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Abstract
Purpose: CT Hounsfield Units (HUs) are converted to electron density using a
calibration curve obtained from physical measurements of an electron density
phantom. HU values assigned to an MRI-derived synthetic computed tomogra-
phy (sCT) may present a different relationship with electron density compared
to CT HU.Correct assignment of sCT HU values is critical for accurate dose cal-
culation and delivery. The goals of this work were to develop a sCT calibration
curve using patient data acquired on a clinically commissioned CT scanner and
assess for CyberKnife- and volumetric modulated arc therapy (VMAT)-based
MR-only treatment planning of prostate SBRT.
Methods: Same-day CT and MRI simulation in the treatment position were per-
formed on 10 patients treated with SBRT to the prostate. Dixon in-phase and
out-of -phase MRIs were acquired on a 3T scanner using a 3D T1-weighted
gradient-echo sequence to generate sCTs using a commercial sCT algorithm.
CT and sCT datasets were co-registered and HU values compared using mean
absolute error (MAE).An optimized HU-to-density calibration curve was created
based on average HU values across an institutional patient database for each
of the four sCT tissue types. Clinical CyberKnife and VMAT treatment plans
were generated on each patient CT and recomputed onto corresponding sCTs.
Dose distributions computed using CT and sCT were compared using gamma
criteria and dose-volume-histograms.
Results: For the optimized calibration curve, HU values were −96, 37, 204, and
1170 and relative electron densities were 0.95, 1.04, 1.1, and 1.7 for adipose,
soft tissue, inner bone, and outer bone, respectively. The proposed sCT protocol
produced total MAE of 94 ± 20HU. Gamma values mean ± std (min-max) were
98.9% ± 0.9% (97.1%–100%) and 97.7% ± 1.3% (95.3%–99.3%) for VMAT and
CyberKnife plans, respectively.
Conclusion: MRI-derived sCT using the proposed approach shows excel-
lent dosimetric agreement with conventional CT simulation, demonstrating the
feasibility of MRI-derived sCT for prostate SBRT treatment planning.
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1 INTRODUCTION

Prostate cancer is the leading cause of cancer inci-
dence in men in the United States with an estimated
268,000 diagnoses in 2022.1 Radiotherapy is a non-
invasive option for managing prostate cancer that
provides high success rates for curing the disease.2

Patients being treated with stereotactic body radiother-
apy (SBRT) to the prostate routinely undergo magnetic
resonance imaging (MRI) for purposes of anatomical
delineation. The soft tissue contrast provided by MRI is
particularly well suited for visualizing prostatic lesions
and critical structures such as the urethra3,4 while also
decreasing interobserver variability5 versus computed
tomography (CT) alone.

In the radiotherapy workflow, patients often receive
both an MRI (for anatomical visualization) and CT
(for density information used in dose calculation).6

Replacing CT with MRI-based synthetic CT (sCT) for
dose calculation would offer many advantages such
as increased efficiency, reduction in the number of
imaging procedures required for each patient, and
a decrease in uncertainties related to multi-modality
image registration.7 While MR images demonstrate
favorable qualities for the delineation of many nor-
mal and diseased tissue types, they do not provide
a direct map of photon attenuation, hindering its util-
ity for dose calculation. Over the past decade there
has been increased research in generating sCTs from
MRIs using atlas-based, deep learning-based or hybrid
techniques.8–10 However, clinical implementation has
been slow to develop as there are currently no con-
sensus guidelines or recommendations provided for
using MRI-derived sCTs in practice. A major challenge
is that, unlike with Hounsfield Units (HUs) of CT scans,
HUs of MRI-derived sCTs do not correspond directly
to physical values of photon attenuation and improved
methods of HU mapping and benchmarking during sCT
generation has been called for in the literature.8,11 In
radiation therapy planning,CT HU are converted to elec-
tron density by means of a calibration curve obtained
from physical measurements of an electron density
phantom. The HU assigned to a sCT may present a
different relationship with electron density, compared to
CT HU. Therefore, using the clinically adopted calibra-
tion curve for CT images might lead to errors in dose
calculations.12 As it is not possible to generate sCT spe-
cific electron density calibration curves by means of
physical measurements, assignment of HU values con-
sistent with those obtained from CT images for each
tissue type is critical for accurate dose calculation and
delivery.13

