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Abstract
Gas Dynamics in Galaxy Clusters
by
Michael Kingsley McCourt, Jr.
Doctor of Philosophy in Astrophysics
University of California, Berkeley

Professor Eliot Quataert, Chair

Galaxy clusters are the most massive structures in the universe and, in the hierarchical
pattern of cosmological structure formation, the largest objects in the universe form last.
Galaxy clusters are thus interesting objects for a number of reasons. Three examples relevant
to this thesis are:

1. Constraining the properties of dark energy: Due to the hierarchical nature of
structure formation, the largest objects in the universe form last. The cluster mass
function is thus sensitive to the entire expansion history of the universe and can be used
to constrain the properties of dark energy. This constraint complements others derived
from the CMB or from Type Ia supernovae and provides an important, independent
confirmation of such methods. In particular, clusters provide detailed information
about the equation of state parameter w because they sample a large redshift range
z~0—1.

2. Probing galaxy formation: Clusters contain the most massive galaxies in the uni-
verse, and the most massive black holes; because clusters form so late, we can still
witness the assembly of these objects in the nearby universe. Clusters thus provide a
more detailed view of galaxy formation than is possible in studies of lower-mass ob-
jects. An important example comes from x-ray studies of clusters, which unexpectedly
found that star formation in massive galaxies in clusters is closely correlated with the
properties of the hot, virialized gas in their halos. This correlation persists despite the
enormous separation in temperature, in dynamical time-scales, and in length-scales
between the virialized gas in the halo and the star-forming regions in the galaxy. This
remains a challenge to interpret theoretically.

3. Developing our knowledge of dilute plasmas: The masses and sizes of galaxy
clusters imply that the plasma which permeates them is both very hot (~ 10® K) and
very dilute (~ 1072cm™2). This plasma is collisional enough to be considered a fluid,



but collisionless enough to develop significant anisotropies with respect to the local
magnetic field. This interesting regime is one of the frontiers in theoretical studies of
fluid dynamics. Unlike other astrophysical environments of similar collisionality (e. g.
accretion disk coronae), galaxy clusters are optically thin and subtend large angles on
the sky. Thus, they are easily observed in the x-ray (to constrain thermal processes) and
in the radio (to constrain non-thermal processes) and provide a wonderful environment
to develop our understanding of dilute plasmas.

This thesis studies the dynamics of the hot gas in galaxy clusters, which touches on all three
of the above topics.

Chapter 2 shows that galaxy clusters are likely to be unstable to a new, vigorous form of
convection. As a dynamical process which involves thermodynamic and magnetic properties
of the gas, this convection bears directly on our understanding of the physics of dilute plas-
mas. Furthermore, by moving metals and thermal energy through the cluster, convection
may change the cooling rate of the gas and thus significantly impact the process of galaxy
formation. Cluster convection also impacts the use of clusters as cosmological probes. Con-
vection may drive turbulence in clusters with mean Mach numbers of order-unity. This
changes the force balance in clusters, decreasing the thermal energy of a cluster of a given
mass. Current methods for using clusters to constrain dark energy rely on observational
probes of the thermal energy as a proxy for total mass. The accuracy of these methods
depends on how vigorous cluster convection is.

Chapter 3 studies thermal instability in galaxy clusters. I argue that clusters are all likely
to be thermally unstable, but that this instability only grows to large amplitude in a subset
of systems. Later studies have applied this result to galaxy formation in clusters and shown
that one can reproduce some features of the well-known non-self-similarity at the high mass
end of the galaxy luminosity function.

Chapters 4 and 5 extends my work on convection (and, eventually, thermal instability)
to consider the cosmological context of galaxy formation. This work aims to remove any
arbitrary initial and boundary conditions from my simulations and is an important step
toward a self-consistent model for the plasma physics in clusters.
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Chapter 1

Introduction

This is a thesis about the hot gas in galaxy clusters. Galaxy clusters are the largest objects
in the universe and consist primarily of dark matter (84%), hot gas (14%), and stars (2%).
Though dark matter represents the bulk of the mass in clusters, it is invisible and its behavior
is comparatively well-understood. The hot gas, on the other hand, is amazingly complex
and encodes valuable information about the formation of clusters and about structure in the
universe. As I discuss later on, understanding the dynamics of this gas is also essential for
efforts to use galaxy clusters to better constrain dark energy and to understand the future
of the universe (e.g. will the universe last forever?).

The physics underlying the research in this thesis is not explicitly tied to galaxy clusters,
and many of the processes I describe do in fact extend to lower mass systems like groups
and individual galaxies. However, the hot spatially extended halo gas is much more easily
detected in galaxy clusters, so its dynamics is better constrained in these objects. X-ray
observations of the Perseus cluster (e. g. Fabian et al. 2011) exemplify the rich phenomenology
of the intracluster medium: the gas contains bubbles, ripples, spiral features, and consists of
multiple roughly co-spatial phases at different densities and temperatures.

The hot gas in galaxy clusters also presents an opportunity to advance plasma physics by
testing it in new environments. The gas in clusters is so hot (several hundred million degrees)
that it glows in x-rays. It is also extremely dilute, roughly twenty billion times more tenuous
than the best laboratory vacuums on earth. However, clusters are also extremely large,
some twenty-one orders of magnitude larger than tokamaks and other laboratory plasma
devices. This is a relatively unstudied regime in fluid dynamics, and Chapter 2 describes
how convection operates very differently in galaxy clusters than it does in other environments
such as a pot of boiling water, earth’s oceans and atmosphere, or the interior of the sun.
Chapters 2 and 5 show several simulations of this convection.

Studying the hot gas in galaxy clusters also yields valuable information about how struc-
tures form in the universe. Chatper 3 describes the filaments of cold, atomic gas observed
in some clusters and presents a theory for their formation mechanism. Later studies have
applied this result to argue that the hot gas in clusters plays an essential role in producing
the stars, massive galaxies, and super-massive black holes within them.



Finally, Chapters 4 and 5 focus on the growth of clusters over cosmic time. I show
how the hot gas in clusters records their formation histories and I use this result to build
self-consistent models for the gas profiles in galaxy clusters.

Initially it may seem esoteric to study a dilute gas which floats billions of light-years from
Earth, but these applications make it an exciting subject!

Outline

Following this introduction, my thesis is split into four chapters.

In Chapter 2, I study the effects of anisotropic thermal conduction on low-collisionality,
astrophysical plasmas using two and three-dimensional magnetohydrodynamic simulations.
Balbus (2000) and Quataert (2008) showed that dilute plasmas are buoyantly unstable for
either sign of the temperature gradient: the heat-flux-driven buoyancy instability (HBI)
operates when the temperature increases with radius while the magnetothermal instability
(MTT) operates in the opposite limit. In contrast to previous results, I show that, in the
presence of a sustained temperature gradient, the MTT drives strong turbulence and oper-
ates as an efficient magnetic dynamo (akin to standard, adiabatic convection). Together,
the turbulent and magnetic energies contribute up to ~10% of the pressure support in the
plasma. In addition, the MTT drives a large convective heat flux, ~ 1.5% xpc3. These find-
ings are robust even in the presence of an external source of strong turbulence. My results
on the nonlinear saturation of the HBI are consistent with previous studies but I explain
physically why the HBI saturates quiescently by re-orienting the magnetic field (suppressing
the conductive heat flux through the plasma), while the MTI saturates by generating sus-
tained turbulence. I also systematically study how an external source of turbulence affects
the saturation of the HBI: such turbulence can disrupt the HBI only on scales where the
shearing rate of the turbulence is faster than the growth rate of the HBI. In particular, my
results provide a simple mapping between the level of turbulence in a plasma and the effec-
tive isotropic thermal conductivity. I discuss the astrophysical implications of these findings,
with a particular focus on the intracluster medium of galaxy clusters. The work in Chapter 2
has previously been published in McCourt et al. (2011a).

In Chapter 3, I study the interplay among cooling, heating, conduction, and magnetic
fields in gravitationally-stratified plasmas using simplified, plane-parallel numerical simula-
tions. Since the physical heating mechanism remains uncertain in massive halos such as
groups or clusters, I adopt a simple, phenomenological prescription which enforces global
thermal equilibrium and prevents a cooling-flow. The plasma remains susceptible to local
thermal instability, however, and cooling drives an inward flow of material. For physically
plausible heating mechanisms in clusters, the thermal stability of the plasma is independent
of its convective stability. I find that the ratio of the cooling timescale to the dynamical
timescale t.o01/tg controls the non-linear evolution and saturation of the thermal instabil-
ity: when teo01/tg < 1, the plasma develops extended multi-phase structure, whereas when
teool /i = 11t does not. When thermal conduction is anisotropic with respect to the magnetic



field, the criterion for multi-phase gas is essentially independent of the thermal conductivity
of the plasma. This criterion for local thermal instability to produce multi-phase structure
is an extension of the cold vs. hot accretion modes in galaxy formation that applies at all
radii in hot halos, not just to the virial shock. I show that this criterion is consistent with
data on multi-phase gas in the ACCEPT sample of clusters; in addition, when o0 /tg = 1,
the net cooling rate to low temperatures and the mass flux to small radii are suppressed
enough relative to models without heating to be qualitatively consistent with star formation
rates and x-ray line emission in groups and clusters. The work in Chapter 3 has previously
been published in McCourt et al. (2012).

In Chapter 4, I present a spherically symmetric model for the origin and evolution of the
temperature profiles in the hot plasma filling galaxy groups and clusters. I find that the gas in
clusters is generically not isothermal, and that the temperature declines with radius at large
distances from the cluster center (outside the core- and scale radii). This temperature profile
is determined by the accretion history of the halo, and is not quantitatively well-described
by a polytropic model. I explain quantitatively how the large-scale temperature gradient
persists in spite of thermal conduction and convection. These results are a consequence
of the cosmological assembly of clusters and cannot be reproduced with non-cosmological
simulations of isolated halos. I show that the variation in halo assembly histories produces a
~ 10% scatter in temperature at fixed mass. On top of this scatter, conduction decreases the
temperature of the gas near the scale radius in massive clusters, which may bias hydrostatic
mass estimates inferred from x-ray and Sz observations. As an example application of these
model profiles, I use mixing-length theory to estimate the turbulent pressure support created
by the magnetothermal instability (MTI): in agreement with my earlier MHD simulations, I
find that the convection produced by the MTI can provide ~ 5% non-thermal pressure support
near rsg0. 1he magnitude of this turbulent pressure support is likely to be non-monotonic
in halo mass, peaking in ~ 10 M, halos. The work in Chapter 4 has previously been
published in McCourt et al. (2013).

Finally, in Chapter 5, I describe my current research trying to quantify the effect of
convection in the outer parts of galaxy clusters. I use the results from Chapter 4 to implement
a novel “semi-"cosmological simulation method and I show my preliminary results. Chapter 5
is the only chapter in this thesis which describes ongoing, unpublished work. I expect to
submit it for publication during the summer of 2014.



Chapter 2

Nonlinear Saturation of Buoyancy
Instabilities

2.1 Introduction

The thermodynamics of a plasma can have dramatic and sometimes unexpected implica-
tions for its dynamical evolution. For example, thermal conduction can reduce the accretion
rate in spherical accretion flows by as much as two to three orders of magnitude relative to
the Bondi value (Johnson & Quataert 2007; Shcherbakov & Baganoff 2010). More relevant to
this paper, Balbus (2000) and Quataert (2008) demonstrated that the convective dynamics
of conducting plasmas are completely different from those of an adiabatic fluid. This paper
focuses on the nonlinear evolution and saturation of this convection.

When anisotropic conduction is rapid compared to the dynamical response of a plasma,
the temperature gradient, rather than the entropy gradient, determines the plasma’s con-
vective stability. The convective instability in this limit is known as the heat-flux-driven
buoyancy instability (HBI) when the temperature increases with height (g - VT < 0) or the
magnetothermal instability (MTI) when the temperature decreases with height (g- VT > 0).
We summarize the linear physics of these instabilities in section 2.2. Parrish & Stone (2005,
2007) and Parrish & Quataert (2008) studied the nonlinear development of the MTI and HBI
using numerical simulations. These instabilities couple the magnetic structure of the plasma
to its thermal properties and potentially have important implications for galaxy clusters
(Parrish et al. 2008, 2009; Bogdanovi¢ et al. 2009; Sharma et al. 2009a; Parrish et al. 2010;
Bogdanovié et al. 2011; Ruszkowski & Oh 2010), hot accretion flows onto compact objects
(Sharma et al. 2008), and the interiors and surface layers of white dwarfs and neutron stars
(Chang et al. 2010).

In this paper, we revisit the nonlinear behavior of the HBI and MTI. We focus on the
physics of their saturation, but also include a lengthy discussion of possible astrophysical
implications in section 2.6. Our analysis is idealized (we use a plane-parallel approximation
and neglect radiative cooling), but we are able to understand the nonlinear behavior of
the HBI and MTI, and therefore their astrophysical implications, more thoroughly than in
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previous papers. Our results for the saturation of the HBI are similar to those of Parrish
& Quataert (2008), but with an improved understanding of the saturation mechanism. Our
results for the MT1, however, differ from previous results, significantly changing the predicted
astrophysical implications of the MTI. We show in section 2.4.2 that this is because the
development of the MTI in many previous simulations has been hindered by the finite size
of the simulation domain.

The structure of this paper is as follows. We describe the linear physics of the MTI and
HBI in section 2.2. We describe our computational setup in section 2.3 and the results of
our numerical simulations in section 2.4. In order to better understand how the saturation
of the HBI and MTI may change in a more realistic astrophysical environment, we study the
interaction between these instabilities and an external source of turbulence or fluid motion
(section 2.5). Finally, in section 2.6, we summarize our results and discuss the astrophysical
implications of our work.

2.2 Background

2.2.1 Equations and Assumptions

We assume that the plasma is an ideal gas with an adiabatic index v = 5/3 and model
it using the magneto-hydrodynamic (MHD) equations, neglecting all dissipative processes
except thermal conduction. In Cartesian coordinates, the equations for the conservation of
mass, momentum and magnetic flux, and for the evolution of internal energy are

%+v.(pv):o, (2.1a)
0 B? B®B
< : Pt+— I
g PV {p”®”+< +87T> R ] (2.1b)
=p(g+f),
0B
E—VX (’UXB), (21C)
ds
pT% =-V- Qcond? (21d>

where p is the mass density, v is the fluid velocity, ® denotes a tensor product, P is the
pressure, B is the magnetic field, I is the unit matrix, g is the gravitational field, f is an
externally imposed force, T' is the temperature,

1
v Llmu o \p

is the entropy per unit mass, d/dt = 9/0t + v - V is the Lagrangian time derivative, and
Qconq is the conductive heat flux.
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We ignore the ion contribution to the conductive heat flux, which is smaller than the
electron contribution by a factor of (m;/me)"/? ~ 42. We assume that the electrons have
mean free paths much longer than their gyro-radii (as is the case in the intracluster medium
(ICM) of galaxy clusters); the electrons therefore move almost entirely along magnetic field
lines. Consequently, the thermal conductivity of the plasma is strongly anisotropic. The
conductive heat flux in this limit becomes

Q.ppq = —Keb(b-VT), (2.3)

where b = B /B is a unit vector in the direction of the magnetic field and k. is the thermal
conductivity of free electrons (Braginskii 1965). While k. depends sensitively on temperature
(Spitzer 1962), we take it to be constant in our calculations to simplify the interpretation
of our results. This approximation does not affect our conclusions, because the physics of
the buoyancy instabilities is independent of the conductivity in the limit that the thermal
diffusion time across the spatial scales of interest is short compared to the dynamical time.

2.2.2 The Physics of Buoyancy Instabilities in Dilute Plasmas

The dissipative term in equation (2.1d) shows that fluid displacements in a plasma are
not in general adiabatic. The standard analysis of buoyancy instabilities therefore does
not apply, and the convective and mixing properties of a conducting plasma can be very
different from those of an adiabatic fluid. In this paper, we focus on the limit in which
thermal conduction is much faster than the dynamical time in the plasma. This applies on
scales < 7 (AH)'Y2, where ) is the electron mean free path and H is the plasma scale height;
this “rapid conduction limit” encompasses scales < 0.3r in the cores of clusters, and scales
< r in the outer parts. This includes most scales of interest in the ICM. In this limit, the
magnitude of the temperature gradient and the local orientation of the magnetic field control
the convective stability of the plasma (Balbus 2000; Quataert 2008).

Although a single dispersion relation describes the linear stability of plasmas in this limit,
it is easiest to understand the physics by separately considering cases where the tempera-
ture increases or decreases with height. Balbus (2000) first considered the case where the
temperature decreases with height and identified the magnetothermal instability, or MTT.
We show a schematic of this instability in the top row of Figure 2.1. The first panel of
this figure shows a plasma in hydrostatic and thermal equilibrium, with a weak horizon-
tal magnetic field. We apply a small, plane wave perturbation and, as the plasma evolves,
the field lines follow the fluid displacements. Efficient conduction along these field lines
keeps the displacements isothermal. Since the temperature falls with height, upwardly dis-
placed fluid elements are warmer than their new surroundings; they expand and continue to
rise. Similarly, downwardly displaced fluid elements sink. An order of magnitude calcula-
tion shows that displacements grow exponentially, with the growth rate (or e-folding rate)
p~lgdInT/0z|71/2.

Quataert (2008) investigated the limit in which the temperature of the plasma increases
with height. The instability in this case is known as the heat-flux-driven buoyancy instability,
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Temperature (t = 0) Temperature (t = 5 tpuoy)

MTI

Temperature (t =5 tpuoy)

Figure 2.1: Illustration of the linear development of buoyancy instabilities in dilute plasmas from
two-dimensional numerical simulations. Color shows the temperature, increasing from blue to red,
while black lines trace the magnetic field. Top Row: Quasi-linear evolution of the MTI. Left panel:
Initial equilibrium state, with b. = 0 and the conductive heat flux Q = 0 everywhere. Right panel:
The plasma at ¢ = 5tpu0y given an initial perturbation with k = 2w/L &. Flux freezing and rapid
conduction along field lines ensure that Lagrangian fluid displacements are nearly isothermal. If the
initial state has a positive temperature gradient, upwardly displaced fluid elements are warmer than
their surroundings; they will expand and continue to rise. Similarly, downwardly displaced fluid
elements are cooler than their surroundings and will sink. Bottom Row: Quasi-linear evolution
of the HBI. The initial equilibrium state has b, = 1 and a net downward conductive heat flux,
with V - Q = 0 everywhere. Left panel: The plasma at ¢ = 5,0, given an initial perturbation
with k; = k,. The perturbation alters the geometry of the magnetic field, so that field lines
are not parallel and there can be conductive heating and cooling of the plasma. Right panel:
Temperature difference at t = 51p,,0y relative to the initial condition. Magnetic field lines converge
in upwardly displaced fluid elements, leading to an increased temperature. These fluid elements will
then expand and continue to rise. Similarly, downwardly displaced fluid elements are conductively
cooled, contract and continue to sink.
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or HBI. We sketch the growth of the HBI in the bottom row of Figure 2.1. Here, the
initial equilibrium state has vertical magnetic field lines and a constant heat flux; the latter
is required for the plasma to be in thermal equilibrium. However, perturbations to the
magnetic field divert the heat flux and conductively heat or cool pockets of the plasma. If
the temperature increases with height, upwardly displaced fluid elements become warmer
than their surroundings and therefore experience a destabilizing buoyant response. These
perturbations grow with the same growth rate |g01nT/0z|~1/2.

Quataert (2008) performed a WKB analysis on equations (2.1a)—(2.1d) in the Boussinesq
limit and obtained the following dispersion relation for plasma in a constant gravitational
field g = —g z, threaded by a constant magnetic field with any orientation in the & — z plane:

P +wd)(p+we) + pNA(1—k2) =

OlnT R " s s s 24
W (g - ) [(sz 1)1 — k) — 2b,bokk. | 24
0z
Here, p = —iw is the local growth rate of the mode (the time dependence of the perturbation
is e'), wy = k - vy is the Alfvén crossing frequency,
—1 0
Nr=1— - AT o8 (2.5)

Y ks g%

describes the buoyant response of an adiabatic plasma, k=k /k is the direction of the wave
vector, and

Wy = 77_1 “jDT (6 : kz>2 (2.6)

is inversely proportional to the conduction time across the wavelength of the mode. It is
convenient to identify wiyoy = |¢ 0InT/ 0z|'/? as a characteristic frequency for the buoyancy
instabilities and we will also use tyu0y = wguloy and t,q = N~! in our analysis.

In the limit that conduction is rapid compared to any dynamical response (w, > wa, N,
Whuoy ); €quation (2.4) simplifies to!

(p* + wi) = sgn(0T/02) wiyey ¥

[(232 1)1 - k) — ZBxézl%xl%z] . (2.7)
As we stated in section 2.2.1, the growth rate in the rapid conduction limit is independent
of the thermal conductivity.

Equation (2.7) shows that magnetic tension can suppress the MTT and HBT; if w? > wﬁuoy,
p? must be negative, and the plasma is stable to small perturbations. In this paper, we focus
on the relatively weak field limit in which magnetic tension does not suppress the instabilities,

In going from the cubic equation (2.4) to the quadratic (2.7), we have ignored a solution for p. This
solution is exponentially damped on the conduction timescale and is not relevant to our analysis.
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and we take wp < Whyoy in equation (2.7). The dominant role of the magnetic field in our
analysis is to enforce anisotropic electron heat transport.

For any magnetic field direction B, the term in square brackets in equation (2.7) can
be positive or negative; thus, there are always linearly unstable modes, irrespective of the
thermal state of the plasma (excluding the singular case of 0T/0z = 0).

We finally note that, although we neglected cooling in equation (2.1d), it adds a term to
equation (2.7) which is insignificant when the cooling time is much longer than w_! (Balbus
& Reynolds 2008, 2010). This is not necessarily the case near the centers of cool-core clusters,
and we plan to explore the combined effects of cooling and buoyancy instabilities in future
work. For now, we assume that the buoyancy instabilities develop independently of cooling;
this allows us to understand the nonlinear development and saturation of the instabilities
themselves and therefore to assess their possible implications for the thermal balance of the
plasma.

2.3 Numerical Method

2.3.1 Problem Setup and Integration

We consider the evolution of a volume of plasma initially in hydrostatic and thermal
equilibrium, but subject to either the HBI or MTI. We seed our simulations with Gaussian-
random velocity perturbations with a flat spatial power spectrum and a standard deviation
of 10~*¢,. The small amplitude of these initial perturbations ensures that the instabilities
start out in a linear phase and permits us to compare our results with the predictions of
equation (2.7). Astrophysical perturbations are unlikely to be this subsonic, however, and
the instabilities in our simulations take much longer to saturate then one would expect
from the larger perturbations found in a more realistic scenario. We return to this point in
section 2.6.

We highlight the distinctness of the HBI and MTT from adiabatic convection by choosing
initial conditions with ds/dz > 0 whenever possible, so that the plasma would be absolutely
stable if it were adiabatic. Our results do not rely critically on this choice, however, because
the plasma is not adiabatic and its evolution is independent of its entropy gradient to lowest
order in wWyyey/wy. Our results are much easier to interpret when wyye, doesn’t vary across
the simulation domain, and we prioritize this constraint on the initial condition over the sign
of its entropy gradient (as we discuss in more detail below).

We solve equations (2.1a)—(2.1c), along with a conservative form of equation (2.1d), us-
ing the conservative MHD code Athena (Gardiner & Stone 2008; Stone et al. 2008) with the
anisotropic conduction algorithm described in Parrish & Stone (2005) and Sharma & Ham-
mett (2007). In particular, we use the monotonized central difference limiter on transverse
heat fluxes to ensure stability. This conduction algorithm is sub-cycled with respect to the
main integrator with a time step At oc (Ax)?; our simulations are therefore more computa-
tionally expensive than adiabatic MHD calculations. We draw most of our conclusions from
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simulations performed on uniform Cartesian grids of (64)% and (128)%. We also performed a
large number of two-dimensional simulations on grids of (64)2, (128)% and (256)%. We found
that the kinetic energy generated in our local HBI simulations converges by a resolution
of (64)%; our global HBI simulations require roughly 60 grid cells per scale height to give
a converged kinetic energy. The MTI is somewhat more sensitive to resolution; we tested
the convergence of these simulations by comparing the results of an identical simulation
performed at (128)3 and (256)3.

We perform our calculations in the plane-parallel approximation with uniform gravity
g = —g z. We fix the temperature at the upper and lower boundaries of our computational
domain, and we extrapolate the pressure into the upper and lower ghost cells to ensure that
hydrostatic equilibrium holds at the boundary. For all other plasma variables, we apply
reflecting boundary conditions in the direction parallel to gravity and periodic boundary
conditions in the orthogonal directions. As we discuss in section 2.4, the choice of fixed
temperatures at the upper and lower boundaries has an important effect on the non-linear
evolution. Simulations with Neumann boundary conditions in which the temperature at the
boundaries is free to adjust would give somewhat different results (see, e.g., Parrish & Stone
2005). Our choice of Dirichlet boundary conditions is largely motivated by the fact that
many galaxy clusters in the local universe are observed to have non-negligible temperature
gradients (Piffaretti et al. 2005).

We perform both local (with the size of the simulation domain L much smaller than the
scale height H) and global (L 2 H) simulations of the MTT and HBI. The local simulations
separate the development of the instability from any large-scale response of the plasma, al-
lowing us to study the dynamics in great detail. However, because the response of the plasma
on larger scales can influence the nonlinear evolution and saturation of the instabilities, we
also carry out global simulations.

2.3.2 Local Simulations

In sections 2.3-2.5, we work in units with kg = ppm, = 1. As noted previously, we restrict
our analysis to plasmas with rapid conduction; we find that setting ke = 10 X p wWhyoy L? puts
our local simulations safely in this limit. This corresponds to a thermal diffusion time across
the box of ~ 0. 1wguloy We initialize our local HBI simulations with a linear temperature
gradient:

T(z)=Ty(1+=2/H), (2.8a)
p(z) =po(1+2/H)™ (2.8b)
P(z) =p(z) T(z) . (2.8¢)
We choose to set pp = 1 and ¢ = 1 = 2 Ty/H. Unless otherwise noted, we take H = 2

(Th = 1) in our local simulations and we evolve a volume of plasma from z = 0 to z = L = 0.1,
i.e., over ~ 5% of a scale-height.
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We use the setup of Parrish & Stone (2005) for our local MTT simulations:

T(z)=Ty(1—=2/H), (2.9a)
p(2) = po (1 — 2/ H)? (29b)
P(z) = p(z) T(2), (2.9¢)

with ¢ = 1 and H = 3. The MTT induces large vertical displacements in the plasma, and

our reflecting boundary conditions clearly influence its evolution; we attempt to minimize
the effects of the boundaries by sandwiching the unstable volume of plasma between two
buoyantly neutral layers. Parrish & Stone (2005) describe this setup in more detail.?

Both of the above atmospheres have positive entropy gradients and therefore would be
stable in the absence of anisotropic conduction. The results we describe in this paper are
entirely due to non-adiabatic processes.

We show in section 2.4.1 that local and global HBI simulations give very similar results; we
therefore use the simpler, local simulations for most of our analysis of the HBI. By contrast,
the large-scale vertical motions induced by the MTI make its evolution inherently global; as
we describe in section 2.4.2; local simulations do not give a converged result independent of
L/H. We therefore study the saturated state of the MTI using global simulations, which
require an alternate set of initial conditions.

2.3.3 Global Simulations

The physical properties of the plasma in a global simulation can vary by an order of
magnitude or more across the simulation domain. This complicates our study of the HBI
and MTI because the instabilities can be in different stages of evolution at different spatial
locations. Similarly, the kinetic and magnetic energies generated by the instabilities in a
global simulation can be functions of height, obscuring their dependence on other parame-
ters. While one must confront these problems when studying buoyancy instabilities in an
astrophysical context, we avoid them by choosing initial conditions with a buoyancy time
that is constant with height. We specify

9(z) = go e%, (2.10a)
Swlz)uoy

9o

T(z) =exp |+ (e =1)]. (2.10b)
The positive and negative signs in equation (2.10b) produce atmospheres unstable to the
HBI and MTI, respectively. Note that T(z = 0) = 1 as in our local simulations. We take
go =1, S =3 and i, = 1/2 and numerically solve for p(z) so that the initial atmosphere

is in hydrostatic equilibrium. The atmosphere defined by equation (2.10b) does not have a
single, well-defined scale height. We therefore define H so that L/H = In (Tyax/Tmin); this

2Note that, although Parrish & Stone (2005) describe these extra layers as buoyantly stable, the effect of
the isotropic conductivity is to make them buoyantly neutral.
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definition for H is analogous to that used in our local simulations and L/H reflects the total
free energy available to the instabilities. Because H is a defined, rather than fundamental,
property of the atmosphere, it is not independent of the size of the simulation domain. We
carry out simulations with domain sizes L = 0.5 and 2.0, which have L/H = 0.27 and 1.4,
respectively. The temperature profile defined by equation 2.10b becomes unrealistically steep
when 2z 2 S; thus, we only consider models with L < S. We do include simulations with
L/H <1and L/H > 1.

Simulations with a larger simulation domain size inherently permit larger vertical dis-
placements, and the boundary conditions do not influence the evolution of the plasma as
strongly as they do in a local simulation. We find that the neutrally stable layers described
in section 2.3.2 don’t alter the results of our global simulations, and thus we do not include
them in our setup.

We chose the conductivity in our local simulations so that k., = 10 pwbuoyL2, but the
corresponding constraint on the time step becomes impractical for our global simulations.
Instead, we adjust k. so that the ratio x./L is the same as it is in the local simulations. This
keeps the ratio of the conduction time to the sound crossing time constant, and is appropriate
if the turbulence driven by the MTI or HBI reaches a terminal speed less than or of order
the sound speed. We carried out simulations with different values of the conductivity and
verified that our results are insensitive to factor of few changes in k..

