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A new second-order numerical manifold method model
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with inner drains
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Numerical manifold method (NMM) is a numerical method known for analyzing continuous
and discontinuous mechanical processes in a unified mathematical form. In this study we de-
veloped a new second-order NMM model to solve the nonlinear problem of water flow with
the free surface priori unknown and the di cultyffi  of modeling drains which could
dramatically increase the meshing load. Our study consist of: (1) deriving two forms of NMM
second-order approximation; (2) constructing the total potential energy for water flow by
our energy-work seepage model  considering Dirichlet,  Neumann and material  boundaries
uniformly; (3) locat- ing free surface nodes in two forms of second-order approximation; (4)
tracking the free sur- face with an e cient iteration scheme without re-meshing; (5) derivingffi
velocity  and  tunnel  flux  by  second-order  approximation.  We  developed  a  new  code  and
demonstrate our model and code with examples including confined drainage tunnel and free
surface flow through a dam. We compare the results such as tunnel flux or free surface with
linear NMM, analytical or other available numerical solutions. We prove that: the two forms
of second-order NMM (1) yield consistent results; (2) for modeling drains involving local
intensive change, could achieve accurate result of tunnel flux calculation and dramatically
save computation load with linear velocity distribution in coarse mesh; (3) for free surface
iteration,  are  e cient  with  fast  con-  vergence  to accurate  results  and with  rather  coarseffi
mesh. As a result, our second-order NMM model is applicable to free surface flow with inner
drains for free surface locating and flux calculation, and seepage stability analysis, laying a
solid foundation for extending to coupled hydro-mechanical analysis.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Numerical modeling of groundwater flow in unconfined aquifers are of great interest and concerns to groundwater hydrolo-
gists [1–4]. It is often conducted to simulate natural recharge or discharge, and well pumping or injection and assess their effects
on groundwater systems at a large scale (up to hundreds of kilometers). For flow in geotechnical and hydraulic engineering at a
smaller scale (from 10 to 1000 m), analysis of free surface (unconfined) flow is also important and is often used to predict tunnel
inflow and the associated safety or environmental impacts  [5,6]  or to assess potential seepage instability (e.g. erosion, piping,
hydraulic fracturing) in embankment dams [7–9]. At both scales, the free surface flow consists of unsaturated and underlying
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hydraulic head
the hydraulic head on physical cover i
the jth degree of freedom of physical cover i
the cosine of the normal vector of the boundary relative to the horizontal and vertical directions, respectively. water pressure
flux through each pipe
the normal flux across a boundary the known flux components
the total number of physical covers for the model domain the length of each pipe
the coefficient of freedom
the Darcy flow velocity vector
the weight function on physical cover i related to element e
the vertical direction
the component of the conductivity matrix the given hydraulic head
the tensor matrix of permeability coefficient
the number of physical covers related to element e
the flux term
the geometric range of physical cover i
the work by fluid gravity
the work done by fluid flow through material boundaries the work done by water flow
the domain seepage work
the work done by water flow through Dirichlet boundaries the work done by fluid flow through Neumann boundaries the unit weight of water
the coefficient of the linear relationship between qi and 1'hi

hydraulic head difference between the two ends of each pipe
hydraulic head difference across the boundary domain in the pipe flow direction potential energy associated with domain flow work
potential energy associated with gravity work
potential energy associated with flow work for Dirichlet boundary conditions potential energy associated with flow work for material boundaries
potential energy associated with flow work for Neumann boundary conditions  a section normal to the i direction
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Notations

saturated flow separated by a capillary fringe [1–2]. When the soil parameters (such as water-retention curves) are available,  this
problem could be solved with the variably-saturated flow formulations by formulating the flow equations in both saturated and
unsaturated zones. Such a  formulation has been developed by many authors  [10–13]  and extended to the development and
application of coupled flow-mechanical analysis. When the vertical flow is negligible compared with lateral flow and the capil-  lary
fringe zone is very thin, the capillary fringe can be approximated by a free surface, as a discontinuity in the saturated zone. Solving
the moving free surface involves high geometrical nonlinearity but does not involve material nonlinearity in the form       of
complex water-retention curves required in variably-saturated flow formulations.  Different  types of free surface formulations
exists in other engineering disciplines such as in metal processing [14] and channel and river flow engineering [15–17]. However,
the free surface of our interest in this study is different from that in metal processing [14] or fluid dynamics calculated by vol- ume
of fluid (VOF), smoothed particle hydrodynamics (SPH), or developed finite volume method (FVM) used in free surface flow [15–
17]. In this study, we focus on the free surface flow through porous media in engineering, involving localized flow associated with
drains or tunnels, though our model can be applied to large-scale analysis. The basic differences between these two types    of free
surface flow are: (1) the govern equation used in the hydrodynamics is Navier–Stokes, whereas in engineered problems of our
focus could be easily simplified as Darcy‘s law; (2) in small-scale analysis such as free surface flow in dams, the exact location of
the free surface is very key for predicting the stability of the dam especially with high gradient, which sometimes could not be
perfectly achieved if without proper surface-locating scheme.

The challenge of free surface flow analysis is to accurately and e ciently locate the free surface, which is unknown a priori. Affi
number of numerical methods have been developed for modeling water flow with a free surface and they can be classified
into adaptive-mesh methods and fixed mesh methods. Generally, the adaptive-mesh methods require modifications of the
computa- tional mesh for updating the geometry of the simulation domain bounded by the free surface. The mesh is updated
through an



iterative process until the change in the free surface position between successive iterations is negligible. A wide range of
numer- ical methods have been used with adaptive-mesh methods, including finite difference [18], finite element [4,19,20],
boundary element [21], finite volume [22,23], and natural element [24]   methods. For the fixed-mesh methods, models with
finite element  [25–34], finite difference [35], element-free [36], and numerical manifold [37–39]   methods have also been
developed. In these fixed-mesh methods, the geometrical nonlinearity is solved by (1) being transformed to equivalent nodal
flux at each iteration using residual flow [24,25], initial flow [26], etc; or (2) being converted to nodal forces based on the
concepts of extended pres-  sure defined in  a  variational  inequality  formulation  [27–29];  or  (3)  being  replaced  with  a
nonlinear constitutive relationship between pore pressure and permeability coe cientffi  across the simulated domain divided
by the free surface [30]. In addition to the precision of solutions, the computational cost related to meshing and iterations
are key factors in practical applications of these numerical methods.