The goal of this work was to develop a CT calibra-
tion curve optimized for sCT dose calculation using
patient data acquired on a clinically commissioned CT
scanner and implement with a commercially available
MRI-derived sCT protocol. Treatment planning for two

common modalities used to treat prostate cancer with
SBRT were investigated, namely, volumetric modulated
arc therapy (VMAT) delivered on a conventional C-arm
linear accelerator and the CyberKnife system (Accu-
ray, Sunnyvale, CA, USA), a compact linear accelerator
mounted onto a robotic base.

2 MATERIALS AND METHODS

2.1 Imaging datasets

Ten patients being treated with SBRT to the prostate
were prospectively recruited under this IRB-approved
study. Same-day CT and MRI simulation in the head-
first supine treatment position were performed on each
patient. CT scans were acquired at 120 kVp photon
energy using a helical acquisition with reconstructed
slices of voxel size 1 × 1 × 1.5 mm3 (SOMATOM Def-
inition AS, Siemens Healthcare, Erlangen, Germany).
MRI simulation scans were acquired on a three Tesla
scanner (MAGNETOM Vida,Siemens Healthcare,Erlan-
gen, Germany) using a radiotherapy-dedicated indexed
couch overlay and large 18-channel UltraFlex coil
(Siemens Healthcare, Erlangen, Germany) suspended
on a coil bridge to prevent deformation of the patients’
surface caused by the coil. Dixon in-phase and out-of -
phase images were acquired using a 3D T1-weighted
volumetric interpolated breath-hold examination (VIBE)
sequence (TE1/TE2/TR = 1.23/2.46/4 ms,readout band-
width = 1090 Hz/pixel, 1 × 1 × 1.5 mm3, 176−224 slices,
scan time 5 min). sCT datasets were generated using
a vendor-provided algorithm based on in-phase, out-
of -phase, fat-only, and water-only MRIs (syngo.via RT
Image Suite, Siemens Healthcare, Erlangen, Germany).
CT and sCT datasets were co-registered in MIM Soft-
ware (MIM Software Inc, v 6.8.3 Cleveland, OH, USA)
using the automated 3D rigid registration algorithm used
clinically at our institution.

2.2 Synthetic CT reconstruction
algorithm

An FDA-approved hybrid algorithm for generating sCT
images from MRI in the pelvis was used to generate
sCTs using a combination of tissue classifiers and
anatomic atlases.14,15 The protocol requires acqui-
sition of a set of Dixon in-phase and out-of -phase
images in the axial plane using a T1-weighted VIBE
sequence and automatic 3D distortion correction. The
sCT algorithm classifies material as air, adipose, soft
tissue, inner bone, or outer bone corresponding to HU
values of −1000, −75, 0, 204, and 1170, respectively. In
this algorithm, tissue and adipose are classified using
spectral information, air using thresholding, and bone
using a multi-atlas-based model based on the in-phase,
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out-of -phase, fat-only, and water-only MRIs produced
by the VIBE Dixon sequence.

2.3 Comparison between synthetic and
real CTs

To compare sCT and CT HU values for the ten datasets
evaluated, air, adipose, soft tissue, inner bone, and outer
bone were segmented on each patients’ CT dataset.
Intensity-based thresholding was used to define each
region, with a final mask created for each tissue type
based on the initial thresholding and manual contour-
ing in MIM. For each patient, the masks were used to
define corresponding structures representing adipose,
soft tissue, inner bone,and outer bone.HU values (mean
and standard deviation) were computed and averaged
across all patient CT datasets.

For visualization, difference HU maps were com-
puted by subtracting the sCT from its corresponding
co-registered CT. HU values of sCTs and CTs were
compared using mean absolute error (MAE) across all
imaging voxels N according to the following equation:

MAE = 1
N

N∑
i=1

|sCT(i) − CT(i)| (1)

where, sCT(i) and CT(i) are HU values of the ith voxel in
the co-registered sCT and CT, respectively.