The atmosphere we use for our global MTI simulations has a negative entropy gradient.
One might worry that the results of these simulations—which aim to focus on the MTT—
would be biased by the presence of adiabatic convection. This is, however, only a pedagogical
inconvenience; w, > N on all relevant scales in the simulation, so the adiabatic limit to
equation (2.4) is not important, and the evolution of the plasma is nearly independent of its
entropy gradient. To confirm this we carried out L = 0.27 H simulations with both sets of
initial conditions; they give very similar results. Additionally, we performed one simulation of
adiabatic convection using this setup, and the behavior of this simulation is entirely different
from the MTI, especially at late times.

2.3.4 Turbulence

The pure HBI/MTI simulations described in the previous sections are physically very
instructive but astrophysically somewhat idealized. In order to better understand the as-
trophysical role of the HBI and MTI, we also study their interaction with other sources
of turbulence and fluid motion. We assume that these take the form of isotropic turbu-
lence; we include such turbulence via the externally imposed force field f in equation (2.1b).
Following Lemaster & Stone (2008), we compute f in momentum space from scales kg =
{4,6,8} x 27 /L, down to ky.x = 2 ko, with an injected energy spectrum E,Snj) x k3. We
then randomize the phases, perform a Helmholtz decomposition of the field, discard the
compressive component, transform the field into configuration space, and normalize it to a
specified energy injection rate. We find that the turbulence sets up a nonlinear cascade that
is not very sensitive to either the driving scale or the injected spectrum of the turbulence.
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Figure 2.2: Evolution of the HBI with an initially vertical magnetic field in a local, 2D simulation

—

Temperature

1.0

(simulation hl in Table 2.1). Color shows temperature and black lines show magnetic field lines. A
small velocity perturbation to the initial state seeds exponentially growing modes which dramatically
reorient the magnetic field to be predominantly horizontal. The induced velocities are always highly
subsonic and, after ¢ ~ 20%y,0y, are also almost entirely horizontal. Once the plasma reaches
its saturated state, it is buoyantly stable to vertical displacements. The plasma does not resist
horizontal displacements, but the saturated state is nearly symmetric to these displacements and
they do not change its character.

This prescription for turbulence is statistically uniform in both space and time and there-
fore provides a controlled environment in which to study the interaction between turbulence
and buoyancy instabilities. This may not, however, be a good approximation to real astro-
physical turbulence; we discuss the implications of our choice in sections 2.5 and 2.6.

2.4 Nonlinear Saturation

2.4.1 Saturation of the HBI

Parrish & Quataert (2008) described the nonlinear saturation of the HBI, but they did
not explicitly test the dependence of their results on the size of the computational domain.
This dependence turns out to be crucial for the MTI (see § 2.4.2), but we show here that the
size of the domain has little effect on the saturation of the HBI. Nonetheless, we describe the
nonlinear behavior of the HBI in reasonable detail, expanding on the physical interpretation
given in previous papers (although our HBI results do not differ significantly from those of
previous authors). The saturation of the HBI is the simplest process we consider in this
paper and serves as a useful comparison for our new results.

We study the saturation of the HBI using 2D and 3D simulations spanning a range of
domain sizes L/H. Table 2.1 lists all of the simulations presented in this section.

Figure 2.2 shows snapshots of the evolution of temperature and magnetic field lines in a
local, 2D HBI simulation. We chose this simulation to simplify the field-line visualization, but
the results in Figure 2.2 apply equally to our local and global 3D simulations. We initialized
this simulation in an unstable equilibrium state with vertical magnetic field lines (BZ =1). As
described in section 2.3.1, we seed this initial condition with small velocity perturbations; the
HBI causes these perturbations to grow in the first three panels of Figure 2.2. The evolution
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Table 2.1: Parameters for the HBI simulations (§ 2.4.1).
Name D res L/H &k
hl 2 64 0.05 7.07
h2 3 64 0.05 7.07
h3 3 128 0.75 047
h4 3 128 1.40 0.35

All simulations are performed on square Cartesian grids of size L. D is the dimensionality of
the simulation, res is the number of grid cells along a side, and & is the conductivity (in units
of kp/pum X pwpueyL?). All of these simulations are local (eq. 2.8), except for the one with
L/H = 1.4, which uses the global setup (eq. 2.10). We initialized all of these simulations
with weak horizontal magnetic fields (B/v/4r = 107°).

becomes nonlinear in the third panel, when the velocity perturbations reach ~ 4% of the
sound speed. Afterwards, the instability begins to saturate and the plasma slowly settles
into a new equilibrium state. The last panel in Figure 2.2 shows that this saturated state is
highly anisotropic: the magnetic field lines are almost entirely orthogonal to gravity. Flux
conservation implies that the fluid motions must also be anisotropic, with most of the kinetic
energy in horizontal motions at late times (see Fig. 2.3, discussed below). These horizontal
motions are very subsonic: in all of our simulations, the velocities generated by the HBI are
significantly less than 1% of the sound speed in the saturated state.

Because the fluid velocities remain small, the linear dispersion relation (eq. 2.7) captures
much of the evolution of the HBI, even at late times. For any magnetic field orientation, the
fastest growing modes are the ones with k along the axis b x (b X g); these modes have the
growth rate

Pmax = ‘wbuoy I;z‘a (211)

which decreases as the field lines become horizontal. Additionally, when 52 < 1/2, only
modes with k2 > 1 — 4(b2 — b%) are unstable. Since the HBI saturates by making the field
lines horizontal (Z;Z — 0), both the maximum growth rate of the instability and the volume of
phase space for unstable modes decrease as the HBI develops. This strongly limits the growth
of the perturbations, and helps explain why the instability saturates relatively quiescently.
As argued by Parrish & Quataert (2008), the HBI saturates when its maximum growth
rate pmax vanishes, so that there are no longer unstable modes. While this is clearly a
sufficient condition for the plasma to reach a new stable equilibrium, it is by no means
necessary: the instability could, e.g., saturate via nonlinear effects, but in practice this is not
the case (at least for simulations without an additional source of turbulence). Equation (2.11)
for ppax shows that the HBI could saturate by making either 97'/0z or b, vanish; intuitively,
the HBI is powered by a conductive heat flux, which it must extinguish in order to stop
growing. FErasing the temperature gradient might seem like the more natural saturation
channel, since the conduction time across the domain is much shorter than the time it
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takes the HBI to develop and saturate. In an astrophysical setting, however, the large-scale
temperature field is often controlled by cooling, accretion or other processes apart from the
HBI. We therefore impose the overall temperature gradient in our simulations by fixing the
temperature at the top and bottom of the domain, so that wiyey is roughly independent of
time and saturation requires I;Z =0.

Since the HBI saturates by making the magnetic field lines horizontal, we take the b, — 0
limit in equation (2.7) to understand the late-time behavior of the plasma:

L\ 1/2
W = £ Whuoy <1 - k:z) . (2.12)

We have assumed here that the magnetic field is weak enough for magnetic tension to be
negligible on the scales of interest.> Equation (2.12) shows that the saturated state of the
HBI is buoyantly stable, but that there is a family modes with k., = 1 which feel no restoring
force. This simply reflects the fact that the plasma is stably stratified and resists vertical
displacements. Displacements orthogonal to gravity are unaffected by buoyancy, however,
and appear as zero-frequency modes in the dispersion relation.

Figure 2.3 demonstrates this asymmetry between vertical and horizontal displacements
in the late time evolution of the plasma. This figure shows the kinetic energy in horizontal
and vertical motions as a function of time. During the initial, linear growth of the instability
(t < 10tpuoy), buoyantly unstable fluid elements accelerate toward the stable equilibrium,
and the kinetic energy is approximately evenly split among vertical and horizontal motions.
As the instability saturates, however, the plasma becomes buoyantly stable and traps the
vertical motions in decaying oscillations (internal gravity waves). The horizontal motions
keep going, however, and retain their kinetic energy for the duration of the simulation.* This
difference in the response of the plasma to vertical and horizontal motions accounts for the
anisotropy of the velocity field in the saturated state of the HBI.

Figure 2.4 shows the evolution of the rms magnetic field angle (left panel) and magnetic
energy (right panel) in 3D HBI simulations for three different values of the size of the
computational domain L relative to the scale height H. The zero frequency modes discussed
above also dominate the evolution of the magnetic field at late times, after the motions
become nonlinear (¢ 2 10tpu4y). The horizontal displacements stretch out the field lines,
amplifying and reorienting them. Quantitatively, we expect that b, ~ A€ o t71 where
A is a characteristic scale for the modes in the saturated state, £ is the magnitude of the
horizontal displacements, and we have assumed that the velocity is constant with time. The
left panel of Figure 2.4 shows that the dependence in the simulations is quite close to this,
with b, o 0855 Stretching the field lines in this manner amplifies the field strength by an

3Note that equation 2.12 only strictly applies when the magnetic field is ezactly horizontal. More generally,
there will still be unstable modes with growth rate given by equation 2.11; this growth rate is very slow in
the saturated state of the HBI, however, and these modes don’t change the dynamics of the plasma.

4These horizontal motions are not susceptible to the Kelvin-Helmoltz instability because vertical mixing
is stabilized by buoyancy when the Richardson number ~ wﬁuoy /(dv/dz)? > 0.25 (Turner 1979).

5The slight difference relative to the simple predictions of flux freezing given the velocity field in Figure 2.3



2.4. NONLINEAR SATURATION 16

Ll

| IIIII|_|J

Kinetic Energy

| IIIII|_|J

1 IIIIIIII 1 | I N I T I |
1 10 10?

t/tbuoy

Figure 2.3: Evolution of the vertical and horizontal kinetic energy in a local, 2D HBI simulation
(simulation hl in Table 2.1). The units are such that the thermal pressure P ~ 1 and the initial
magnetic energy is B?/8t = 107'2. After a period of exponential growth in which the x and z
motions are in approximate equipartition, the HBI saturates and the kinetic energy ceases to grow.
At this point, the energy in the vertical motion is in the form of stable oscillations, which decay
non-linearly. The horizontal motions are unhindered, however, and persist for the entire duration
of the simulation. These horizontal motions are responsible for the asymmetry of the magnetic field

shown in Figure 2.4.

amount 6B o ; if the velocity is constant with time, we expect B? o t2. The right panel
of Figure 2.4 shows that this time dependence is approximately true for our two larger HBI
simulations; the amplification is slightly slower in the very local calculation with L/H = 0.05.
There is no indication that the magnetic field amplification has saturated at late times in
the HBI simulations. We suspect that the amplification would continue until the magnetic
and kinetic energy densities reach approximate equipartition, but we would have to run the
simulation for a very long time to verify this.

One of the important results in Figure 2.4 is that the saturated state of the HBI is
nearly independent of the size of the computational domain L/H. Since the late time
evolution of the plasma is driven only by horizontal displacements, the key dynamics all
occur at approximately the same height in the atmosphere. The saturation of the HBI is
thus essentially local in nature and should not be sensitive to the global thermal state of the
plasma or the details of the computational setup.

The dramatic reorienting of the magnetic field caused by the HBI severely suppresses the
conductive heat flux through the plasma. The conductive flux is proportional to <Z)§), which

may be due to the finite resolution of our simulations, which prevents us from resolving the field line direction
when b, <10 x dz/L.



2.4. NONLINEAR SATURATION 17

1
1

L —— L/H=14 - C ]
L ——— L/H=0.75 i ]

------- L/H = 0.05

- 1 =F 3

/I - Ol(:) - -

i 18 r 1

7 _

T _ S 3

S F . ]

Lol v vl 3 vl Lol v v vl 41l

1 10 10? 1 10 102
t/tbuoy t/tbuoy

Figure 2.4: Evolution of the orientation (left) and energy (right) of the magnetic field in 3D HBI
simulations for three different values of the size of simulation domain relative to the temperature
scale-height (L/H) (simulations h2-h4 in Table 2.1). Units are such that the thermal pressure P is
~ 1. The results are nearly independent of size of the simulation domain. As described in § 2.4.1,
the HBI saturates by shutting itself off; the linear exponential growth ends at ¢t ~ 10 t},0y, and most
of the evolution of the magnetic field happens afterward. This evolution is driven by the horizontal
motions shown in Figure 2.3, which both amplify and reorient the magnetic field. After a brief
period of exponential growth, the field amplification is roughly linear in time. By contrast, the field
amplification by the MTI is exponential in time (see Fig. 2.8).
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decreases in time o< (t/thuey) 7. The saturated state of the HBI is also buoyantly stable and
resists any vertical mixing of the plasma. As a result, the convective energy fluxes in our HBI
simulations are very small, ~ 107% pc3. The effect of the HBI therefore is to strongly insulate
the plasma against both conductive and convective energy transport. This can dramatically
affect the thermal evolution of the plasma (Parrish et al. 2009; Bogdanovi¢ et al. 2009).

The fact that the growth rate of the HBI depends on the local orientation of the magnetic
field, as well as the thermal structure of the plasma, makes it very different from adiabatic
convection. This dependence on the magnetic field structure provides a saturation channel
in which the kinetic energies are very small compared to the thermal energy (e.g., in Fig. 2.3,
pv?/nkT ~ 1075). Critically, these highly subsonic motions occur in simulations in which
the boundary conditions allow for the presence of a sustained, order unity, temperature
gradient (dInT/dlnz ~ 1). In an adiabatic simulation, the analogous sustained entropy
gradient would generate convective motions with pv? ~ nkT. This does not occur in an
HBI-unstable plasma. Thus, although a plasma with a positive temperature gradient is
in general buoyantly unstable, the effect of the HBI is to peacefully stabilize the plasma
within a few buoyancy times by suppressing the conductive heat flux through the plasma.
The resulting, stably-stratified plasma then resists vertical mixing and, in the absence of
strong external forcing, we expect the fluid velocities and magnetic field lines to be primarily
horizontal. In section 2.5, we perturb this state with externally driven, isotropic turbulence
and test the strength of the stabilizing force.

2.4.2 Saturation of the MTI

Figure 2.5 shows the evolution of one of our local, 2D MTI simulations. As in the HBI
simulation shown in Figure 2.2, we initialized this simulation in an unstable equilibrium
state (a weak horizontal magnetic field) and seeded it with the small velocity perturbations
described in section 2.3.1. The MTT and HBI stem from very similar physics, and as a result
have very similar linear dynamics. The nonlinear behavior of the two instabilities is entirely
different, however. While the HBI saturates relatively quiescently by driving the plasma
to a buoyantly stable and highly anisotropic state, the MTI generates vigorous, sustained
convection that tends to isotropize both the magnetic and velocity fields.

As we did for the HBI, we study the saturation of the MTT using 2D and 3D simulations
spanning a range of domain sizes L/H. Table 2.2 summarizes the simulations presented in
this section.

Since the linear dispersion relation successfully describes the nonlinear evolution and
saturation of the HBI, it is a good place to begin our discussion of the MTI. The MTT is
described by equation (2.7) when 07 /0z < 0. The linear evolution of the MTI is the opposite
of that of the HBI: the MTI operates when the temperature decreases with height, its fastest
growing modes are the ones with wave vectors k parallel to b, and the force that destabilizes
the MTT is exactly that which stabilizes the HBI in its saturated state. Equation (2.7) shows
that the maximum growth rate of the MTI goes to zero when b, = 1. By analogy with the
HBI, it thus seems reasonable to expect that the MTI also saturates quiescently, by making
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Figure 2.5: Evolution of the MTI with an initially horizontal magnetic field in a local, 2D simulation
(simulation m1 in Table 2.2). Gray horizontal lines show the transition to the buoyantly neutral
layers described in § 2.3.2; the color scale is identical to that in Figure 2.2. Initial perturbations grow
by the mechanism described in § 2.2.2 (Fig. 2.1); rising and sinking plumes rake out the field lines
until, by ¢ = 6 tpu0y, they are mostly vertical. This configuration is, however, nonlinearly unstable
to horizontal displacements, which generate a horizontal magnetic field and thus continually seed
the MTI (see Fig. 2.6). The result is vigorous, sustained convection in marked contrast to the
saturation of the HBI in Fig. 2.2. In this local simulation, buoyant plumes accelerate until they
reach the neutrally stable layers. The boundaries prematurely stop the growth of the MTI, and the
local simulation under predicts the kinetic energy generated by the MTI (see Fig. 2.7).

Table 2.2: Parameters for the MTI simulations (§ 2.4.2).

Name D res L/H r  Field Configuration
ml 2 64 0.033 7.07 horizontal

m2 2 64 0.033 7.07 vertical

m3 3 64 0.033 7.07 horizontal

m4 3 64 0.033 7.07 vertical

mb* 3 128 0.500 0.31 horizontal

mo6* 3 128 1.400 0.35 horizontal

The definitions of L, D, and k are the same as in Table 2.1. All simulations use the local
setup (eq. 2.9), except for the one with L/H = 1.4, which is global (eq. 2.10). Each of these
simulations was initialized with a weak magnetic field B/v/4r = 10~* with the orientation
indicated in the table. *We also repeated simulations m5 and m6 with initial field strengths
B/v/4m =107*,0.0014,0.0245
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Figure 2.6: Evolution of the MTI in a plasma with an initially vertical magnetic field in a local,
2D simulation (simulation m2 in Table 2.2). This configuration is linearly stable according to
equation (2.7), but there are zero-frequency, k, = 0, modes which do not have a restoring force.
Physically, these correspond to horizontal motions which do not feel gravity/buoyancy. Because of
this zero frequency mode, small random initial perturbations add a horizontal component to the
magnetic field, eventually rendering the plasma unstable to the MTI. This creates a feedback loop,
allowing the MTI to generate vigorous, sustained convection; the HBI does not have this same
feedback loop and so does not generate sustained turbulence (Fig. 2.2). At late times, the results of
this simulation with an initially vertical magnetic field are very similar to Figure 2.5 which starts
with a horizontal magnetic field.
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the field lines vertical.

The first three panels of Figure 2.5 show that this is nearly what happens. As the
perturbations grow exponentially, the buoyantly rising and sinking blobs rake out the field
lines, making them largely vertical. The growth rate of the MTI goes to zero when the
field lines become vertical; since the velocities are still small at this point in the evolution
(~ 1072¢,), one might expect the MTI to operate like the HBI and quiescently settle into
this stable equilibrium state. Instead, however, the MTT drives sustained turbulence for as
long as the temperature gradient persists. The plasma never becomes buoyantly stable, and
the magnetic field and fluid velocities are nearly isotropic at late times.

We can understand this evolution using the same approach we employed for the HBI.
Although the plasma in our MTI simulations never reaches a state in which the MTI growth
rate is zero, examining the properties of this state is very instructive. The equilibrium state
of the MTI with b, = 1 (i.e., a vertical field) has precisely the same dispersion relation as the
saturated state of the HBI, given by equation (2.12). There are again zero frequency (neu-
trally stable) modes of the dispersion relation which correspond to horizontal perturbations
to the equilibrium state of the MTT; these experience no restoring force, because the restoring
force is buoyant in nature and unaffected by horizontal displacements.® Critically, however,
these zero frequency perturbations now add a horizontal component to the magnetic field,
pulling the plasma out of the equilibrium state and rendering it unstable to the MTIL.

Figure 2.6 vividly illustrates this process. This figure shows a simulation that starts
with the linearly stable equilibrium state of the MTI (a vertical magnetic field), seeded with
the same highly subsonic velocity perturbations as before. The compressive component of
the perturbation rapidly damps because the Mach number is small, and buoyancy traps
the vertical components of the perturbation in small-amplitude oscillations, as predicted
by equation (2.12). The incompressive, horizontal displacements propagate freely, however,
and by t = 7.5thu0y, they have noticeably changed the local orientation of the magnetic
field. The plasma is no longer in its stable equilibrium state, and by t = 20t,,0y, it is
clear that this process has excited the MTI. At late times, the simulations initialized with
horizontal (linearly unstable; Fig. 2.5) and vertical (linearly stable; Fig. 2.6) magnetic fields
are qualitatively indistinguishable. Thus, although equation (2.7) shows that a plasma with
0T /0z < 0 is linearly stable if the magnetic field is vertical, that configuration is nonlinearly
unstable.

The nonlinear instability of the b, = 1 state of the MTI precludes the magnetic satu-
ration channel. The zero frequency horizontal motions generate a horizontal magnetic field
component from the vertical magnetic field, seeding the instability and closing the dynamo
loop. This continuously drives the MTI and generates sustained turbulence. Without a

6This conclusion is more subtle than the analogous argument for the HBI, because the equilibrium state
has a nonzero heat flux. If the horizontal displacements aren’t incompressive, the field lines could pinch
together, heating and destabilizing parts of the plasma. These perturbations do not appear in eq (2.12)
because we have taken the Boussinesq limit. It is in principle possible that such compressive perturbations
contribute to destabilizing the b, = 1 MTI state in our simulations, but all of our analysis is consistent with
the neutrally stable zero frequency perturbations being the critical ingredient.
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linear means to saturate, the MTI grows until nonlinear effects can compete with the linear
instability, which requires v ~ c;.

Figure 2.7 shows the Mach number in 3D MTI simulations as a function of time, for
different sizes of the computational domain L/H. The MTI buoyantly accelerates rising or
sinking fluid elements. For simulations with L < H, the velocities generated by the MTI are
artificially suppressed because the small size of the computational domain prematurely stops
the buoyant acceleration (Fig. 2.5); the results in this Figure 2.7 are reasonably consistent
with mixing length estimate of v ~ /L. By contrast, for simulations with L > H, the
Mach numbers approach ~ 1 so that the MTI taps into the full buoyant force associated
with the unstable temperature gradient. This is only true, of course, because our boundary
conditions fix the temperature at the top and bottom of the computational domain. If the
temperatures were free to vary, the MTI could saturate by making the plasma isothermal.
Which of these saturation mechanisms is realized in a given astrophysical system will depend
on the heating and cooling mechanisms that regulate the temperature profile of the plasma.

Figure 2.8 shows the evolution of the magnetic field orientation (left panel) and energy
(right panel) as a function of time in our 3D MTI simulations (for two different values of
L/H). The sustained, vigorous turbulence generated by the MTI in the nonlinear regime
(t 2 10tpuey) rapidly amplifies the magnetic field. The magnetic and kinetic energies reach
approximate equipartition in our simulations, with B?/87 ~ 0.1 pv?. The kinetic and mag-
netic energies generated by the MTI together contribute ~ 5-10% of the pressure support
in its saturated state.

The evolution of the magnetic field geometry, shown in the left panel of Figure 2.8, nicely
illustrates the transition of the MTI from the linear to nonlinear regime. During the linear
phase of the instability (¢ < 10¢pu0y), the plasma accelerates toward the equilibrium state
with BZ = 1. After the evolution becomes nonlinear (¢t 2 10 tpyey ), however, the MTI drives
sustained turbulence, which nearly isotropizes the magnetic field.

While the HBI works to insulate the plasma against vertical energy transport, the MTI
enhances it. Figure 2.8 shows that the conductive flux through the plasma is slightly greater
than ~ 1/3 of the field free value k, VT (because (b2) ~ 0.4). Moreover, the MTI leads to
large fluid velocities and correlated temperature and velocity perturbations—hot pockets of
plasma rise, while cool pockets sink. These imply that the MTI drives an efficient outwards
convective heat flux. Figure 2.9 shows that this flux can be ~ 1.5% of pc3, consistent with the
Mach numbers of ~ 0.2 in Figure 2.7. This convective flux is probably not large enough to
influence the thermodynamics of the ICM, but it could be important in other environments
where the MTI can operate, such as the interiors of white dwarfs and neutron stars (Chang
et al. 2010).

2.5 Interaction with Other Sources of Turbulence

Thus far, we have described the development and saturation of buoyancy instabilities only
in the idealized case of an otherwise quiescent plasma. In a more astrophysically realistic
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Figure 2.7: Volume-averaged Mach numbers of the turbulence generated by the MTI in 3D sim-
ulations, for three different values of the size of simulation domain relative to the temperature
scale-height L/H. The MTI buoyantly accelerates the unstable fluid elements; if the size of the sim-
ulation domain is smaller than a scale-height, the boundaries suppress the growth of the instability.
Local simulations with L/H = 1/30 therefore strongly under predict the strength of the turbulence
generated by the MTI. In global simulations with L 2 H, the MTI leads to turbulence with average
Mach numbers of ~ 0.2; the velocity distribution extends up to ~ 5 times the mean.
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Figure 2.8: Left panel: Evolution of the magnetic field orientation in 3D MTI simulations, for
two different values of the size of simulation domain relative to the temperature scale-height L/H.
During the linear phase of evolution (¢t S 10%hyuey), the MTI drives the plasma toward a nearly
vertical magnetic field, i.e., b, ~ 1. When the instability becomes nonlinear, however, (near ¢ ~
10 thuoy) the evolution changes. Unlike the HBI, the plasma never settles into an equilibrium state;
instead the MTT drives vigorous turbulence. This turbulence amplifies and nearly isotropizes the
magnetic field. Right panel: Evolution of the magnetic (dashed line) and kinetic (solid line)
energy in local (L/H = 1/2) 3D MTI simulations, with different initial field strengths. These local
simulations have a positive entropy gradient, but under-predict the magnetic and kinetic energy
produced by the MTI. The magnetic energy in the saturated state approaches ~ 10% x pv2.
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Figure 2.9: Convective energy fluxes generated by the MTI. The large turbulent velocities associated
with the MTI (Fig. 2.7) lead to efficient convective transport of energy, at a reasonable fraction of
the maximal value, pc3. In these MTI simulations, the conductive energy flux is ~ 0.4 times the
field-free value and always dominates the convective energy flux for galaxy cluster conditions.

scenario, however, other processes and sources of turbulence may also act on the plasma
and the resulting dynamics can be more complicated. For example, the evolution of the
HBI won’t simply proceed until the growth rate is everywhere zero. Instead, we expect
the saturated state to involve a statistical balance among the various forces; this balance
depends on the buoyant properties of the plasma and provides a test of our understanding of
the nonlinear behavior of the HBI and MTI. Furthermore, any change in the saturated state
of the plasma due to the interaction between the HBI/MTI and other sources of turbulence
could change the astrophysical implications of these instabilities.

We choose to explore the interaction between buoyancy instabilities and other sources of
turbulence using the idealized, isotropic turbulence model described in section 2.3.4. While
this model glosses over the details of what generates the turbulence, we hope that it captures
the essential physics of the problem, allowing us to study the effect of turbulence without
unnecessarily restricting our analysis to specific applications. We intend to specialize to
specific sources of turbulence in future work, but our present analysis should apply in the
ICM, accretion disks, and anywhere else the assumptions summarized in section 2.2.2 apply.

In order to characterize the turbulence, we define a timescale for it to influence the plasma.
We define this “distortion time” in terms of the spatial velocity spectrum: tq;st(¢) = ¢/v({),
where

3 1/2
su(l) = U (6v(k))* & (|k| — 2 /0) (%3 , (2.13)
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Figure 2.10: Snapshots of the saturated states of our 2D HBI simulations with externally driven tur-
bulence. Colors show the temperature (increasing from blue to red), and black lines show magnetic
field lines. Each panel is labeled with the dimensionless strength of the turbulence in the simulation,
thuoy/tdist, defined in § 2.5. When thuoy S tdist, as in the top two panels, the HBI dominates the
evolution of the plasma. When ty,,0y 2 tdist; the turbulence can isotropize the magnetic field, but

it does so in a scale-dependent way with the large scales retaining memory of the horizontal field
imposed by the HBI.

and dv(k) is the Fourier transform of the velocity field. We expect the relevant parameter
describing the importance of the turbulence to be the ratio of the timescales thyoy/tdist-
This represents a dimensionless strength of the turbulence; if ¢pu0y /taist 2 1, the turbulence
displaces fluid elements faster than buoyancy can restore them, and we expect the velocities
and magnetic field lines to become isotropic. In the opposite limit, buoyancy still plays
an important role in the evolution of the plasma. The scale dependence of the distortion
time makes the ratio tpuey /taist @ function of scale. We define this ratio at the scale where
the velocity spectrum of the injected turbulence peaks. This is roughly consistent with the
driving scale of the turbulence and typically represents the scale with the most energy.

In the following sections, we study the transition from a state dominated by buoyancy to
one dominated by isotropic turbulence using a number of simulations of the HBI and MTT,
with turbulence in the range 0.1 < thuoy/taist S 10.

2.5.1 Effect of Turbulence on the HBI

Figure 2.10 shows representative snapshots of the temperature and magnetic field lines
in saturated states of our HBI simulations with turbulence; the strength of the injected
turbulence increases from the top left panel through the bottom right (the labels correspond
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Table 2.3: Parameter study for the HBI simulations with turbulence (§ 2.5.1).
D (2) res (64) L (0.1) H (2.0) Bo (109 ko

— — — — — 2
— — — 1.0 — 2
— — — 3.0 — 2
— — — — — 4
— — 1.0 — — 4
— — 0.3 — — 4
3 — — — — 4
3 — — — 103 4
3 — 1.0 —  3x10* 4
3 128 1.0 —  3x10* 4
— — — — — 6
— — — — — 8
— 256 — — — 8
3 — — — — 8

The simulations were initialized with our local setup (eq. 2.8) and an initial magnetic field
strength By. Each simulation was performed on uniform Cartesian grids of side L, resolution
res and dimension D. We varied the size of the simulation domain L (scaling the conductivity
as described in § 2.3.3), the plasma scale height H and the initial magnetic field strength
By; the fiducial values for these parameters are included in the table header (— indicates
the fiducial value). For each entry in the table, we performed simulations with both initially
horizontal and vertical magnetic fields. As described in the § 2.5.1, these simulations include
isotropic turbulence injected at the scale ky = 27/L x ko and with a range of turbulent
energy injection rates to give 0.1 < thuey/taist S 10.
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to the values of thyoy/taist). When tait is long compared to the buoyancy time, as in the first
panel of Figure 2.10, the turbulence is weak; the HBI therefore dominates and the evolution
of the plasma is similar to that described in section 2.4.1. This saturated state of the HBI
feels a buoyant restoring force which resists vertical displacements &, with a force per unit
mass fouoy = wguoyfz. As we increase the strength of the applied turbulence in the following
panels of Figure 2.10, the vertical displacements grow, and the field deviates more strongly
from the b, = 0 equilibrium state of the HBI. When ¢4 is short compared to the buoyancy
time, as in the last panel of Figure 2.10, turbulence can displace the fluid elements faster than
buoyancy can restore them. The turbulence then dominates the evolution of the plasma,
tangling and isotropizing the field lines.

