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ABSTRACT 

This paper details the development of a new 1-D combined finite difference and finite element 
procedure for calculating in-depth pavement temperatures, which has been implemented in the 
CalME design method.  The model is driven by a database of known surface temperatures rather 
than raw climatic inputs and an energy balance at the surface, since it was noted that the 
pavement structure had little impact on the surface temperature (if the surface properties remain 
constant).  The model runs quickly, enabling direct simulation of in-depth temperatures while 
performing Monte Carlo based simulation of pavement reliability.  The disadvantages to this 
approach are that it requires the surface temperatures to be developed independently and that it 
does not have a coupled moisture model for the prediction of freeze/thaw conditions.  The paper 
also details some anomalies in the output of the Enhance Integrated Climatic Model (used in the 
new AASHTO mechanistic-empirical design method), that were found during development.  
Finally, the paper collects various published values for thermal properties of pavement materials, 
to aid in the implementation of thermal models. 
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INTRODUCTION 

In the development of CalME, the future flexible pavement design methodology for the California 
Department of Transportation, the decision was taken to follow the new AASHTO Mechanistic-
Empirical (ME) design method as closely as possible.  The AASHTO design method, referred to here 
as the MEPDG (1), makes use of the Enhanced Integrated Climatic Model (EICM) software (2) to 
perform calculations of temperature and moisture conditions within the pavement.  However, the slow 
speed of this software is one of the primary reasons for the MEPDG software requiring too much time 
per run to make Monte Carlo simulation of variability a feasible alternative for calculating 
reliability (3). 

For this reason, an alternative approach to thermal modeling was sought for CalME.  An initial 
attempt was to divide California into six climate zones (which has since been increased to nine), and 
run 30 years of EICM runs on a series of pavements to develop a database of pavement temperatures 
which could be used to interpolate pavement temperatures at various times and depths within the 
structure (4).  However, the generated database was around 40 GB, which, despite advances in 
computer storage and internet speeds, is still too large to distribute with the software.  Primarily 
because of the size of the database, further development was required, although as work progressed 
other reasons for moving from this database arose.  It became clear that the interpolation scheme was 
not always suitable for the wide variety of pavements that could conceivably be designed in CalME 
and that the output data from EICM contained some anomalies that needed to be avoided. 

As a result, a new thermal model was developed which could predict temperatures at any depth 
in the pavement, based only on the surface temperature with time and the temperature at depth, which 
is assumed constant.  This considerably reduced the data storage requirements (to around 100 MB), and 
allowed calculation to proceed regardless of the pavement structure.  The procedure is very fast, 
requiring less than a second to compute 30 years worth of hourly temperatures.  The disadvantages of 
this approach are that it does not handle moisture changes in the pavement directly (especially 
freeze/thaw) and requires a pre-computed set of surface temperatures. 

This paper details the implementation of this model and the mathematical background, along 
with the various thermal properties needed as inputs to the model.  To begin though, it provides some 
more details of the issues mentioned above. 

BACKGROUND 

In modeling the temperature and moisture conditions in pavements, the EICM is generally used, in 
conjunction with the Climatic Database for Integrated Model (CDIM) software, which downloads 
weather station information.  EICM is now embedded in the MEPDG software (which has been 
superseded by the recently released Darwin-ME).  It is not clear how the MEPDG version differs from 
the last standalone release of EICM (version 3.0, release January 2003), since it is not possible to run it 
independently.  All of the comments within this document refer to the 3.0 version. 

As mentioned in the introduction, the slow speed of the EICM software is one of the primary 
reasons for the MEPDG not being able to perform Monte Carlo simulation for reliability analysis in a 
reasonable time.  Since improved reliability analysis was a requirement for the CalME design method, 
an alternative to running EICM was sought.  The first stage in this process was the development of 
climate zones for California, choosing representative weather stations for these zones, and running 
30 years of historical weather station data in EICM, on a range of pavements, to understand the impact 
of climate on the pavement.  These developments are outlined in (4).  The original plan was to 
distribute the database developed in that project with CalME and use an interpolation scheme to predict 
pavement temperatures, which are required for the prediction of asphalt moduli.  However, this would 
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have required distribution on 10 DVDs, or a 40 GB download, and even today asking people to store 
this amount of data can be problematic1. 