2.4 sCT calibration curve and
radiotherapy treatment planning

In radiation therapy, calibration curves relating CT HU
with electron density are typically generated using
vendor-provided tissue substitute phantoms containing
plugs of known density values.16 Performing this task
for sCT HU calibration curves is not straightforward as
it requires anthropomorphic phantoms made of mate-
rials with tissue-like contrast in both CT and MRI,17

which are not commercially available.Therefore, two cal-
ibration curves relating sCT HU with relative electron
density were generated: one using the original sCT HU
values (“original sCT curve”) and another using opti-
mized HU values (“optimized sCT curve”).The optimized
sCT curve was created using mean HU values com-
puted for adipose, soft tissue, inner bone, and outer
bone averaged across all patient CTs. For purposes of
treatment planning, both calibration curves were input
into RayStation v7.0 (RaySearch Medical Laboratories
AB, Stockholm, Sweden) and Accuray Precision v3.1
(Accuray, Sunnyvale, CA) treatment planning systems.

VMAT treatment plans were generated in RaySta-
tion using a two 6 MV coplanar arc arrangement and
dose calculation performed with a collapsed cone dose

TABLE 1 Tabulated HU values for air, adipose, soft tissue, inner
bone, and outer bone provided in the literature,18 extracted from CT
datasets, and original MRI-derived sCT datasets.

Literature CT Original sCT

Air −1000 −1000 −1000

Adipose −100 −96 ± 6.1 −75

Soft tissue 30–45 37 ± 3.9 0

Inner bone 200–800 219 ± 14 204

Outer bone >1000 1000 ± 23 1170

Abbreviations:CT,computed tomography;HU,Hounsfield Unit; sCT,synthetic CT.

calculation algorithm. CyberKnife treatment plans were
generated in Precision using a 6FFF non-isocentric
beam arrangement and dose calculation performed with
a ray-tracing dose calculation algorithm. All plans were
generated according to institutional practice and met
clinical objectives. For each patient, treatment plans
were generated on CT datasets and recomputed onto
corresponding sCT datasets using identical plan param-
eters. For comparison, dose calculation was performed
using both the original and the optimized sCT calibra-
tion curves. Dose distributions were compared using
gamma analysis (3%/3 mm local dose threshold) and
dose-volume-histograms (DVHs) of target and critical
structures including the bladder, rectum, femoral heads,
large bowel, and small bowel.

3 RESULTS

3.1 Derivation of sCT calibration curve

Example masks for adipose, soft tissue, inner bone, and
outer bone segmented using intensity-based threshold-
ing is shown in the top row of Figure 1. For each patient,
the masks were used to define corresponding regions
representing adipose, soft tissue, inner bone, and outer
bone in the CT datasets as shown in the bottom row of
Figure 1.

HU values for air, adipose, soft tissue, inner bone, and
outer bone provided in the literature,18 extracted from
patient CT datasets, and MRI-generated sCT datasets
are tabulated in Table 1.

Of note, original sCT HU values for adipose and soft
tissue disagree with those for CT and are outside the
range of values provided in the literature. Furthermore,
adipose and soft tissue structures typically make up
the largest volume of the pelvis datasets, as shown
in Figure 1, and mischaracterization of these HU val-
ues could lead to incorrect effective beam path lengths
computed in the dose calculation algorithms.

HU difference maps are illustrated in Figure 2, which
shows three exemplary datasets of CT (first column),
sCT (second column), the original HU difference map
(third column), and a modified HU difference map that
was created by manually overriding the sCT values for
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F IGURE 1 CT-derived segmentation of adipose, soft tissue, inner bone, and outer bone in an example patient. CT HU values (mean and
standard deviation) were compared to sCT HU values. CT, computed tomography; HU, Hounsfield Unit; sCT, synthetic CT.

F IGURE 2 Three exemplary datasets of CT (first column), sCT (second column), the original HU difference map (third column), and a
modified HU difference that was created by manually overriding the sCT values for adipose and soft tissue to match the CT (fourth column). HU
values are displayed from −150 to 150 to better visualize the differences in seen soft tissue and fat. CT, computed tomography; HU, Hounsfield
Unit; sCT, synthetic CT.

adipose and soft tissue to match the CT (fourth col-
umn). In other words, in the modified sCT HU difference
map, the sCT classification for air, adipose, soft tissue,
inner bone or outer bone corresponded to HU values
of −1000, −96 (instead of −75), 37 (instead of 0), 204,
and 1170, respectively. As demonstrated in column D,
these modified sCT datasets agreed more closely with
CT datasets in soft tissue and adipose regions.