Figure 2.10 also shows the length-scale dependence of the transition from an HBI to a
turbulence dominated state. It is clear in the second and third panels that the HBI has
globally rearranged the field lines, but that the turbulence is increasingly efficient at smaller
scales. This is a consequence of the fact that turbulence typically perturbs the plasma in a
scale-dependent way, while the buoyant restoring force of the HBI does not. If the turbulence
follows a Kolmogorov cascade, the force ~ w?/k oc k'/? increases with decreasing scale, so
the turbulence will always win on sufficiently small length-scales. It is therefore somewhat
ambiguous whether turbulence or the HBI dominates a certain configuration, as the answer
will typically depend on scale. As mentioned earlier, we skirt this issue by defining ¢4, at
the scale where the velocity spectrum of the injected turbulence peaks. When assessing the
astrophysical importance of the HBI, it is important to keep this scale in mind. If the scale
where the turbulent energy spectrum peaks is smaller than the temperature gradient length
scale, the HBI may still insulate the plasma against conduction, even if the field lines are
isotropized on smaller scales.

In order to quantify the transition from an HBI-dominated configuration to one domi-
nated by turbulence, we measure the mean orientation of the magnetic field via the volume
average of l;z The saturated value for this quantity approaches zero when the HBI domi-
nates, and 1/D when the magnetic field is isotropic, where D is the number of dimensions
in the simulation.

Figure 2.11 shows the saturated field angle as a function t,uey/taist. The points in this
figure represent simulations with different driving scales kg, different dimensionality, and
different buoyancy times tuo, (Table 2.3 summarizes our parameter study). Symmetry of
the coordinate axes requires that b> = 1/2 in 2D or 1/3 in 3D if the magnetic field is isotropic.
To include both our 2D and 3D simulations on the same plot, we shift our 3D values of (b?)
by a factor of 3/2. To within the scatter shown in Figure 2.11, we find that the saturated
value of (b?) depends only on the ratio tyuoy/taist: fOr thuoy = taist the turbulence is strong and
the field becomes relatively isotropic while for tyyoy S taist the isotropic turbulence is weak
and the HBI drives the magnetic field to become relatively horizontal. The fact that the
transition between these two states occurs around fpuey ~ taist suggests that our definition
of tqist, though somewhat arbitrary, is reasonable.

The bulk of the simulations in Figure 2.11 are 2D, and we do not have any 3D simulations
in the very weak turbulence limit. These simulations are computationally expensive, both
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Figure 2.11: Saturated magnetic field orientation as a function of the strength of the externally
driven turbulence, tpyoy/tdist, for local HBI unstable atmospheres with thyey = 1, V2 and /3.
The thick gray line is an isotropic magnetic field in 2D. Colored points represent simulations with
turbulence driven on different scales. Squares mark 3D calculations; the values of (b?) for the 3D
simulations have been shifted by a factor 3/2 since isotropy implies b2 = 1/2 in 2D but b2 = 1/3 in
3D. Error bars represent 1o statistical fluctuations in b, and tgjgt.
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Figure 2.12: Magnetic field orientation as a function of time in 2D simulations with turbulence and
the HBI for different initial magnetic field orientations; tnuoy/taist = 0.8. Left panel: Simulations
with anisotropic thermal conduction. Right panel: Adiabatic simulations with no conduction (and
thus no HBI). Different curves represent simulations with initially vertical and horizontal magnetic
field lines, respectively. Conducting simulations eventually reach the same saturated state indepen-
dent of the initial magnetic field direction. Adiabatic simulations are very similar to the conducting
ones if the field is initially horizontal, highlighting the fact that in the saturated state of the HBI
the plasma is buoyantly stable and behaves dynamically like an adiabatic fluid.

because of conduction and because we have to run for a long time for turbulence and the
HBI to reach a statistical steady state; using 2D simulations allowed us to explore a larger
fraction of the interesting parameter space. While the development of turbulence is very
different in two and three dimensions, the HBI is essentially two-dimensional in nature.
Moreover, the key dynamics governing the interaction between the HBI and the turbulence
are dominated by the energy-containing scale of the turbulence—the precise power-spectrum
of the fluctuations (which differs in 2D and 3D) is less critical. Scaling for dimension, we
find that the saturated states of our 2D and 3D simulations are nearly identical. We thus
believe that results in Figure 2.11 in the weak turbulence limit are a good description of the
magnetic field structure in 3D systems as well.

These results on the interaction between the HBI and other sources of turbulence support
an analogy between the saturated state of the HBI and ordinary, adiabatic stable stratifica-
tion. The most important effect of the HBI in the saturated states of our simulations is to
inhibit mixing in the direction of gravity. Ordinary stable stratification also inhibits vertical
mixing and, as suggested by Sharma et al. (2009b), our parameter tuoy/tdist is analogous to
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the Richardson number used in the hydrodynamics literature.”. To further expand on this
analogy, Figure 2.12 shows a comparison of anisotropically conducting (left panel) and adia-
batic (right panel) simulations with equal values of tyyoy /taist. For the adiabatic simulations,
we define tyyoy = tad, i.€., using the entropy gradient rather than the temperature gradient.
The left panel of Figure 2.12 shows simulations with the same injected turbulence, but ini-
tialized with vertical or horizontal magnetic field lines. In these simulations, the saturated
state is independent of the initial condition. That is, the interaction between turbulence and
the HBI leads to a well defined magnetic field orientation that is independent of the initial
field direction.

By contrast, in the adiabatic simulations (right panel of Fig. 2.12), the final magnetic
field orientation depends on the initial field direction. For an initially vertical field in an
adiabatic plasma, the turbulence slowly isotropizes the magnetic field direction. However,
the adiabatic simulations with initially horizontal field lines reach a saturated state that is
very similar to that of the HBI simulations. In the adiabatic simulations, the magnetic field
is essentially passive, but it traces the fluid displacements. The stable stratification competes
with the turbulence and sets a typical scale for vertical displacements in the saturated state.
This scale, in turn, determines the magnetic field geometry. The magnetic field plays no
dynamical role in this process. The fact that the anisotropically conducting simulations
reach the same statistical steady state highlights that the saturated state of the HBI behaves
dynamically very much like an adiabatic, stably stratified, plasma.

2.5.2 Effect of Turbulence on the MTI

To complete our analysis, we study how externally imposed isotropic turbulence affects
the saturation of the MTI. Figure 2.13 shows the volume averaged magnetic field orientation
as a function of time in MTI simulations with additional turbulence, for different values of
the strength of the turbulence thyoy/taist- These are local simulations (with domain sizes
L/H = 0.5; initialized using eq. (2.9)) which have the pedagogical advantage of a positive
entropy gradient, but which under-predict the kinetic energy generated by the MTI. We
drive the turbulence at relatively small scales (kL/2m = 8) so that subsonic turbulence can
still satisfy thuoy/taist > 1. Both our driven turbulence and the MTI tend to isotropize the
magnetic field, so it is not a priori clear whether the field orientation is a good indication
of the importance of turbulence relative to the MTI. Although Figure 2.13 shows that there
is no strong dependence of the saturated field orientation on the strength of the turbulence,
the time dependence of the field orientation clearly shows the effects of the turbulence on
the MTTI.

In general, the evolution of the MTI proceeds through two stages: there is a linear
phase, where the plasma accelerates toward its nominal stable state (which has a vertical
magnetic field), and a nonlinear transition to the saturated state, where the strong turbulence
generated by the MTI isotropizes the velocities and field lines. In the absence of additional

"The Richardson number is defined as Ri = gh/v?, where h is a characteristic vertical scale. Setting this
equal to the scale where the turbulent spectrum peaks yields Ri = (tpuoy / tdist)2
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Figure 2.18: Magnetic field orientation as a function of time in 3D simulations with turbulence and
the MTI, for different values of the strength of the turbulence thyey /taist. In all of the simulations,
the magnetic field is relatively isotropic in the saturated state. However, the early-time ‘overshoot’
towards a vertical magnetic field due to the MTI is suppressed in the presence of strong turbulence
with thuoy 2 taist- These relatively local simulations (L = 0.5H) underestimate the kinetic energy
generated by the MTI (Fig. 2.7) and therefore the strength of the turbulence required to influence
it.

turbulence, the linear phase is characterized by field lines that are primarily in the direction
of gravity (Fig. 2.5). Figure 2.13 shows that additional sources of strong (rapidly shearing)
turbulence suppress this linear phase of the MTI. Indeed, the evolution of the field angle
with time in our strongest turbulence simulations (tpuey/taist = 4.7) is quite similar to what
we find in simulations of an adiabatic plasma in which the MTTI is not present.

It would, however, be incorrect to conclude from Figure 2.13 that the MTT is unimportant
if there are other strong sources of turbulence in the plasma. The fundamental reason for
this is that the growth of the MTI does not depend significantly on scale, while the effects of
the other sources of turbulence do. Figure 2.14 shows velocity spectra for the simulations in
Figure 2.13; for comparison we also show the velocity spectra in adiabatic simulations, which
correspond to the power spectra produced solely by the injected turbulence. Figure 2.13
demonstrates that even in simulations with very strong imposed turbulence (tyuoy/taist = 4.7)
there is still significant excess power on the largest scales in the computational domain
(kL/2m < 10). This large-scale power is due to the MTI. Moreover, the turbulent energy
due to the MTI dominates the total turbulent kinetic energy in the plasma. These results
highlight that ‘strong’ turbulence is a scale-dependent statement. Suppressing the MTI
requires having tuuey/taist => 1 on all scales, up to the temperature/pressure scale-height of
the plasma. Because the MTTI itself generates nearly sonic velocities, this suppression would
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Figure 2.14: Velocity spectra in simulations with turbulence and the MTI (solid lines), for different
values of the strength of the injected turbulence tpyoy/tgist- The turbulence is driven at kL/2m = 8.
For comparison, dashed lines show the power spectra in adiabatic simulations, in which the injected
turbulence is the only source of power. Even when thuoy/taist > 1 at the driving scale of the
turbulence, so that one might expect the MTI to be suppressed, the MTI produces significant
turbulent energy on larger scales kL/2m ~ 2 — 10. Suppressing the MTT on all scales in a plasma
would thus require tpyoy/taist > 1 on all scales smaller than the scale-height.

require close to supersonic turbulence. In practice, it is therefore unlikely that additional
sources of turbulence can fully suppress the MTT in most astrophysical environments where
it is likely to occur (e.g., accretion disks and galaxy clusters).

2.6 Discussion

The motion of electrons along, but not across, magnetic field lines in dilute, magnetized
plasmas produces efficient, anisotropic transport of heat. Such plasmas are therefore non-
adiabatic, and the standard analysis of buoyancy (or convective) instabilities does not neces-
sarily apply. Quantitatively, conduction plays an essential role on scales less than 7 (AH)'/2,
where A is the electron mean free path and H is the plasma scale height. In this “rapid
conduction limit,” the temperature gradient, rather than the entropy gradient, dictates the
stability of the plasma, and the plasma is unstable for either sign of the temperature gradient
(Balbus 2000; Quataert 2008). The convective instability in this limit is known as the HBI
(MTI) when the temperature increases (decreases) with height.

Parrish & Stone (2005, 2007) and Parrish & Quataert (2008) extended the original linear
analysis of the MTI and HBI into the nonlinear regime using numerical simulations. In
this paper, we have reconsidered the nonlinear saturation of the HBI and MTI. Our work
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adds to previous investigations because we have identified a key difference between the two
instabilities and are able to understand the nonlinear behavior of the MTI more completely.
This paper therefore represents a significant change in our understanding of the possible
astrophysical implications of the MTI (but not the HBI). We have also studied the effect
of an external source of turbulence on both the MTI and HBI. We conclude that other
sources of turbulence in a plasma can change the saturation of the HBI, but that it is much
harder to disrupt the MTI. Below we summarize our results and discuss their astrophysical
implications, focusing on the intracluster medium (ICM) of galaxy clusters.

2.6.1 HBI

The HBI occurs whenever the temperature increases with height in an anisotropically
conducting plasma. Plasmas in the rapid conduction limit are in general linearly unstable,
unless the magnetic field lines are horizontal (eq. 2.7). Horizontal field lines represent a fixed
point in the evolution of the plasma: if the plasma somehow reaches such a state (and is
not perturbed away by another process), it will remain there forever. A horizontal magnetic
field is therefore a natural saturation channel for the HBI.

This “magnetic” saturation mechanism can be understood using the linear dispersion
relation of the plasma (§ 2.4.1). Starting from a linearly unstable state, the HBI induces
both horizontal and vertical motions in the plasma. As the HBI develops, however, the
vertical motions become trapped in internal gravity waves. These waves decay, leaving
only the horizontal motions at late times; thus, the fluid velocities are very anisotropic
in the saturated state. Since the horizontal motions don’t incur a buoyant response, the
horizontal displacements can be very large. These motions stretch out the magnetic field
lines, amplifying and reorienting them, and drive the plasma towards its stable equilibrium
with horizontal magnetic field lines. These horizontal motions therefore drive the nonlinear
evolution and saturation of the HBI.

Since the saturation of the HBI is dominated by horizontal displacements, the key dy-
namics all occur at approximately the same height in the atmosphere. The saturation of the
HBI is thus essentially local in nature. We have demonstrated this explicitly by carrying
out simulations with different domain sizes relative to the plasma scale-height; the results of
these simulations are very similar (Fig. 2.4).

The growth rate of the HBI decreases dramatically as the instability progresses. The HBI
therefore saturates quiescently, and the velocities in the saturated state are very subsonic
(Fig. 2.3). The saturation is driven by horizontal motions with nearly constant velocities, so
the nonlinear magnetic field amplification is approximately linear, rather than exponential,
with time. These findings are consistent with those of Parrish & Quataert (2008). We
note that the HBI is very much unlike adiabatic convection, which can only saturate by
changing the thermal state of the plasma and therefore generates vigorous turbulence. The
key difference between the HBI and adiabatic convection is that the source of free energy
for the HBI is a conductive heat flux through the plasma, not merely the existence of a
temperature gradient. Since the heat flux can be suppressed by rearranging the magnetic
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field, the HBI has a magnetic saturation channel that is not available to adiabatic convection.

The astrophysical implications of the HBI follow immediately from the nature of its
saturated state. By reorienting the magnetic field lines, the HBI dramatically reduces the
conductive heat flux through the plasma. The HBI should operate in the innermost ~100-
200 kpc in the intracluster medium of cool-core galaxy clusters, where the observed tem-
perature increases outward. As noted in Parrish & Quataert (2008), this is precisely where
the cooling time of the ICM is shorter than its age; the HBI removes thermal conduction as
a source of energy for the cores, potentially exacerbating the cooling flow problem (Parrish
et al. 2009).

Our results demonstrate that the saturated state of the HBI is buoyantly stable. This
may not seem surprising, because it is exactly what one would expect if the ICM were
adiabatic. The ICM is not, however, adiabatic, and thermal conduction would render it
buoyantly neutral to vertical displacements if the magnetic field lines were tangled. The
saturated state of the HBI is buoyantly stable only because of the nearly horizontal magnetic
field lines (that are perpendicular to the temperature gradient). The HBI therefore inhibits
vertical mixing and allows for the existence of weakly damped internal gravity waves in the
plasma.

Sharma et al. (2009b) noted that the stable stratification associated with the saturated
state of the HBI competes with other sources of turbulence in a well-defined way. This
competition can be understood using a modified Richardson number tpuey /taist, Where thyoy
is the timescale for the HBI to grow and tg; is a characteristic “distortion time,” or “eddy
turnover time,” of the turbulence. When tpu4, 2 taist, the turbulence can isotropize the
plasma and remove all traces of the HBI (Fig. 2.11). When tpuey S faist, the saturated state
of the plasma represents a statistical balance between turbulence and the HBI, with the
magnetic field becoming more horizontal, and the plasma more HBI-dominated, for smaller
values of thuoy/taist- The strength of other sources of turbulence is therefore crucial for
understanding the astrophysical implications of the HBI.

Figure 2.11 provides a very simple mapping between the properties of the turbulence and
the magnetic field geometry in the plasma. Given the strength of the turbulence and the
thermal state of the plasma, this figure provides a recipe for determining the mean geometry
of the magnetic field, and therefore the effective conductivity of the plasma. This can be
used to interpret observational results or to construct semi-analytic models of anisotropic
conduction for use in cosmological simulations.

Turbulence in the ICM is currently poorly constrained, and thus it is difficult to determine
precisely how important the HBI is for the evolution of clusters. Reasonable estimates suggest
that thuey/taist ~ 1, but more detailed simulations of clusters are required to determine this
ratio more precisely. Future observations of the ICM with space-based x-ray calorimeters
will place observational constraints on the level of turbulence. In addition, Faraday rotation
measurements of the ICM will measure the orientation of the magnetic fields in clusters and
constrain the role of the HBI (Bogdanovi¢ et al. 2011) (Pfrommer & Dursi (2010) describe
another mechanism to measure the magnetic orientation in the ICM). Even if the turbulence
is strong (fhuoy/taist 2 1), the driving scale and filling factor of the turbulence may allow
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the HBI to dominate on some scales or at some locations (see Fig. 2.10 and associated
discussion in § 2.5.1). As suggested by Parrish et al. (2010) and Ruszkowski & Oh (2010),
the interaction between turbulence and the HBI might be part of a feedback loop for the
thermal evolution of the ICM.

2.6.2 MTI

The nonlinear evolution of the MTT is more complex than that of the HBI. Just like the
HBI, the MTTI has linearly stable equilibria, but they are transposed: the linearly stable
equilibrium states of the MTI have vertical field lines. We have shown, however, that the
linearly stable equilibrium states turn out to be nonlinearly unstable; i.e., they are unstable
to perturbations with a finite amplitude. This nonlinear instability arises because neutrally
buoyant, horizontal displacements add a horizontal component to the magnetic field. This
takes the plasma out of its linearly stable state and re-seeds the instability (Fig. 2.6 and
§ 2.4.2). As a result, the linearly stable equilibrium states of the MTI do not represent fixed
points in the evolution of the instability, and the MTI cannot saturate simply by reorienting
the magnetic field.

This difference eliminates the quiescent, magnetic saturation channel for the MTI and
dramatically changes its evolution. Without a linear means to saturate, the instability
grows until nonlinear effects dominate, which occurs when v ~ ¢,. Unlike the HBI, the
MTT therefore drives strong turbulence and operates as an efficient magnetic dynamo, much
more akin to adiabatic convection. The astrophysical implications of the MTT are therefore
entirely different from those of the HBI. The kinetic and magnetic energy generated by the
MTT can contribute a significant (up to ten percent) non-thermal pressure support to the
plasma in the saturated state. This is consistent with observational constraints on non-
thermal pressure support in the ICM near the virial radius (George et al. 2009). This
non-thermal pressure support may have consequences for mass estimates of clusters, which
often rely on the assumption of hydrostatic equilibrium with thermal pressure support. Note,
in particular, that the MTT is predicted to be present at precisely the same radii (2 the scale
radius) to which x-ray and SZ mass measurements are most sensitive.

Because the MTI operates by buoyantly accelerating fluid elements until they approach
the sound speed, the results of numerical simulations of the MTI are sensitive to the size
of the computational domain. The boundaries of the domain can artificially suppress this
acceleration, and simulations with sizes smaller than a scale height under-predict the kinetic
energy generated by the MTI (this was the case in the original MTT simulations of Parrish &
Stone 2005, 2007). The nonlinear development of the MTT is therefore quite sensitive to the
global thermal state of the plasma, and an understanding of the MTI requires more careful
numerical simulations than are needed for the HBI.

The saturated state of the MTT corresponds to a largely isotropic magnetic field, with a
slight but persistent vertical (or radial) bias; this bias is robust even in the presence of other
sources of strong turbulence (Fig. 2.13). We find that the magnetic energy generated by the
MTT saturates at about 30% of the kinetic energy (Fig. 2.8). However, it may be difficult
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to observationally distinguish the turbulence generated by the MTI from that generated by
other processes.

The large velocities generated by the MTI, along with correlations between the temper-
ature and velocity perturbations, imply that the MTT drives a large convective heat flux,
~ 1.5% x pc (Fig. 2.9). While this convective flux is probably too small to alter the thermal
evolution of the ICM, it could be important in higher density astrophysical plasmas, where
the electron mean free path is smaller and conduction isn’t as efficient.

While the MTI cannot saturate by reorienting the magnetic field, it can saturate by
making the plasma isothermal. Simulations with Neumann boundary conditions in which
the temperature at the boundaries is free to adjust find that this is the case; the atmosphere
becomes isothermal before the MTI has a chance to develop (Parrish et al. 2008). We
fixed the temperature at the top and bottom boundaries of our simulations; this is partially
motivated by the fact that many galaxy clusters in the local universe are observed to have
non-negligible temperature gradients.

Sharma et al. (2008) carried out numerical simulations of the MTI in spherical accretion
flows and found nearly radial magnetic fields, with modest turbulence. This quasi-linear
saturation of the MTT might seem to contradict the results presented in this paper. Note,
however, that in the Bondi inflow studied by Sharma et al. (2008), the plasma undergoes at
most ~ 5 — 10 MTT growth times before flowing in. After 10 growth times, our simulations
also show approximately radial field lines and modest turbulence (Fig. 2.8). Moreover, the
simulations of Sharma et al. (2008) covered a very large dynamic range in radius and may
have lacked the resolution to see the full nonlinear development of the MTI.

The MTI growth time in the outer parts of the ICM is about 1 Gyr. Although our
typical MTI simulations take ~10-20 growth times to saturate, this does not preclude the
importance of the MTI in galaxy clusters. Figure 2.8 shows that there is a long, linear
ramp-up phase where the instability grows from the tiny perturbations we apply to the non-
linear state. Astrophysical perturbations are unlikely to be this subsonic. Figure 2.13 shows
that the MTI can saturate in ~2-5 growth times when subjected to larger perturbations,
suggesting that the MTTI is likely to become nonlinear in the outer parts of clusters. Cos-
mological simulations will be required to fully understand the implications of the MTI for
galaxy clusters.
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Chapter 3

Thermal Instability in
Gravitationally-Stratified Plasmas

3.1 Introduction

While the formation of dark matter halos can be understood via gravitational interactions
alone, the combined effects of cooling and gravity are essential to galaxy formation (Rees &
Ostriker 1977; Silk 1977; White & Rees 1978). This interplay remains poorly understood,
however, because the dense plasma in many high-mass halos is predicted to cool and accrete
far more rapidly than is observed (Peterson & Fabian 2006). As a result, theoretical models
and numerical simulations routinely over-predict the amount of cooling and star formation
in massive galaxies (e.g. Saro et al. 2006); this discrepancy is an example of the well-known
“cooling-flow problem.” Some studies avoid the cooling-flow problem by focusing only on very
hot halos (e. g. Sijacki & Springel 2006) or by “pre-heating” the gas to very high entropies (e. g.
Oh & Benson 2003; McCarthy et al. 2004); this solution cannot work in general, however,
because such hot systems are not representative of the cluster population (Cavagnolo et al.
2008). In particular, the central cooling time in many clusters is shorter than the Hubble
time. Significant heating (“feedback”) is required even at low redshift to suppress cooling in
high-mass halos (Benson et al. 2003), and thus to explain the observed cutoff in the galaxy
luminosity function (Cole et al. 2001; Kochanek et al. 2001).

Detailed x-ray observations of groups and clusters also highlight the need for significant
heating of the intracluster plasma. Though these objects contain large amounts of radiating
plasma (Fabian 1994), their x-ray spectra indicate a paucity of material cooling below ~ 1/3
of the maximum temperature (Peterson & Fabian 2006). This demonstrates that most of
the plasma radiates without actually cooling; i.e., an energy source heats the plasma at a
rate similar to its cooling rate.

Although heating dramatically suppresses cooling in groups and clusters, there is clear
evidence for some cool gas in these systems. Studying this cold material can provide an
important window into the heating mechanisms in groups and clusters and may help us
understand how the balance between heating and cooling is maintained. The existence
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of a cold phase can be inferred from star formation (O’Dea et al. 2010), but it has also
been directly imaged in a number of cases, revealing filamentary nebulae located tens of
kiloparsecs from the center of the potential (e.g. Fabian et al. 2008; McDonald et al. 2010,
2011a). Despite more than five decades of study, the origin of these dramatic filaments
has yet to be conclusively established: they have been interpreted as the remnant from an
enormous, central explosion (Lynds & Sandage 1963; Lynds 1970), mass dropout from a
cooling catastrophe (Fabian & Nulsen 1977; Cowie et al. 1980; Nulsen 1986), debris from a
high-speed merger of two gas-rich galaxies (Holtzman et al. 1992), or material dredged from
the central galaxy by rising bubbles inflated by its AGN (Fabian et al. 2003, 2008). Studies
have shown, however, that the cold gas is highly correlated with short central cooling times
in the hot intracluster plasma (e.g. Hu et al. 1985; Heckman et al. 1989; Cavagnolo et al.
2008; Rafferty et al. 2008, clearly illusrated in Voit et al. 2008), suggesting that its origin
involves cooling of the intracluster medium (1CM).

In this paper, we investigate the possibility that the cold phase forms as a consequence of
local thermal instability in a globally stable atmosphere. Though many authors (e. g. Fabian
& Nulsen 1977; Nulsen 1986) have previously proposed that the filaments form via thermal
instability, this idea has typically been analyzed in the context of a cooling-flow background.
Subsequent analytic and numerical studies (e. g. Malagoli et al. 1987; Balbus 1988; Balbus &
Soker 1989; Hattori & Habe 1990; Malagoli et al. 1990; Joung et al. 2011) showed, however,
that the linear thermal instability is ineffective at amplifying perturbations in a cooling flow
and concluded that it is unlikely unlikely to produce the cool filaments seen in many clusters.
By contrast, the thermal instability is not suppressed in a globally stable atmosphere (Defouw
1970; Balbus 1986), which is now believed to be a better approximation to the thermal state
of the iIcM. Quantitatively studying the thermal instability in this context has proven difficult
because of the cooling-flow problem: studies that include cooling and gravity generally find
that the plasma is globally thermally unstable, and that the entire cluster core collapses
monolithically.!

We avoid the cooling-flow problem in this paper using a new strategy. Rather than at-
tempting ab initio calculations of heating in clusters, we start from the observational fact that
the 1CM does not cool catastrophically. We therefore implement a phenomenological heating
model that enforces approximate thermal equilibrium when averaged over large scales. We
use this model to study the formation of multi-phase structure and we compare our results
with archival data for groups and clusters. We find that the thermal stability of the plasma
does not depend on its convective stability (see section 3.4.2). Instead, we find that the ratio
of the thermal instability timescale t,, to the dynamical (or “free-fall”) timescale tg governs
the non-linear saturation of the local thermal instability: the plasma develops extended,
multi-phase structure only where this ratio falls below a critical threshold (§3.5.1). This

!One-dimensional models of the 1cM with simplified heating prescriptions can be stable or quasi-stable
with episodes of heating and cooling (e.g. Guo & Oh 2008; Ciotti & Ostriker 2001); however, creating
a realistic, stable model in two or three dimensions is significantly more challenging. Moreover, just as
convection cannot be modeled in one dimension, the dynamics of cool, over-dense gas sinking through the
hot atmosphere is absent in one-dimensional models.
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conclusion is not sensitive to significant perturbations about our idealized feedback prescrip-
tion (§3.5.4) and is unchanged even in the presence of very rapid thermal conduction (§3.7.3)
(Though the threshold may depend somewhat on the geometry and initial conditions of the
system; see section 3.8).

This paper is the first in a series; here we present our model of local thermal instability and
demonstrate its properties and implications using linear theory and non-linear simulations.
The aim of this paper is to develop an understanding of the essential physics of the problem
and we therefore study stratified plasmas using idealized, plane-parallel calculations. In
our companion paper (Sharma et al. 2012b; hereafter Paper II), we present more realistic
calculations of groups and clusters with spherical geometries and NF'W halos. In both papers,
we focus our analysis on the transition of material from the hot phase to the cold phase; we
are not yet able to quantitatively predict any precise properties (such as sizes or luminosities)
of the cold filaments produced via thermal instability. We discuss in section 3.8 how our
results can nonetheless be tested observationally.

Because we put in by hand that hot halos are in approximate global thermal equilib-
rium, our model provides no direct insight into how this balance is maintained. This is
both a weakness and a strength of our current approach: though our setup is necessarily
phenomenological, our results are not tied to any particular heating mechanism. Thus, we
expect that our conclusions should apply to a wide range of systems, ranging in mass from
galaxies to galaxy clusters. We return to this point in sections 3.5 and 3.8 and we study
more physically motivated heating models in Paper II. Our present aim is not to identify a
plausible solution to the cooling-flow problem, but rather to understand what implications
a stabilizing heat source has for the local thermal stability and dynamics of the 1CM.

The structure of this paper is as follows. In section 3.2, we describe our model for the
plasma, including our phenomenological heating prescription. We describe our numerical
method in section 3.3, linear theory results in section 3.4, and our primary numerical results
in section 3.5. Section 3.6 provides a physical interpretation of the numerical results. For
simplicity, we initially ignore magnetic fields and thermal conduction in this paper; section 3.7
shows results including these effects. Finally, in section 3.8, we speculate on the astrophysical
implications of our model and compare our results with observational data from the ACCEPT
catalog (Cavagnolo et al. 2009).

