, the factor loading equals Λ5×45 ,
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We then use three methods to determine the number of factors: DG’s method on 

the covariance matrix, DG’s method on the correlation matrix, and the eigenvalue- 

-greater-than-one criterion on the correlation matrix.  
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Results 

Simulated datasets with p variables and N cases are repeatedly generated 500 

times, then mean, median, standard deviation of the number of selected singular 

values across the 500 replications are included in the following tables.  

 

Table 1. Number of retained singular values when N=100 

N=100 

 

 

P=15 

 DG on Cov. 

Matrix 

DG on Cor. 

Matrix 

e.v>1 

Mean 3.718 1 4.528 

Median 4 1 5 

SD 0.568 0 0.519 

 P=30 

 DG on Cov. 

Matrix 

DG on Cor. 

Matrix 

e.v>1 

Mean 5.012 2.37 5.664 

Median 5 2 6 

SD 0.109 0.598 0.651 

 P=45 

 DG on Cov. 

Matrix 

DG on Cor. 

Matrix 

e.v>1 

Mean 5.982 4.378 8.184 

Median 6 4 8 

SD 0.621 0.544 1.010 

 

When p=15, DG’s on correlation matrix invariably selects 1 singular value and 

the average number becomes 4.378 when p increases to 45. The other two methods 

are more accurate when p=15 and p=30. However, when p=45, DG’s on covariance 

matrix selects on average 5.982 singular values and Eigenvalue-greater--than-one 

selects on average 8.184, which means that this approach overestimates the number of 

factors. 

 

Table 2. Number of retained singular values when N=300 
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N=300 

 

 

P=15 

 DG on Cov.  

Matrix 

DG on Cor. 

Matrix 

e.v>1 

Mean 3.916 1 4.94 

Median 4 1 5 

SD 0.571 0 0.246 

 P=30 

 DG on Cov.  

Matrix 

DG on Cor. 

Matrix 

e.v>1 

Mean 5 1.668 5 

Median 5 2 5 

SD 0 0.561 0 

 P=45 

 DG on Cov.  

Matrix 

DG on Cor. 

Matrix 

e.v>1 

Mean 5 4.834 5.004 

Median 5 5 5 

SD 0 0.383 0.063 

 

The second table where N=300 has a similar pattern as Table 1 when p=15 and 30, 

when the DG’s method on the covariance matrix and Eigenvalue-greater--than-one are 

fairly accurate and DG’s method on the correlation matrix greatly underestimates the 

number of factors. However, when p=45 all three methods work quite well, with DG 

on the covariance matrix best overall. 

 

Table 3. Number of retained singular values when N=1000 

N=1000 

 

 

P=15 

 DG on Cov. 

Matrix 

DG on Cor. 

Matrix 

e.v>1 

Mean 4.436 1 5 

Median 4 1 5 

SD 0.564 0 0 

 P=30 

 DG on Cov. 

Matrix 

DG on Cor. 

Matrix 

e.v>1 

Mean 5 1.038 5 

Median 5 1 5 

SD 0 0.191 0 
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 P=45 

 DG on Cov. 

Matrix 

DG on Cor. 

Matrix 

e.v>1 

Mean 5 4.994 5 

Median 5 5 5 

SD 0 0.077 0 

In the third table of N=1000, when p=15, DG’s on correlation matrix invariably 

selects 1 singular value while the number gets to around 5 when p increases to 45, 

which suggests that it has good asymptotic property. The other two methods 

outperform it when p=15 and p=30 and select exactly 5 factors when p=45. 

 

Table 4. Number of retained singular values when N=5000 

N=5000 

 

 

P=15 

 DG on Cov. 

Matrix 

DG on Cor. 

Matrix 

e.v>1 

Mean 4.997 1 5 

Median 5 1 5 

SD 0.045 0 0 

 P=30 

 DG on Cov. 

Matrix 

DG on Cor. 

Matrix 

e.v>1 

Mean 5 1 5 

Median 5 1 5 

SD 0 0 0 

 P=45 

 DG on Cov. 

Matrix 

DG on Cor. 