As expected, by replacing HU values for soft tissue
and fat in the sCT with the average values estimated
from the CT,the total MAE (mean and standard deviation
amongst all 10 datasets) was reduced from 106.9 ± 17.9
to 93.9 ± 20.1 HU for the original versus modified sCT,
respectively. The soft tissue MAE was reduced from
76.5 ± 7.6 to 50.8 ± 8.1 HU when calculated for the orig-
inal versus modified sCT, respectively.The adipose MAE
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TABLE 2 Tabulated values of MAE (HU) for HU difference maps using the original sCT versus the modified sCT for the patients analyzed
for this study.

Total MAE (HU) Soft tissue MAE (HU) Adipose MAE (HU) Total bone MAE (HU)
Patient # Original Modified Original Modified Original Modified Original only

1 77.8 62.6 73.7 45.5 48.2 43.2 232.5

2 94.0 79.4 74.0 46.4 68.4 63.0 319.8

3 136.5 127.6 71.9 50.6 147.4 150.9 367.5

4 126.2 112.2 90.6 62.4 120.4 117.7 314.4

5 113.4 101.2 85.6 58.9 111.1 108.7 311.5

6 117.8 111.5 83.1 64.0 113.0 113.7 334.9

7 102.4 86.1 75.9 47.8 84.4 80.3 329.4

8 112.5 98.5 72.7 46.8 113.8 106.7 309.4

9 87.5 72.0 64.9 39.7 66.2 62.5 315.8

10 100.6 87.7 72.7 45.7 88.9 89.3 321.1

Abbreviations: CT, computed tomography; HU, Hounsfield Unit; sCT, synthetic CT.

F IGURE 3 Example axial CT (left), sCT (middle), and HU difference maps (right) for three patients included in this study. CT, computed
tomography; HU, Hounsfield Unit; sCT, synthetic CT.

was reduced from 96.2 ± 30.2 to 93.6 ± 32.2 HU when
calculated for the original versus modified sCT, respec-
tively. Because original sCT values for bone were within
the range reported in the literature,this HU value was not
modified in the sCT datasets, and the total bone MAE is
reported to illustrate the variation among patients. MAE
HU results for each patient in the study are reported in
Table 2.

Areas of disagreement most commonly seen
between sCT and CT datasets are depicted in Figure 3.
As expected, differences could be seen in instances

of variable bowel and/or rectal gas filling due to
anatomical changes between image acquisition (top
row). Gold fiducial makers placed in the prostate for
purposes of image alignment or calcifications within
the prostate gland appeared as hyperintense on
CT and hypointense on MRI (therefore not appear-
ing in sCTs), resulting in additional discrepancies
seen between datasets (middle row). Misalignment of
bone due to small differences in pelvic flexion and/or
leg positioning was also occasionally seen (bottom
row).
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F IGURE 4 Example sagittal and axial slices of CT (top row) and sCT (bottom row) datasets for Patient #9 whose datasets exhibited the
largest deviation in bone segmentation, which may have been caused by the abnormal shape of the left femoral bone which challenges
atlas-based reconstruction. CT, computed tomography; sCT, synthetic CT.

Mislabeling of bone remains an ongoing challenge
when generating CT from MRI due to minimal signal
being produced by bone in most clinical MRI sequences.
The most drastic deviation was seen in one patient
whose right femoral head was displaced (shown in
Figure 4), which may have been caused by the abnor-
mal shape of the left femoral bone in this patient that
creates challenges for atlas-based reconstruction.

For purposes of dose calculation in the treatment
planning systems, an optimized CT calibration curve
was generated using HU versus relative electron den-
sity values for air, adipose, soft tissue, inner bone, and
outer bone, respectively. The calibration curve was gen-
erated using HU values computed for each tissue type
averaged across the 10 prostate patients included in
this study, as shown in Table 1. An illustration of the
optimized sCT calibration curve derived in this work
(with the original sCT curve for comparison) is shown in
Figure 5.