3.2 Plasma Model

In this section, we describe our model for the cooling, heating and dynamics of the plasma
in a dark matter halo. Due to the wealth of observations of the 1ICM, we explicitly motivate
our model for galaxy clusters, and some of the details we present in this section may not
apply to galaxies. Nonetheless, our analysis is fairly general and we expect that some of our
basic conclusions also hold massive galaxies (see Paper II for more details).

We model the plasma as an ideal gas, sitting in the fixed gravitational potential of the
halo and subject to both optically-thin radiative cooling and heating by a stabilizing feedback
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mechanism. In the interest of simplicity, we initially ignore both thermal conduction and
the dynamical effect of the magnetic field; these effects are important in the 1CM (see, e. g.
McCourt et al. 2011b and references therein), but do not change our qualitative conclusions.
We generalize our results to conducting, magnetized plasmas in section 3.7.

The equations for the conservation of mass and momentum in the plasma, and for the
evolution of its internal energy are:

dp
§+v-(pv) =0, (3.1a)
0
5 (PV) +V - (pv@v+ Pg)=pg, (3.1b)
ds
pTE =H—-L, (3.1c)

where p is the mass density, v is the fluid velocity, ® denotes a tensor product, P is the
pressure, g is the unit matrix, g is the gravitational field, 7" is the temperature,

R (5) (3.2)

v — 1 pumu P

is the entropy per unit mass, and d/dt = 0/0t + v - V is the Lagrangian (or convective)
time derivative. In equation 3.2, kg is Boltzmann’s constant and pmy is the mean mass
of the particles contributing to thermal pressure in the plasma. The functions H and £
describe heating and cooling of the plasma, respectively; we explain our prescriptions for
these processes in the following sections.

3.2.1 Feedback

The physical origin of heating in clusters remains uncertain, but it is simple to understand
why our model requires the heating function H. Equation 3.1c shows that the timescale
for the 1ICM to cool in a cluster is ~ nT |£ —H|'; if # = 0, this timescale near the
centers of many clusters can be orders of magnitude shorter than the Hubble time (this
is the aforementioned cooling-flow problem). The continued existence of the ICM in these
clusters therefore strongly suggests that it is very nearly in thermal equilibrium, with H
approximately equal to £ when averaged over sufficient length- or time-scales.? Nonetheless,
the multi-phase structure seen in many clusters (e. g. McDonald et al. 2010, 2011a) suggests
that the thermal instability also operates. For the purposes of this paper, we call this
behavior globally stable, but locally thermally unstable.

2An alternative is a “cooling-flow” model, where the cooling gas flows inward and is replenished by
continued accretion (see Fabian 1994). This is not a viable alternative to heating, however, as these models
over-predict the rate of gas cooling to low temperatures and the star formation rates in clusters by a factor of
10-1000; furthermore, the resulting density profiles are strongly disfavored by x-ray observations (McNamara
& Nulsen 2007). We therefore do not consider cooling-flow models in this work.
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The processes maintaining global thermal stability in clusters are not fully understood.
The condition of global stability with local instability constrains the possible heating mech-
anisms, however, and suggests a phenomenological model for heating in the 1cM. This is a
model in which H ~ £ on average, but not H = L identically. We adopt a specific imple-
mentation of this feedback model which simply fixes thermal equilibrium at all radii in our
model halos. We set

H = (L), (3.3)

where (- - -) denotes a spatial average at a given radius. Thus, heating in our simplified model
is a function only of r and t. By construction, this heating function ensures global thermal
equilibrium at all radii in the plasma (precluding a cooling catastrophe), but permits the
thermal instability to grow on smaller scales. It thus captures what we believe is the essential
physics for the formation of multi-phase structure and meets our observationally-motivated
requirements for the thermal stability of the 1CM.

Equation 3.3 can be roughly motivated by positing a causal relationship between cooling
on small scales and heating on large scales. Accretion onto a central AGN induced by cooling
at larger radii is a promising mechanism for this “feedback” (Pizzolato & Soker 2005, 2010),
and feedback from star formation could play a similar role in lower mass halos. Our specific
heating implementation instantaneously balances cooling in every radial shell—in detail, this
behaviour is non-local, acausal, and unphysical. Equation 3.3 is intended to mimic the end
result of very effective feedback, but does not directly model the feedback process. Finding
a physically-motivated heating mechanism that also leads to global stability is an important
goal in the theory of the 1CM, but it is outside the scope of our present study.

Our heating model is necessarily idealized, and it is important to separate tautological
results (put in by hand) from the results which more generally reflect the global stability
and local instability of the plasma. Though the subtleties of feedback are likely to strongly
affect the evolution of the plasma, we find that our qualitative conclusions are not sensitive
to the precise form of our heating function. We demonstrate this in section 3.5.4 by applying
spatial and temporal variations to equation 3.3. Moreover, the simulations in Paper II reach
similar conclusions using a very different setup. Thus we believe that the results derived
using equation 3.3 capture some of the essential (and robust) dynamics of local thermal
instability in globally stable systems. It is, however, difficult to prove this conclusively given
current uncertainties in the heating of the 1CM.

In our heating model, spatial variations between heating and cooling drive thermal in-
stability; a more realistic model would likely introduce temporal, in addition to spatial,
variations. We show in §3.5.4 that our conclusions do not change unless these temporal fluc-
tuations around the thermal equilibrium are very large (~ 300%). We choose to begin our
study using equation 3.3 because it is analytically tractable and lends itself to a thorough
investigation.

Equation 3.3 is appropriate for a heating process which distributes energy per unit vol-
ume, such as the dissipation of MHD waves. Other processes like photoelectric heating dis-
tribute energy per unit mass. Since it is not yet known how feedback energy is thermalized
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in the ICM, we generalize equation 3.3 to other processes:

{£)
(n)”

Here, o = 0 corresponds to volumetric heating and o = 1 corresponds to mass-weighted
heating. We show in section 3.4.1 that the thermal instability takes ~ 3 times longer to
develop in plasmas with a = 1 than in plasmas with a = 0; after scaling the timescales
by this factor, however, we find very similar evolution for plasmas with volumetric and
mass-weighted heating (see figure 3.2, below).

H =n"

(3.4)

3.2.2 Cooling

In the idealized spirit of this paper, we adopt a simple cooling function £ dominated by
thermal Bremsstrahlung

Ly = n’A(T) = Agn*T"?, (3.5)

where n = p/pumy is the number density of particles in the plasma and we have introduced the
standard notation A(T) for consistency with other work. Our conclusions are not sensitive
to the shape of the cooling function as long as the plasma remains locally thermally unstable
(§3.4); this is the case in the 1CM for temperatures above ~ 101K.

In an unstratified plasma, thermally unstable clumps of cool gas collapse to the Field
length in the cold phase (the length-scale below which thermal conduction suppresses local
thermal instability; Field 1965, Begelman & McKee 1990). Resolving the realistic Field
length in the cold phase of the ICM is numerically impractical, so we introduce a temperature
floor at which we truncate the cooling function (see Sharma et al. 2010, §2.2 for a discussion
of this approximation; also see §3.5.3 of this paper). We use the modified cooling function

L= L5 Ou(T — Thoo), (3.6)

where Oy is the Heaviside function, and T effectively becomes the temperature of the
cold phase.

The microphysical processes heating and cooling the cold phase in the 1cM are likely
to be very complicated (see Ferland et al. 2009) and we do not consider them here. Our
use of a temperature floor amounts to the reasonable assumption that, once a thermally-
unstable fluid element cools below T, it is unlikely to enter back into the hot phase.
This simplification, along with our omission of line-cooling from equation 3.5, prevents us
from studying the evolution of the cold material in detail. This is not a major limitation,
however, because we are primarily interested in the transition of material from the hot phase
to the cold phase. Following the internal structure of the cold clumps would be crucial for
calculating the emission from filaments or for studying the intermittency in the accreted
mass flux, but these applications are beyond the scope of our present study.
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The simplified cooling function used here (eq. 3.6) prevents the gas from cooling be-
low Thoor and therefore artificially lowers the gas density in thermally unstable clumps or
filaments. We have confirmed, however, that the quantitative results in this paper are in-
sensitive to the numeric value of Tjoer, provided it is much lower than the initial (or virial)
temperature of the plasma. In Paper I we use a realistic cooling function that includes both
Bremsstrahlung and line emission, and which does not implement a temperature floor. The
results from this more realistic model agree with our conclusions here.

3.3 Numerical Model

We solve equations 3.1a—3.1c using the conservative MHD code ATHENA, modified to
implement equations 3.4 and 3.6 via a semi-implicit, operator-split method (Sharma et al.
2010). Specifically, we evolve the thermal energy per unit volume F = nkgT/(y — 1) using

SEM = (H™ — £M) gt (3.7a)
E™ 4 55™ SE™ >0

B — : (3.7b)
E™/(1+[sE™/E™|) §E™ <0

where 0 indicates a finite approximation to a differential, and f™ denotes the function f
during the n'* time-step of the simulation. This method explicitly prevents the temperature
from becoming negative, even in the extreme case that the cooling time becomes shorter
than the simulation time-step (although equation 3.7 is no longer accurate in this limit).
Equation 3.7 is asymmetric and is only accurate to first order in t/t.,o. In order to test
the sensitivity of our simulations to these shortcomings, we have also run simulations using
a fully explicit, sub-cycled method. The two methods yield very similar results. We use
equation 3.7 because it is faster than an explicit method and because it does not alter our
results.

We perform most of our calculations on 2D Cartesian grids of resolution (300)* or 3D
Cartesian grids of resolution (128)3. We show a resolution study in section 3.5.3. In the
remaining sections, as in our simulations, we work in units with kg = pm, = 1.

We perform our calculations in the plane-parallel approximation, with g = —g(z) 2. We
therefore use the words ‘height’ and ‘radius’ interchangeably in the following sections. We
make our setup symmetric about the z = 0 plane, with

z/a
9="9 : (3.8)
[1+ (/)2
Thus, ¢ is nearly constant outside |z| = a, with a smooth transition through zero at the

center. This setup enables us to place the computational boundaries far from the center,
where most of the cooling and feedback take place (see figure 3.1). To further diminish the
influence of the boundaries, we end our simulations before one cooling time transpires at
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the boundary. We use reflecting boundary conditions in the direction parallel to gravity and
periodic boundary conditions in the orthogonal directions.

We set the softening radius a = 0.1 H, where H is the plasma scale-height (defined be-
low). We turn off cooling and heating within |z| < a because the physics at small radii
is particularly uncertain and our feedback prescription (equation 3.4) may not be a good
approximation to what happens there. We allow cold material to accumulate in the center
|z| < a, but we otherwise ignore this region in our analysis. We have also performed simula-
tions in which we do not turn off cooling in the center and have confirmed that it does not
change our conclusions at larger radii z 2 H.

We initialize the 1CM in hydrostatic equilibrium, with a constant temperature 7y and
with the density profile

p(2) = po exp | ([1+ (z/0)]* = 1)] (3.9)

where the scale-height H = Tj/go. For computational convenience, we set pg = To = go = 1
and we take Tjoor = 1/20. This roughly corresponds to a virialized halo, in which the thermal
and gravitational energy in the plasma are approximately equal. The atmosphere defined
by equation 3.9 is buoyantly stable, with ds/dz > 0. To test the sensitivity of our results to
stratification, we also use the buoyantly neutral atmosphere defined by

T(z) =T {1 - 77_1% ([1 +(z/a)?]? - 1)} , (3.10a)

7\ YO-D
) . (3.10b)

p(z) = po (ﬁ

We refer to the conditions defined by equations 3.9 and 3.10 as isothermal and isentropic,
respectively. Note that our use of the entropy gradient to determine convective stability is
only appropriate because we have neglected conduction. When thermal conduction is effi-
cient, the temperature gradient and the magnetic field orientation determine the convective
stability of the plasma (Balbus 2000; Quataert 2008). We describe this in more detail in
section 3.7.

We seed thermal instability in our model atmospheres by applying an isobaric pertur-
bation with a flat spectrum ranging from k = 27/L to k = 407/L, where L is the size of
the simulation domain. The cutoff at high k£ makes the perturbation independent of reso-
lution and permits a detailed convergence study. Unless otherwise noted, the modes of this
perturbation have Gaussian-random amplitudes with an RMS value of 1072,

We define the free-fall time and the cooling time as follows:

by = (2—Z)1/2 (3.11a)

90

3T1/2
teool = =——. 3.11b
: 2 nAO ( )
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Since these timescales are functions of height in our simulations, we quote them in the plane
z = H to give single values. When our analysis depends on the ratio t.,/tg, we restrict
it to this plane. We perform simulations with different initial values of the ratio teool/ts
by changing the parameter Ag; this permits direct and unambiguous comparison among
our simulations because each is initialized identically. In reality, of course, Ag is set by
fundamental physics, and different values of t..0/tg correspond to clusters with different
ICM entropies or densities.

3.4 Linear Theory Results

Equations 3.1-3.6 completely specify our model. In the rest of this paper, we study the
properties of this model and apply it to astrophysical systems. In this section, we describe
the linear stability of our model and derive the timescale for the formation of multi-phase
structure in the plasma. We discuss the well-known linear results in some detail because
they inform our interpretation of the non-linear behavior described later. In addition, the
interpretation of these linear results has generated some confusion in the literature, leading
to conflicting claims about the thermal stability of gas in hot halos.

3.4.1 Linear Stability

We define the net cooling rate © = £ — H and assume that the plasma is initially in
thermal equilibrium with © = 0 everywhere. The derivative (00/9T)p describes how the net
cooling responds to a linear, Eulerian perturbation. If this derivative is negative, a decrease
in temperature at a fixed location in the plasma leads to an increase in the net cooling rate;
thus, the temperature decreases further and the perturbed fluid element runs away to low
temperatures. Similarly, an increase in temperature causes the fluid element to run away to
high temperatures. The plasma is therefore unstable to small temperature fluctuations when
(00/0T)p < 0. A similar line of reasoning demonstrates that the plasma is thermally stable
if (00/9T)p > 0. Following Field (1965), we derive this result by linearizing and perturbing
equations 3.1a—3.1c. This analysis yields the linear growth rate of the perturbations and will
assist our interpretation of the non-linear results presented later.

We Fourier transform equations 3.1a-3.1c and perform a standard WKB analysis. We
seek solutions with growth times much longer than the sound-crossing time and therefore
make the Boussinesq approximation, which filters out sound waves (Balbus 2000, 2001).?

3We show later that the most important modes have wavelengths of order the Field length, ~ 10 kpc. These
modes have a sound-crossing time less than 10% of the cooling time; thus, they cool almost isobarically.
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Under these approximations, the dynamical equations become

k-ov=0 (3.12a)
—iwk*6v = _on (kg — k(k-g)] (3.12b)
n
, Js WG]
—iwis + 51)2& = (3.12¢)

In deriving equation 3.12b, we have crossed the momentum equation with k twice and used

equation 3.12a to eliminate the compressive component of the velocity. This is consistent
with the Boussinesq approximation and simplifies the algebra later on. Additionally, in the
Boussinesq limit,

___1 om
ds = PO (3.13)
and
00\ on
=T == = 14
"0 <8T>P n (314

In deriving equation 3.14, we have used the thermodynamic identity

(8lnX) _ ((9lnX) B (8lnX) (3.15)

olnT /, OlnT ], olnn /.

for any state function X (n,7T’). Note that, although the net cooling rate © varies explicitly
with position, this dependence does not enter into equation 3.14 because dO represents an
Eulerian perturbation at a fixed point in space. Although heating in our model has explicit
radial and temporal dependencies, it experiences no first-order change under an Eulerian
perturbation. We therefore ignore changes to the heating in this linear analysis. This should
not give the impression that heating is immaterial to the linear results; on the contrary, these
results presume an initial equilibrium state with a stabilizing heat source. The growth of
the thermal instability is very different in the absence of such heating (Balbus 1988; Balbus
& Soker 1989).

Combining equations 3.12-3.14, we find that the linear dispersion relation for the plasma
is

T (00 ~
2 14 (009 A2 2\
wr i <8T)wacool N (1 kz> 0 (3.16)
where
-1 L _
Weool = 7—_ = (”Y tcool) ! (317)

v nT
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is the cooling rate,

—1 O0s
N = 7795 (3.18)

is the frequency for internal gravity waves, and k=k /k is the direction of the wave vector of
the perturbation. As noted previously, we have neglected conduction and thus equations 3.16
and 3.18 only apply on relatively large length scales, 2 the Field length (see section 3.7).
Equation 3.16 implies that perturbations grow exponentially in amplitude ~ ePmt, with

y—11 (00
nm— —— | 5+ 1
p — (8T i (3.19a)
v—1 Oln A L
— 9 _ — = 1
v ( omT )T (3-19b)

3
= (5 - Oé) Weool - (319C>

The three forms of equation 3.19 are equivalent and are useful in different contexts. In
equation 3.19¢c, we have specialized to Bremsstrahlung cooling. In this case, plasmas with o <
3/2 are locally thermally unstable (with p,, > 0), even though our model is (by construction)
globally stable against a cooling catastrophe.

3.4.2 Local Stability, Global Stability, and Convection

Following Field (1965) and Defouw (1970), we showed in the previous section that the
ICM is likely to be locally thermally unstable, and we propose that thermal instability may
produce at least some of the multi-phase structure in galaxy clusters. At first, our analysis
may appear inconsistent with other claims (such as can be found in, e.g. Balbus & Soker
1989 and Binney et al. 2009) about the importance of local thermal instability in galaxy
and cluster halos. We review this apparent contradiction here and show that there is no
inconsistency.

Balbus (1988) and Balbus & Soker (1989) extensively studied thermal instability using
Lagrangian techniques and discovered that it is significantly stabilized in a cooling-flow. In
a globally stable atmosphere, however, perturbations do grow exponentially (Defouw 1970;
Balbus 1986). Since it is now thought that clusters are globally thermally stable and that
the 1CM persists for many cooling times, we expect the thermal instability to undergo many
e-foldings and to become highly non-linear in clusters (though this does not always imply
a large amplitude; see §3.6). Thus, assumptions about the global stability of the 1CM also
dictate conclusions about its local thermal stability and one must be careful to choose an
appropriate background model.

Even though we expect perturbations to grow exponentially in clusters, they do not
necessarily grow monotonically: equation 3.16 shows that a thermally unstable perturbation
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oscillates as it grows if the cooling time is longer than the buoyancy time. This overstability
represents a driven gravity wave (see Defouw 1970). Since the thermal instability in this
case is not purely condensational, its identification with multi-phase gas becomes somewhat
unclear (Malagoli et al. 1987; Binney et al. 2009). However, the growth rate of the thermal
instability is essentially unaffected by buoyancy (equation 3.16), and thus perturbations
are also likely to become highly non-linear in this limit. Earlier studies of the thermal
overstability in stratified plasmas have either focused entirely on the linear evolution of
perturbations (Defouw 1970; Malagoli et al. 1987; Binney et al. 2009) or have studied them
in the context of a cooling-flow (Hattori & Habe 1990; Malagoli et al. 1990; Joung et al.
2011), in which the thermal instability is suppressed (Balbus & Soker 1989).

For the reasons listed above, we argue that earlier studies cannot directly predict the
astrophysical implications of thermal instability in cluster halos. The astrophysical impli-
cations of the thermal instability depend on how the linear growth saturates in a globally
stable environment. This motivates our present study. A series of previous investigations
are very similar to ours (Nulsen 1986; Pizzolato & Soker 2005; Soker 2006; Pizzolato & Soker
2010), but focus on the survival of preexisting cold filaments rather than their formation
via thermal instability. Our investigation compliments these studies and produces the initial
conditions they require.

The saturation of the thermal instability involves the sinking of cool over-densities; in
this respect, it bears some similarity to convection. This connection between thermal and
convective stability was first recognized by Defouw (1970) and was significantly sharpened by
Balbus & Soker (1989). Specifically, Balbus & Soker (1989) showed that thermal instability
necessarily implies convective instability if the heating and cooling are state functions of the
plasma. Heating in galaxy groups and clusters is very unlikely to be a state function of the
ICM plasma, however. As a concrete example of spatially dependent heating, consider heat-
ing by turbulence (induced by, e.g. buoyant bubbles created by star formation or an AGN).
The heating rate in this case is set by the rate at which turbulent energy is transferred to
small scales, and thus by the turbulence properties as a function of position. In this case, i.e.
when the heating depends explicitly on position, there is no one-to-one relationship between
convective and thermal stability (as noted by Balbus & Soker 1989). Fundamentally, buoy-
ancy determines convective stability, while heating and cooling determine thermal stability;
these processes are not related in a globally stable atmosphere, and the thermal stability of
an atmosphere is independent of its convective stability.

3.5 Simulation Results

We extend our analysis into the non-linear regime using the numerical setup described in
section 3.3. We have run a large suite of 2D and 3D simulations, summarized in Table 3.1.
We focus our analysis on the presence of multi-phase structure (§3.5.1) and on the accreted
mass flux (§3.5.2), both of which can be compared with observations of groups and clusters.

Equation 3.19¢ shows that the growth rate of the thermal instability is a factor of 3
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Figure 3.1: Snapshots of the density (top) and fractional density inhomogeneity dp/p = (p—{p))/{p)
(bottom) at the time ¢t = 10ty (2 = H) in our simulations. Note that our simulations are symmetric
about the plane z = 0; this enables us to put the boundaries far from the center, where most of the
cooling and feedback take place. Gravity points down in the top half of the domain and up in the
bottom half (for the remainder of the paper, we primarily show images of the top of the domain).
We applied the heating function in equation 3.4 to ensure global thermal stability, distributing
the energy per unit volume (o = 0). From left to right, these simulations have initial values of
tr/tg = 10,3,1 and 0.1. These simulations demonstrate that cooling and heating drive internal
gravity waves when ¢y, /tg 2 1. The amplitude of these waves increases with the cooling rate and
approaches the size of the simulation domain when ¢y, ~ tg. When ¢, /tg < 1, the thermally unstable
gas collapses into dense clumps, which then rain down into the center of the potential. For clarity,
we have restricted the color bar on plots with ¢y /tg = 1/10. In this simulation, (6p/p)max ~ 20
is set by the (arbitrary) temperature floor we impose. While the simulations have been run for 10
thermal instability times at z = H, gas near the boundaries has not yet had time to cool. The
initial perturbations are still visible near the boundaries in the lower-rightmost plot. This figure
also clearly shows the accumulation of cool material in the center of our simulation domain. We
describe this process in more detail in §3.6. Animated versions of the figures in this paper can be
found at: http://astro.berkeley.edu/~mkmcc/research/thermal instability /movies.html.


http://astro.berkeley.edu/~mkmcc/research/thermal_instability/movies.html

3.5. SIMULATION RESULTS o1
tTI/tﬁr:10 tTI/tﬁ‘:v?) tTI/tﬁ‘:]. tTI/tff:l/?) tTI/tﬁr:1/10

T I R I L | IT T

g

2

3

&

3

T

b

i, i : g s o ’ ] g

b R &y " g

L TR R BASTRN -

L

S

P~ “-‘\ -

E e e I w0

5

T

=

o

o

g

x/H x/H

Figure 3.2: Snapshots of the density at the time ¢ = 10 ¢, for different values of the time-scale ratio

tr/tg. The top two rows show our simulations with isothermal initial conditions and volume and

mass-weighted heating, while the bottom two rows show isentropic initial conditions with volume and
mass-weighted heating. These results show that the non-linear behavior of the thermal instability
is relatively independent of the initial stratification and the details of the heating. Note that the

color scale was chosen to show the features in the gas and varies from plot to plot; the ranges for a
given value of ¢, /tg are similar to those shown in figure 3.1.
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Table 3.1: Parameters for simulations without conduction (§3.5).

Inltlal L/H Oé tTI/tff

Condition
—1
[sothermal 3 M
1 470A;"
—1
Isentropic 2 w
1 3.74A;"

We performed all simulations on square Cartesian grids of resolution (300)% or (128)3 and
physical size 2L (the scale-height H is defined in §3.3). We also performed simulations at
other resolutions as part of a convergence study (§3.5.3). The cooling constant Aq is a free
parameter in our model, which we choose to obtain the desired t¢.,/tg. Each combination of
the listed parameters was simulated with initial values of log,,(t/tg) at z = H spanning
between —1 and 1 with increments of 1/4. The top row represents our fiducial setup; we
also performed 3D simulations using this setup with log,,(t+/tg) = —1, —0.75, —0.5, 0, and
1.

smaller in plasmas with heating per unit mass than in plasmas with heating per unit volume.
More generally, the timescale depends on the uncertain parameter o and cannot be directly
applied to (or inferred from) observations. Nonetheless, it is convenient to use t,, = p..! to
normalize time when considering the physics of the thermal instability with different values
of a. We also use the cooling time teoo) = E/L = (7Weoo1) "+ When we compare our results
with observations. These two timescales differ only by an uncertain factor of order unity.

3.5.1 Multi-phase Structure

We performed simulations with the ratio of time-scales t,/tg ranging from 0.1 to 10
(measured at z = H) and ran each for ten growth times, until ¢ = 10¢,,. Figure 3.1 shows
representative snapshots of the density at the end of our fiducial simulations with volumetric
heating and isothermal initial conditions. Our simulations show that plasmas with cooling
times shorter than the dynamical time (¢, < tg) develop spatially extended multi-phase
structure, whereas plasmas with cooling times longer than the dynamical time (¢, 2 tg) do
not. Thus, the ratio ¢, /tg controls the non-linear saturation of the thermal instability in
stratified plasmas; this observationally-testable prediction is the primary result of our study.
This conclusion does not depend strongly on either the initial stratification of the plasma or
on our choice of heating per unit volume. To demonstrate this, figure 3.2 shows variations
of our fiducial simulations with isentropic initial conditions and with mass-weighted heating.
In all four cases, the saturated state transitions from single-phase to multi-phase when the
ratio of time-scales t.,/tg becomes less than one. Below, we describe the plasma properties
in these two limits and the physics of the transition between them.
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Figure 3.3: (Left:) Mass fraction of cold material (with T' < Tiyitia1/3) as a function of the timescale
ratio tr,/tg. The mass in cold material drops off sharply when ¢y, ~ tg, and there is no extended
multi-phase structure in the weak-cooling limit. All quantities in these plots represent averages
from z = 0.9-1.1 H and from ¢ = 9-10ty,. (Right:) Fractional density inhomogeneity dp/p as a
function of the timescale ratio ¢y, /tg. Blue (red) lines indicate isothermal (isentropic) initial con-
ditions, solid (dashed) lines indicate volumetric (mass-weighted) heating. The blue stars represent
3D simulations using our fiducial setup (isothermal initial condition with volumetric heating); the
remaining simulations are 2D.
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The evolution of plasmas with short cooling times t;, < tg is straightforward: in this
limit, the thermal instability develops and saturates before the plasma can buoyantly re-
spond. The initial perturbations therefore collapse into dense clumps essentially in-situ, and
the 1CM develops a highly inhomogeneous, multi-phase structure wherever ¢.,(z) < t. The
clumps of cold gas then rain down onto the central galaxy on the (much longer) free-fall
time, while bubbles of heated gas rise outwards. The rightmost panels of figures 3.1 and 3.2
illustrate this behavior. The result is a hotter atmosphere (in which t,,/tg > 1), filled with
clumps of cold gas. We show in Paper II that this end state resembles the observed properties
of some cool-core groups and clusters.

The saturation of the thermal instability is fundamentally different when the cooling time
is long compared to the dynamical time. In this limit, gravity and buoyancy influence the
linear evolution of the perturbations (though the growth rate changes only by a factor of
two). Nonlinearly, however, buoyancy provides a critical saturation channel for the thermal
instability that prevents the formation of multi-phase gas. This conclusion is qualitatively
similar to that reached by Balbus & Soker (1989); however, the physics is very different in
our case because the background atmosphere remains statistically in thermal equilibrium
for many cooling timescales. As initial perturbations cool and grow, they sink in the grav-
itational potential and mix with gas at lower radii. The cooling thus drives a slow, inward
flow of material; the associated mass flux is, however, significantly smaller than is predicted
by models without heating. We return to this point in the following sections. Rather than
creating strong density inhomogeneities, cooling in this limit excites internal gravity waves
with an amplitude that depends on the timescale ratio t./tg. These waves represent the
overstability highlighted by Balbus & Soker (1989) and by Binney et al. (2009); we discuss
their saturation below.

Our results depend crucially on the existence of a globally-stabilizing heating mechanism;
if heating were not present, the atmospheres shown in figures 3.1 and 3.2 would collapse
monolithically. This globally unstable case has been studied extensively by Balbus & Soker
(1989). Consistent with their analysis, we find that atmospheres with small initial density
inhomogeneities do not form multi-phase gas, regardless of ¢,,/tg (see Paper II for a more
detailed discussion).

Figures 3.1 and 3.2 show that, assuming the existence of a globally stabilizing heating
mechanism, plasmas with short cooling times ¢, < tg develop spatially extended multi-
phase structure, while plasmas with long cooling times do not. The left panel of figure 3.3
demonstrates this result more quantitatively. Here, we plot the mass fraction of cold gas
(with T' < 1/37T)) at late times in the plane z = H as a function of ¢.,/tg. (Recall that, in
our units, Ty ~ Tyirar-) This figure shows that the fraction of cold gas drops precipitously
around t.,/tg ~ 1 and that there is essentially no multi-phase gas at large radii in simulations
with tr /tg > 1.

The right panel of figure 3.3 quantifies the dependence of the saturated density fluctu-
ations on the time-scale ratio t,,/tg and hints at the physics of the transition between the
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two limits. Here, we plot the root-mean-square (RMS) average of the density perturbations

o
o _p=1p) (3.20)
p ()

as a function of t,/tg in the plane z = H as in equation 3.3, (---) indicates a spatial

average at a given radius. In the short cooling time limit, the plasma develops multi-phase
structure with large density perturbations dp/p 2 1. By contrast, in the long cooling time
limit, the density perturbations saturate at much lower values dp/p < 1. For plasmas with
stable background stratification (e.g. our isothermal initial conditions), dp/p in this limit
represents the amplitude of the gravity waves driven by cooling. Note that, while the mass
fraction of cold gas drops off sharply around t./tg ~ 1, figure 3.3 shows that the mean
density fluctuation is a smooth function of this parameter, even in the weak cooling limit.
We work to understand this quantitatively in section 3.6.