The challenge of modeling drains or drainage tunnels is to precisely capture the local intense change in hydraulic head and  flux
around  the  drains,  with  complex  geometric  features  (including  the  location,  the  orientation,  the  shape  and  the  size)  and
boundaries. Both implicit models and explicit models have been developed to avoid relatively time-consuming meshing around the
tunnels, especially when a large number of tunnels are involved. In the implicit models, a drainage hole or tunnel is treated   as an
equivalent  discontinuity  and  its  permeability  is  determined  by  the  equivalent  principle  of  flow  rate,  related  to  the  rock
conductivity and geometric features (the size, orientation and spacing) of the tunnel. In explicit models, a hole or tunnel is  treated
by substructure techniques, semi-analytical approaches  [40], the point well model or the composite element method   [41]. By
comparison, the implicit models are more capable if a large quantity of holes or tunnels are contained in a medium, whereas the
explicit models has the better potential to give more precise solution for describing flow around the tunnels in more details.

The numerical manifold method (NMM) is a promising numerical method for modeling continuous and discontinuous prob-
lems proposed by Shi  [42–43].  It  is  based on a  finite  cover system with independent  mathematical  and physical  covers.  The
mathematical covers are chosen by users, consist of finite overlapping covers that occupy the entire material domain. Conven-
tional meshes such as regular finite difference grids, finite elements, or convergence regions of series can be used as mathematical
covers. These mathematical covers define numerical precision by their density. The physical covers are divided by boundaries or
joints from mathematical covers, determining the integration fields. The global behavior can be computed by functions defined   in
local physical  covers. Based on finite covers,  the NMM is flexible and general enough to include and combine well-developed
analytical  methods, the widely-used FEM, and the block-oriented discontinuous deformation analysis (DDA,  [44]) in a unified
form. Previously, the NMM has been successfully applied to both continuous and discontinuous mechanical analysis [45], includ-
ing three dimensional discontinuous dynamic analysis [46]. For fluid flow modeling, it was developed and applied in analysis of
free surface flow [37–39] and groundwater flow in heterogeneous media [47]. Relevant to analysis of free surface flow possibly
with inner drains, the following features of the NMM can be highlighted:

(1) Using NMM with  two-mesh system, it  is  very  convenient  to handle the discontinuity at  the free  surface by  fixing the
mathematical covers and iteratively updating the physical covers to account for the effective contributions from the flow
domain. This benefit has been demonstrated in our previous work using the first-order (linear) approximation  [38]  and
the accuracy has been verified.

(2) When applied to cases with inner drains involving intense local changes, the computation precision can be easily
enhanced by increasing the approximation order.  In NMM, the global approximation field is not defined by a nodal
weighted average as in standard FEM, but by the weighted average of cover functions, which could be spatially
constant, linear, or an arbitrary user-defined function. The first-order NMM resulting in an element-wise constant
velocity field requires refinement of the numerical grid, analogous to common grid refinements in FEM [48]. However,
grid- refinement could sometimes be very  computationally expensive, when moving boundaries are involved.
Alternatively, increasing the order of approximation is an effective way to improve numerical precision, which in NMM
is a natural extension of the first-order NMM by increasing the order of either the weight functions or the physical
cover functions. For modeling mechanical processes, the e ciency  andffi  accuracy of higher-order NMM
approximations for regions of high stress and strain gradients have been demonstrated [49–50]. Mathematically,
similar advantages of higher-order interpolation should also apply for modeling water flow in porous media involving
high hydraulic potential gradients and localized flow.

(3) The simplex integration used in NMM enables deriving analytical solutions for higher-order approximation involving  ar-
bitrarily shaped elements [43].

(4) With the fixed mathematical covers used in NMM, the meshing effort can be substantially reduced, especially in the
case of moving boundaries [42].

In this study, we developed two forms of second-order NMM model for free surface flow in porous geological media, where   an
inner drain may be contained. We used the mathematical seepage model through energy-work analysis developed in our previous
work  [38], with each term providing sound physical meaning for the widely-used variational principle. An algorithm including
both forms of the second-order interpolation and an iteration scheme were developed to track the free surface. The velocity and
the flux for drainage tunnels were also calculated with both forms. Finally our new second-order NMM model was coded in a
computer code package. We applied the computer code to water flow examples involving flow with a priori unknown free surface
and problems involving inner drains, and compared our results to those of a first-order NMM model and other available numerical
solutions. We showed that the second-order NMM achieves accurate results at a higher convergence speed with relatively coarser
numerical grids, demonstrating excellent numerical e ciency.ffi



Fig. 1. A typical unconfined seepage problem with complex boundaries and an inner tunnel.

As the extension of our previous work using the first-order (linear) approximation [38], the second-order NMM model devel-
oped in this study makes the following advancements: (1) the two forms of second-order NMM developed in this study could be
reduced to first-order approximation [38] for simplified cases. Therefore, these two forms of second-order approximation will be a
mathematical advancement from the first- order work; (2) second-order approximation enables the solution of high-velocity flow
problems involving inner drains that could not be readily done using linearly approximated methods (including linear      FEM and
NMM).  With  linearly  distributed flux,  it  is  superior  to linear approximation with constant  flux distribution for  solving  high-
gradient and localized flow problems; (3) for the nonlinear and discontinuous problems associated with a free surface, second-
order NMM is expected to achieve higher accuracy and convergence rate, which will be verified through demonstration examples.

2. Development of second-order NMM model for free surface flow analysis

We developed a second-order NMM model for water flow analysis with a prori-unknown free surface and derived flux calcu-
lation for cases involving inner drains. This model consists of a mathematical mesh, which is fixed during the simulation, and a
physical mesh, which is divided from the mathematical mesh by domain boundaries (in  Section   2.1) and the free surface (i.e., a
discontinuity) and updated iteratively by a developed iteration scheme (2.4). The second-order approximation is achieved (2.2)
using linear physical cover functions with linear weight functions (Form 1) or second-order weight functions with constant cover
functions (Form 2). With both forms, we calculated hydraulic head and velocity and flux for drainage tunnels (2.5). The equilib-
rium equations in this NMM model are assembled by the total potential energy, derived through our energy-work seepage model
(2.3).

2.1. Fundamentals of NMM for water flow analysis

A typical free surface flow through a two-dimensional domain, as shown in Fig. 1, follows the mass conservation

∂vx ∂vy

∂x  
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where h is the hydraulic head, the sum of elevation y and the pressure head p/γ , expressed as
p

h = y + 
γ

(3)

grad(h),  v and K are the hydraulic gradient vector, the Darcy flow velocity vector, and the tensor of permeability coe cient. Theffi
boundaries consist of: (1) Dirichlet boundaries (such as AF and BC), (2) Neumann boundaries (such as AB), (3) Cauchy boundaries
(such as DF, the free surface for this problem), or (4) boundaries such as release surface (CD), and (5) the material boundaries
(such as LMN), satisfying

h = Hi (4)

∂
y
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qn = qxnx + qyny (5)



Fig. 2. Mathematical covers, physical covers and elements defined in NMM.

p = 0 and qn = 0 (6)

p = 0 and qn < 0 (7)

h−
n  = h+

n  and q−
n  = q+

n (8)

where Hi  is the fixed hydraulic head, qn is the normal flux across a boundary, q¯x  and q¯y  are the given flux components, nx and ny

are the cosine of the normal vector of the boundary relative to the horizontal and vertical directions, – and + are the negative and
positive directions of the normal vector of a boundary respectively.