3.2 Treatment plan evaluation

Results for all plans calculated using the original (non-
optimized) sCT calibration curve demonstrated system-
atic discrepancies between DVHs in sCT versus CT
datasets, as shown by non-coincident histograms in the
top row of Figure 6. This is caused by inaccurate scal-
ing of each beamlets’ effective path length caused by
incorrect HU values assigned to soft tissue and adipose.
However, these discrepancies were resolved when the

optimized sCT calibration curve was used, as shown by
coincident histograms in the bottom row of Figure 6.

Dose distributions for treatment plans created using
the optimized sCT calibration curve were compared
by calculating the gamma metric using 3%/3 mm
local criteria. Gamma metric results (mean, standard
deviation and min-max amongst all datasets) were
98.9 ± 0.9% (97.1%–100%) and 97.7 ± 1.3% (95.3%–
99.3%) for VMAT and CyberKnife plans, respectively.
All gamma results were > 95%, indicating good dosi-
metric agreement between plans calculated on sCT
versus CT datasets. Dose to 95% of planning target
volume (PTV) in sCT plans received 100.5% ± 0.8%
(99.8%–102.5%) and 97.0% ± 6.0% (81.9%–103.0%)
of the PTV volume in the CT plans for VMAT and
CyberKnife plans, respectively. All values of 95% PTV
coverage for sCT datasets were within 4% of corre-
sponding CT datasets, with the exception of Patient
#9 whose PTV in the CyberKnife plan received lower
dose coverage in the sCT dataset versus CT dataset
due to the mislabeling of the bone/femoral head as
previously described. Gamma metrics and dose to
95% of PTV volumes for each patient are shown in
Table 3.

Representative axial dose distributions for VMAT (top
row) and CyberKnife (bottom row) plans calculated on a
CT (left images) versus sCT (right images) when using
the optimized calibration curve are shown in Figure 7.
Close agreement between DVHs for sCT versus CT
can be seen for both plan types, demonstrated by the
indistinguishable dose volume histograms.
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F IGURE 5 Original (solid line) and optimized (dashed line) sCT calibration curves used for dose calculation in the clinical treatment
planning systems. sCT, synthetic CT.

F IGURE 6 Example DVH plots in sCT (solid line) versus CT (dashed line) datasets demonstrating the systematic discrepancies when
using the original CT calibration curve (top row) which are resolved when implementing the optimized CT calibration curve (bottom row) for
VMAT (left column) and CyberKnife (right column) treatment plans. CT, computed tomography; DVH, dose-volume-histogram; sCT, synthetic CT;
VMAT, volumetric modulated arc therapy.
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F IGURE 7 Representative axial dose distributions for VMAT (top row) and CyberKnife (bottom row) plans calculated on a CT (left images)
versus sCT (right images). DVH curves in each plot (right column) directly overlay one another, demonstrating close agreement between
distributions for sCT versus CT when the optimized sCT calibration curve is used. CT, computed tomography; DVH, dose-volume-histogram; sCT,
synthetic CT; VMAT, volumetric modulated arc therapy.

TABLE 3 Gamma metrics and relative PTV coverage for plans
calculated on VMAT and CyberKnife plans for the patients evaluated
in this study.

Gamma metric
(3%/3 mm)

Dose to 95% of PTV
(sCT relative to CT)

Patient # VMAT CyberKnife VMAT CyberKnife

1 99.96 99.27 100.1 98.8

2 99.39 96.02 102.5 96.6

3 97.96 98.91 101.0 98.5

4 99.63 98.60 100.1 99.4

5 99.13 97.26 100.4 101.7

6 97.13 95.27 100.1 98.3

7 99.05 98.56 100.2 99.0

8 98.00 96.5 100.5 103.0

9 99.71 98.01 99.8 81.9

10 98.91 98.28 100.6 93.0

4 DISCUSSION

In this work,an MRI-derived sCT protocol was optimized
and assessed for treatment planning on a dataset of
ten patients treated for prostate cancer using VMAT and
CyberKnife.sCT and CT HU values were compared,and
an optimized calibration curve was generated to provide
better agreement between sCT HU values and treat-
ment plan dose distributions calculated on sCT versus
CT datasets. Our findings were consistent with previ-
ous work for MRI-based dose calculation for prostate
SBRT12 and is the first to evaluate the feasibility of
MRI-only treatment planning for robotic radiosurgery.