The initial idea for reducing this data was to develop statistical models for either generating a 
realistic series of temperatures using a time series model, or to develop models for predicting in depth 
temperatures based on recent air temperatures—similar to Bell’s equation used in FWD back-
calculation (5).  Only flexible pavements were considered in this modeling, because CalME only deals 
with flexible pavements.  While plotting the data in various ways to aid in the development of these 
statistical models a few things were noticed.  The most important was that for each weather station and 
pavement surface absorptivity and emissivity, the surface temperatures were almost identical. 

The differences that were observed in surface temperatures were originally thought to be due to 
a ‘heat reservoir’ effect from thicker asphalt pavements.  However, this did not match with the 
pavements that exhibited differences.  Further investigation revealed a number of inconsistencies in the 
data.  In (4) 28 different AC pavements were used, generated by a combination of four different 
granular layers and seven asphalt thicknesses, all on subgrade to a total thickness of 3657.6 mm 
(144 in).  These are labeled AC-2-6-6, etc., in the original report and in this paper, and shown in 
Table 1.  However, the material properties used for the AB and ASB are identical (the EICM defaults 
for an A-1-a material) and so the AC-X-6-12 and AC-X-12-6 pavements are theoretically identical, 
although the numerical models are different.  Each layer is broken into four elements in the finite 
difference solution scheme used by EICM, so in the first case the pavement has four 38.1 mm (1.5 in) 
elements followed by four 76.2 mm (3 in) elements, while in the second case there are four 76.2 mm 
(3 in) elements, followed by four 38.1 mm (1.5 in) elements.  Thus, if the solution scheme is 
numerically stable and accurate, the results from these pavements should not differ considerably. 
TABLE 1  Structures used in development of EICM database 

AC Thicknesses 50.8 mm 
(2 in) 

101.6 mm 
(4 in) 

203.2 mm 
(8 in) 

304.8 mm 
(12 in) 

406.4 mm 
(16 in) 

558.8 mm 
(22 in) 

711.2 mm 
(28 in) 

AB Thickness 152.4 mm (6 in) 152.4 mm (6 in) 304.8 mm (12 in) 304.8 mm (12 in) 
ASB Thickness 152.4 mm (6 in) 304.8 mm (12 in) 152.4 mm (6 in) 304.8 mm (12 in) 

 
The first inconsistency is that while the 50.8 mm (2 in) AC pavements with a 152.4 mm (6 in) 

base show the highest daily temperature variation, the 50.8 mm (2 in) AC with 304.8 mm (12 in) base 
pavements show the lowest, with several degrees Celsius difference.  This can be seen on Figure 1.  
While various explanations were postulated, Figure 2 shows that the most likely cause is some type of 
numerical problem. 

On Figure 2, it can be seen that there are 76.2 mm (3 in) areas at the top of each 304.8 mm 
(12 in) layer and 38.1 mm (1.5 in) areas at the top of each 152.4 mm (6 in) layer where the slope is not 
continuous.  These are equal to the node spacing, implying some discontinuity in the first element of 
the granular layer.  Not as noticeable on this figure is that there is also a discontinuity between the first 
element of the third layer (the ASB), and the second element of that layer.  Since the same material was 
used for both layers, there should not be any discontinuity in their behavior.  This shows that these are 
problems caused by numerical issues with the EICM solution scheme.  These issues were reported to 
the developers of the MEPDG software (6), although no response has been received to date.  It is not 
possible to tell if these problems exist in the version embedded in the MEPDG software, since the 
intermediate temperature results cannot be extracted. 

 
1 The databases have since been optimized and the size reduced to about 8 GB.  However, this is still a considerable amount 
of data. 
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FIGURE 1  Example comparison of surface temperatures across all AC pavements 

 
FIGURE 2  Differences in pavement temperatures at one example time 

These calculation errors are not very large at most times (<10°C at the extremes), so may not have any 
impact on MEPDG results, although, based on these findings, it was decided to discontinue 
development of statistical models of in-depth temperatures, since these anomalies introduced trends 
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that ran counter to engineering judgment.  To account for in-depth temperatures it was thus necessary 
to model the in-depth temperatures directly based on the principles of thermal conduction (essentially a 
reimplementation of the thermal model used by EICM, without the coupled moisture model).  Since the 
surface temperatures across all of the pavements were very similar it was decided to use the surface 
temperatures as the driver for the model, rather than the raw climatic data.  This allows the equations to 
be solved using a 1-D Galerkin Finite Element (FE) formulation with a Finite Difference (FD) time 
step, rather than requiring a FD solution in both space and time. 