We emphasize that the difference in the evolution of plasmas with long and short cool-
ing times does not simply result from the thermal instability taking longer to develop in
simulations with weak cooling. We have run each simulation for a fixed number of growth
times t., and, if gravity were not present, the results of our simulations with rapid and slow
cooling would be nearly identical (we have confirmed this numerically). In fact, even in
our simulations with long cooling times, the density contrast dp/p becomes large near the
center of the potential, where gravity is weak (eq. 3.8) and the thermal instability has time
to develop. The development of multi-phase structure depends on both gravity and cooling
and therefore on the parameter t.,/tg, rather than simply on the cooling time alone.

3.5.2 Accreted Mass Flux

Figure 3.4 shows the instantaneous, mean mass flux through the plane z = H as a
function of time in three of our 3D, fiducial simulations. The mass fluxes are normalized to
the values predicted by cooling-flow models without heating, Mcy = pH [ty It is clear that
the mass flux is strongly suppressed relative to the cooling-flow solution whenever ¢,/ tff > 1.
This is not a trivial consequence of our feedback heatmg mechanism, because for t,; < tg,
M approaches Mcp. Rather, the suppression of M for ¢, > tg is also due to the non-
linear saturation of the thermal instability (described below). The mass fluxes we find for
tr 2 tg are < 1% of the cooling-flow estimates and are therefore reasonably consistent with
observational limits for cooling in the 1M (Peterson & Fabian 2006). In Paper II we show
that this suppression is even stronger in spherical potentials and we explore its dependence
on the details of our heating model.

In the rapid cooling limit, we find that gas heated at small radii, where the cooling time
is shorter, rises up through the plane z = H and initially drives an outflow. As the thermal
instability progresses, however, this outflow reverses and a strong accretion flow develops
(although the accreted material is all in the cold phase, rather than the hot phase; see the
left panel of figure 3.3). The accretion rate approaches the cooling-flow value and eventually
depletes the atmosphere of its gas. Thus, even our idealized feedback model (eq. 3.4) cannot
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Figure 3.4: Mass flux (averaged from z = 0.9-1.1 H) as a function of time in 3D simulations,
normalized to the cooling-flow flux for that atmosphere. The mass flux is severely suppressed when
tr 2 tg (see eq. 3.27). The mass flux is not suppressed as strongly when ¢, < tg, but it is highly
variable. Thick lines indicate a positive mass flux (i.e., an outflow), while thin lines indicate a
negative mass flux (i.e., an inflow). Note that gravity waves dominate the instantaneous mass flux

when ¢, /tg = 10; the time-averaged accretion rate is much smaller than suggested by this plot.
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Figure 3.5: Convergence of the probability distribution function for density fluctuations P(dp/p).
Colored lines show simulations at different resolutions, and the thick gray line shows the best-fit
Gaussian distribution. This figure shows that the density inhomogeneities are reasonably converged
in our simulations, apart from the obvious fact that one can resolve finer structure, and therefore
higher dp/p, at higher resolution. Note that in the limit of rapid cooling, the properties of the high
density regions are determined in part by the temperature floor we apply, which determines the
density of cold clumps that can be in pressure equilibrium with the surrounding hot plasma.

suppress a cooling catastrophe when t,,/tg < 1. We discuss the implications of this result
in section 3.8 and, more thoroughly, in Paper II.

Figure 3.4 is only meant to be suggestive, as several subtleties in our analysis complicate
a precise interpretation of the accreted mass flux. For instance, we use only the initial value
Mcr, though this quantity changes dramatically over the course of some of our simulations.
Additionally, in simulations with t,; < tg, a more appropriate normalization for the mass
flux might be pH /tg, since the gas is not likely to flow in faster than its free-fall rate. Paper IT
presents a much more realistic and thorough analysis of mass accretion rates.

3.5.3 Resolution Study

We test the numerical convergence of our results with 2D calculations on grids of resolu-
tion (100)? (200)? (300)? and (400)? for the full range of t.,/tg. Additionally, we performed
3D calculations of resolution (128)% and (256)3 for atmospheres with ¢.,/tg = 0.1, 1, and 10.
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Figure 3.5 shows the distribution of density perturbations in our 2D simulations; this quan-
tity has no apparent trend with resolution. Similarly, our 3D simulations are nearly identical
at resolutions of (128)% and (256)3. Though figure 3.5 only demonstrates convergence of
an integrated quantity, our simulations also “look” very similar at different resolution: for
example, in the rapid-cooling limit, the clumps of cold gas have similar shapes and sizes,
and they appear in the same locations.

We find rapid convergence in our simulations, even without including thermal conduction.
By contrast, Sharma et al. (2010) found that convergence requires resolving the Field length
(§3.7.2) in the cold phase of the 1IcM. The temperature floor we apply (eq. 3.6) implies that
the Field length is not defined for the cold phase in our simulations, and therefore that it
is not relevant for convergence. Because the cold phase in our simulations does not cool, it
can become pressure-supported at a finite size and resist further collapse. Convergence is
somewhat less restrictive in our simulations than in those studied by Sharma et al. (2010).

We performed both 2D and 3D simulations and have confirmed that they give similar
results. Many of the plots in this paper show the results of 2D simulations, since they are less
expensive and permit a much larger parameter study. Because 2D simulations contain fewer
grid cells than 3D simulations, however, integrated quantities derived from 2D calculations
are noisier. Thus, we chose to include only 3D simulations in figures 3.4 and 3.8.

While our 2D and 3D simulations produce similar results, they are fundamentally different
from one-dimensional simulations. Spatial variations between heating and cooling drive the
local thermal instability in our model; hence, the development of multi-phase structure in
our simulations is an inherently multi-dimensional effect. Additionally, the symmetry of a
one-dimensional model prevents over-dense material from sinking and removes an important
saturation channel from the thermal instability (§3.6). Much of the physics we describe
in this paper is therefore absent in one-dimensional treatments of the ICM such as those
described in Ciotti & Ostriker (2001) and Guo & Oh (2008).

3.5.4 Sensitivity to the Heating Function

An important test of our model is the sensitivity of our conclusions to the details of
the (unknown) heating function. We study this dependence by adding random heating
fluctuations of the form

H—H(1+96), (3.21)

where §(x,t) is a Gaussian-random field with a white-noise spatial power spectrum and a
temporal autocorrelation function Rss(7) = e/t Thus, ¢ introduces both spatial and
temporal imbalances between heating and cooling, which persist for the coherence time
~ teorr- These fluctuations detune our feedback model while still preserving average thermal
equilibrium, and are intended to mimic the temporal and spatial differences between heating
and cooling which might arise in a more realistic feedback scenario. More importantly,
including these fluctuations allows us to distinguish between results that are a consequence
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Figure 3.6: Comparison of the plasma density in simulations with our fiducial heating function
(equation 3.4) to simulations where we have added significant, random fluctuations to the heating
function H (see eq. 3.21). These are white noise fluctuations with a temporal correlation teory = try;
simulations with longer correlation times teopry = 10 ¢, give similar results (see figure 3.7). From top
to bottom, the panels show the density at ¢ = 10ty in our fiducial simulations, simulations with
100% fluctuations in heating, and simulations with 300% fluctuations in heating. Fluctuations of
300% produce a cooling flow, but 100% fluctuations do not and instead produce results similar to
our fiducial model. In all panels, color represents the log of the density, which ranges from 1072

(blue) to 10 (red).
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Figure 3.7: Gas mass as a function of temperature in simulations with different types of fluctuations
about thermal equilibrium, measured at ¢ = 10¢,; and z ~ H. These simulations are for isothermal
initial conditions in which the initial temperature T' = 1. The fluctuations are of the form H —
H(1 + §), where d(x,t) has a white-noise spatial spectrum and a temporal coherence time teopy
(see §3.5.4 for details). The gas properties are not sensitive to strong fluctuations in heating of
up to 100% in amplitude. Stronger fluctuations of 300% generate significant cold material when
tri/tg > 1; the cold material sinks to small radii (see figure 3.6), leading to a modest heating of the
gas that remains at z ~ H. When t,,/tg < 1, fluctuations of 300% break our ansatz of approximate
thermal equilibrium and induce a cooling catastrophe. The correlation time t.o; has only a modest
influence on these results.
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of the exact (and, in detail, unphysical) balance in equation 3.4 and results that are more
robust and are primarily a consequence of global thermal stability.

We carried out 2D simulations with t.., = {0.1, 1, 10} X ¢t and with the fluctuations nor-
malized to root-mean-square (RMS) amplitudes of 50%, 100% and 300%. (Note that we quote
the RMS, or ‘1o’ amplitude of the fluctuations; the peak values are considerably higher.) fig-
ure 3.6 shows images of the density fluctuations for these simulations and figure 3.7 shows the
temperature distribution function for different values of ¢, and the fluctuation amplitude.
These figures demonstrate that our conclusions about the development of the thermal insta-
bility are essentially unaffected by order-unity fluctuations, over at least 10 cooling times.
This important result implies that, as long as the plasma is in approximate global thermal
equilibrium on reasonable time-scales ~ t.; and length-scales ~ H, the development and sat-
uration of local thermal instability will proceed approximately as shown in figures 3.1-3.4.
We think that the existence of an approximate thermal equilibrium, rather than the specific
details of our heating function (eq. 3.4), determines how the thermal instability develops and
saturates. This conclusion is bolstered by Paper II, which finds very similar results using an
entirely different heating function.

Figs 3.6 and 3.7 show that extremely strong heating fluctuations with RMS amplitudes
of 300% spoil the thermal equilibrium of the plasma and induce a cooling catastrophe;
even our extremely optimistic feedback model cannot withstand arbitrarily large heating
perturbations. Though the feedback mechanism is not yet understood in clusters, this places
a constraint on the heating: it should not differ persistently from the local cooling rate by
more than a factor of several. Figure 3.7 shows that this conclusion is essentially independent
of the coherence time ¢, of the heating.

3.6 Interpretation of the Non-Linear Saturation

In this section, we show that the linearized dynamical equations provide valuable insight
into the non-linear saturation of the thermal instability and its astrophysical implications.
As in section 3.5, we focus on the development of multi-phase structure (§3.6.2) and on the
accreted mass flux (§3.6.3), which have been extensively studied observationally. Our basic
procedure is to estimate a saturation amplitude for the linear instability. Because we use
linearized equations, the interpretation in this section only strictly holds in the weak cooling
limit (¢, > tg), so that the density perturbations remain relatively small.

Figure 3.8 illustrates the development and saturation of the thermal instability. The
density inhomogeneity dp/p (or any other quantity linear in the perturbation) initially grows
exponentially according to the dispersion relation (eq. 3.16), but eventually freezes out at a
finite amplitude. This amplitude, along with the relations 3.12a-3.12¢, then approximately
determines the state of the plasma at late times. In the following sections, we estimate this
amplitude and show that we can reproduce elements of the non-linear saturation shown in
figure 3.3. Figure 3.8 shows that the difference between atmospheres which develop multi-
phase gas and ones which do not is fundamentally a non-linear effect. The linear growth
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Figure 3.8: Evolution of the density fluctuation dp/p as a function of time in our simulations with
isothermal initial conditions. The plotted quantity is an RMS average from z = 0.9H-1.1H. The
density inhomogeneity grows from the initial perturbation until the characteristic infall time becomes
comparable to the local cooling time. At this point, the density contrast saturates at approximately
the value given by equation 3.25b. This figure shows the results from 3D simulations, but the results
from 2D simulations are similar.
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rate of the perturbations is largely independent of the time-scale ratio t.,/tg, and it is the
saturation which determines the degree of inhomogeneity at late times.

3.6.1 Saturation Amplitudes

In the limit that the plasma is buoyantly neutral (N = 0), we can estimate the satu-
ration amplitude by inspecting the linearized, Lagrangian form of the momentum equation

(eq. 3.1b):

dv, on
= ——9. 3.22
7 o (3.22)

The characteristic inflow (or outflow) time for a perturbed fluid element is ¢y, ~ H/dv,.
Initially, dv, is small and this inflow time is long compared to the growth time of the ther-
mal instability. As the perturbation grows, however, dn/n increases and the fluid element
accelerates according to equation 3.22. The inflow time ¢4, thus becomes shorter as the
instability develops. We assume that the growth ceases when the inflow time is comparable
to, or slightly shorter than, the growth time of the thermal instability. In this case, the
thermal instability saturates when the velocity satisfies

v, ~ E (3.23)
tTI
Thus, non-linear saturation occurs when a fluid element flows to smaller radii after one
cooling time, as seems intuitively reasonable.

The physical picture of a sinking fluid element does not apply in a stably stratified atmo-
sphere, since the fluid element does not flow monotonically inwards, but instead oscillates
with the gravity wave frequency N. The velocity associated with this oscillation dwarfs the
mean, inward velocity. These waves are sourced by cooling, however, and we assume that
they reach a steady-state in which the dissipation rate due to non-linear mode coupling equals
the driving rate due to the thermal instability ~ ¢.'. Thus the instability saturates when
the dissipation time ¢4 ~ H/dv ~ t,;, where we have assumed strong turbulence and used
the fact that the waves are driven on large scales, ~ H (as suggested by the bottom panels
in figure 3.1). Though this saturation mechanism is very different from that described above
for buoyantly neutral plasmas, it implies an equivalent saturation amplitude. We therefore
assume that equation 3.23 describes the late-time evolution of the perturbations in all of our
simulations. We show in the following sections how the behavior described in section 3.5 can
be understood in terms of this saturation amplitude.

3.6.2 Multi-Phase Structure

Inserting our ansatz for the saturation amplitudes (equation 3.23) into the momentum
equation (3.12b) and using the dispersion relation (equation 3.16) to replace w, we express
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the density inhomogeneity dn/n at late times in terms of other properties of the plasma:

5 te)’ 2t \?
T x (—ﬁ> 144/1— 4k, ( ! ) (3.24)
n tTI tbuoy

where thuy = N7! and I;:i =(1- 1%3) is the squared horizontal component of the direction

of the wave vector (typically ~ 1).
Equation 3.24 has the asymptotic forms

on (1)’ tey < t (3.25a)
— X T TI uo, .

n b buoy

on tff tff

— — T > Thuoy- 3.25b
n h (tTI) (tbuoy) = Ty ( )

Equation 3.25 shows that weakly stratified plasmas with ¢, < tpuey develop smaller density

inhomogeneities than plasmas with ¢, > tpuey (in the limit that ¢, 2 tg). This difference
arises because because plasmas with ¢, > fy.0y can sustain internal gravity waves, while
atmospheres with ¢, < tpuey cannot.

Somewhat surprisingly, the right panel of figure 3.3 shows that the measured dependence
of dn/n on the time-scale ratio ¢ /tg is in good agreement with equation 3.25b for both
isothermal and isentropic initial conditions, even though ¢y, — 00 in an isentropic atmo-
sphere. This is because equation 3.25a applies only when the atmosphere is very nearly
buoyantly neutral (at least when ¢, is long compared to the dynamical time, as must be
for equation 3.25 to be valid). While this is the case initially in our isentropic atmospheres,
the entropy gradient evolves somewhat with time and equation 3.25a ceases to describe the
plasma after only a few cooling times. The saturated values of ¢,y differ in our simulations
with isentropic and isothermal initial conditions; equation 3.25b suggests that this may ex-
plain the systematic offset between these simulations shown in figure 3.3. For the longest
cooling times, the evolution of the background profile is smallest; the slight steepening of
dp/p for our isentropic simulations in this limit may represent an intermediate case between
equations 3.25a and 3.25b.

3.6.3 Accreted Mass Flux

We can also use our estimate of the non-linear saturation to understand the inward mass
flux induced by the thermal instability. Defining the mass flux M = (én dv,) and using the
estimates of Jv and dn/n from the momentum equation and from equation 3.24, we find

o (g1
M =Mcr (—ﬁ) —3
w/) 4k

2
x <Re 1+ \/1 — 4k} ( bn ) ¢*® | Re (ei’m)>,
tbuoy

(3.26)
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where MCF = pH/t,; is the mass flux expected in the absence of heating (recall that we are
in the limit that t; > tyuoy). This yields

1 /te\> 1/ ta \°
. -\ 7 - t < tbuo
M 4 (tT> 4 <tbuo ) " Y
— Y, Y : (3.27)
Mcr 1 [t
g t_TI tTI > tbuoy

Equation 3.27 shows that the mass flux is dramatically suppressed when t,,/tg > 1, qualita-
tively consistent with figure 3.4. Furthermore, this suppression is nearly independent of the
initial stratification of the plasma, even though stably stratified plasmas show much stronger
density inhomogeneities (eq. 3.25). This is because the internal gravity waves that enhance
dn/n when ty /thuey > 1 do not contribute to the net mass flux. Note that gravity waves
dominate the instantaneous mass flux shown in figure 3.4 when ¢,,/tg > 1; the time-averaged
accretion rate is smaller than the figure suggests.

3.7 Simulations Including Conduction

The previous sections describe a simplified model of the thermal instability that neglects
both conduction and the dynamical effect of the magnetic field. This model nicely isolates
the physics of the thermal instability, but astrophysically it is too idealized. For example,
conduction is critical for the thermal evolution of the plasma over a wide range of scales in the
ICcM, and Balbus (2000) and Quataert (2008) have shown that this completely changes the
stability and dynamics of the plasma. In this section, we present results including magnetic
fields and conduction and show that the conclusions from the previous sections largely apply
in this more realistic case.

3.7.1 Setup

Our setup is very similar to that described in sections 3.2 and 3.3. We generalize equa-
tions 3.1b and 3.1c to include the effects of thermal conduction and the magnetic field:

0 B? B® B
—(pv)+ V- |pvov+ | P+ — I+ 2 =pg, (3.1b")
ot &1 4
ds ,
pT% = (H - E) -V Qcond7 (31(3)

where B is the magnetic field and Q4 is the conductive heat flux. We evolve the magnetic
field using the induction equation:
0B

o =V x(vxB). (1d")
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Figure 3.9: Comparison of the gas density in the non-linear state of simulations with different
time-scale ratios tr/tg and t, /tg, including an initially horizontal magnetic field and anisotropic
thermal conduction. We take the conduction time to be the time it takes heat to diffuse across one
scale-height: ¢, = H 2/x. Rapid conduction dramatically changes the morphology of the cold gas,
smearing it out in the direction of the magnetic field. However, conduction does not appreciably
change the mass of gas in the cold phase (figure 3.10). The ratio of timescales t,/tg still determines
whether or not the plasma develops multi-phase structure, even in the limit of rapid conduction.
In all frames, the color scale represents the log of the density; blue corresponds to a density of
1072 and red corresponds to a density of 10. The filaments are very straight in simulations where
the Field length is longer than the domain size (right-most column) because conduction effectively
eliminates all horizontal structure in the initial perturbations; the subsequent evolution is therefore
nearly two-dimensional. We show both the top and bottom of the computational domain here to
emphasize that the number of filaments/blobs produced by the thermal instability is somewhat
stochastic.
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Figure 3.10: Mass fraction of cold material (with T' < Tj/3) as a function of the timescale ratio

Ly /ta, for simulations with different conductivities. As in figure 3.3, this mass fraction is determined

by averaging from z = 0.9-1.1 H and from ¢t = 9-10¢y,. Lines show simulations with anisotropic

thermal conduction and points indicate simulations with isotropic conduction. As suggested by

figure3.9, anisotropic thermal conduction does not strongly influence the multi-phase structure

produced by the thermal instability: though the conductivities in these simulations differ by a

factor of 100, the cold mass fractions agree to within about a factor of 2. In particular, the results

appear to converge in the rapid-conduction limit. By contrast, we see no multi-phase structure

in simulations with isotropic conduction if the Field length is comparable to, or greater than a

scale-height (the arrows in this figure indicate upper limits on the mass fractions of cold gas).
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We have ignored both (explicit) viscous and magnetic dissipation in equations 3.1b'—1d’.
These effects can influence MHD simulations in subtle and unexpected ways (see, e.g. Fro-
mang & Papaloizou 2007; Davis et al. 2010), and so will need to be studied in detail in the
future.

The thermal conductivity of the plasma is strongly anisotropic in the ICM and as a result
the conductive heat flux is given by (Braginskii 1965)

Qoona = —nkpxe b (b-VT), (3.28)

where b = B /B is a unit vector in the direction of the magnetic field and Yy, is the thermal
diffusivity of free electrons (with units of cm?/s). While the diffusivity x. depends sensitively
on temperature (Spitzer 1962), we take it to be constant in this exploratory analysis. This
enables us to control the ratio of the conduction time to other timescales in the problem
and thus to isolate the physics of cooling and conduction. Note that we still use the heating
function defined by equation 3.4; any conductive heating or cooling of the plasma happens
on top of the feedback heating.

We initialize the plasma with a weak, horizontal magnetic field. (By ‘weak,” we mean that
magnetic tension is negligible in our simulations.) Because we impose reflecting boundary
conditions at the upper and lower boundaries of the domain (§3.3), the magnetic field remains
horizontal there and prohibits a conductive heat flux into the domain.

As before, we solve equations 3.1a and 3.1b'-1d’ using ATHENA with the modifications
described in section 3.3. We also implement equation 3.28 via operator splitting, using
the anisotropic conduction algorithm described in Parrish & Stone (2005) and Sharma &
Hammett (2007). In particular, we use the monotonized central difference limiter on trans-
verse heat fluxes to ensure stability. This conduction algorithm is sub-cycled with respect
to the main integrator with a time step At oc (Ax)?; these simulations are therefore more
computationally expensive than adiabatic MHD calculations, especially at high resolution.

3.7.2 Linear Properties

We linearize equations 3.1a and 3.1b'-1d" and perform a WKB analysis (see Quataert
2008 for more details). Assuming that magnetic tension is negligible, and proceeding as in
section 3.4.1, the dispersion relation for the plasma is (cf. Balbus & Reynolds 2010)

~2
P’ — p’pe + PNk, — wy phy, = 0. (3.29)

In the above, p = —iw is the growth rate of the perturbation, p. = py — wy is the growth
rate of the thermal instability accounting for conduction (Field 1965),

Wy = WT”XQ (6 : k:>2 (3.30)
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is inversely proportional to the conduction time across the wavelength of the perturbation,
and

o, OInT
pHBlig aZ

x [(2133 1)1 — k) — 2b,b.kk, (3.31)

is the growth rate of either the magnetothermal instability (MTI; Balbus 2000), or the heat-
flux driven buoyancy instability (HBI; Quataert 2008).

The MTI is unlikely to influence the development of multi-phase structure in galaxy
clusters, since it operates outside the cool core, where the ratio of timescales t.,/tg is typically
much greater than unity. While the HBI does operate efficiently in cool cores, it behaves like
ordinary stable stratification in its saturated state (McCourt et al. 2011b) and the growth
time ¢, is analogous to the timescale y,,4, used earlier. Thus, we do not expect the HBI or
MTI to change our results in any essential way (although this must be studied more carefully
in future work). We anticipate that the same will be true for the overstabilities associated
with the MTI and HBI (Balbus & Reynolds 2010). In this section, we use simulations with
isothermal initial conditions (in which pys — 0) so that these instabilities and overstabilities
do not operate (at least in our initial conditions). This allows us to focus on the physics of
thermal instability.

The conduction frequency w, is a function of scale, while the growth rate of the thermal
instability p., is not; the modified growth rate p. therefore must switch sign at the length-
scale

o 1y 1/2
Ae = |b- k| x {m)”—X—} , (3.32)

Y DPn

known as the Field length (Field 1965). Intuitively, the Field length is the distance heat can
diffuse in one cooling time; if the wavelength of a perturbation is larger than this distance,
conduction cannot stabilize it against cooling and the perturbation grows exponentially.

Conduction suppresses the thermal instability on scales smaller than the Field length,
but the Field length in a magnetized medium depends on direction, as well as position. Even
if the term in square brackets in equation 3.32 becomes arbitrarily large, the Field length
will be small in directions orthogonal to the magnetic field. Because of this anisotropy,
the thermal instability can still grow on scales much smaller than /yet;. Sharma et al.
(2010) have studied this growth in the absence of gravity; here we generalize their results to
stratified plasmas.

The growth rate for the thermal instability in our simulations is

1 -
P=3 {pF +\/p2 — ANk, (3.33a)

"2

pF_Nsz/pF pF>> |N|
=171 ) . (3.33b)
§pp:|:iNk1 Pe < |N|
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Equation 3.33 shows that the characteristic growth time of the thermal instability is p,?,
regardless of the entropy gradient. The growth rate p, reduces to p; on large scales; thus, our
results with and without conduction are very similar on scales larger than the Field length.
Conduction prevents perturbations from growing below the Field length and therefore plays
a similar role to the temperature floor in our non-conducting simulations. The primary
difference between our conducting and non-conducting simulations is that the Field length is
anisotropic in the conducting simulations, and the thermally unstable fluid elements collapse
into long filaments, rather than the approximately spherical clumps shown in figures 3.1
and 3.2.

3.7.3 Numerical Results

Figure 3.9 shows 2D slices of 3D simulations with different values of the cooling constant
Ay and the conductivity y.. We use only 3D simulations in this section because, just as an
over-dense fluid element cannot sink in one dimension, the dynamics of a sinking magnetized
filament changes in going from two to three dimensions. These simulations all use our
isothermal initial condition and initially have weak, horizontal magnetic field lines in the
plane of the figure. Rapid conduction smears out the cold clumps into filaments of length ~
Ar, but does not otherwise alter the growth of the thermal instability. Specifically, figure 3.9
demonstrates that, even in the limit of very rapid conduction, the ratio of time-scales t.,/tg
determines whether the plasma develops multi-phase structure. This result depends critically
on the anisotropic nature of thermal conduction. In the rightmost panels of figure 3.9, the
Field length is larger than the entire simulation domain; if conduction were isotropic, the
entire atmosphere would become nearly isothermal and the thermal instability would be
suppressed. The insulating effect of the magnetic field permits large temperature gradients
orthogonal to the magnetic field and thus the formation of multi-phase structure (Sharma
et al. 2010).

Figure 3.10 quantifies the effect of conduction on the thermal instability: we show the
mass fraction of cold gas (as in the left panel of figure 3.3) for 3D simulations with different
thermal conductivities. In simulations with anisotropic thermal conduction, this mass frac-
tion is almost independent of the conductivity, and it appears to converge in the limit that
the conductivity becomes large. This behavior is consistent with figure 3.9. Together, these
results imply that anisotropic conduction alters the morphology of the gas in the cold phase,
but not the presence, absence, or amount of multi-phase structure.

We have also run a number of simulations with isotropic thermal conduction. These simu-
lations use the same setup as before, but with the conductive heat flux Q.4 = —nksx.VT,
where (as before) x. is a constant, free parameter. In order to prevent conduction from
changing the total energy content of the plasma, we set y. = 0 at the upper and lower
boundaries of the computational domain so that there is no conductive heat flux into the
domain. Figure 3.10 shows that, while anisotropic conduction does not strongly influence
the amount of cold gas produced by the thermal instability, isotropic conduction can quench
it entirely: we see no multi-phase structure in our simulations with isotropic conduction
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Table 3.2: Clusters used in figure 3.11.
Extended H, No Extended H,,

Abell 133 Abell 85
Abell 478 Abell 644
Abell 496 Abell 744
Abell 780 Abell 1650
Abell 1795 Abell 2029
Abell 1991 Abell 2142
Abell 2597 Abell 4059
Sersic 159-03

Centaurus

We use the surveys of McDonald et al. (2010, 2011a,b) to determine whether a cluster shows
multi-phase gas, and we use the data in the ACCEPT catalog to estimate t.,,/tg for the hot
ICM. Our label ‘extended H,’ signifies that the H, emission can be resolved and is known
to exist outside the BCG; these are the Type I systems from McDonald et al.

whenever the Field length is comparable to, or larger than, the pressure scale-height. These
conclusions also apply to other properties of the plasma quantified in section 3.5, e.g. the
accreted mass flux: anisotropic thermal conduction has little effect on this quantity, while
isotropic thermal conduction can strongly suppress it.

Voit et al. (2008) suggested that thermal instability produces multi-phase gas in clusters
when the Field length is comparable to, or smaller than, the size of the cool core, but
that conduction suppresses the formation of multi-phase structure for larger Field lengths.
Coincidentally, in typical cool-core clusters, this criterion is quantitatively similar to our
criterion on the ratio t.,/tg.* However, because the ICM is magnetized, thermal conduction
is extremely anisotropic; the results of this section demonstrate that even very rapid thermal
conduction cannot suppress local thermal instability. Thermal conduction only stabilizes
modes parallel to the magnetic field, and multi-phase structure continues to develop via
perturbations that are roughly orthogonal to the local magnetic field.

3.8 Discussion

Observational limits from x-ray spectroscopy (Peterson & Fabian 2006) and from the
shape of the galaxy luminosity function (Benson et al. 2003) indicate that the diffuse plasma
in galaxy groups and clusters does not cool as quickly as it radiates. These observations imply
that some heating process offsets radiative cooling and that the gas remains in approximate

4This comparison makes use of the result from Paper II that the threshold for multi-phase gas in spherical
systems is closer to tr/tg ~ 10.
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Figure 3.11: (Left:) The timescale ratio teo01/tg as a function of radius for clusters in both the
ACCEPT catalog and the McDonald et al. (2010) survey. Solid blue lines show clusters with filaments
and dashed red lines show clusters that lack detected extended H,, emission. Clusters with filaments
have systematically lower values of tco01/tg. Furthermore, this ratio is smallest between ~10-50 kpc,
where most filaments are found. (Right:) The same clusters in the teoo—tcool/tr plane. The coloring
is the same as in the left panel. The ratio teo01/tg appears to be a slightly better predictor of
multi-phase structure than t.,o alone. Table 3.2 lists the clusters plotted in this figure.
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thermal equilibrium, at least when averaged over length-scales comparable to the scale-height
or time-scales comparable to the cooling time. The nature of this “feedback” heating is not
yet fully understood, although it appears to involve heating by a central AGN (e.g. Birzan
et al. 2004; McNamara & Nulsen 2007). More fully understanding the mechanism(s) that
regulate the heating to so closely match cooling remains a major challenge in theories of
galaxy formation.