The boundary LMN is not limited to a material boundary, but could represent a variety of conditions, including the boundary of

(1) a drainage tunnel, satisfying Eq. (4), or
(2) a water tight non-drainage tunnel, satisfying Eq. (5), or
(3) a different material domain, satisfying Eq.         (8).

In such a system, the porous media may consist of different materials with different hydraulic properties or contain fractures or
holes; the hydraulic gradient could be arbitrarily high, especially around a tunnel; and boundary conditions could be (1) fixed as
confined flow,  or (2) unknown a priori as a water table in free surface flow,  making it nonlinear with the key issue to locate  the
free surface with a certain iteration scheme.

To  represent the complicated model boundaries and track the a priori unknown free surface shown in  Fig. 1, we develop a
second-order NMM model.  Here we  briefly  describe the  fundamental  of  NMM,  including  mathematical  cover,  physical  cover,
elements, cover functions, and weight functions. We use a general example shown in Fig. 2, with the model  domain represented by
the shaded part and an inner discontinuity (bold red line). We define three geometric shapes (i.e., mathematical covers) to cover
the  model  domain:  the  quadrilateral  cover  A,  the  circular  cover  B,  and the  rectangular  cover  C,  which  define interpolation
precision.  The corresponding physical cover is divided from the mathematical cover by domain boundaries and/or the inner
discontinuity. For example, physical cover C is the entire model domain, while physical cover B is divided from mathematical cover
B by boundaries. Physical cover A (divided from mathematical cover A by boundaries) is further divided into physical
covers A1 and A2 by the inner discontinuity. The overlapping areas by multiple physical covers are defined as elements. As a  result,
the model domain is discretized into five  elements: A1BC (the intersection of physical cover A1,  B and C), A1C, A2C, BC,   and C
(covered by physical cover C solely). Note the difference between mathematical cover C, physical cover C, and element C.

From Fig.     2, we can see that the shape of the mathematical covers could be arbitrary; the relative location of the
mathematical covers to the model domain could also be arbitrary, only if satisfying:

⊂ A ∪ B ∪ C (9)

and the number of physical covers on each element could be arbitrary. For the uniformity and simplicity of computation, we
choose triangles for the mathematical mesh, and this will be described in details in the next two subsections.

The hydraulic head at a point (x, y) in element  e  is the weighted average of hydraulic head functions of all physical covers
overlapping the element:

Npc 
(e)

h(x, y)  = wi(x, y) hi(x, y) (10)
i=1

where Npc
(e) is the number of physical covers overlapping element e, {hi(x, y)} is the hydraulic head function of physical cover i, and

wi(x, y) is the weight function of physical cover i. For an individual physical cover i, we have

wi(x, y) = 0    (x, y) ∈/ Ui

where Ui is the geometric range of physical cover i.

(11)

 l )'
l

r
wi(x, y) > 0 (x, y) ∈ 

Ui



Fig. 3. Elements defined in Form 1 second-order interpolation.

Fig. 4. (a), (b) Piecewise linear weight function on a physical cover; (c) Linear hydraulic head on a physical cover.

The hydraulic head function {hi (x, y)} (i.e., cover function) of physical cover i can be a series of any order:

⎛
hi1 

⎞

hi2l )' ⎜h ⎟
hi(x, y) 
=

s jhij = (1 xy ··· sm)⎜ i3 ⎟ (12)

j=1 .

him

where m and hij are the number of degrees of freedom and the jth degree of freedom of physical cover i, respectively, and sj is
the coe cientffi  of the jth degree of freedom. For 2-D flow analysis, m is 1 or 3 when the hydraulic head is 0-order (constant),
or first-order. For a complete N-order physical cover function, m = (N+1)(N+2)/2. The global approximation on the entire
domain is the summation of the contribution of each physical cover to all corresponding elements.

2.2. Second-order NMM approximation for water flow simulation

As defined in Section 2.1, the global approximation is the weighted average of local physical cover functions, thus the second-
order interpolation could be realized by (1) a linear hydraulic head distribution on a physical cover and a linear weight function
(Form 1) or (2) a constant hydraulic head on a physical cover and a second-order weight function (Form 2).

2.2.1. Form 1
The first form of second-order interpolation is illustrated in Fig. 3. For a mathematical mesh system with uniform triangles, all

the triangles sharing a certain triangle vertex (such as mathematical covers i, j and k) form a mathematical cover (i.e., a hexagon).
The definition of physical covers and elements follows the same rule as mentioned above. Hence an element is the overlap of  three
physical covers, such as the shaded part in Fig. 3 overlapped by physical covers i, j and k.

Fig. 4 shows the second-order interpolation in the form of piecewise linear weight functions, equivalent to the shape functions
for triangular elements in FEM expressed as

⎛ 
1 xi y 
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Fig. 5. Elements defined in Form 2 second-order interpolation.

Fig. 6. (a), (b) second-order weight function on a physical cover at a vertex; (c), (d) second-order weight function on a physical cover centered at midpoint; (e),
(f) constant hydraulic head on a physical cover.

and linearly distributed hydraulic head on a physical cover, which is represented as:

hi(x, 

y)
l

⎛
hi1

⎞

hi3

where hi1,hi2 and hi3 are the three degrees of freedom on a physical cover to be solved.

2.2.2. Form 2
In Form 2 of second-order NMM, the shape function is second-order and the hydraulic head is constant on a physical

cover. We can accomplish this by changing the mesh shapes, such as using rectangles to form the mathematical covers or by
increasing the number of physical covers on each element. In our calculations, we use a six-physical-cover system to form
elements, i.e. the physical covers centered at the three vertices of a triangle and at the three midpoints of each edge of the
triangle, as covers A, B, C, D, E and F shown in Fig. 5.

Fig. 6(a)–(d) show the second-order weight functions; and (e), (f) show the constant hydraulic head within a physical cover
centered at a triangular vertex and midpoint, respectively.