MODEL DETAILS 

Heat transfer problems, in one spatial dimension, are governed by the following partial differential 
equation (PDE), which is called Fourier’s Law of Conduction: 

2 2

2 2
p

T T k T
t z c z




  
 

  
  ....... (1) 

where: Τ = The temperature (K) 
 t = The time (s) 
 z = The depth (m) 
 α = The thermal diffusivity (m2·s-1) 
 k = The thermal conductivity (W·m-1·K-1) 
 ρ = The density (kg·m-3) 
 cp = The specific heat capacity (J·m-3·K-1 = W·s·m-3·K-1) 

This is the so-called ‘strong form’ of the PDE, which needs to be solved across the domain.  A 
complicated solution to this problem for multi-layered media was recently presented in (7),  based on 
the same theory used for layered elastic analysis of pavements, and which incorporates an axi-
symmetric 2-D temperature distribution.  Since this solution requires extensive numerical integration, 
and because the temperatures are constrained to an infinite periodic sequence, it was not considered.  

Since the incremental recursive ME design process, pioneered by CalME, steps forward in time, 
it is natural to consider a forward finite difference solution which generates a solution at some time 
t+∆t based on the information available at time t.  This fits well with the first order differential with 
time in Equation (1).  EICM, along with most other computer codes that implement a solution to this 
problem, also uses a FD step for the changes with depth, since the solution for the energy flux through 
the surface boundary requires a simultaneous solution of the temperature at the surface and the thermal 
flux at the surface.  These types of boundary conditions are not generally compatible with the FE 
method.  However, if the solution is restricted to using the temperature at the surface as a known 
variable, then the depth component can be solved using the FE method. 

Returning to the problem at hand, the first step is to apply a FD solution for the time step.  The 
classic solution is to use Newmark’s Beta Method, which uses the following approximations: 

 

 

2 2

2 2

2 2
2

2 2

1

1
2

t t t t t t

t t t
t t t t

T T T T
t

t t t t

T T T
T T t t

t t t

 

 

 




               

                      

 

where: γ ,β = Constants 
 ∆t = The time step (s) 
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It is common to use γ=½ ,β=¼, so the equations simplify to: 
2 2

2 2

22 2

2 2

2

2

t t t t t t

t t t
t t t t

T T T T t
t t t t

T T T t
T T t

t t t

 




              

                

 

Both equations contain the second order differential of temperature with respect to time at the new 
time, which unknown.  To solve, combine the equations to eliminate this: 

2 22 2

2 22 2t t t
tt t t

T t T T t
T T t

t t t


                      
 

 2 t t t

t t t

T TT T
t t t





 
 

  
  ....... (2) 

This gives a formula which can then be used to expand Equation (1): 

  2

2

2 t t t

t t t t t

T TT T T
t t t z



 

  
  

   
  ....... (3) 

This is now an ordinary differential equation in one variable, z, so is now suitable for transformation 
into a 1-D Galerkin FE formulation over a domain (0,D).  The temperature at both ends of the domain 
is assumed to be known (based on the input data) at all time steps.  This could also be solved using a 
thermal flux at the surface rather than the temperature, but this is not expanded here. 

The development of the FE component follows a classic 1-D treatment that can be found in any 
introductory text (e.g. 8).  The FE approximation of the domain is formed using N nodes, with N-1 
linear (2-node) elements.  The basis functions for each node are given in an element relative coordinate 
system, for element e, with coordinate ξe∈(−1,1).  These are given by: 

           
2

1 1
2 21 2

1

1 1e e e e e i e i
i

z z        


      

where: zi = The nodal depth (z coordinate) of the ith elemental node. 

These basis functions can also be used to define an element local trial and weighting functions: 

       
2 2

1 1

ˆ ˆe e e e
e i e i e i e i

i i

T T w w     
 

    

where:  = The nodal temperature at node i in element e, 
  = The weight of node i in element e. 

In addition, a nodal mapping function I(i,e) can be defined that takes the local node number i and the 
global element number e and maps these to global node numbers: 

( , ) 1I i e e i    

e
iT
e
iw



Lea, J.D. and J.T. Harvey 6 

This can be used to develop global trial and weighting functions (with the temperatures now explicitly 
referenced to time t): 

         
1 2 1 2

( , ) ( , )
1 1 1 1

ˆ ˆ
N N

t
i e I i e i e I i et

e i e i

T z z T w z z w   
 

   

    

where: ξe(z) = A reverse coordinate mapping for element e. 