Though heating strongly suppresses cooling in galaxy groups and clusters, star formation
and multi-phase gas provide clear evidence for cold gas in many cluster cores. Observational
indicators of this cold gas strongly correlate with the cooling time of the ambient hot 1CM
(e.g. Voit et al. 2008; Rafferty et al. 2008; Cavagnolo et al. 2008, 2009), motivating a model
in which thermal instability in the hot 1ICM produces much of the cold gas in cluster cores (as
has been suggested many times in the past, e.g. Fabian & Nulsen 1977; Cowie et al. 1980;
Nulsen 1986; Loewenstein et al. 1991). Theoretically studying local thermal instability in the
ICM has proven difficult, however, because of the cooling-flow problem: studies that include
both cooling and gravity typically find that the plasma is globally thermally unstable, and
that the entire cluster core collapses monolithically. This difficulty has led several authors
to conclude that the thermal instability does not produce multi-phase structure in stably-
stratified systems at all.

We avoid the cooling-flow problem in this paper by adopting a phenomenological heating
model that enforces thermal equilibrium when averaged over large scales (§3.2.1). Our
heating model is approximate, over-simplified, and wrong in detail. However, our results
are insensitive to large temporal and spatial fluctuations about the average heating (§3.5.4).
Moreover, in Paper II we obtain similar results using a more physical feedback heating
prescription. We therefore believe that our conclusions about the saturation of the local
thermal instability are reasonably robust.

In the current paradigm in which clusters are approximately in global thermal equilib-
rium, heating of the ICM is very likely to depend explicitly on position in the cluster. In this
case, the thermal stability of the plasma is independent of its convective stability (§3.4.2).
Fundamentally, buoyancy drives convection, while heating and cooling drive thermal insta-
bility. These two processes are formally related only under the restrictive assumption that
heating is a state function of the plasma; more generally, they are unrelated and the thermal
stability of a plasma is independent of its convective stability (see Balbus & Soker 1989).

Nonetheless, it remains true that the competition between buoyancy and thermal in-
stability determines the net effect of cooling on a stratified plasma. We parametrize the
relative importance of these effects using the dimensionless ratio t,/tg (the ratio of the
thermal instability growth time ¢ to the local dynamical, or free-fall, time tg). When this
ratio is small, thermal instability dominates and the plasma develops significant multi-phase
structure; when the ratio t./tg is large, buoyancy dominates and the plasma remains in a
single, hot phase (§3.5). This dependence of the saturation on t.,/tg is true for both stably
stratified and neutrally stratified plasmas (figure 3.3), even though the effect of buoyancy is
very different in these two cases.

More quantitatively, we find (figure 3.3) that the saturated density inhomogeneities pro-
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duced by the thermal instability approximately obey the relation

o (t_) - (3.34)

p g

this scaling can be understood analytically by assuming a saturation amplitude for the
thermal instability in which the characteristic fluid velocities approach vy ~ H/tcoo (8§3.6).
Thus, by assuming that some heating mechanism prevents cooling catastrophes in clusters,
we find that the 1ICM breaks up into multiple phases via local thermal instability (with
dp/p 2 1) only if the dimensionless ratio of timescales t./tg < 1; specifically, there is
almost no cold gas at large radii when ¢, 2 tg (figure 3.3). This finding is one of the
primary results of our analysis. We note that the linear growth of the thermal instability
is largely independent of the ratio ¢, /tg. Thus the difference between atmospheres which
develop multi-phase gas and those which do not is fundamentally due to how the non-linear
saturation of the thermal instability depends on the atmosphere’s properties.

The calculations in Paper I show that the criterion for multi-phase structure is actually
somewhat less stringent in spherical systems, t.,/tg < 10. This difference stems from the
fact that fluid elements are compressed as they move inwards in a spherical system; this
compression enhances the density perturbations and accelerates the growth of the thermal
instability.

Our criterion for multi-phase structure is not sensitive to large variations about our ide-
alized heating prescription (§3.5.4 and figure 3.6). Furthermore, the multi-phase structure
that develops via thermal instability is largely independent of the magnitude of the ther-
mal conduction, even on scales much smaller than the Field length (provided conduction is
anisotropic, as is the case in galaxy groups and clusters; §3.7). Anisotropic thermal con-
duction changes the morphology of the cold gas produced via thermal instability (blobs —
filaments), but not the presence or amount of cold gas. There is thus a very strong, quali-
tative difference between isotropic and anisotropic thermal conduction (figure 3.10), which
cannot be captured by simply multiplying the heat flux by a suppression factor (as is often
done, e.g. Zakamska & Narayan 2003; Voit et al. 2008; Guo & Oh 2008).

Our heating prescription imposes global thermal equilibrium and reduces the accreted
mass flux in our model halos relative to cooling-flow values. This reduction is not inevitable,
however, because thermal instability can produce cooling-flow-like inflow rates when t.; < tg.
In a globally stable system, the thermal instability thus plays an important role in regulating
gas inflow rates. We study the connections among thermal instability, mass inflow and
feedback more fully in Paper II.

We argue that a locally stable heating mechanism (such as the one proposed in Kunz
et al. 2011) is not required to explain the reduced star formation and cooling rates in clusters.
Instead, global stability arising from approximate thermal equilibrium, together with the
physics of local thermal instability in stratified plasmas, is sufficient to reproduce the low
net cooling rates in clusters. Moreover, the correlation of H, filaments and star formation
in clusters with the cooling time in the hot ICM strongly suggests that the plasma is in
fact locally thermally unstable. We have shown that the suppression of accretion rates is
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not sensitive to thermal conduction or to significant variations about our specific feedback
prescription (§3.5.4 and figure 3.6), and we explore this further in Paper II.

We now compare our model predictions with observational results. The thermal insta-
bility time ¢, = p.! (eq. 3.19) depends on the unknown way in which feedback energy is
thermalized (eq. 3.4) and cannot be directly inferred from observations. We therefore use
the cooling time when comparing our results with observations. These two timescales differ
by an unknown factor of order unity. The ratio of timescales t.,,1/tg can be reexpressed in
more familiar terms using

teool (K/10 keV cm?)*/?
tg T71/2 A_os (tg/30 N[yl")7

(3.35)

where K = kgT/n?? is a measure of the plasma entropy, 1% is the temperature in units
of 107K and A_,3 is the cooling function (eq. 3.5) in units of 10723 erg cm? s™'. Thus, the
plasma in clusters and galactic halos should show extended multi-phase structure wherever

2/3

K < (20 keV cm?) [T;/Q A s <30t—§4yr)} , (3.36)
where we have used the threshold from Paper II for multi-phase structure in spherical sys-
tems: t./tg ~ 10. This criterion is consistent with observations that clusters with central
entropies below 30 keV cm? preferentially show signs of cold gas such as star formation and
H, emission (Voit et al. 2008; Cavagnolo et al. 2008, 2009). Note, however, the relatively
strong dependence of this criterion on tg and on A; this is because the entropy K is not
the fundamental parameter governing the saturation of the thermal instability in a stratified
system.

The H, survey conducted by McDonald et al. (2010, 2011a) permits another test of our
criterion. McDonald et al. provide lists of groups and clusters with and without extended H,,
emission. We test our criterion by estimating the time-scale ratio teo/ts for these systems
using data from the ACCEPT catalog (Cavagnolo et al. 2009). We fit the entropy profiles of
clusters in the ACCEPT catalog using K (r) = Ky + K;(r/100kpc)® and we fit the pressure
profiles P(r) using the form provided in Arnaud et al. (2010). Of the groups and clusters
in both the H, surveys and in ACCEPT, sixteen give reasonable fits (listed in Table 3.2).5
From our fits to K (r) and P(r), we calculate n(r) and T'(r) and estimate t.,(r) using the
fit to the cooling function provided by Tozzi & Norman (2001) with 1/3 solar metallicity.
We estimate g(r) from the pressure and density profiles by assuming spherical symmetry
and hydrostatic equilibrium; from this we calculate tg(r).

The left panel of figure 3.11 shows t.01/ts as a function of radius for these sixteen groups
and clusters. As predicted by our analysis, the clusters with short cooling times tqo01 /tg < 10

5Unfortunately, we were unable to fit several clusters with well-known filament systems, including Perseus,
Abell 2052 and M87. The pressure gradients in Perseus and Abell 2052 are positive at some radii and cannot
be fit by the universal profile. Similarly, the pressure profile for M87 deviates from the broken power-law
universal profile.
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show extended filaments, while the clusters with long cooling times teo01/tg = 10 do not.
Additionally, most of the filaments are found at radii around 10-50 kpc, where the ratio
t/tg is the smallest. Although this evidence is not conclusive, these data support our
hypothesis that the filaments condense from the 1ICM due to the local thermal instability.

We emphasize that both cooling and gravity influence the development of the thermal
instability in the 1ICM. A short cooling time (or low K) is not sufficient for the formation of
filaments; rather, the ratio ¢, /tg is the relevant parameter. The right panel of figure 3.11
shows clusters in the (fcoo1)—(tcool/ts) plane. More data are needed to conclusively test our
model, but these results are consistent with our interpretation that the ratio of timescales
Leool /L 18 a better predictor of multi-phase gas in hot halos than .., alone.

These simple comparisons support a model in which local thermal instability produces at
least some of the H,, filaments seen in clusters. This does not, however, imply that thermal
instability alone can explain all of the observed properties of multi-phase gas in clusters
and /or galaxies. On the contrary, processes such as conductive condensation of hot gas to
cool gas (“non-radiative cooling;” Fabian et al. 2002; Soker et al. 2004) and the inflow of cold
gas through the virial radius (Keres & Hernquist 2009) may also be important (in higher
and lower mass halos, respectively). Furthermore, other processes in the ICM such as merger
shocks, galaxy wakes and buoyant radio bubbles may influence the evolution of the filaments.

Accretion of the cold gas formed via thermal instability likely plays an important role in
the evolution of brightest cluster galaxies and their central AGN (Pizzolato & Soker 2005,
2010). In addition, the high-velocity clouds surrounding the Milky Way may also be manifes-
tations of the thermal instability (Maller & Bullock 2004; Sommer-Larsen 2006; Kaufmann
et al. 2006; Peek et al. 2008); this process could provide an important source of unen-
riched gas to maintain metallicity gradients (Jones et al. 2010) and continued star formation
(Bauermeister et al. 2010) in the Milky Way and other galaxies.
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Chapter 4

Temperature Profiles in the ICM

4.1 Introduction

X-ray observations of the hot, diffuse gas in galaxy groups and clusters suggest negative
temperature gradients at large radii (Leccardi & Molendi 2008; George et al. 2009; Simionescu
et al. 2011). This observation is somewhat surprising because negative temperature gradients
are susceptible to a convective instability known as the magnetothermal instability, or MTI
(Balbus 2001). Without a clear source of free energy to maintain the convection, it seems
unusual that clusters should so uniformly be found in unstable states. This observation
becomes even more surprising in clusters more massive than ~10'45M, where the timescale
for heat to diffuse through the 1CM can be much shorter than the Hubble time. Left to their
own devices, both conduction and convection tend to erase temperature gradients, and one
might expect them to make the gas isothermal. In this paper, we study how the assembly of
clusters creates large-scale temperature gradients and maintains them in spite of convection
and thermal conduction.

Our subject is not purely academic. Systematic trends in temperature gradients with
mass and redshift may influence the conversion of observable quantities (such as the x-ray
surface brightness) to thermodynamic quantities (gas density, pressure, etc.). Understanding
the origin of the temperature gradients in clusters would also enable us to calculate how the
turbulence produced by the MTI depends on halo mass or redshift. These trends create
systematic variations in non-thermal pressure support and might affect current efforts to use
the cluster mass function to constrain cosmology (Allen et al. 2008; Shaw et al. 2010; Allen
et al. 2011). Thus, while the temperature profiles in galaxy clusters present an interesting
puzzle in their own right, understanding the processes which control them may also find
useful application in cluster cosmology.

Several studies, including Dolag et al. (2004), Burns et al. (2010), and Ruszkowski et al.
(2011) have begun to address the effects of conduction and the MTI in the ICM using cos-
mological simulations. These results are computationally expensive, however, and can be
difficult to interpret. For example, the MTI is expected to be a sub-dominant, but significant,
source of turbulence in clusters (cf. Lau et al. 2009 and Parrish et al. 2012b). Using cos-
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mological simulations to study its trends with mass and redshift would require very careful
calibration of other sources of turbulence. Thus, we feel that a simplified treatment which
affords an intuitive understanding of the results remains useful.

The temperature and entropy profiles in the ICM are related by hydrostatic equilibrium.
Accordingly, this paper closely follows earlier work by Tozzi & Norman (2001) and Voit
et al. (2003), who study the entropy profiles in clusters. However, the processes control-
ling temperature gradients in clusters are slightly more subtle than those which determine
their entropy profiles. Radial variations in entropy tend to be much larger than those in
temperature, so small differences in the entropy profiles translate to much larger differences
in temperature profiles. For the same reason, thermal conduction has a more pronounced
effect on the temperature profile than on entropy and we must include it in our analysis.
Thus, despite significant similarities to both Tozzi & Norman (2001) and Voit et al. (2003),
our models represent a generalization of these earlier studies and we use them to explore
different astrophysical applications. Komatsu & Seljak (2001) also present analytic models
for temperature profiles in clusters. As we describe below, however, our method differs sig-
nificantly from theirs because we do not assume a polytropic model for the gas; instead we
directly calculate its thermodynamic state.

We describe our general methodology in the next section, followed by two sets of models.
We begin in section 4.3 with an idealized but intuitive model. This section illustrates the
key process that sets temperature gradients in clusters, but is too idealized to be directly
compared with real clusters. We generalize this model in section 4.4 to more accurately
reflect the formation histories and gravitational potentials of clusters. We also study the
influence of thermal conduction on our results. We close in § 4.5 with a brief summary of
our conclusions and a description of our future plans to apply them to observations and to
more realistic simulations.

4.2 Method

Following Tozzi & Norman (2001) and Voit et al. (2003) (hereafter v03), we model the
cosmological assembly of a galaxy cluster and use the evolving properties of its accretion
shock to calculate the thermal state of the gas in its 1ICM. Then, by assuming the ICM is
in hydrostatic equilibrium, we determine its temperature and pressure profiles. We focus
our attention on how the accretion history of a halo influences its temperature profile, and
on how this temperature profile is later modified by thermal conduction. As discussed in
section 4.1, we build on previous work that has focused on cluster entropy profiles.

Since the dynamical timescale in clusters is typically shorter than the timescales for either
accretion or thermal conduction, we approximate the dynamics of the gas by assuming that it
is in hydrostatic equilibrium at all times. We note that this assumption of strict hydrostatic
equilibrium within the virial shock is not quantitatively justified: cosmological simulations
of cluster formation (e.g. Rasia et al. 2006; Nagai et al. 2007; Lau et al. 2009; Vazza et al.
2011) consistently find ~10-20% turbulent pressure support driven by mergers near the
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virial radius. Our assumption of hydrostatic equilibrium represents a first approximation
and provides a simple model with no free parameters.

Our assumption of spherical symmetry is also an approximation: galaxy cluster halos
are tri-axial and grow partly by accreting smaller sub-halos. The extent to which these
properties influence the temperature profiles in clusters is not entirely clear; including them
in our analysis would require cosmological simulations, however, and would likely obscure our
results. Instead, we model clusters as spherically symmetric and we assume that they grow
primarily via smooth accretion. Though these approximations are not entirely realistic,
they are partially justified in V03, who compare models based on smooth accretion with
more realistic ones based on hierarchical structure formation: the differences are modest for
high-mass halos and mostly reflect changes in normalization due to clumping factors.

Each shell of material accreted by the cluster contains both dark and baryonic matter.
We do not solve for the evolution of the dark matter; instead, we assume that the dark matter
virializes rapidly and we parametrize it with a time-dependent fit to the potential (we neglect
the gravity due to the baryons). We consider both simplified, isothermal potentials (§ 4.3)
and more realistic fits to cosmological simulations (§ 4.4).

The baryons enter the cluster through a shock with a density py,; and velocity v; deter-
mined by the accretion rate and by the depth of the potential:

fb 1 dMsh
iV = ——5
P, 4rrd dt
2G Mg,
=)
T'sh

In the above, rg, is the radius of the accretion shock, My, is the total mass contained within
it, and f, &~ 0.17 is the cosmic baryon fraction. The parameter { = ry, /7y, parametrizes the
strength of the virial shock, and rq, is the “turnaround” radius, at which the kinetic energy
of the shell vanishes (Gunn & Gott 1972).) We assume that the 1GM is cold enough that
the gas enters the cluster through a strong shock (with an upstream Mach number M > 1).
Thus, the post-shock density and pressure are given by:

3 4 \?
P = —poi | qui
h 4Pb, <3U>

Psh = 4pp i,

where the factor of 4/3 in front of the velocity transforms the infall velocity from the frame
of the cluster to the frame of the shock. Thus, the post-shock entropy (K = kgTn=%/3) is:

(R PG () v
Ksh_g@) GG g gyt (4.1

(a In My, )2
ot
!Note that identifying & with 7, /7. assumes that the baryons do not separate from dark matter before
reaching the virial shock. If this were not the case, the baryons would feel a time-dependent potential due
to the dark matter. Tozzi & Norman (2001) find that this may introduce a ~10% correction to the infall
velocity.




4.2. METHOD 80

Equation 4.1, above, is identical to equation 8 in V03. As emphasized in V03, apart from an
overall normalization oc (M/ f,)?/3, the entropy profile depends only on the accretion history
and on the shock strength &.

The jump conditions above represent the conservation of mass, momentum, and energy
and thus reflect the total pressure behind the shock. In general, however, the electron and
ion pressures may differ. The difference may be significant in clusters because the shock
preferentially heats ions and because the timescale for electrons and ions to equilibrate is
long (Fox & Loeb 1997). We don’t distinguish between electron and ion temperatures in our
calculation because the temperature difference does not effect hydrostatic equilibrium and
thus should not influence our solutions. Moreover, the simulations by Rudd & Nagai (2009)
show that this temperature difference is modest within the virial radius of the cluster.

Our assumption of a strong virial shock may not be valid for the innermost shells of
material, which accreted when the IGM was hotter, and when the gravitational potential of
the halo was shallower, than they are today. Hence, our model will not accurately reproduce
the gas profiles near the centers of clusters (Tozzi & Norman 2001). Many other processes,
including cooling, heating, and the formation of the central galaxy also affect the structure
of the core, however (Voit 2011). We instead focus on the gas at larger radii, near the virial
radius. Both the large mass and the long cooling time of this gas enable us to ignore galaxy
formation processes at smaller radii (e.g. Voit & Ponman 2003; Voit 2011).

After undergoing the virial shock, the gas entropy evolves due to thermal conduction.
Thermal conduction is highly anisotropic in the ICM because the electron mean free path is
much longer than its gyroradius. Anisotropic conduction renders the ICM unstable to the MTI
(Balbus 2001), however, which generates turbulence and may isotropize the magnetic field
(McCourt et al. 2011b; Parrish et al. 2012b). We therefore parametrize thermal conduction
through an effective isotropic conductivity. We introduce the effective conductivity keg =
fspke, where fg, ~ 1/3 is a suppression factor due to the magnetic field.? Thus, the evolution
of the entropy is determined by the following energy equation:

d 2 Reff
K = V. (kB VT) . (4.2)

In the simplifying case that kg — 0, the entropy of each shell is a constant in time and equal
to Kg, given by equation 4.1. In addition to the conductivity x, we also use the thermal
diffusion coefficient Y, = ko/(nckg), which has units of cm?/s.

As mentioned above, anisotropic thermal conduction in the 1CM drives a convective in-
stability known as the MTI. This convection carries a heat flux which should technically be
added to equation 4.2. However, the convective heat flux is smaller than the conductive flux

2Though this approximation is suitable for our purposes, we note in passing that the use of an isotropic
conductivity significantly alters other processes in the 1cM, such as convection (Balbus 2001; Quataert 2008)
and thermal instability (Sharma et al. 2010; McCourt et al. 2012; Sharma et al. 2012a), and is thus not
suitable for more detailed dynamical studies. Interestingly, a suppression factor fs, ~ 1/3 turns out to be
appropriate even if the magnetic field is tangled on very small scales (Narayan & Medvedev 2001).
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by a factor of

CQconv Me (H) 3 (HdlnT)3/2
~y ] — =«

Qcond my >\e dr ’
where m, and m; are the electron and ion masses, H is the pressure scale-height, ). is the
electron mean-free-path, and « is the mixing-length parameter of the convection. This ratio
is small (~ 1072) in the 1CM, enabling us to ignore the convective heat flux in equation 4.2
(cf. Parrish et al. 2008).

Our spherically symmetric model is most easily represented in Lagrangian coordinates

with the enclosed mass as the independent variable. Thus, the continuity equation and the
equation for hydrostatic equilibrium take the form:

dr 1 (K\*°
I N T T <?) , (4:3)
dP g
— 4.4
dM,, Anr?’ (44)

where My, is the baryonic mass contained within the radius r, and we adopt the entropy
K and pressure P as our primary thermodynamic variables. In this initial study, we ignore
sources of non-thermal pressure support (such as cosmic rays, magnetic fields, or turbulence).
However, we discuss in section 4.5 our plans to self-consistently include turbulence generated
by the MTI and to compare these results with cosmological simulations.

Equations 4.1-4.4 completely specify our model except for the mass accretion history
Mg, (t) and the gravitational field g(r,t) of the halo. We assume that these are determined
by cosmology and are unaffected by the baryonic formation of the cluster. We describe a
simple, idealized model for the halo formation in section 4.3 and a more realistic model in
section 4.4.

4.3 Simplified Adiabatic Models

Before studying the consequences of thermal conduction, it is useful to understand the
‘baseline’ temperature profile generated by the halo’s mass accretion history. Thus, we begin
with adiabatic models which ignore thermal conduction. We further isolate the influence of
the accretion history by assuming the gravitational potential is isothermal and that the
accretion rate of the cluster is independent of time: Mg, (t) = My x t/ty. As we show later,
this prescription contains only a single free parameter and is perhaps the simplest nontrivial
model of the process we wish to study. Though the results in this section cannot be directly
applied to clusters, they highlight some of the key physics determining the temperature
gradients in clusters, and will assist in our interpretation of the more detailed models in
section 4.4.

The next step in our model is to determine the shock strength £&. The most logical choice
would be to calculate {(M}) so that the cluster was in hydrostatic equilibrium at every
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epoch; in fact, this is formally required to use equation 4.1 for the post-shock entropy. In
this section, however, we make the simplifying assumption that (M) is a constant. Thus,
the models presented in this section are not entirely self-consistent. Our goal in this section
is only to obtain an intuitive understanding of how the accretion rate of a halo influences
its temperature gradient. We present more detailed models, with more accurate results, in
section 4.4.

Since we have assumed a solution for £(M,,) and that the evolution of the gas is adiabatic,
the entropy profile K (M) is uniquely determined at all times by equation 4.1. Thus, it
suffices to solve hydrostatic equilibrium only at the present epoch — this solution cannot
depend on the state of the cluster at earlier times. Hence, we need not track the evolution of
the cluster, and the equations determining the state of the gas reduce to ordinary differential
equations.

4.3.1 Method

Before solving the equations of our model, we recast them in a more versatile dimen-
sionless form. Since we have a system of ordinary differential equations with the shock as
one boundary, we de-dimensionalize the equations in this section using the properties at the
shock radius. (Note that this differs from the usual convention of using the virial radius
of the underlying dark-matter potential.) We introduce the constants Ry, and My, which
represent the shock radius of the cluster at the present time tg and the total mass enclosed
within it. (In an isothermal potential, Ry, and M, each differ from the virial radius and
mass by a factor of 2£.) We also define a dynamical time t4,, = (GM,/R%,)~'/?, along with
the spatial coordinate z = /Ry, and the Lagrangian mass coordinate y = M, /(f, Mo).

We introduce the dimensionless gas variables P, p;, and K via:

_Jo My

= Jb""0 4.5
Po = R X p1 (4.5a)
fo GM
pP=-== P, 4.5b
4T RL 4 ( )
Kl = Pl/p?/?) (45C)
Thus, the equations for mass conservation and hydrostatic equilibrium become:
d 1= [tan\ Y 45
d_x — ( 332 ( ‘tiy ) 2y 7 (4.6a)
Y 0 2Py
AP 1
—_— = —— 4.6b
which we solve subject to the boundary conditions at the shock:
z(y=1)=1 (4.7a)

Aly=1) = Y24 g (=) (4.7b)

3 to
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and at the center:
z(y =0) =0. (4.7¢)

With these definitions, the solution is independent of the parameters fy,, pu, Rg,, and M.
Furthermore, the system is over-determined with three boundary conditions and two equa-
tions. The shock radius ¢ is therefore an eigenvalue which must be chosen to meet the inner
boundary condition in equation 4.7c.

Thus, the only free parameter in our system of equations is the ratio tqy,/to, and we
expect to find a one-dimensional family of models. Since the average density of any dark
matter halo p ~ 200p; is independent of mass in hierarchical structure formation, we do
not expect the dynamical timescale ¢4y, to vary strongly among clusters at any cosmological
epoch. The ratio t4yn/to thus measures the age (or, equivalently, the assembly rate) of the
halo.

We note that the following solution to equations 4.6 and 4.7:

1 1

P o= — S 4.8
exists when the assembly rate satisfies:

tayn [ 3

to V32

We describe the physical significance of this special, isothermal solution in section 4.3.2.

For other values of the assembly rate tqy,/to, we solve equations 4.6 and 4.7 numerically
using a predictor-corrector method, and we solve the eigenvalue problem for ¢ with a bisection
search. We avoid the singularity in equations 4.6a and 4.6b by solving them on a logarithmic
grid. Since we cannot apply the boundary condition equation 4.7¢ in the logarithmic coor-
dinates, we obtain an approximate boundary condition at a finite radius by expanding the
equation for hydrostatic equilibrium near x = 0. Assuming that the temperature remains
finite, this equation becomes:

dln ,0_1/2) -

T Tvir
~ ( dlnr

Combined with the fact that K oc Tp~2/3 o< y*/3, this implies that p o< r~2, and thus that
T — Ty, and (4.9)
T\ (Spsh) e
R . 4.10
(7)) (% (1.10)

as  — 0. We use equation 4.10 as a boundary condition for the eigenvalue problem and
equation 4.9 to check the accuracy of our integration. The analytic solution in equation 4.8
also permits a more pedantic test of our method.
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Figure 4.1: Shock radius £ as a function of the assembly parameter tqyn /to for the simplified models
described in section 4.3. The timescale tg = M/M is the age of the halo. Points further to the left
on this plot correspond to clusters which form slowly and points further to the right correspond to
clusters which form rapidly. The red triangle represents the approximate value of t4yn/to expected
for cluster halos. The blue square marks the isothermal solution in equation 4.8. Clusters in the
white region of the plot have negative temperature gradients, clusters in the pink region have positive
temperature gradients, and clusters in the gray region cannot exist in our steady-state model. Real
clusters are expected to have moderate, negative temperature gradients based on this analysis (see
figure 4.3). The black line illustrates the calculation with an isothermal potential, and the gray line
shows results with a more realistic NFW potential.
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Figure 4.2: Profiles of density and entropy for representative models from fig. 4.1 with different

values of the assembly parameter tqyn/to. Thick gray lines show typical power-law slopes derived

from x-ray observations (Croston et al. 2008; Cavagnolo et al. 2009) (the normalization is arbitrary).

Massive clusters should mostly lie between the solid blue and long-dashed red lines. Our solutions are

approximately, but not exactly, power-laws. The deviations from power-law behavior are dictated

by the outer boundary condition on the pressure and determine the temperature profile (fig. 4.3).
This boundary condition depends on the ram pressure behind the shock, and thus on the speed
with which the cluster formed (parametrized by tqyn/to in this model). As in fig. 4.1, thick curves

show models with simplified, isothermal potentials and thin curves show more realistic models with

NFW potentials.
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4.3.2 Results

Figure 4.1 shows the solution for the dimensionless shock radius {(tgyn/to) from our
numerical calculations. In the limit of very slow accretion (i.e. as tqyn/to — 0), the shock is
comparatively weak and the dimensionless shock radius & — 1. As the assembly rate tqyn/to
increases, the shock radius £ decreases monotonically. Thus, the virial shock moves inwards
as the accretion rate increases. This result seems intuitively reasonable, as a higher accretion
rate implies a higher ram pressure behind the shock. A stronger shock (or smaller ) is thus
required to hold back the infalling material and to keep the 1CM in hydrostatic equilibrium.

Interestingly, figure 4.1 indicates a maximum assembly rate around tqy,/to =~ 0.39 at
which ¢ — 0. Beyond this point, thermal pressure alone cannot hold back the accretion
shock and hydrostatic equilibrium becomes impossible. This represents an extremely rapid
accretion rate, however, with the halo forming over only ~ 2.5 dynamical times; our quasi-
static model for the 1CM breaks down in this limit. A fully dynamical calculation (e.g. a
simulation) with such a high accretion rate would likely produce a model 1CM with significant
time dependence and turbulent pressure support, but with a finite shock radius.

Figure 4.1 shows the isothermal solution (eq. 4.8) as a blue square and a point represen-
tative of a massive cluster [with tq,, = 0.1H; " and to ~ (2/3)H; '] as a red triangle. Our
model predicts that £ ~ 0.6 for this fiducial cluster, similar to what has been expected in the
past (e.g. Rees & Ostriker 1977). Note that the isothermal solution requires a much faster
assembly than is typical for galaxy clusters; this simple model thus suggests that clusters
should not be isothermal.