Matrix 

e.v>1 

Mean 5 5 5 

Median 5 5 5 

SD 0 0 0 

In the fourth table for the case of N=5000, when p=15, DG’s on correlation 

matrix still invariably selects 1 singular value and it accurately selects 5 when p 

increases to 45. This empirically proves its asymptotic property, though this is 

unexpected since the correlation matrix does not meet the DG conditions (Donoho& 

Gavish, 2013). The other two methods that select 5 factors, are accurate as well. 

Since each dataset was generated 500 times within a condition, we also collect 

the frequencies of correct solutions in which exactly 5 factors are selected. The 
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frequency tables are as follows, showing that DG on the covariance matrix is best 

overall when p is large (30 or 45), while the Eigenvalue greater than one rule is best 

with the smallest number of variables. 

Table 5 Frequency table of 500 simulations for DG’s on covariance matrix 

 p=15 P=30 P=45 

N=100 30 493 88 

N=300 62 500 500 

N=1000 236 500 500 

N=5000 499 500 500 

 

Table 6 Frequency table of 500 simulations for DG’s on correlation matrix 

 p=15 P=30 P=45 

N=100 0 0 240 

N=300 0 0 419 

N=1000 0 0 497 

N=5000 0 0 500 

 

Table 7 Frequency table of 500 simulations for Eigenvalue-greater-than-one rule 

 p=15 P=30 P=45 

N=100 298 211 0 

N=300 471 500 498 

N=1000 500 500 500 

N=5000 500 500 500 

 

Discussion 

The results from the simulations show that when we keep number of variables 

fixed at p=15, DG’s covariance based method selects somewhat less than 5 factors 

and selects exactly 5 when the sample size gets larger. However, the DG correlation 

matrix method it always selects 1 factor unless p and the sample size are very large. 

One reason that DG on the correlation matrix does not work well is that the equal 

unique variance assumption is violated. The Eigenvalue- greater-than-one criterion 

generally works well although it is outperformed by GD on the covariance matrix 

with the larger number of variables. 
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Another way to look at the results is to fix the sample size at look at the 

asymptotic properties of the method, since the GD methodology is based on the idea 

that both p and N are large. When p is 30 or more, and N is 300 or more, the DG 

covariance based method performs perfectly. Therefore, when p and N are large 

enough, and its assumptions are met, GD’s method is asymptotically optimal and 

performs correctly for determining the number of factors. When GD’s assumptions 

are not met, as in its application to the correlation matrix based on a structure with 

unequal unique variances, the approach generally fails. 

There are several limitations regarding this study. First, only one factor loading 

structure is used, which might not be representative enough. We need to test with 

samples generated from different population factor loading structures. Second, we set 

X to be a size 15 by 15, rank 5 matrix, up to one that is 45 by 45 of rank 5, whose size 

might not be relatively large enough compared to its rank. It is possible that changing 

the p:rank ratio even better performance of DG’s method could be achieved. 

Finally, the covariance structure studied here had equal unique variances, which 

is a condition unlikely to occur in practice. To deal with the unequal unique variance 

problem, there are three possible directions that might be considered  

(1) Transformation on observed data matrix: Suppose Y is the observed data matrix, 

let Y′ = AY be a transformation from Y to meet the condition that correlation 

matrix of Y′ has the structure of X + σI . 

(2) Rescale the observed data matrix: in approach (1), restrict the transformation 

matrix A to being a diagonal scaling matrix. If the factor model holds, there 

always exists such a scaling.   

(3) Adding a matrix to correlation matrix: find matrix B such that R + B = X + σI 

with some constraints on B matrix. 

Conclusion 

Dohono and Gavish’s method works well when its model assumptions as well as 
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large p and N are met. It breaks down otherwise, although we found a surprising 

robustness to the method to violation of the equal residual variance assumption when 

p and N are large. Generally speaking, the eigenvalue-greater-than-one criterion is 

still an effective hard threshold to determine how many factors to retain, although 

DG’s method can be better when N is very small and p is very large. DG’s method is 

asymptotically good for recovering a latent covariance matrix or selecting the number 

of factors in factor analysis with increasing matrix size relative to number of factors. 
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