Returning to the Equation (3), we can convert the strong form of the PDE to a weak form based on the 
weighting function (assuming some non-zero nodal weights): 

 

 

2

2

2

2
0

1 1

00

ˆ ˆ2 ( ) ( )ˆ ˆ( ) ( )
0

ˆ ˆ2 ( ) ( )ˆ ˆ( ) ( )
ˆ0 ( )

ˆˆ ˆ ˆ( ) ( )
ˆ ˆ0 ( ) (0)

2 ˆ

t t te

t t t

D
t t te

t t t

D
N e

t t t t
t tzz D

T z T zT z T z
z t t

T z T zT z T z
w z dz

z t t

T z w zT T
w D w dz

z z z z

T
t





  











 


 
  

  

              

  
  

   








0 0 0

ˆ( )2 ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
D D D

t t t

t

T z
z w z dz T z w z dz w z dz

t t


 

   

 

Notice that the thermal diffusivity α is now allowed to be per element (αe).  Since the choice of 
weighting function is arbitrary, as long as it is non-zero within the domain, the choice can be limited to 
functions where w1=0 and wN=0, eliminating the first two terms.  In addition, expanding the functions, 
performing some manipulation, and exploiting the fact that the integrals of the element basis functions 
are only non-zero within the element, allows this to be converted back to an element local formulation: 

   

     

11 2 2

( , ) ( , )
1 1 1 1

11 2 2
( , )

( , ) ( , ) ( , )
1 1 1 1

0

2

N
j ei ee t t e

I i e e I j e
e i j e e

tN
I i et t t

I i e I i e i e j e e I j e
e i j e

T d w
z

T z
T T d w

t t

   
 

 

    





   




   

 
 

  

          

 

 
 

From this formulation, and the definitions of the basis functions, it is clear that the integrations can be 
performed analytically.  This avoids the numerical integration common in higher dimensional FE 
formulations, the associated tracking of behavior at Gauss points, and much of the work of ‘stiffness 
matrix’ assembly.  Example results for element local integrations (with i=1 and j=1) are: 

   

   

1

11
2 11

1

2 1
11

1

2
2 3

e
j ei ee e e

e
e e

e
i e j e e

e

d
k d

dz z z

z zdz
f d

d

    
 

 

    







 

  


 




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In a matrix form this gives two element local matrices: 

       
2 1

2 1 3 3
1 2

2 1 3 3

1 1

1 1 2

e
e e z z

z z
                     

k f  

There are N known temperatures and N known temperature gradients for the current time t, two known 
temperatures (at node 1 and node N) for the next time step t+∆t, two known weights (zero at nodes 1 
and N), N-2 unknown temperatures for the next time step and N-2 arbitrary weights.  Setting each 
weight, in turn, to one while the others are zero results in a set of N-2 equations: 

   

 

1 1 1 1
21 21 1 22 11 22 11

1 1
12 12 1 21 1

1 1
22 11 12 1

2 2

2 2

2 2

I I t t I I I I t t
I I

t
I I t t I t I

I I

t
I I t I t II

I I

k f T k k f f T
t t

T
k f T f T

t t t

TT
f f T f T

t t t

     


  
 

 


                 
             

           
      2.. 1

t

I N
t

        

 

This lends its self to a banded matrix representation, with the introduction of an additional vector d 
defined by: 

      2
2.. 1

t
t t I
I I

T
d T I N

t t


   
 

  ....... (4) 

This system can be restored to a system of N equations by including the top and bottom node 
temperatures, and the symmetry can be restored through the standard technique of zeroing the first and 
last column of the fully formed ‘stiffness matrix.’  The final form of the system is2: 

 

 

1

21 1 1
21 21 1

21 1 1
12 12

2 0

t t

t
t

t t t

N N N t
Nt

t t
N

T

k f T

t

k f T

T











  




  
 
 
 
 
 
             
 
 
  
 

   

K F T Fd





  ....... (5) 

This is a linear system of equations, with a banded positive definite coefficient matrix.  This can be 
solved by any technique, although the Cholesky decomposition is the most efficient.  The combined 
matrix on the left hand side can be decomposed before beginning iterative calculations.  The vector of 
gradients d can be updated as follows, based on Equations (2) and (4): 

4t t t t t

t
  


d T d  

 
2 T is a column vector and not a matrix, but the upper case letter is retained to avoid confusion of time and temperature. 
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T is initialized to whatever initial temperature profile is chosen (typically a linear interpolation between 
the first surface temperature and the fix temperature at depth), and then: 

0 02
t




d T  

This provides all of the pieces needed for an incremental solution of the equation.  Since this is a 1-D 
FE solution it is very easy to see how it can be expanded from 2-node linear elements to 3-node 
quadratic or even higher order elements, although the mathematics becomes a little more complex and 
requires resorting to a slightly more complex and comprehensive explanation of the Galerkin FE 
method.  Mesh generation is left as an exercise for the reader, since generating meshes in 1-D layered 
media is not difficult, but depends on the exact problem being solved. 