Figure 4.1 directly illustrates the effect of the accretion rate on the location of the virial
shock. The gas properties in the ICM must match onto jump conditions at the shock; thus,
by moving the shock radius, the accretion rate also influences the thermodynamic structure
of the 1cM. Figure 4.2 demonstrates this by showing profiles of the gas density and entropy
for models with different assembly rates tqyn/to. The profiles are nearly isothermal, with
p ~r~2and K ~ r*? and are broadly consistent with determinations from x-ray data
(Croston et al. 2008; Cavagnolo et al. 2009).

The small deviations from power-laws in the density and entropy profiles lead to signif-
icant temperature gradients, however. We show this explicitly in figure 4.3, where we plot
the temperature profiles for the models from figure 4.2. The temperature profiles are nearly
linear, and gradients of either sign are possible, depending on the assembly rate ¢4y, /to. This
result is not surprising, since the central temperature must equal the virial temperature of the
halo (eq. 4.9) and the temperature at the shock is dictated by the jump conditions. A roughly
linear interpolation between these boundary conditions seems reasonable given the simplicity
of the model. The isothermal solution with t4y,/to = 1/3/32 divides models with negative
and positive temperature gradients. In reality, most clusters satisfy tqyn/to ~ 0.1 —0.2; in
this case our model predicts temperature profiles which decrease by a factor of ~ 2 from
the center to the shock radius. This result is in line with recent observations of the gas
temperature near the virial radius (George et al. 2009; Simionescu et al. 2011).

Thus, while we solve the system of equations 4.6a and 4.6b and boundary conditions 4.7a—
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Figure 4.3: Temperature profiles for representative models from fig. 4.1 with different values of the
assembly parameter tqyn/to. The black line corresponds to the isothermal solution (eq. 4.8); massive
clusters should lie between the blue and red lines. Our model implies temperature profiles which
decrease by a factor of ~ 2 from the center to the virial radius, in line with x-ray observations.
Thin, light lines show the results of calculations with NFW potentials, rather than isothermal ones
(see § 4.4 for details). The temperature gradients are similar outside the scale radius of the halo.
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4.7c for the shock radius and for the structure of the 1CM, we find that the boundary con-
ditions essentially dictate the temperature profile. The temperature must reach the virial
temperature of the potential at the center of the halo, and it must match onto the jump
conditions at the shock. The solution to hydrostatic equilibrium then implies a nearly linear
interpolation between these two boundary conditions.

As presented here, the temperature profiles in figure 4.3 may seem specific to our assump-
tion of an isothermal potential. To demonstrate that this is not the case, we have included
calculations with NFW potentials in figure 4.3 (shown as thin, light lines). Although the
different potential has a dramatic effect on the temperature profile within the scale radius,
the trend between the assembly rate and the overall temperature gradient at large radii is
similar. We include these lines only for illustration, but present much more detailed models
with NFW potentials in the following section 4.4.

The simple model presented in this section suggests that the assembly rate of the halo
(or, equivalently, the ram pressure behind the accretion shock) dictates the large-scale tem-
perature gradient in the ICM. The assembly rates of massive clusters are such that they
should have moderate, negative temperature gradients outside the scale radius. This is one
of our primary findings. In what follows, we show that this result holds true even when we
relax the simplifying assumptions in this section. We also study how thermal conduction
modifies this ‘baseline’ temperature profile.

4.4 Conduction and Realistic Assembly Histories

Our models with isothermal potentials and linear accretion histories are especially trans-
parent. The models are very idealized, however, and it is not clear how accurately they
carry over to real clusters. In this section, we generalize our results to include more realistic
potentials and accretion histories; we also include thermal conduction in our calculation and
study its influence on the temperature profiles in clusters.

4.4.1 Method
Coordinates and Assumptions

Introducing realistic potentials and accretion histories into our model necessitates a few
changes to our method. Though the unit system introduced in section 4.3 is ideal for our
model equations, the virial mass of the halo (as opposed to the mass enclosed by the virial
shock) is an eigenvalue of the problem and cannot be specified ahead of time. Since we
want to study the variation in temperature profiles at fixed virial mass, we must alter the
equations and boundary conditions slightly.

We adopt a unit system based on the virial mass M,;, o and radius 7y, o of the halo at
redshift zero. Following our approach in the last section, we introduce the dimensionless
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variables P, p1, and K via:

3 X P (411&)
p=22vinl o p (4.11b)
(4.11¢)

We also define the spatial coordinate x = r/r.;;, the Lagrangian coordinate y = M, /( fp Myir),
and the dynamical time t4y, = (G M, /r,) /2. Note that our definitions of z, ¥, and t4yn
use instantaneous values of ry;, and M., while our definitions of p;, P, and K; are normal-
ized to ryir, o and My o. Thermodynamic quantities in our calculation (e.g. K;) are thus
directly comparable at different redshifts, while coordinates (e.g. z) are not.

We define m = M, (t) /My, 0, which tracks the formation of the halo and functions as
a time coordinate. We take the virial radius to be rygg, the radius within which the mean
density of the halo is 200 times the critical density of the universe. Thus, tqy, = (10H)!,
where H is the Hubble parameter.

Since the virial radius does not directly enter into our model (§ 4.3), our choice defining
the virial radius is essentially arbitrary. We chose rypg because it is straightforward to
compute and facilitates comparison with much of the existing literature. We continue to use
the notation “ry;,” over the notation “rapy” in order to de-emphasize this arbitrary definition,
however.

Dark Matter

As discussed in section 4.2, we do not solve for the evolution of the dark matter; instead,
we assume that the dark matter evolves independently of the baryons and we parametrize it
using fits to halos from cosmological n-body simulations. In particular, we assume that the
dark matter follows an NFW distribution at all times (Navarro et al. 1997), with a constant
concentration parameter ¢ = 5, as is appropriate for actively forming, massive halos (Zhao
et al. 2009). The only free parameter in this model for the dark matter is the mass accretion
history of the halo.

We use fits to halo mass accretion histories of the form

m(z) =[(1+ z)° exp(—2z)]7, (4.12)

derived by McBride et al. (2009) from the Millennium simulation (Springel et al. 2005). This
fit is calibrated to the “friends of friends” mass Mp,r (Davis et al. 1985), which is similar to
our choice of My for the virial mass (White 2001). Figure 4.4 shows the parameter space
for the exponents v and b, along with the definitions of Type I, II, III, and IV accretion
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Figure 4.4 : Parameter space for dark matter accretion histories based on the Millennium Simulation.
The exponents v and b are defined in equation 4.12. Colors demarcate the different accretion “types”
from McBride et al. (2009) and gray lines show contours of the formation redshift z; such that
Myir(26) = 0.5 My (2 = 0). At redshift zero, Type III halos are accreting very slowly and Type 0
halos are accreting rapidly. The red curves mark contours of the probability density for 10 M
clusters to have a given accretion history (taken from the Appendix of McBride et al. 2009). The
contours for 10 M, halos are very similar to those shown here.
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Figure 4.5: Example accretion histories from equation 4.12 illustrating each of the four “types.” The
examples correspond to {v,b} = {0.75, —1.5} (Type 0), {0.75,0.0} (Type I), {1.25,0.5} (Type II),
and {2.25,0.9} (Type III). These examples are also used in figure 4.6. Note that Type 0 halos
have larger accretion rates, and that Type III halos have lower accretion rates, than intermediate
halo types at low redshift. Vertical, gray lines indicate the “formation redshift” for which M (zf) =
0.5M(z = 0). Though the formation redshift does not have a one-to-one correspondence with
accretion type, Type III halos tend to form early and Type 0 halos tend to form late (cf. figure 4.4).

histories from McBride et al. (2009),® and figure 4.5 shows an example of each “Type” of
accretion history. For reference, the red curves in figure 4.4 show contours of the probability
density function for halo accretion parameters from the appendix of McBride et al. (2009).
We also show contours of the “formation redshift” zr at which the cluster reaches half its
present mass; most of the halos formed at a redshift between 0.5 and 1.

Note that a Type I accretion history is roughly exponential in redshift, which is typical
in ACDM (Wechsler et al. 2002). At fixed mass, Type 0 halos are younger, while Type II
and Type III halos are older, than Type I halos. A Type IV accretion history corresponds to
mass loss at late times; this would imply a negative ram pressure at the virial shock in our
quasi-equilibrium model. These cases should be studied with fully dynamical, cosmological
simulations. Fortunately, at the high masses we wish to study, a relatively small fraction of
the total halos exhibit Type IV accretion histories. Moreover, these are systems which have
recently undergone major mergers; they are likely to be morphologically disturbed and may

3McBride et al. (2009) do not distinguish between Type II halos with negative and positive values of the
exponent b. Since this distinction is important in our application, we denote Type II halos with b < 0 as
Type 0.
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be excluded from cosmological samples.

In order to calculate the strength of the virial shock, we require an estimate for the
turnaround radius 7, (§ 4.2). Unfortunately, fits to 7y, from n-body simulations do not seem
to be available. Therefore, we simply use the virial theorem to estimate that the turnaround
radius is twice the virial radius. The shock radius is then given in terms of the virial radius
by rg = 267, We note that this approximation may over-estimate the turn-around radius
(cf. Diemand et al. 2007), causing us to predict temperature profiles which are too shallow.
This is one of the primary sources of uncertainty in our models.

The quasi-equilibrium model for the dark matter described in this section greatly simpli-
fies our method by eliminating the need to solve for the dark matter dynamics (e. g. by using
an n-body simulation or by solving the Jeans equations). This model is ambiguous outside
the virial radius, however. Since the virial shock typically lies exterior to the virial radius, it
is not a priori clear what value of My, to use in equation 4.1 for the post-shock entropy. We
proceed by presuming that the gas and dark matter first separate at the virial shock; thus,
the gravitating mass My, in equation 4.1 corresponds to the mass M,;.. After the shock, the
gas remains in hydrostatic equilibrium at rg, while the dark matter continues to collapse and
virializes at the virial radius ry; < rg,. Therefore, when we solve for hydrostatic equilibrium
in the post-shocked gas, we assume that the dark matter has relaxed and we extrapolate the
NFW profile between the virial- and shock radii. This inconsistency in our treatment of the
gravitating mass is an unavoidable consequence of applying a quasi-equilibrium model for
the dark matter outside the virial radius.

Gas Equations

We solve for the state of the gas using a method very similar to that described in sec-
tion 4.3, but we now solve for the shock radius {(m) self-consistently. We discretize the
halo formation into the accretion of a finite number of shells and, for each shell m;, we solve
the full eigenvalue problem for its shock strength &(m;). Thus, we simultaneously build up
solutions for the shock radius and for the temperature profile as functions of time. As dis-
cussed above, we assume that the gas and dark matter first separate at the virial shock. The
baryonic accretion rate at the shock radius ry, is thus also proportional to equation 4.12.
This is qualitatively consistent with the findings of Faucher-Giguére et al. (2011), who show
that the baryonic accretion closely tracks the dark matter accretion history in simulations
of high-mass halos.

The equations for mass conservation and hydrostatic equilibrium are:

dv _ b (Ki(y)\*® X

AP, m*PR¥ Llog(1 + cx) — cx/(1 + cx) (4.13b)
dy 3z log(l+c¢)—c/(1+c) ~’ '
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with the boundary conditions:

_ 4\/§m2/3h8/3 1-¢

Py=1)=— @r (4.14a)
r(y=1)=2¢ (4.14b)
z(y =0) =0. (4.14c)

In the above, n = t4yn (0 In M,;,/0t) measures the accretion rate of the halo, and h = H/Hy =
[Qu (14 2)3 +Q4]"/2 is the Hubble parameter in units of Hy. In equations 4.13 and 4.14, 1, h,
and & are all evaluated at the epoch of the most recently accreted shell. It is straightforward
to show from equation 4.12 that 7 = m~y(1 + z — b)H. Thus, the dimensionless accretion
rate 7 is given by n = (1 + z — b)/10.

The shock entropy K5" takes the form:

sh 7} Y 2 _ 4/3
K <y>—3[n[2<y>]xh[z<y>ﬂ 1= 8w (4.15)

where z(y) represents the redshift at which the baryonic shell y accreted and £(y) represents
the shock radius of the cluster at that redshift.

Inserting the conductivity appropriate for a fully-ionized hydrogen plasma (Spitzer 1962)
into equation 4.2 yields:

dIn K A 7% [ My
S 0,70 fep— L .0
dm fo hmn \ 1015 M,
. (4.16)
e |20 5 (omy? o
Vdgoxr 21y \ Ox 0x?

(Recall that the coordinate m tracks the formation of the cluster and thus functions as a time
coordinate). We integrate this equation between accretion events with an explicit, sub-cycled
method. The conductive heat flux must vanish at the origin by spherical symmetry; thus, we
adopt 0T'/Or = 0 as the inner boundary condition for equation 4.16. The precise boundary
condition on the heat flux at the shock is uncertain because it depends on the physics of
collisionless shocks in the presence of strong thermal conduction. We proceed by assuming
that electrons do not diffuse across the shock into the upstream flow; in our model, the
shock thus serves as an insulating boundary. This assumption is convenient because thermal
conduction does not modify the structure of the shock. We have also tried calculations in
which we keep the heat flux constant at the shock; the results with this alternative boundary
condition were very similar to those we present here.

Note that equations 4.13-4.15 are independent of halo mass, while equation 4.16 is not.
Conduction thus introduces non-self-similar behavior and may influence mass-observable
relations. We quantify this departure from self-similarity in the following section.
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Figure 4.6: Representative temperature profiles at redshift z = 0 generated by each type of accretion
history from McBride et al. (2009) (see figures 4.4 and 4.5). The profiles are calculated using the
Lagrangian method from section 4.4, but with no thermal conduction (the temperature profiles are
thus independent of the halo mass). Note the qualitative agreement with the simple models from
section 4.3. In addition, the location of the shock radius depends fairly sensitively on the accretion
history of the halo.

The post-shock entropy (eq. 4.15) and the outer boundary condition on the pressure
(eq. 4.14a) depend on the accretion history through the dimensionless accretion rate 7
(cf. § 4.3). Thus, the diversity in accretion histories may generate scatter in the ICM proper-
ties at fixed halo mass. In order to estimate the statistics in ICM properties, we generate an
ensemble of accretion histories for each halo mass M, o, with the exponents v and b drawn
from the distribution in the appendix of McBride et al. (2009). This ensemble yields infor-
mation about the statistics of the cluster population and the extent to which the variation in
accretion histories creates scatter in the temperature profile and mass-observable relations.
We present these results in the next section.

4.4.2 Results

Before studying the effect of thermal conduction, we present adiabatic models in which
we set the effective conductivity to zero. These profiles facilitate comparison with the simpler
models in section 4.3 and also provide a basis for understanding the models with conduction.

Figure 4.6 shows representative, adiabatic solutions for the redshift-zero temperature pro-
files resulting from several different accretion histories. (Because we have neglected thermal
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Figure 4.7: Influence of the effective conductivity on cluster temperature profiles. These curves
show temperature profiles for massive, 101°M halos with Type III accretion histories at redshift
z = 0. This choice of mass, accretion type, and redshift maximizes the effect of thermal conduction;
nonetheless, the change to the temperature profile at large radii is modest. As discussed in the text,
the marked effect of thermal conduction on the temperatures at small radii is not a firm prediction,
since our models neglect both radiative cooling and feedback heating, which are important in this
region (Voit 2011).
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conduction, these solutions are independent of halo mass.) In all cases, the temperature ap-
proaches the virial temperature near the scale radius of the halo, and falls by a factor of ~ 2
by the virial radius. We note that the temperature profiles in figure 4.6 are not monotonic
with density and thus cannot be described with polytropic models. Interestingly, however,
a polytrope with an index v ~ 1.2 (as assumed by v03) provides a good fit between the
scale radius and ~ 0.57;,. These profiles are qualitatively very similar to the NFW models
in figure 4.3 with t4yn/to ~ 0.15, as is reasonable for clusters (§ 4.3.2). The location of
the accretion shock is also consistent with our interpretation in section 4.3: Type III halos,
which experience slower accretion at late times, have larger shock radii than the more rapidly
accreting Type 0 halos. Thus, the intuition we developed in section 4.3 likely holds even for
the more complex models in this section.

Ignoring thermal conduction is not a well-motivated approximation, however: as dis-
cussed in section 4.1, the timescale for heat to diffuse through massive clusters (12, /xe ~
1 Gyr) is shorter than the typical age of the ICM (~ 5 Gyr). Consequently, non-cosmological
simulations of isolated halos (e.g. Parrish et al. 2008) show that the ICM becomes almost
completely isothermal after ~ 2 Gyr. By analogy, one might therefore expect conduction to
significantly modify the temperature profile shown in figures 4.3 and 4.6.

Figure 4.7 compares the temperature profiles of clusters with different effective conduc-
tivities. In order to maximize the influence of thermal conduction, we show 10 M clusters
(which are hotter, and thus more conductive than lower mass clusters), with Type III accre-
tion histories (which formed comparatively early and thus provide more time for conduction
to operate). As expected, thermal conduction smooths out the temperature profile in the
ICM; the effect, however, is substantially weaker than has been found in non-cosmological
simulations (see above). The profiles we obtain do not become isothermal, in qualitative
agreement with x-ray observations of the 1CM (George et al. 2009; Simionescu et al. 2011),
and also with cosmological simulations of clusters which include thermal conduction (Dolag
et al. 2004; Burns et al. 2010). The disagreement with simulations of isolated halos suggests
that cosmological accretion and the continued formation of clusters is essential not only for
understanding the origin of the large-scale temperature gradient in the 1cM (§ 4.3), but also
for how this gradient persists in spite of thermal conduction.

Two important effects differentiate cosmological calculations of thermal conduction from
non-cosmological simulations of isolated halos. First, even though the present-day timescale
for thermal conduction is shorter than the mean age of massive clusters, the gas near the
accretion shock is always young and thus unaffected by conduction. The jump conditions at
the virial shock therefore still determine the outer temperature, even when we take thermal
conduction into account. The second effect differentiating cosmological and non-cosmological
calculations is that the 1ICM at higher redshift had a lower temperature and thus a much lower
conductivity than it has at redshift zero. Even at small radii, the age of the 1ICM (~ 5 Gyr)
thus over-estimates the timescale over which thermal diffusion operates. These two effects,
which are not present in non-cosmological simulations, strongly limit the influence of thermal
conduction on the large-scale temperature profile of the 1CM.

We illustrate these points in figure 4.8, where for each model from figure 4.7 we plot
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Figure 4.8: Ratio of the age of each shell in the 1cM to its field-free conduction timescale (see
text for definitions). The models are the same as in figure 4.7. This ratio is defined using the
field-free conductivity (i.e. for fg, = 1). Models with finite suppression factors should satisfy
tage/tcond S fS_pl; the thick gray lines show this limit for fs, =1 and 1/3. Adiabatic models predict
teond S (0.2 — 0.3)tage at intermediate radii; as a result, conduction alters the temperature profile
and maintains tage/tcond S fs_pl.
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the ratio of the age of each shell in the 1CM to its field-free conduction timescale. We
define the conduction timescale as teonq = |dIn K/dt|™!, calculated using equation 4.2 with
fsp = 1. We define the age of the shell t,5. as the time over which conduction operates
at its present-day efficiency; we approximate this as the minimum of the time since the
shell accreted and |dInm/dt|™!, the timescale over which the 1CM conductivity changes
appreciably. Conduction should limit the temperature profile of the 1CM to everywhere
satisty teond/tage S fS_pl. Thus, by looking at the adiabatic models in figure 4.8 (blue, with
fsp = 0), we can estimate how large of an effect conduction would have if we were to include
it.

Figure 4.8 shows that the ratio t,ge/tcona falls steeply near the virial shock, again reflect-
ing that the recently accreted gas is too young to be influenced strongly by conduction. At
smaller radii, however, tage/tconda ~ 5 in the adiabatic model, suggesting that thermal con-
duction plays a significant role in determining the temperature profile in the icCM. The thin
blue curves in figure 4.8 show that this conclusion depends strongly on redshift, however.
The flattening of the temperature profile shown in figure 4.7 is thus a fairly recent phe-
nomenon and is far less pronounced at redshift z 2 0.2. Recall also that figures 4.7 and 4.8
show results for massive, 10° M, clusters with Type III accretion histories. Clusters with
lower masses or different accretion histories are likely to be even less strongly influenced by
conduction (see figure 4.10, below).

The red and yellow curves in figure 4.8 show that when we include thermal conduction
with a given suppression factor fs;,, the temperature gradient adjusts so as to keep the ratio
teond/tage Delow fs_pl. The ratio teond/tage is proportional to the gradient term:

200 5 [(OTV\® Ty
T -
x O0r 217 \ Ox Ox?

Thus, thermal conduction can either make the 1CM isothermal (so that the heat flux van-
ishes), or make T~ r~2/7 (so that the heat flux is constant). We find that our model clusters
initially take the second approach: the temperature profile adjusts so as to have a nearly
constant heat flux as a function of radius. This is not possible near the origin, however,
where spherical symmetry requires the heat flux to vanish. Thus, over a longer timescale,
the center of the ICM cools and the ICM begins to become isothermal. The yellow curve in
figure 4.7 shows the beginning of this process, but there is not enough time before redshift
z = 0 for a significant fraction of the ICM to become completely isothermal, even in cases
where conduction is most effective.

Though conduction may have considerable effect on the temperature profiles of massive
clusters by redshift zero, its influence on their entropy profiles is less pronounced. We show
this in figure 4.9, which compares entropy profiles for massive, 10M,, clusters with and
without conduction. Between the scale radius and the virial radius, both models agree fairly
well with a power-law fit derived from x-ray observations (e.g. Cavagnolo et al. 2009). Inter-
estingly, thermal conduction smooths out some of the non-power-law behavior introduced by
the accretion history, leading to an entropy profile more similar to the adiabatic self-similar
profile.
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Figure 4.9: Entropy profiles in calculations with different values of the conductivity. As in figure 4.7,
this figure shows 10'5 M, halos with Type III accretion histories; these properties maximize the
effect of thermal conduction. Also shown is the K ~ 713 power-law derived in v03.

Figures 4.6-4.9 illustrate the effects of cosmological accretion and thermal conduction
on the temperature of the I1CM in individual clusters. As mentioned in section 4.4.1, in
order to study the statistics of temperature profiles as a function of virial mass, we run an
ensemble of models with accretion histories drawn from the probability distribution in the
appendix of McBride et al. (2009). The upper panels of figure 4.10 show these temperature
profiles for three different halo masses with (yellow) and without (blue) thermal conduction.
In the models with conduction, we have assumed a conductive suppression factor fs, =
0.3. The temperature profile roughly follows the pattern found in section 4.3, but with
fairly significant, ~10%, scatter. This scatter is caused purely by the variation in accretion
histories.* We have neglected several processes, including mergers, heating by dynamical
friction, radiative cooling, and heating by AGN outflows, all of which may increase the scatter
above that shown here.

Figure 4.10 also illustrates the mass-dependence of conduction’s role in the ICM. Because
the thermal conductivity of a plasma depends sensitively on its temperature as x oc T°/2,
higher-mass halos are more strongly influenced by conduction. More quantitatively, the
conduction timescale in the ICM falls with mass: tcong ~ 72, /Xe ~ 1/Mi;. Figure 4.10 shows

4Note that we have neglected any correlation between halo concentration and accretion history, which
may introduce additional variation in the temperature profiles (e.g. Bullock et al. 2001). The analysis in

Zhao et al. (2009) suggests that a constant value for the concentration ¢ ~ 5 is appropriate for massive
clusters, however.
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Figure 4.10: (Top row): Temperature profiles with (yellow; fs, = 0.3) and without (blue) thermal
conduction for different halo masses. Black lines show the median profile from our ensemble of
accretion histories based on figure 4.4 and colors show contours enclosing 50%, 90%, and 99% of
the models. The points with error bars in the top-right panel show temperature profiles derived
from x-ray observations. The black and green points are taken from Leccardi & Molendi (2008) and
Simionescu et al. (2011), respectively. (Bottom row): Estimated fraction of non-thermal pressure
support generated by the MTI. See section 4.4.3 for details.
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that the normalization is such that conduction has a minor influence on 10 M, halos,® but
that it is significant for more massive, 105 M, clusters.

Finally, in the upper-right panel of figure 4.10, we have overlaid observational data from
Leccardi & Molendi (2008) and Simionescu et al. (2011).6 The data from Leccardi & Molendi
(2008) (shown in black) represent an average temperature profile derived from 48 clusters
from the XMM-Newton archive. The points from Simionescu et al. (2011), shown in green,
represent SUZAKU observations of the Perseus cluster out to r999. Outside the scale radius,
where our method is applicable, our model agrees favorably with the data. Though this
agreement is encouraging, we caution that both the normalization and slope of the data
points in this plot are sensitive to the assumed virial mass of the halo, which is uncertain in x-
ray observations. Furthermore, several uncertainties in our model, including the turnaround
radius, the effect of non-smooth accretion, and deviations from spherical symmetry preclude
a very quantitative comparison with the data.

4.4.3 Mixing-Length Theory and the MTI

As an example application of our models, we use mixing-length theory to estimate the
turbulent pressure support produced by convection in clusters. In dilute, magnetized plasmas
such as the I1CM in galaxy clusters, convective stability depends on the temperature gradient
of the plasma (Balbus 2001, later generalized by Quataert 2008 and Kunz et al. 2011). This
convection, known as the MTI, may produce strong turbulence in clusters (McCourt et al.
2011b; Parrish et al. 2012b) and thus may provide enough non-thermal pressure support
to bias hydrostatic mass estimates of cluster halos. Parrish et al. (2012b) found that the
convective velocities produced by the MTI roughly obey mixing-length theory. This motivates
us to use our model temperature profiles to estimate the turbulent pressure support produced
by the MTI as a function of cluster mass and redshift. We note, however, that Kunz et al.
(2012) have shown that the strength of this turbulence depends on the magnetic field strength
in the 1cM, an effect which we do not account for in our simple estimates.

Assuming that the convective motions retain their coherence for a fraction « of a pressure
scale-height and that magnetic tension does not suppress the convective motions, we expect
the instability to drive turbulent convection with Mach numbers of order:

1 T 1/2
dln ) : (4.17)

M ~ H
a( dr

where H = (dIn P/dr)~! is the pressure scale-height. The bottom panels of figure 4.10
show this estimate for the turbulent pressure support (proportional to M?). Assuming (as
suggested by the simulations in Parrish et al. 2012b) that the mixing length parameter

5This conclusion applies to the large-scale temperature gradient in the 1IcM. Of course, small-scale features
may be strongly influenced by conduction, even in 10'4Mg halos (cf. Dolag et al. 2004).

6The observation presented in George et al. (2009) provides another useful constraint on the properties
of the 1cM at large radii. We do not include it in figure 4.10, however, because it is not de-projected and
thus not directly comparable to our results.
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a ~ 0.5, this figure suggests that turbulence driven by the MTI contributes ~ 5 — 10% of
the pressure support outside of r509. Cosmological simulations of cluster formation (e.g.
Rasia et al. 2006; Nagai et al. 2007; Vazza et al. 2011) find significant turbulent pressure
support due to subsonic, bulk flows driven by mergers near the virial radius. We note that
any turbulence produced by the MTI would add to, but would likely be sub-dominant to,
that produced by infalling subhalos.

Since the MTI is not suppressed by other sources of turbulence (McCourt et al. 2011b;
Parrish et al. 2012b), this pressure support adds to that already present due to turbulence
driven by infalling substructure or by galaxy wakes. This analysis suggests that the MTI
plays an important role in the dynamics of the 1CM, especially at radii 2 0.5r.;. Thus,
the MTI may provide an interesting correction for hydrostatic mass estimates of cluster
halos. Unfortunately, both the large scatter in the strength of the MTI and its strong radial
dependence (cf. Parrish et al. 2012b) seem to preclude a simple fitting function for the
fraction of turbulent pressure support as a function of halo mass.

By applying mixing-length theory in equation 4.17, we have implicitly assumed that the
MTI grows rapidly enough to establish convection by redshift zero. We find that ¢y S 0.5¢4e
within 7y;; thus, the Mach numbers in figure 4.10 (and also in Parrish et al. 2012b) are likely
to be reasonable estimates.

Another assumption implicit in our use of mixing-length theory is that conduction is
rapid enough to sustain the MTI. Thus, the results in the lower panels of figure 4.10 are only
valid when the conduction timescale across an unstable mode ~ (aH)?/x is less than the
growth time of the MTI. Massive clusters (M., = 10'4® M), likely satisfy this ordering of
timescales, but lower masses halos (M, < 10* M) may not. Thus, the mass-dependence
of the MTI is not likely to be monotonic. In the most massive halos (M, = 10'° M),
thermal conduction is more efficient and weakens the temperature gradient at intermediate
radii (fig. 4.10). In lower mass halos (M, < 10 M), on the other hand, conduction
may not be fast enough to drive the MTI to its full potential. This analysis suggests that
105 M, halos experience the most vigorous convection driven by the MTI.

4.5 Discussion

This paper provides a simplified, spherically symmetric model for the temperature profiles
of the hot plasma in galaxy groups and clusters. Our model is similar in spirit to earlier
studies of the entropy profiles in clusters (e.g. Tozzi & Norman 2001; Voit et al. 2003), but
builds on these earlier studies by focusing on temperature and by including the effects of
thermal conduction. Our results agree reasonably well with the profiles derived from x-ray
observations (cf. Leccardi & Molendi 2008) and from numerical simulations (e. g. Dolag et al.
2004).