HU values for soft tissue and adipose in the original
sCT datasets demonstrated disagreement with values

from the literature and estimated from CT. For exam-
ple, the HU value used for soft tissue was 0 HU, rather
than a more typical value of 30−45 HU. Similarly, the
HU value for adipose in the original sCT was −75 HU,
versus values around −100 HU typically seen in fatty
tissues. Manually overriding the sCT values for adipose
and soft tissue to match the CT resulted in better agree-
ment between sCT and CT. The total MAE was reduced
from 106.9 ± 17.9 to 93.9 ± 20.1 HU for the original
versus modified sCT, respectively. The soft tissue MAE
was reduced from 76.5 ± 7.6 to 50.8 ± 8.1 HU when
calculated for the original versus modified sCT, respec-
tively.The adipose MAE was reduced from 96.2± 30.2 to
93.6 ± 32.2 HU when calculated for the original versus
modified sCT, respectively. Overall, these MAE values
are consistent with those reported in the literature for
atlas-based MRI-derived sCT.19

In clinical practice, it is not uncommon to perform
manual HU overrides of materials in the treatment plan-
ning systems to better match the planning datasets
to a patients’ true anatomy. For example, this is rou-
tinely performed in cases where CTs exhibit artifacts
caused by high-Z materials like dental implants,20 when
a portion of the patient anatomy is cut off due to insuffi-
cient field-of -view21 due to imaging a patient with large
body habitus, or when metallic implants saturate the CT
number scale and an appropriate HU value must be
manually assigned according to the implant material.22

In the case of sCT, mitigating HU value differences can
similarly be performed by manually assigning HU values
of the sCT to better match CT values. However, per-
forming this manual override on each patient dataset
in practice may result in logistical challenges related
to clinical streamlining, the potential need for image
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post-processing to perform manual overrides,and asso-
ciated quality assurance measures required to validate
these modifications on a per-patient basis. To circum-
vent these challenges, the same dosimetric outcome
can be achieved by generating a global sCT-specific CT
calibration curve derived from a local patient database,
as described in this work.

In this study,disagreement could be seen in instances
of changing bowel/rectal gas filling between scans, fidu-
cials or calcifications appearing in the CT but not in the
sCT, and/or bone density distribution differences. Accu-
rate bone delineation remains an ongoing challenge
for reconstruction of MRI-based sCT, with a single out-
lier CyberKnife plan yielding a significant under-dose
of the target volume (D95% = 81.9%) occurring due to
a mischaracterization of a femoral head as soft tissue.
Mislabeling of bone can be problematic for treatment
planning even when the sCT calibration curve is used.
Recent advances in ultrashort echo time (UTE) or zero
echo time (ZTE) MRI utilize very short echo times
capable of acquiring signal in bone.23–25 While these
sequences are not yet acquired routinely, they show
great promise for better distinguishing between bone
and air26 and will likely be increasingly implemented for
this purpose.27

Recent work utilizing machine learning algorithms
have demonstrated excellent results in synthesizing CT
from MRI.28,29 These techniques typically utilize 2D or
3D deep neural networks that use convolution kernels to
detect image features and have been utilized for medical
image domain translation using generator-only or gen-
erative adversarial network architectures.30 Over the last
few years, improvements in deep learning architectures,
model performance, and computing power have made
DL methods a more common strategy for sCT recon-
struction than bulk density and atlas-based approaches.
For example,after this study was performed,a DL-based
update to the commercial algorithm has been intro-
duced. We plan to perform a comprehensive evaluation
of this algorithm soon, however, a preliminary investi-
gation demonstrated that the DL-based algorithm was
better able to identify the unique shape of the femoral
bone of Patient #9, as shown in Figure 8. While this DL-
based algorithm is expected to further improve results
and increase dosimetric accuracy of MR-derived sCTs,
the method presented in this work for optimizing sCT
calibration curves still applies for any approach which
synthesizes CT from MRI and may exhibit disagreement
in HU values between sCTs and CTs. When it comes
to institutional adoption of DL sCT algorithms, an opti-
mal solution to improve model agreement in local patient
cohorts would be to allow users to finetune DL models
based on local data. However, this is not currently an
option for any commercial sCT platform. Therefore, the
proposed sCT calibration curve technique allows clini-
cal users to tune the sCT-based procedure to their local
datasets when finetuning the model is not possible.