TESTING 

The only means available to test this method is using the solution for a homogenous semi-infinite half 
space.  In this case, Equation (1) can be solved exactly, provided the driving temperature at the surface 
is sinusoidal, and the temperature at infinite depth is constant (and equal to the mean surface 
temperature).  The solution, with two sine waves, one annual and one daily, is: 

   
 

, exp / sin( / )

exp / sin( / )

2 2

a y y y y y

d d d d d

y d
y d

T t z T T z D t z D

T z D t z D

D D

 

 

 
 

    

   

 

  ....... (6) 

where: Ta = The average temperature (°C), 
 Ty, Td = The yearly and daily temperature fluctuation (°C), 
 ωy, ωd = The yearly and daily frequency (h-1), 
 φy, φd = The yearly and daily phase lag. 

Figure 3 shows the error between this equation and the FD/FE solution described above, with Ta=15°C, 
Ty=10°C, Td=5°C, and α=2000 mm2·h-1.  The periods are ωy=1/(365×24 h) and ωd=1/24 h, and the 
phase lags are three months and three hours respectively.  The solution has 800 elements each 25 mm 
deep.  It is initialized with the true values of temperature and temperature gradient from the equation 
(6) (which is not possible in general), at time t=0, and at both the top and bottom nodes at all times 
(rather than fixing the temperature at 20 m).  The plot only covers the top 4 m of the pavement, since 
the temperatures below are almost constant, and the first 10000 hours, since the pattern continues to 
repeat for the remainder of the 30 years. 

As can be seen the maximum error is a little over 0.0015°C, or 0.1%, which is very good for a 
numerical simulation.  Obviously, under normal circumstances, the initial temperature profile and  
gradient are not known, so there is some lag time until the FE solution matches the exact solution. 

Although this model is not attempting to predict actual pavement temperatures based on 
climatic inputs, the model was tested against a number of temperature series from Heavy Vehicle 
Simulator (HVS) tests.  Figure 4 shows one example, from a short rutting test, where the temperature at 
50 mm was to be held at 50°C.  The temperature at depth was held constant at 35°C.  This pavement 
has a 120 mm AC surface and 450 mm AB on a clay subgrade.  The thermal properties of the materials 
are the default values used in CalME.  As can be seen the temperatures match fairly well.  Using as-
built layer thicknesses, and calculated thermal properties for the materials improves the comparison, 
although the measured temperatures at depth in this case are slightly over the actual temperature 
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because the thermo-couples are installed in a hole drilled from the surface, which means that the 
surface temperature responds more quickly to changes in air temperature than the material. 

 
FIGURE 3  Error between exact and finite element solution 

 
FIGURE 4  Example comparison to measured temperature series. 
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THERMAL PROPERTIES OF PAVEMENT MATERIALS 

The thermal behavior of pavements is largely dependent on the thermal properties of pavement 
materials, including thermal conductivity, specific heat capacity, density, solar reflectivity/albedo, and 
thermal emissivity of the surface material.  This section provides some examples from literature of 
these properties, in addition to those provided in the MEPDG. 

The following tables provide some recent values for these properties, with Table 2 covering 
Portland Cement concrete of various types and Table 3 covering Asphalt Concrete.  In addition Côté 
and Konrad (14,15,16) provide data for various base course materials, along with two models for 
predicting thermal conductivity, and the Fast All-season Soil STrength (FASST) computer program 
(17), which is similar to EICM, has a simple model for all of USGS soil classifications, along with 
asphalt and concrete.  These last values were adopted for CalME, since they were the only complete set 
of data, and are shown in Table 4. 
TABLE 2  Published values for thermal properties for Portland Cement Concrete 

Reference Study cp (Jkg-1K-1) k (Wm-1K-1) Material 

(10) Kaloush (2008) 

1016 1.719 PCC 
1055  CR PCC (80)a 
992  CRPCC (160)a 
956  CRPCC (240)a 
964  PF PCC (0)b 
997  PF PCC (3)b 
977  PF PCC (5)b 
971  PF PCC (8)b 

a. Crumb rubber PCC (lbyd-3); b. Plastic Fiber modified PCC (% content) 

TABLE 3  Published values for thermal properties for Asphalt Concrete (after 13) 