Similar to six-node FEM, the weight functions are:
⎛
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and the hydraulic head on physical cover i is:

hi(x, y) = hi (16)

where hi is the unknown to be solved.
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2.3. Energy-work seepage model and establishment of equilibrium equations

From mass conservation expressed as Eq.     (1)   combined with the finite cover approximation as Eqs.     (10)–(12), how to set
up equilibrium equations is the basic issue for a numerical approximation. Furthermore, there are several issues to be
considered when modeling boundaries since it is unnecessary to adjust element nodes to boundaries in a NMM model with
independent mathematical and physical covers. The description of the Dirichlet boundaries and the method of assembling it
into the equilib-  rium equations may have a profound impact on the existence, uniqueness and stability of solutions.
Moreover, the boundaries, for example, the free surface may divide some mathematical covers into different physical covers,
leading to a discontinuity of hydraulic head and flux across the boundary. Traditionally, variational principle or the Galerkin
method of weighted resid-  uals  is  widely  used  to  set  up  the equilibrium  equations,  mostly  on  the condition  that  the
boundaries coincide with element vertices.

Our model is established according to energy-work seepage model and a concept model (i.e.  pipe model) for constructing
penalty function to deal with boundaries was first developed and presented in literature [38] in detail. In this approach, the model
is established based on the work done by each component involved in the flow to establish the total potential energy  based on the
energy-work theorem. Meanwhile, the boundary cross-flow pipe model provides a method to uniformly consider  the work done
by flow across Dirichlet, Neumann and material boundaries. The total potential energy based on the energy-work theorem derived
through this approach is (1) consistent with the variational principle related to domain and gravity flow with clearer physical
meaning and (2) complete by including material boundaries and boundary conditions.

Specifically, for 2-D steady state flow simulation, the corresponding work components done by fluid gravity and flow in the
porous media and across boundaries are as follows:

(1) the work corresponding to flow in the porous media:

W  = 
1 

γ rr v 
∂  h   

+ v  
∂  h     

dxdy − γ rrr 
∂v  y   

dxdydy (17)

where y is the vertical direction and the second-order time derivative of pressure is ignored.
(2) the work corresponding to fluid gravity:

Wg = rrr γ dydxdvy = γ rrr dydxdy (18)
∂vy

(3) the work corresponding to Dirichlet boundary conditions:

W
1 2

D = − 
2 

γζ(h − 
h0)

(19)

where ζ  is the linear coe cient of flux ffi qi  through each pipe versus hydraulic head difference 1'hi  between the two ends
of each pipe, h0  is the fixed hydraulic head at one pipe end in an assumed empty space and h is the unknown hydraulic head
at the other pipe end within the water flow domain to be solved [38].

(4) the work corresponding to material boundaries:

W
1 2

m = − 
2 

γζ(hj − hk)

where hj and hk are hydraulic heads of two ends j and k of each pipe in different material media.
(5) the work corresponding to Neumann boundary conditions:

(20)

W   = γ rr q 
∂  h   

+ q 
∂  h dxdy (21)

where (q¯x, q¯y)are the known flux projected to two directions of coordinate axis.

According to the energy-work theorem:

Wϕ + ITϕ = 0 (22)

where ϕ denotes work or energy component associated with domain flow, gravity, flow in pipes for Dirichlet boundaries, material 
boundaries or Neumann boundaries, respectively.

Combining Eqs. (17)–(22), we obtain the total potential energy 
TT 

for a steady-state water flow as:

IT = ITs + ITg + ITD + ITm + ITN (23)

s 2
x ∂x

y 

∂y
∂
y

N x ∂x y 

∂y

∂
y
∂
y



For cover i, equation ∂  IT  0 represents the flux equilibrium on cover i:
∂hi⎛
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Q
where hi is the hydraulic head function of physical cover i defined as Eq.     (12), Cij is the component of the conductivity matrix,
Qi  is the flux term and F is a constant. For higher order approximation, hi and Qi represent vectors with m (the number of
degrees of freedom of the physical cover i) components, and Cij represents a matrix with m × m components, respectively.
For example, for Form 1 with linear physical cover hydraulic head distribution, each physical cover has three degrees of
freedom. Therefore, hi and Qi are column vectors with three elements and Cij is a 3 × 3 matrix.

We can derive each component of Cij by

∂2IT
Cij = 

∂h ∂h
(25)

and Qi by

∂IT
Qi =− 

∂h

(26)

Based on simplex integration [43], the Cij and Qi contributed by each term in Eq. (23) are calculated, as listed in Appendix A.

2.4. Locating the free surface for free surface flow by second-order interpolation

For free surface  flow,  the schemes of locating and iterating the free surface are critically important. Because of the a priori
unknown boundaries, such as FD and CD in Fig. 1, we need to assume the water flow domain for the first iteration (we consider  no
water flows above the free surface). In this study, we initially assume that the flow occupies the entire domain with a zero pressure
boundary condition at the CE face. With this initial technique, we are able to avoid possible non-convergence caused by guessing a
free surface if it is far from the real one. Thereafter, the final location is determined iteratively through a non-linear algorithm.

In the following sub-sections, we describe the method in more detail, including the description of the free surface nodes
algorithm in the two forms of second-order approximation and iteration schemes to locate the free surface.

2.4.1. Expressions and solutions for the free surface nodes in second-order NMM forms
(1) Form 1
The free surface nodes are located at the intersections of the free surfaces and elements, specifically at the edges of elements.

Supposing one of the element edges consists of vertices  Pi(xi, yi) and  Pj(xj, yj). When using the first form of the second-order
interpolation defined by Eqs. (13) and (14) for a free surface satisfying Eq. (6), we get the following expression for the free surface
nodes:

3

⎪⎨m=1 (hm1 + 
hm2

x + 
hm3

y)(
fm1

+ 
fm2

x + 
fm3

y) = y

⎪y = 
y  j     − yi (x − xi) 

+ yi

(27)

⎩⎪ x j − xi

(x − xi)(x − xj) + (y − yi)(y − yj) ≤ 0

Equation set (27) contains a binary quadratic, which makes it di cult to solve directly.ffi
Supposing a node P1 (x1, y1) on an edge PiPj with two ends Pi(xi, yi) and Pj(xj, yj), it satisfies the following expression:

⎧
⎪⎨x1 = (1 − θ )xi + θx j

⎪⎩
0 ≤ θ ≤ 1

(28)

On the other hand, the hydraulic head of node P1 on edge PiPj is the weighted average of hydraulic heads at Pi and at Pj. Based 
on the definition of weight function in Eq. (11) and its linear feature as in Eq. (13) shown in Fig. 4(b), we have:

r
h1 = wihi + wjhj

=

Q2

i

⎧  ⎪
Y

y   = (1 − θ )y  + 
θy1 i

Cn1      Cn2      Cn3      ·· · hn Q
n

i

j



wi = 1 − wj = 1 
− θ
(29)

wi = 1 − wj = 1 
− θ
(29)



Fig. 7. Possible relative location of P1P2 and an element PiPjVjVi.