In addition to treatment planning, online image guid-
ance is a critical component of the radiation therapy
workflow. Traditional linacs often utilize onboard kV
or MV imaging31,32 while CyberKnife systems utilize
orthogonal kV pairs33 to align to anatomical landmarks
or implanted fiducial markers. In the context of MR-
only radiotherapy to the prostate, groups have reported
on both soft tissue- and fiducial-based34 image guid-
ance. For example, Wyatt et al. described the successful
clinical implementation of MR-only radiotherapy using
conebeam CT (CBCT)-to-sCT matching using soft tis-
sue on a traditional C-arm linear accelerator.35 They
reported no statistical difference between matching
CBCT-to-CT and CBCT-to-sCT,demonstrating that MR-
only prostate radiotherapy can be delivered safely by
matching to soft tissue. Fiducial visualization, on the
other hand, is more challenging because fiducial mark-
ers are typically made of high-density material (e.g.,
gold) and appear as signal voids on conventional MRI
sequences.36 Therefore, the location of most fiducial
markers is not apparent on reconstructed sCT images.
To mitigate this challenge, our group recently evalu-
ated the accuracy of a novel artificial fiducial insertion
method that allows for fiducial tracking of MR-only
generated sCTs in the CyberKnife system.37 In this
work, we demonstrated that fiducial markers could be
inserted into sCTs and used for fiducial tracking on the
CyberKnife system,providing clinically acceptable setup
accuracy with similar total targeting error to the CT-
based standard. In summary, it is conceivable that an
MRI-only based framework is possible through using
the sCT calibration curve for optimal dose calculation
in the treatment planning stage (as proposed in this
work) and the soft tissue-based or fiducial-based track-
ing approaches for online image guidance (as recently
reported).

When commissioning a sCT dose calculation frame-
work in practice, a judicious comparison of the sCT HU
values is imperative. While this work was limited to 10
patients, the proposed population-based corrected CT
density curve may benefit from a larger database of CT
images, with the specific number of datasets depending
on the complexity of sCT reconstruction approach and
patient population (e.g., number of disease sites cov-
ered by the algorithm, presence/absence of implanted
devices, etc.). Once a sCT calibration curve is gen-
erated, it should be validated in several test datasets
which are representative of the patient population (e.g.,
male/female, under-/overweight, etc.) who will undergo
MR-only planning using the optimized sCT calibration
curve for dose calculation to ensure generalizability.Fur-
thermore, separate disease site-specific CT calibration
curves may be required depending on the algorithm
(e.g., this method should be validated separately on
pelvis vs.brain sCT reconstruction algorithms).Different
MRI systems and field strengths should also be investi-
gated separately, as previous studies have documented
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F IGURE 8 Example sagittal CT (left), sCT generated using the hybrid algorithm investigated in this study (middle), and sCT generated
using the recently introduced DL-based algorithm (right) for Patient #9 whose sCT exhibited the largest deviation in bone segmentation caused
by the abnormal shape of the left femoral bone. The DL-based algorithm appears to outperform the hybrid algorithm and will be the focus of
future work. CT, computed tomography; sCT, synthetic CT.

T1 value variability across different MRI scanners, coils,
and even pre- versus post-system upgrades.38 How-
ever, these differences have yet to be investigated in the
context of MR-based sCT generation for radiotherapy
treatment planning and is an important area of future
research as the field moves towards widespread clinical
implementation of sCT.

5 CONCLUSIONS

MRI-derived sCT using an optimized CT calibration
curve shows good dosimetric agreement with con-
ventional CT simulation, demonstrating the feasibility
of using MRI-derived sCT for prostate SBRT treat-
ment planning. Accurate delineation of bone remains
a challenge for reconstruction of MRI-based sCT and
improvements in this space could potentially allow for
the implementation of an MRI-only framework.
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