Reference Study ρ (kgm-3) cp (Jkg-1K-1) k (Wm-1K-1) α (m2s-1×10-6) Material 
(11) Xu and Solaimanian (2010) 2313 880 2.88 .142 ACa 

(10) Kaloush (2008) 
 987 0.896  HMA 
 977   GGAC 
 875   AR OGFC 

(12) Mrawira and Luca (2006) 
2410 1630-2000 1.96-2.01 .41-.53 HMAb 
2420 1480-1890 1.91-1.94 .42-.54 HMAc 

(13) 

Luca and Mrawira (2005) 2297-2450 1475-1853 1.623-2.060 .43-.55 AC 
Luca and Mrawira (2002) 2440 766.6 1.75 .936 AC 
Mrawira and Luca (2001)    .407-1.194 AC 
Tan et al. (1997)   1.300-1.420 .536-.580 AC 
Solaimanian and Bolzan (1993)   0.744-2.889  AC 
Himeno et al. (1987)    .600-.110 AC 
Phukan (1985)   1.050-1.520  AC 
Highter and Wall (1984)  800-1600 0.800-1.600 .350-.750 AC 
Johnston (1981)  1674 1.05-1.52  AC 
Wolfe et al. (1980)  879-963 1.003-1.747 .516-.826 AC 
Kavianipour and Beck (1977)   2.280-2.880 .115-.144 AC 
Jordan and Thomas (1976)   0.80-1.42  AC 
Corlew and Dickson (1968)  921 1.210 .587 AC 

a. AV 5.8%; b. with gravel, AV 4%; c. w/ Hornfel, AV 4% 
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TABLE 4  Default thermal diffusivity used in CalME 

Material Code α (mm2h-1) 
Portland Cement Concrete CC 1696 
Asphalt Concrete AC 2000 
Bed Rock BR 3333 
Gravel - Well graded GW 3490 
Gravel - Poorly graded GP 4540 
Silty Gravel GM 3215 
Clayey Gravel GC 3086 
Sand - Well graded SW 3706 
Sand - poorly graded SP 2952 
Silty Sand SM 1963 
Clayey Sand SC 2647 
Silt - Low plasticity ML 1598 
Clay - Low plasticity CL 1360 
Organic Clay - Low plasticity OL 1166 
Silt - High plasticity MH 1472 
Clay - High plasticity CH 1292 
Organic Clay - High plasticity OH 937 

CONCLUSIONS 

This paper details the development of simplified thermal model used in CalME.  The model uses pre-
calculated surface and at-depth temperatures, and a combination of finite element and finite difference 
techniques to calculate temperatures within the pavement.  The model runs very fast, taking less than a 
second to compute 30 years of hourly temperatures on modern hardware.  As a result, it can be used to 
calculate temperature profiles for each run in a Monte Carlo simulation of pavement performance.  This 
is one of the main factors in allowing CalME to use this technique for reliability analysis.  The main 
disadvantage of this approach is that the method requires a database of surface temperatures, which 
needs to be stored for each climate region/weather station in use, and for each surface albedo and 
surface thermal emissivity in use.  In CalME a limited set of data for California climate regions is 
provided.  However, since one of the primary observations leading to this method was that pavement 
structure has little impact on pavement surface temperature, a more robust approach would be to use 
one run of a more complex model, such as EICM, with the deterministic ‘mean’ pavement design, and 
use the resulting surface temperatures in later Monte Carlo simulations. 

The second drawback of this approach is that it does not use a coupled soil moisture model, 
which can account for freeze/thaw and other moisture related changes to the thermal properties.  More 
research is needed in this area, but it is expected that using the results from a single run of a more 
complex model would provide an adequate approximation of the freeze/thaw behavior in a reliability 
simulation. 

Although computational speed was the main motivation for the development of this model, the 
approach adopted here was chosen because other, possibly faster, approaches were not feasible.  In 
particular, a database of pre-calculated in-depth temperatures was too large for distribution, and still 
had issues with extrapolation under some innovative designs.  Statistical modeling of the temperatures 
was not pursued after it was found that the in-depth temperatures calculated in the database were 
flawed.  Since the approach detailed above is fast enough for practical use, it is unlikely that statistical 
modeling will be pursued in the future, since it also suffers from difficulties with extrapolating to 
unusual pavement designs, and tends to under-predict the true variability in pavement temperatures. 
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Finally, the paper catalogs some of the newer research into the thermal properties of pavement 
materials, to expand on the values provided in the EICM/MEPDG documentation. 
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