where hi and hj are the hydraulic heads at Pi and Pj respectively, computed by Eqs.   (10), (13) and (14). If the edge PiPj represents
an edge of mathematical mesh, specifically  Pi  and  Pj  are the “stars” of physical covers  Pi  and  Pj  satisfying  Eq.    (14).  The linear
change of hi and hj on edge PiPj can be simplified as:

hj = (1 − θ )(h j1 + hj2xi + hj3yi) + θ (h j1 + hj2xj + hj3yj)

Substituting Eq. (30) into Eq. (29) and combining with Equation set (28), we obtain:

⎧
⎪x1 = (1 − θ )xi + θx j

⎪⎨h1 = (1 − θ )
r
(1 − θ )(hi1 + hi2xi + hi3yi) + θ (hi1 + hi2x j + hi3y j)

 

+

(30)

(31)⎪
θ (1 − θ )(h j1 + hj2xi + hj3yi) + θ (h j1 + hj2xj + hj3yj)

h1 = y1

0 ≤ θ ≤ 1

Once hmn (m = 1,  2, 3 and n = 1,  2, 3) is solved, the Equation set (31)  is a binary quadratic equation with the only unknown
θ  .  The real solution of  θ  is unique, limited by the last inequality. Solving  θ  and substituting it  back, we get the solution for
intersection P1(x1, y1). Repeating the same scheme, we can find the second intersection P2(x2, y2) of the free surface and triangle
mesh edges. However, P1 and P2 are not always the free surface nodes O1 and O2, as shown in Fig.   7.

Supposing two of the element vertices are Vi (xvi, yvi) and Vj (xvj, yvj), the intersection of P1P2 and ViVj is the real solution of
O1 or O2, satisfying:

x0 = (1 − θ1)x1 + θ1x2 = (1 − θ2)xvi + θ2xvj

0 ≤ θ1 ≤ 1

0 ≤ θ2 ≤ 1

which provides the final solution for free surface nodes.

(32)

From Equation set (31), it is interesting to note that the normally used linear interpolation of two vertices for a free surface
node is not applicable for second-order water flow analysis, due to the linear change of hydraulic head, as well as the linear change
of the weight function on a physical cover. Take a 1-D model domain, for example, supposing the  physical covers satisfy:  w1  = 1 −
y, h1  = 1 + y, w2  = y, h2  = 2 − y. Based on Eq.   (10),  the hydraulic head at any location is h = 1 + 2y − 2y2. If the two      ends of
the model domain are located at y1 = 1 and y2 = 3 . The hydraulic heads would be h1 = h2 = 11 . If interpolated linearly,

the hydraulic head at any location within this model domain becomes h = 11 . It is obviously not correct.
(2) Form 2
In terms of the location of a point P1 on an edge PiPj, the expression is the same as Eq. (28). As the weight functions are second-

order, the hydraulic head of P1 is represented by:
⎧

h1 = wihi + woho + wjhj

⎪wo = −4θ (θ − 1)

y   = (1 − θ )y  + 
θy1 i

⎪
⎪
⎩

⎧

⎪

⎪

⎩
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⎪

r
hi = (1 − θ )(hi1 + hi2xi + hi3yi) + θ (hi1 + hi2xj + 

hi3yj)

⎪⎨y0 = (1 − θ1)y1 + θ1y2 = (1 − θ2)yvi +

θ2yv j

4 4 8

⎪⎨w  = 2/θ − 
1 

 (θ −

1)

r

(33)

⎪
+

i 2

j 2
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w

 j  
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2θ /θ − 
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Fig. 8. Adjustment of elements across by phreatic surface.

where i and j denote two of the vertices of a triangle and o denote a midpoint of a triangle mesh line. Since the hydraulic head is 
constant on a physical cover, P1 can be solved by:

x1 = (1 − θ )xi + θxj

⎪⎨h
= 2/θ −

1

(θ − 1)h − 4θ (θ −
1)h

+ 2θ /θ − 
1 

h

(34)

1 2 i

⎪

o
2 j

h1 = y1

0 ≤ θ ≤ 1

Solving Eq. (34) and repeating Eq. (32), we obtain the real solution of free surface nodes.

2.4.2. Iteration and convergence of locating the free surface
During iterations, we approximate the free surface as a boundary dividing the entire domain into dry and wet parts. Across this

boundary, there is no normal flux exchange between these two parts. Specifically, for example in  Fig. 8 the free surface divides
element V1V2P2P3  into two elements, V1V2P2O2O1  (located in the wet part) and O1O2P3  (in the dry part). Because there is no flux
in element O1O2P3,  we directly reduce the integral area from V1V2P2P3  to V1V2P2O2O1  to reduce the computational load. As for
physical covers above  P3  (in the dry part), we still account for their contributions when establishing the conductivity matrix, in
case that the simulated O1O2 is lower than the real free surface. At the same time, the boundary conditions are updated by removal
of the pipes on the boundary above the release point (face EF) during successive iterations. After several iterations, the final free
surface is constrained within a tolerance of  10−6 during two consecutive iterations. In the whole process,  the mesh    is only
constructed once in pre-processing stage.

2.5. Velocity and flux calculation

2.5.1. Velocity expression

Once the freedoms {hi(x, y)} are calculated, the velocity function of an element is expressed as: 
(1) Form 1 
Combining Eqs. (2), (10), (13) and (14), we get the velocity function within an element expressed as:

v (x, 
y)

k   k  Y⎛ ( fλ2hλ1 + fλ2hλ2x + wλhλ2 + fλ2hλ3y)
⎞

v (x, y) 
=− 

k k
⎝ Y 

( f h + f h x + w 
h

+ f h y)
⎠ (35)

y

(2) Form 2 

yx yy
λ=i, 
j,k

λ3 λ1 λ3 λ2 λ λ3 λ3 λ3

Combining Eqs. (2), (10), (15) and (16), we get the velocity function within an element as:

v (x, 
y)

∂  w  λ
k   k ∂x 

λ

x xx xy
=− λ=1                      (36)

vy(x, 
y)

kyx 

kyy

6

λ=1

∂wλ

∂y λ

From Eqs. (35) and (36) we can see that the water velocity is linearly distributed, which is more capable to represent the local 
intensive change of hydraulic head, where there is a drainage tunnel.
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2.5.2. Flux into a drainage tunnel
As shown in Fig. 9, we approximate a round tunnel by a hexadecagon, which intersects with mathematical lines to form 

elements such as elements 1, 2 and 3. The flux into a drainage tunnel is the velocity integrated on the tunnel edge expressed as:



Q
f'

Fig. 9. Tunnel flux calculation model.

(vxdy + vydx) (37)

where f' represents each straight line of a tunnel edge intersected by a mathematical line or another tunnel edge. Combining
Eqs.     (35)   and (37) or Eqs.     (36)   and (37), we can see that the flux term is a second-order function of x and y on an edge. After
being integrated and simplified, the flux through an edge P1P2 within one element is expressed as:

1 1

Q = 
2 

(vx1 + vx2)(y2 − y1) + 
2 

(vy1 + vy2)(x2 − x1) (38)

where vx1, vy1  represent the velocities in x and y directions of vertex P1, respectively and vx2  and vy2  represent those of vertex    P2.
vx1,  vx2,  vy1  and vy2  are calculated by Eqs. (35) or (36). From P1  to P2, it is in the counterclockwise direction, which results   flux
directing towards the inner normal. From Eq. (38) we can obtain the linear change of velocity in both x and y directions on each
edge.

3. Demonstration examples

On the basis  of two forms of second-order approximation, the developed energy-work seepage model  [38],  the numerical
techniques for locating the free surface and the calculation algorithm for flux into drainage tunnels, we developed a NMM model
and a computer code for modeling free surface flow involving intense hydraulic head change.  To demonstrate the accuracy and
e ciency of the NMM model and the applicability of our code, we studied two examples: confined water flow into a drainageffi
tunnel (Example 1) and free surface flow in a rectangular dam (Example 2). We  compared our second-order results of flux with
an existing analytical  solution and linear solution for Example  1,   and our free surface solution in Example 2 with our linear
NMM solution and other numerical solutions from Oden and Kikuchi [28], Lacy and Prevost [29], Borja and Kishnani [32], Bardet
and Tobita  [35], in terms of meshing load, accuracy and convergence speed for these nonlinear water flow with inner intensive
change problems.

3.1. Example 1: Flux into a drainage tunnel

In this example shown in Fig.   10, we calculated flux into an underground tunnel using the developed second-order NMM, and
compared the result with the analytical solution by Lei  [51] as well as the linear NMM result. The tunnel is located H = 150 m
underground below the water table at the ground surface. The coe cient of permeability is ffi kxy=kyx=0, K=kxx=kyy=1 × 10−8 m/s.
The radius of the tunnel is R = 10 m. The analytical solution by Lei [51] is expressed as:

2πKH
Q
=

ln (H/R 
+

                               
H/R − 1)

(39)

                     H                  x2 + (y + 
√

H2 − R2)
2 

7
h(x, y) 
= ln (H/R + 

j
H/R − 1)

              
ln

x2 + (y − H2 − 
R2)

(40)

Fig.  11 shows comparison of  the simulation hydraulic  head and velocity results  using  the  second-order NMM with  1704
elements (2730 degrees of freedom) to those using the linear NMM with different numbers (5744, 6528 and 8730 elements with
2982, 3382, 4500 degrees of freedom, respectively). We further compared their calculated flux into the tunnel and simulated
hydraulic head in an area of 20 m × 20 m around the tunnel and their maximum relative errors using the analytical solutions (as
shown in  Table 1). The second-order NMM produces accurate results with an error of 0.0234% for the flux into the tunnel and

j

                

= r

√ 2



4.318% for the hydraulic head. By contrast, the linear NMM with 8730 elements (over 5 times of the number of elements used in
the second-order NMM) produces a flux error of 5.834% and a hydraulic head error of 7.213%.



Fig. 10. Confined seepage into an underground drainage tunnel.

Table 1

Comparison of relative simulation errors of tunnel flux and hydraulic head using the second-order NMM and the linear NMM.

Number 
of 
elements

Number of 
degrees of 
freedom

Flux into the tunnel
(m2/s)

Relative error
of flux

Maximum relative 
error of hydraulic head

Linear NMM 5744 2982 2.15391 × 10−6 −0.22256 −0.07011
Linear NMM 6528 3382 2.51043 × 10−6 −0.09388 −0.0636
Linear NMM 8730 4500 2.6089 × 10−6 −0.05834 −0.07213

Second-order NMM 1704 2730 2.77117 × 10−6 0.000234 −0.04318
Analytical [51] 2.77052 × 10−6

Table 2

Comparison of simulation parameters for various simulation methods.

Number of elements Number of iteration Tolerance SOR factor

Oden and Kikuchi [28] 200 20 — 1.7
Lacy and Prevost [29] 200 11 0.001 —
Bardet and Tobita [35] 200 135 0.0001 1.2

Borja and Kishnani [32] 200 4 10−10 —
Linear NMM [38] 236 13 10−6 (1.0, 2.0)

Second-order NMM 56 4 10−6 (1.0, 2.0)

From this example we can see that the second-order NMM can accurately simulate the local, large change in hydraulic head
around tunnels, and accurately calculate the flux of the drainage tunnels with a coarse, fixed mesh, indicating promising appli-
cation to projects involving flux prediction.

3.2. Example 2: A homogeneous rectangular dam with tail water

Example 2 involves free surface flow through a homogeneous rectangular dam driven by the head difference between 10
m at the upstream face and 2 m at the downstream face (Fig.   12). Fig. 12(a) shows the final hydraulic head distribution in the
whole model domain, whereas Fig.     12(b) shows the results of free surface with iterations. The results show that for the
second- order approximation, convergence within a tolerance of  10−6 is reached in only 4 iterations.  Fig. 12(c) presents a
comparison of  the free-surface profile simulated by the second-order NMM to those of  the linear NMM  [38] and other
numerical solu- tions in the literature (using Finite Element Method by Lacy and Prevost [29], Oden and Kikuchi [28] and
Borja and Kishnani [32]; and Finite Difference Method by Bardet and Tobita [35]). The comparison shows that our second-



order NMM profile is close to that by Lacy and Prevost [29], with a maximum difference of 3.08% for free surface nodes and
1.34% for the release point.

Table 2 lists model parameters and number of iterations required for convergence for all the solutions. In our simulation, we
use a Successive Over-Relaxation (SOR) algorithm to solve the equilibrium equations. We found that the change of SOR factor



Fig. 11. Comparison of the hydraulic head and velocity fields simulated using the second-order NMM with 1704 elements and using the linear NMM with 5744, 
6528, and 8730 elements.

within (1.0, 2.0) has a small impact on the convergence speed. From this example we see that the second-order NMM model 
developed in this study achieve a rapid convergence within a stringent tolerance even with a relatively coarse mesh.

4. An application: a sloped earth dam with an inner drainage tunnel

This is an application about free surface flow through a sloped earth dam with a hydraulic head of 110 m on the vertical 
upstream surface and 70 m on the slanted downstream surface (as shown in Fig. 13a). A drainage tunnel is centered at (70,
55) m inside the dam. The coe cient of permeability is 1 ffi × 10−7 m/s. The boundary of the tunnel satisfies the condition of zero
pressure, i.e., expressed as in Eq. (4) where Hi  is the elevation.  Fig.   13 shows the solution convergence with iterations using the
linear NMM and  the second-order NMM with 872 elements. It takes  17  iterations for the linear NMM and only 4  iterations for
the second-order NMM to converge with the tolerance is 10−6 (if we set larger tolerance, the difference of the iterations required  is
much smaller).

The convergence of hydraulic head is far from the convergence of velocity in the field, the latter requires more computational 
load with longer time. Fig. 14 (a) and (b) show the final steady-state head distribution using the linear NMM with 5550 elements



Fig. 12. Simulation results of the second-order NMM with 8 layers and 56 elements: (a) contour of hydraulic head in the whole domain, (b) profiles of the 
phreatic surface with iterations, and (c) comparison of the final phreatic surface profile with those of numerical solutions available in the literature.

Fig. 13. Comparison of simulation convergence for unconfined seepage through a dam with slanted downstream face and an inner drainage tunnel: (a) 17 
iterations with the linear NMM and (b) 5 iterations with the second-order NMM with tolerance of 10−6.

and second-order NMM with 2469 elements, respectively. The flux calculated by the second-order NMM is 3.183  × 10−6 m2/s    
and that by the first-order NMM is 3.092 × 10−6 m2/s.

Note that it is an example with a relatively small tunnel in a computation domain, which involves very strong local change
around the tunnel. For such a case, it is possible to consider and design a series of tunnels with certain spacing. If the size of
the tunnel is increased, the required mesh load could be reduced.

5. Discussion

In this study, we developed a new second-order NMM model for analysis of free surface flow possibly with inner drains and
tested it  on application examples that were designed for  verification.  From those examples,  we showed that  the method can
accurately  and e ciently  model  this nonlinear,  moving- boundary  problem,  possibly  involving high  local  gradient  with fixedffi
mathematical mesh. The model and scheme developed in this study can easily be extended to transient flow analysis. For tran-
sient  flow  modeling,  initial  conditions  and changing boundary  conditions  could  be  implemented  directly  into the  code.  The
transient  mass  changes  are  related  to  aquifer  compression and  free  surface  changes  with  time.  With  proper  time-marching
algorithm, it is straightforward to transform the aquifer compression to both the conductivity and flux terms according to



Fig. 14. Simulation results of hydraulic head distribution and velocity using (a) the second-order NMM with 2469 elements and (b) the linear NMM with 5550
elements.

energy- work model. For changes in the free surface with time, the scheme developed in this study for steady-state could be
used to locate the free surface at the initial step. Afterwards, we could solve the free surface location for each time step by
implicitly regarding the transient free surface changes as a flux boundary.

This model could be extended for three-dimensional analysis from its current two-dimensional form. The meshing will  be
very e cientffi  as we use uniform simplex to form the fixed mathematical mesh. The algorithms for calculating the free
surface will be similar as for two-dimensional analysis developed in this work. Moreover, the cover-based NMM will be very
flexible for choosing different approximation orders in different directions. For example, for free surface low analysis, we
may focus more on the vertical dimension than on the horizontal dimensions. Then we can increase the order in the vertical
dimension only, with the usage of triangular prism to form fixed mathematical mesh.

The developed model for free surface flow analysis could be a future key component of coupled hydro-mechanical
analyses.  As  a  fixed-mesh model,  the  method  is  suitable  for  modeling  hydro-mechanical  behavior,  encompassing  both
continuous and discontinuous processes. In addition, it inherits the aforementioned advantages for flow modeling, as well as
the advantages of NMM, in terms of: (1) the fixed mathematical mesh, avoiding expensive computational efforts in meshing;
(2) accurate integra- tion on arbitrary shape of elements using simplex integration; and (3) flexibly enhanced approximation
precision.

6. Conclusions

In order to accurately and e ciently solve the nonlinear problem of flow with the free surface priori unknown and the di -ffi ffi
culty of modeling drains which could dramatically increase the meshing load, in this study we developed a second-order NMM
model, including:

(1) two forms of second-order approximation with triangles forming mathematical covers. In the first form, we increased the
function on each physical  cover from constant to linear functions. In the second form, we increase the order of weight
functions by increasing the number of covers of an overlapped element;

(2) a complete and rigorous potential energy expression, in which each term can be related to a process with clear physical
meaning  based  on  the  energy-work  seepage  model.  Together  with  our  proposed  pipe  model  for  constructing  penalty
function, we could uniformly deal with Dirichlet, Neumann and material boundaries, which are not required to coincide with
element vertices;

(3) solution of free surface nodes in two forms of second-order approximation. We  transformed the binary quadratic
equation set to a quadratic equation, by making full use of the features of weight functions and physical cover functions
defined in NMM;

(4) an e cient iteration scheme for the free surface with no need to re-mesh by fixing the mathematical covers and updating theffi
physical covers crossed by free surface;

(5) expression of velocity and flux by second-order approximation. The velocity, the first derivative of hydraulic head has linear
distribution within an element, enabling to reduce mesh load dramatically to represent local intensive changes. The flux,  the
integration of velocity, inherits the advantage of velocity by second-order approximation.

Finally, we demonstrate our methodology and NMM code by comparing our second-order  results confined or free surface  flow
models with drainage tunnels with linear NMM, analytical or other available numerical simulation results. We show that
(1) the two forms of second-order approximation yield consistent results even for modeling examples involving water flow with a
priori-unknown free surface and problems involving local intensive change with inner drains. (2) The results of the second-order



NMM with coarse numerical mesh was comparable with those of other methods in terms of accuracy, thus at a high
convergence speed, demonstrating an excellent numerical e ciency.ffi  Furthermore, this model will be naturally extended to
transient analysis in three-dimensional space and will be a key part of analysis of coupled hydro-mechanical processes with
moving boundaries in continuous and discontinuous geological media.
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Appendix A

Values of Cij and Qi in equilibrium equations based on second-order interpolation

A1. Values by second-order interpolation in Form 1

(1) Cij corresponding to domain flow and gravity

Cij(1, 1) (kxx fi2 kyx fi3) f j2 (kxy fi2 kyy fi3) f j3 S

Cij(1, 2) (kxx fi2      kyx fi3) f j1S 2(kxx fi2      kyx fi3) f j2     (kxy fi2      kyy fi3) f j3  Sx   (kxx fi2 kyx fi3) f j3Sy

Cij(1, 3) (kxy fi2      kyy fi3) f j1S (kxx fi2      kyx fi3) f j2      2(kxy fi2      kyy fi3) f j3  Sy   (kxy fi2  kyy fi3) f j2Sx

Cij(2, 2) kxx fi1 f j1S kxx fi3 f j3Syy (2kxx f j2 kxy f j3) fi1 (2kxx fi2 kxy fi3) f j1 Sx ( fi1 f j3 fi3 f j1)kxxSy

+ 2(2kxx fi2 + kxy fi3) f j2 + (2kyx fi2 + kyy fi3) f j3 Sxx + (2kxx fi2 + kxy fi3) f j3 + (2kxx f j2 + kxy f 

j3) fi3 Sxy Cij(2, 3) = kxy fi1 f j1S + (2kyx fi2 + kyy fi3) f j2Sxx + (kxx f j2 + 2kxy f j3) fi3Syy + (2kxy fi2 f j1 + kyy 

fi3 f j1 + kyx fi1 f j2)Sx

(2kxy fi1 f j3 kxx fi1 f j2 kyx fi3 f j1)Sy (kxx fi2 2kxy fi3) f j2 2(kyy f j2 2kxy fi2) f j3) Sxy

Cij(3, 3) kyy fi1 f j1S kyy fi2 f j2Sxx ( fi1 f j2 fi2 f j1)kyySx (kyx f j2 2kyy f j3) fi1 (2kyy fi3 kyx fi2) f j1 Sy

+ (2kyx fi3 + kxx fi2) f j2 + 2(kxy fi2 + 2kyy fi3) f j3 Syy + (kyx f j2 + 2kyy f j3) fi2 + (kyx fi2 + 2kyy fi3) f 
j2 Sxy

(2) Cij and Qi corresponding to Dirichlet boundary conditions

Cij(1, 1) = ζwi(x0, y0)wj(x0, y0) 
Cij(1, 2) = ζwi(x0, y0)wj(x0, y0)x0 

Cij(1, 3) = ζwi(x0, y0)wj(x0, y0)y0 

Cij(2, 2) = ζwi(x0, y0)wj(x0, y0)x2

Cij(2, 3) = ζwi(x0, y0)wj(x0, y0)x0y0 

Cij(3, 3) = ζwi(x0, y0)wj(x0, y0)y2

Qi1 = ζwi(x0, y0)h0

Qi2 = ζwi(x0, y0)h0x0 

Qi3 = ζwi(x0, y0)h0y0

(3) Cij corresponding to material boundaries

Cij(1, 1) = ζwi(x1, y1)wj(x1, y1) Ci j (1, 1) = ζw 
i(x2, y2)w 

j(x2, y2)
Cij(1, 2) = ζwi(x1, y1)wj(x1, y1)x1 Ci j (1, 2) = ζw 

i(x2, y2)w 
j(x2, y2)x2 

Cij(1, 3) = ζwi(x1, y1)wj(x1, y1)y1  Ci j (1, 3) = ζw 
i(x2, y2)w 

j(x2, y2)y2

Cij(2, 2) = ζwi(x1, y1)wj(x1, y1)x2  Ci j (2, 2) = ζw 
i(x2, y2)w 

j(x2, y2)x2

Cij(2, 3) = ζwi(x1, y1)wj(x1, y1)x1y1 Ci j (2, 3) = ζw 
i(x2, y2)w 

j(x2, y2)x2y2

Cij(3, 3) = ζwi(x1, y1)wj(x1, y1)y2  Ci j (3, 3) = ζw 
i(x2, y2)w 

j(x2, y2)y2

Cij (1, 1) = −ζ wi(x1, y1)w 
j(x2, y2)  Ci j(1, 1) = −ζ w 

i(x2, y2)wj(x1, y1)

r
+ + + + + + +

0

0

r
= + +

+
r
= + + + + + + +

r
= + + + + + + +

r
= + + + + + +

+
r r

r
= + + + + + + +

r r

1 2

1 2



Cij (1, 2) = −ζ wi(x1, y1)w 
j(x2, y2)x2 Ci j(1, 2) = −ζ w 

i(x2, y2)wj(x1, 

y1)x1 Cij (1, 3) = −ζ wi(x1, y1)w 
j(x2, y2)y2 Ci j(1, 3) = −ζ w 

i(x2, 

y2)wj(x1, y1)y1



Cij (2, 2) = −ζ wi(x1, y1)w j(x2, y2)x1x2 Ci  j(2, 2) = −ζ w i(x2, y2)wj(x1, y1)x1x2

Cij (2, 3) = −ζ wi(x1, y1)w j(x2, y2)x1y2 Ci  j(2, 3) = −ζ w i(x2, y2)wj(x1, y1)y1x2

Cij (3, 3) = −ζ wi(x1, y1)w j(x2, y2)y1y2 Ci j(3, 3) = −ζ w i(x2, y2)wj(x1, y1)y1y2

(4) Qi corresponding to Neumann boundary conditions

Qi1 = S(qx fi2 + qy fi3)
Qi2 = qx fi1S + (2qx fi2 + qy fi3)Sx + qx fi3Sy 

Qi3 = qy fi1S + qy fi3Sx + (qx fi2 + 2qy fi3)Sy

A2. Values by second-order interpolation in Form 2

(1) Cij corresponding to domain flow and gravity

Cij = (kxx fi2 + kyx fi3) f j2 + (kxy fi2 + kyy fi3) f j3 S

+ 2kxx( fi4 f j2 + fi2 f j4) + 2(kxy fi3 f j4 + kyx fi4 f j3) + (kxy fi2 f j5 + kyx fi5 f j2) + kyy( fi5 f j3 + fi3 f j5) Sx

+ 2(2kxx fi4 + kyx fi5) f j4 + (2kxy fi4 + kyy fi5) f j5 Sxx

+
 

(kxx fi5 + 2kyx fi6) f j5 + 2(kxy fi5 + 2kyy fi6) f 
j6 Syy+ 2kxx( fi4 f j5 + fi5 f j4) + (kxy + kyx) fi5 f j5 + 4(kxy fi4 f j6 + kyx fi6 f j4) + 2kyy( fi5 f j6 + fi6 f j5) Sxy

(2) Cij and Qi corresponding to Dirichlet boundary conditions

Cij = ζwi(x0, y0)wj(x0, y0)
Qi = ζwi(x0, y0)h0

(3) Cij corresponding to material boundaries:

Cij = ζwi(x1, y1)wj(x1, y1)Cij  =  −ζ wi(x1, y1)w  j(x2, y2) 
Ci j = −ζ w i(x2, y2)wj(x1, y1)Ci j = ζw i(x2, y2)wj (x2, y2)

(4) Qi corresponding to Neumann boundary conditions

Qi = S( fi2qx + fi3qy) + (2 fi4qx + fi5qy)Sx + ( fi5qx + 2 fi6qy)Sy
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