We have shown that the large-scale temperature gradient in the ICM is primarily deter-
mined by the accretion history of its halo: while the gas near the center of a cluster reaches
the virial temperature of the halo, the temperature at the virial shock is determined by the
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ram pressure of the accreting gas. This difference sets the overall shape of the temperature
profile. The timescale for thermal conduction (teonq ~ 7%,/Xe) is somewhat shorter than the
age of the i1cM. However, the influence of thermal conduction on the global temperature
profile in clusters is mitigated for two reasons. The gas near the center of the cluster is less
strongly effected by conduction because it was cooler in the relatively recent past. The gas
near the virial shock, on the other hand, has only recently accreted and is younger than the
conduction timescale. Thus, conduction has a diminished effect both near the center of the
cluster and near the outskirts. As a result, it does not dramatically change the mean tem-
perature profile (fig. 4.10). Of course, conduction can have a dramatic effect on small-scale
inhomogeneities in the 1ICM (cf. Dolag et al. 2004); such inhomogeneities cannot be studied
in our one-dimensional model.

Our results demonstrate the close relationship between the temperature gradient in clus-
ters and the cosmological evolution of the host halo. This implies that numerical studies of
isolated cluster models (e.g. Parrish et al. 2008) cannot correctly predict the evolution of
the large-scale temperature profile, though they are very useful for studying other aspects of
the 1cM, such as the interplay among cooling, feedback, and plasma instabilities within the
scale radius of the halo.

One of our motivations for studying the effects of conduction and halo accretion history
on temperature gradients in clusters is that the free energy in the non-zero temperature
gradient drives an efficient convective instability, the MTI. The results in section 4.4.3 (e. g.
fig. 4.10) show that the turbulent pressure support generated by the MTI may be of order
~ 5 percent of the thermal pressure, and that it scales non-monotonically with halo mass.
The magnitude of the turbulent pressure support is sensitive to the accretion history and
does not seem amenable to a simple fitting formula.

Halo accretion histories have been studied extensively with numerical simulations. We
use the fits to the Millennium simulation from McBride et al. (2009) to estimate the scatter
in temperature profiles as a function of halo mass; at redshift z = 0, this scatter is of order
10%. This scatter likely contributes to the dispersion in cluster mass-observable relations
relevant to x-ray and Sz observations. Perhaps more interesting are the effects of thermal
conduction and convection, which introduce systematic changes to the temperature profile
with mass. In particular, conduction smooths out the temperature profile (and decreases
the peak temperature in the halo) by an amount that increases monotonically with halo
mass (fig. 4.10); convection, on the other hand, produces turbulent pressure support that is
non-monotonic in halo mass, peaking around 10'°M, halos (§ 4.4.3).

Figures 4.6, 4.7, and 4.10 demonstrate that the effect of thermal conduction on a cluster’s
temperature profile is at least as large as the differences produced by normal variation in
accretion histories. Any variation in the factor fgs, (which parameterizes the suppression of
the effective radial thermal conductivity relative to the field-free value), if it exists, would
create additional scatter in the temperature profiles at fixed mass. Possible effects influencing
fsp include magnetic draping around infalling or orbiting substructure (Dursi & Pfrommer
2008; Pfrommer & Dursi 2010) and the strength of the magnetic field. These processes may
also contribute to the scatter in cluster mass-observable relations.
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The models presented in this paper provide a simple explanation for the physics that
sets the temperature profiles in galaxy groups and clusters at large radii. Our results are
consistent with current observational constraints on cluster temperature profiles at large
radii (fig. 4.10). They also highlight several processes which may bias hydrostatic mass
estimates of clusters, including modifications to the scaling relation T'(M) by conduction
and by turbulence driven by the MTI. The approximations in this paper, especially the
assumptions of smooth accretion and spherical symmetry, preclude precise estimates of the
non-thermal pressure support produced by the MTI. These limitations can be addressed
using cosmological simulations.
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Chapter 5

“Semi-"Cosmological Simulations of
Cluster Convection

5.1 Introduction

Conditions in the ICM indicate an electron gyroradius which is smaller than the Coulomb
mean free path by some 10 orders of magnitude; even allowing for the significant uncertainty
in the inferred strength of the magnetic field, this separation in scales implies that 1CM
electrons are confined to move only along magnetic field lines. This motion, in turn, implies
that the viscosity and thermal conductivity of the plasma are strongly anisotropic with
respect to the magnetic field (Braginskii 1965). One of the consequences of this anisotropic
transport is that the dominant convective instability switches from the usual Schwarzschild
instability (which depends on the entropy gradient of the plasma) to the magnetothermal
instability (MTI), which depends on the temperature gradient of the plasma (Balbus 2000;
Quataert 2008). Thus, galaxy clusters, which were long thought to be convectively stable,
are actually unstable to convection.

The analytic theory for the MTI was invented by Balbus (2000) and later refined by
Quataert (2008), Balbus & Reynolds (2010), and Kunz et al. (2011). Parrish & Stone (2005,
2007) used idealized, local simulations to confirm the instability numerically and to study its
nonlinear saturation. Initially, the MTI seemed likely to drive strong convective turbulence
in galaxy clusters, potentially mixing metals throughout the 1cM, amplifying the intracluster
magnetic field, and producing enough turbulent pressure support to bias hydrostatic mass
estimates of clusters (e.g. Quataert 2008).

Parrish et al. (2008) and Sharma et al. (2008) first studied the MTI in global simulations
of galaxy clusters and of the galactic center, respectively. Surprisingly, both studies found
that the MTI did not grow to large amplitude: rather than driving fully-developed turbu-
lence, the instability instead saturated “quasi-linearly,” with certain properties such as the
final magnetic field strength still determined by the initial condition. Parrish et al. (2008)
identified the saturation channel for the MTI in their simulation: thermal conduction ren-
dered the 1CM isothermal on a timescale short compared to the dynamical time, effectively
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shutting off the MTI before it had a chance to grow.

McCourt et al. (2011b) pointed out that observed clusters do not seem to be isothermal,
and speculated that an unknown process maintains the large-scale temperature gradient in
clusters. Thus, the isothermal saturation channel might not be available to clusters, forcing
MTI to drive convection. Consequently, Parrish et al. (2012b) ran a new set of simulations
with different boundary conditions and showed that the MTI may in fact drive vigorous
turbulence, as had been thought initially. The implications of the MTI are thus not obvious
a priori, and seem to depend on other processes controlling the structure of the 1CM.

A significant shortcoming of existing work on the MTI is that the timescale for the MTI
to grow is only a factor of ~10 shorter than the age of a cluster. The time-evolution of the
temperature gradient and gravitational potential may thus alter the growth of the instability
in an important way. To date, however, nearly all numerical studies of the MTI in galaxy
clusters have utilized simulations of “isolated” halos which do not evolve in time. More
recently, McCourt et al. (2013) studied simplified models of forming clusters and found that
thermal conduction has a much smaller influence on the cluster plasma than simulations of
isolated halos predict. One might expect that the effect of the MTI is similarly diminished;
simulations with an evolving potential and a realistic virial shock are needed to fully assess
the importance of the MTI for cluster astrophysics and cosmology.

McCourt et al. (2013) provided a simplified model for the formation of galaxy clusters and
showed that the continued assembly of clusters mandates a large-scale temperature gradient
similar to those observed. In part, this justifies the speculation in McCourt et al. (2011b) and
the choice of boundary conditions in Parrish et al. (2012b). However, the processes identified
by McCourt et al. (2013) which moderate the influence of thermal conduction on the 1CM
might similarly suppress the MTI — these processes rely on the cosmological evolution of
the cluster and, unfortunately, were not present in the simulation of Parrish et al. (2012b).
In this chapter, I present a set of simulations which aims to determine whether the MTI
grows to large amplitude in galaxy clusters, taking into account the competition between
the cosmological assembly of the cluster and the growth of the instability in an idealized
model.

5.1.1 Plan

Simulating the MTI requires solving the full Braginskii equations, along with the cosmo-
logical physics which determines the large-scale structure and evolution of the 1cM. This
chapter presents idealized simulations which abstract away as much of the cosmological
physics as possible, while still keeping the aspects which seem essential for understanding
the present-day properties of galaxy clusters.

I have tried as much as possible to extend the spherically symmetric models of McCourt
et al. (2013) and Voit et al. (2003) to full 3D numerical simulation. In particular, I treat the
baryonic evolution of the cluster as separate from the dark matter dynamics. I model the dark
matter using a time-dependent gravitational potential fit to the “NFW” form (Navarro et al.
2004) with a mass accretion history taken from the fits in McBride et al. (2009). I assume
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the baryonic accretion rate tracks the dark matter and apply a boundary condition on the
gas density at the “turnaround radius” (see § 5.2 for more details). The gas self-consistently
finds a virial shock, which determines the thermal state of the intracluster medium. These
cosmological approximations closely follow those in McCourt et al. (2013) and in Voit et al.
(2003), but can now be applied to multi-dimensional numerical simulations to study the MTI
in a cosmologcail context.

These simulations will also enable me to assess the importance of viscosity in the dynamics
of the 1IcM. While Kunz et al. (2011) pointed out that ignoring viscosity is not formally
justified in the linear theory, the practical importance of viscosity is not yet known. The
two studies to date (Parrish et al. 2012a and Kunz et al. 2012) reach somewhat different
conclusions and the results appear to depend on the details of the simulation setup. By self-
consistently evolving both the cluster and the MTI, I aim to remove much of the arbitrariness
in the simulation setup.

5.2 Method

As discussed in § 5.1.1, I aim to repeat the calculation of McCourt et al. (2013) as closely
as possible, but relaxing the assumptions of hydrostatic equilibrium and spherical symmetry
in the gas dynamics. In addition to providing a more realistic simulation of the MTI, the
simulations in this chapter will also serve to test those idealized, one-dimensional models of
galaxy cluster assembly.

I use the non-cosmological MHD code ATHENA, which solves the non-relativistic fluid
equations in physical (i.e. not co-moving) coordinates. The code does not solve for dark
matter dynamics; instead, I model the dark matter via an external potential as a function
of radius and time. At each time-step in the MHD simulation, I find the “turnaround radius”
(assumed to be twice the virial radius) and I calculate the density and velocity of the gas there
from the accretion history of the cluster. I apply this density and velocity as a boundary
condition on the calculation, overwriting whatever values already exist on the grid. This
enables me to apply a moving boundary condition within the fixed grid structure of ATHENA.
I illustrate this procedure schematically in figure 5.1 and I show an example computational
setup in figure 5.2.

I thus model the cosmological context of the cluster via a time-dependent potential and
a boundary condition. Conceptually, this separates the gas dynamics of the cluster from the
detailed cosmological formation, while keeping the aspects of cosmology which are essential
for the problem. It is of course possible that the detailed cosmological evolution of the cluster
matters — angular momentum, tri-axiality of the potential, non-smooth accretion could all
matter in detail. I plan to test this in the near future by comparing my results with fully
cosmological simulations (e.g. Ruszkowski et al. 2011 or Smith et al. 2013).
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Figure 5.1: Schematic formation of a galaxy cluster. The highlighted shell initially expands from the
big bang at point ‘A’ as r ~ t2/3 before turning around at point ‘B’ due to gravitational instability.
As the shell falls in toward the cluster, the gas shocks at point ‘C’ and sits in hydrostatic equilibrium
at roughly constant radius (dashed line). The dark matter falls through the virial shock until it
reaches the virial radius at point ‘D,’ after which shell crossings become important. The dark matter

then begins to orbit and makes up the halo of the cluster. The yellow, red, and blue curves show the
‘turnaround,’” shock, and virial radii as functions of time. In this work, I assume the dark matter
dynamics as specified and I solve the gas dynamics within the evolving potential due to the dark
matter. I use the NFW fit to the dark matter distribution (Navarro et al. 2004) and fits to the mass
accretion histories from McBride et al. (2009). I furthermore assume that the turnaround radius is
twice the virial radius at all times, which specifies the dark matter dynamics completely. Within
this model, I solve the gas dynamics in 3D including MHD with anisotropic conduction and viscosity
to determine the shock radius and the thermal state of the intracluster medium self-consistently.
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5.2.1 Potential and Mass Accretion History

As described in McCourt et al. (2013), I assume the dark matter follows an NFW (Navarro
et al. 2004) distribution at all times with a constant concentration parameter ¢ = 5. This
choice of a constant concentration parameter is appropriate for a cluster still undergoing
active stages of formation (Zhao et al. 2009; Wu et al. 2013).

I adopt the fits to cluster accretion histories from McBride et al. (2009) and assume
the mass evolves with redshift as M(2) o« [(1 + 2)®e~*]9. McBride et al. (2009) provide
a probability distribution for the parameters g and b and classify accretion histories into
distinct “types.” For simplicity, I assume a Type I accretion history represents a “typical”
cluster, while a Type 0 accretion history represents a young (late-forming) cluster and a
Type III accretion history represents an old (early-forming) cluster. This is roughly correct,
though “T'ype” is not one-to-one with age (see figure 4 in McCourt et al. 2013).

5.2.2 Boundary Condition

I derive my outer boundary condition by assuming the dark matter far outside the virial
radius follows a simple top-hat collapse model in which shells of dark matter decouple from
the hubble flow and “turn around” at a given radius before collapsing to form the cluster
(e.g. Gunn & Gott 1972; Padmanabhan 1993). See, e.g. Tozzi & Norman (2001), Voit et al.
(2003), or McCourt et al. (2013) for a more detailed description of this boundary condition.

In the frame of the cluster, the radial velocity vanishes at turnaround. By fixing the
accretion rate through this radius (= 47 r2 p. X dr,/dt) to the mass accretion history of
the cluster, I derive the density at turnaround as a function of time:

pra  1Inll 30 (1+2)3 -

200per 816 | gltz_b)omlraP ]

(5.1)

illustrated in figure 5.3. Physically, this corresponds to the initial density perturbation which
collapses to form the cluster.

I have described how I calculate the density and velocity of the gas at turnaround using
a top-hat collapse model. T still need to apply a boundary condition on the temperature and
the magnetic field. I choose an outer temperature which is low enough to guarantee a strong
virial shock with M > 1. The results are thus independent of the outer temperature. I
assume the magnetic field is dynamically weak (5 > 1) and is initially arranged in concentric
loops about the “z” axis of the cluster. Though this magnetic field configuration is highly
idealized, it introduces no free parameters into the setup and it highlights the role of the
MTI in my simulations. Previous simulations (Parrish et al. 2008; McCourt et al. 2011b)
suggest that the evolution of the MTI is not strongly dependent on the initial geometry of
the magnetic field. Prior to turning this chapter into a published paper, I will extend the

results presented here to include initially tangled magnetic fields.
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Figure 5.3: Density at turnaround as a function of redshift for three different models for the
cosmological growth of cluster mass halos (which roughly bracket the range of accretion histories
found in cosmological simulations such as Millenium; see McBride et al. 2009).
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5.2.3 Initial Condition

I begin my simulations at redshift z = 6, with the density and velocity at turnaround as
described above. For the initial condition, I find the density and velocity of the gas inside
turnaround by extending the top-hat collapse model. Specifically, I initialize a series of shells
filling the volume between r, and ry9y and I integrate the equation of motion:

% = —Vo(rt) (5.2)
back in time to find when the shells turned around. Assuming that shell-crossing is negligible
outside 1909, the mass enclosed by a given shell is a constant in time and equation 5.2 reduces
to an ordinary differential equation. I then use the density at turnaround at that time, along
with the change in volume between adjacent shells, to determine the density and velocity of
the gas between ry, and ry. Figure 5.4 shows example solutions to this equation.

Since this method breaks down inside r99, I model the gas inside this region with a
hydrostatic atmosphere separated from the infalling gas by a shock. Though my choice of
a shock radius at rogg is somewhat arbitrary, I have confirmed my results are insensitive to
this choice provided I start the simulations early enough (ziitia1 = 4)-

Inside the shock, I assume the initial state is a hydrostatic and isentropic core, with

3/2
[
pcore {1 + ¢COF€

pcore

where A = (6]@eore])/(50F core)s K = $02cre(4peore) /3, and peore and vy core represent the

3 Yj,core
pre-shock density and velocity in the frame of the cluster.

5.2.4 Numerical Method

I use a method very similar to the one described in Parrish et al. (2012a) to determine
the Braginskii conductive heat flux and viscous momentum flux. Since the closure to the
fluid equations is not known in this quasi-collisionless limit, however, I modified the method
to optionally implement the “Sharma” closure from Sharma et al. (2006), which restricts the
pressure anisotropy to lie within the bounds for the firehose and mirror instabilities. In the
text below, I refer to these simulations as using the “Sharma” closure, as opposed to the
“Braginskii” closure.

Quantitatively, I re-express the Braginskii stress tensor in terms of the pressure anisotropy
AP=P — B

. 1 ~ ~
TS — AP <§g —b® b) , (5.3)
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where P is the gas pressure along magnetic field lines, and P, is the pressure in orthogonal
directions. In a coordinate system with magnetic field lines along the z axis, this stress
tensor takes the form:

_ P, 0 0
T=T"W4+pg=| 0 P 0 (5.4)
0 0 B

Individual particles contain an adiabatic invariant v3 /B which is approximately conserved.
Thus P, /B ~ constant, and changes in the magnetic field strength induce a finite pressure
anisotropy AP. One can understand the Braginskii closure used in Parrish et al. (2012a)
loosely by balancing this driving with relaxation by collisions:

AP 1dnB
<_) L LdlnB (5.5)
P brag Vii dt

where v;; ~ ¢2/v is the ion-ion collision frequency.

However, a non-zero AP represents a source of free energy in the plasma which drives
velocity-space instabilities; because these instabilities are not captured in the fluid limit,
their implications for my simulations are somewhat uncertain. One possibility, suggested
by Sharma & Hammett (2007) and recently bolstered by particle-in-cell (PIC) simulations
(Kunz et al. 2014; Riquelme et al. 2014) is that these instabilities induce anomalous pitch-
angle scattering, effectively making the plasma more collisional. Thus, I follow Sharma &
Hammett (2007) and limit AP to be within the bounds for the firehose, mirror, and ion-
cyclotron instabilities in some of my simulations. I show below that the choice of closure has
only a modest effect on the MTI.

5.3 Results

Figure 5.5 compares the results of adiabatic simulations with the simplified, one-dimensional
models from chapter 4. The entropy profile shows that the simulations reproduce both the
strength and location of the virial shock as determined in the one-dimensional calculations.
More impressive is the agreement between the temperature profiles: as I discussed in the
previous chapter, this temperature profile depends on the entire accretion history of the
galaxy cluster. This test suggests that my simulation method works surprisingly well; below
I use it to study the nonlinear evolution of the MTI in galaxy clusters.

Figure 5.6 compares simulations with isotropic and anisotropic thermal conduction.
These are two-dimensional slices through the midplane of full, three-dimensional simula-
tions. Black lines show the magnetic field, and color shows the temperature fluctuation
0T/T = (T — (T))/T, where (...) denotes an average on spherical shells. Even at the
relatively low mass of 10** My, isotropic conduction strongly suppresses temperature per-
turbations; as expected, this suppression becomes stronger in hotter, more massive clusters.
Anisotropic conduction permits temperature gradients orthogonal to the magnetic field lines.
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Rather than diffusing them away, thermal conduction actually amplifies temperature fluctu-
ations in these simulations; this is the action of the MTI. See figure 5.7, below.

Figure 5.7 shows temperature fluctuations as a function of halo mass for simulations with
both isotropic and anisotropic thermal conduction. From top to bottom, this figure shows
simulations of 10*, 3 x 10!, and 10'® M, clusters. Within each panel, the left half shows a
simulation with anisotropic conduction and the right half shows the corresponding simulation
with isotropic conduction. As in figure 5.6, black lines show the projected magnetic field, and
color shows the temperature fluctuation §7'/7. Simulations with isotropic conduction behave
intuitively: increasing the halo mass increases the effective conductivity of the 1cM, which
reduces the amplitude of the temperature fluctuations. In the simulations with anisotropic
conduction, however, this trend reverses: the amplitude of the fluctuations increases with
increasing halo mass. This is the result of amplification due to the MTI, which becomes more
vigorous with increasing conductivity. Note that conduction is strong enough in 10 M
clusters to significantly change the dynamics of the 1cM. In the isotropic simulation, the
conductive heat flux has inflated the 1CM at large radii, pushing the virial shock out to the
computational boundary at 2 X rygp; this does not occur in my simulation with anisotropic
conduction because the initially azimuthal field inhibits the radial transport of energy on
large scales.

Figure 5.8 compares an inviscid simulation with a simulation which includes anisotropic
viscosity using the Braginskii closure. Viscosity smooths out the flow on small scales and
appears to organize the magnetic field lines into more coherent, large-scale plumes. Inter-
estingly, however, this has only a small effect on volume-integrated quantities such as the
turbulent Mach number or the convective heat flux; see figure 5.10, below. The simulations
with Braginskii viscosity exhibit strong bunching of the magnetic field lines; this may be a
form of the firehose instability. Figure 5.9 shows that this effect essentially disappears from
simulations using the Sharma closure.

Figure 5.10 quantifies the growth of the MTI in my semi-cosmological cluster simulations.
The left panel shows the turbulent Mach number, defined as /{([(v, — (v.))/cs]?), where (...)
represents an average over a spherical shell. The mean Mach number can reach = 0.3 near
the virial radius in massive clusters, and appears to be only weakly influenced on viscosity.
The right panel shows the average ((67)(dv,)/c2); this quantity is similar to the convective
heat flux, but corresponds more directly to the linear growth of the MTI. As in the left panel,
viscosity has a negligible effect on the MTI in 10'* M, clusters, but becomes more prominent
by 10%° My,
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Figure 5.7: (Caption on next page)
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Figure 5.7: (Previous page.) Temperature fluctuations as a function of halo mass. From top to
bottom, this figure shows simulations of 3 x 10'3, 10, and 3 x 10'* M, clusters. Within each
panel, the left half shows a simulation with anisotropic conduction and the right half shows the
corresponding simulation with isotropic conduction. As in figure 5.6, black lines show the projected
magnetic field, and color shows the temperature fluctuation 67'/T. The color scale on the left ranges
from -0.05 (deep blue) to +0.05 (deep red); the color scale on the right is a factor of five smaller. Note
that the color scale saturates in the top-right and bottom-left panels; the maximum temperature
fluctuations in those simulations significantly exceed the ranges plotted here. Simulations with
isotropic conduction behave intuitively: increasing the halo mass increases the effective conductivity
of the 1cM, which reduces the amplitude of the temperature fluctuations. In the simulations with
anisotropic conduction, however, this trend reverses: the amplitude of the fluctuations increases
with increasing halo mass. This is the result of amplification due to the MTI, which becomes more
vigorous with increasing conductivity. Note that conduction is strong enough in 10'® M, clusters to
significantly change the large-scale dynamics of the icM. In the isotropic simulation, the conductive
heat flux has inflated the 1CM at large radii, pushing the virial shock out to the computational
boundary at 2 X ragg; this does not occur in my simulation with anisotropic conduction because the
initially azimuthal field inhibits the radial transport of energy on large scales.
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Figure 5.8: Comparison of viscous and inviscid simulations. This figure shows simulations of

10 My, clusters to maximize the importance of viscosity. As in figure 5.6, black lines show the
projected magnetic field, and color shows the temperature fluctuation d7'/7. Here, the color scale
ranges from -0.15 (deep blue) to +0.15 (deep red). Viscosity smooths out the flow on small scales and
appears to organize the magnetic field lines into more coherent, large-scale plumes. Interestingly,
this has only a small effect on volume-integrated quantities such as the turbulent Mach number or
the convective heat flux; see figure 5.10, below.



121

5.3. RESULTS

“IRIUIS AIOA 9SIMIOYJO oI SUOIIR[NUIIS OM) O], "AI[IQRISUL SSOYLDIY Y} 0} NP
aq Aewr uryoung SIY) DINSO[D ISULSRIF S1) SUISTL SUOTJR[NUIIS Ul U9SS SOUI[ P[AY JI10USRUL 1]} JO SUIYDOUN] SUOI)S Y} SO)RUTUIId
9Imso[d ewLIeyS oY, (900z ‘[& 10 BULIRYG) SOII[IqR)SUT JOLIIW PUR dSOULIY o1} JO Spunoq oY) uryyim oy Adorjostue anssord o)
syraat] yorym ¢(dog) aamsopo

RULIRYG,, 01} PUR (W0330([) SINSO[D MNSUISRIF O} M SUOIJR[NUIIS SNODSIA JO UOSLIRAWO)) ¢ Unbi,]

39




122

5.3. RESULTS

'T ~ JO 1030 ® Aq XN U3 95DL0UL 03 ST AYSOOSIA JO 3000 Y3 ‘T0AdMOY DI “OJy ;0T Aq yuourmoid srow
SOWI009 N ‘SINSN[ Opy ;0T UL LLIN 97} UO J00pd d[qISI[Sou € sey A}1s00sia ‘[oued 350[ 9} UL Sy "LLIN 9} JO [3MOIS Iedul] oy} 0}
A[3001p 010W SPUOASOIIOD N XN JOY AIJIOAU0D 9} 03 Ieruls st Aypuenb sty (2o/(4ag)(19)) oSetoae oy smoys [oued 3Lt
o], "SI0YSN[O Oy (0T Ul %GT ~ £q 9oUS[MAING OUY JO YBULIYS OUY SOONPAL YN ‘SI0ISN[D Py ;0T Ul LLIN O} JO UOIII[OAD 93} UO
100]J0 9[qI3T[Sou ® seY A}IS00SIA [[oYS [edLIeYdS ® 1040 oSeIoAR e syuese1dol (") aToym ‘(,[*/((*a) — “a)]) /N se peugep ‘Toqumu

YOoeTA JUS[NQIN] oY) smoys [oured 1Jo[ oY J, 'SUOI}RNWIS I9IS[O PIZIRIPI oY} Ul A}ISOISIA JO JO9JJ0 9} JO UOIYRIYIYUen() ()] ¢ a4nbr.f

L
—

002, \ 1
S0 00

T m T
i 1
i
L |
C |
C |
E ! -
~— \ = < 2
V1 ° —
L vl . =
- ] — =
- ] =9 o
C / | c
r / ~— (]
= HS > o 3
N
“E =
L 4 = S
» . o) ® [a]
- 1 o« PN XE == 4 T
- = s Oy 0r x g — o TR
E o ’ R
S @
L . SNOJSIA (9P 0T X € == ]
C - N PRSIAUL (PP 0T X § =— 7]
m 1 1 1 1 1 1 1 1 1 1 m m 1 1 1 _ 1 1 1 o
L =

00




123

Bibliography

Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, ARA&A, 49, 409

Allen, S. W., Rapetti, D. A., Schmidt, R. W., et al. 2008, MNRAS, 383, 879

Arnaud, M., Pratt, G. W., Piffaretti, R., et al. 2010, A&A, 517, A92

Balbus, S. A. 1986, ApJ, 303, L79

—. 1988, ApJ, 328, 395

—. 2000, ApJ, 534, 420

—. 2001, ApJ, 562, 909

Balbus, S. A., & Reynolds, C. S. 2008, ApJ, 681, L.65

—. 2010, ApJ, 720, L.97

Balbus, S. A., & Soker, N. 1989, ApJ, 341, 611

Bauermeister, A., Blitz, L., & Ma, C. 2010, ApJ, 717, 323

Begelman, M. C., & McKee, C. F. 1990, ApJ, 358, 375

Benson, A. J., Bower, R. G., Frenk, C. S., et al. 2003, ApJ, 599, 38

Binney, J., Nipoti, C., & Fraternali, F. 2009, MNRAS, 397, 1804

Birzan, L., Rafferty, D. A., McNamara, B. R., Wise, M. W., & Nulsen, P. E. J. 2004, ApJ,
607, 800

Bogdanovié¢, T., Reynolds, C. S., Balbus, S. A., & Parrish, I. J. 2009, ApJ, 704, 211

Bogdanovié¢, T., Reynolds, C. S., & Massey, R. 2011, ApJ, 731, 7

Braginskii, S. I. 1965, Reviews of Plasma Physics, 1, 205

Bullock, J. S., Kolatt, T. S., Sigad, Y., et al. 2001, MNRAS, 321, 559

Burns, J. O., Skillman, S. W., & O’Shea, B. W. 2010, ApJ, 721, 1105

Cavagnolo, K. W., Donahue, M., Voit, G. M., & Sun, M. 2008, ApJ, 683, L107

—. 2009, ApJS, 182, 12

Chang, P., Strubbe, L. E., Menou, K., & Quataert, E. 2010, MNRAS, 1003

Ciotti, L., & Ostriker, J. P. 2001, ApJ, 551, 131

Cole, S., Norberg, P., Baugh, C. M., et al. 2001, MNRAS, 326, 255

Cowie, L. L., Fabian, A. C.,; & Nulsen, P. E. J. 1980, MNRAS, 191, 399

Croston, J. H., Pratt, G. W., Bohringer, H., et al. 2008, A&A, 487, 431

Davis, M., Efstathiou, G., Frenk, C. S.; & White , S. D. M. 1985, ApJ, 292, 371

Davis, S. W., Stone, J. M., & Pessah, M. E. 2010, ApJ, 713, 52

Defouw, R. J. 1970, ApJ, 160, 659

Diemand, J., Kuhlen, M., & Madau, P. 2007, ApJ, 667, 859


http://dx.doi.org/10.1146/annurev-astro-081710-102514
http://dx.doi.org/10.1111/j.1365-2966.2007.12610.x
http://dx.doi.org/10.1051/0004-6361/200913416
http://dx.doi.org/10.1086/184657
http://dx.doi.org/10.1086/166301
http://dx.doi.org/10.1086/308732
http://dx.doi.org/10.1086/323875
http://dx.doi.org/10.1086/590554
http://dx.doi.org/10.1088/2041-8205/720/1/L97
http://dx.doi.org/10.1086/167521
http://dx.doi.org/10.1088/0004-637X/717/1/323
http://dx.doi.org/10.1086/168994
http://dx.doi.org/10.1086/379160
http://dx.doi.org/10.1111/j.1365-2966.2009.15113.x
http://dx.doi.org/10.1086/383519
http://dx.doi.org/10.1086/383519
http://dx.doi.org/10.1088/0004-637X/704/1/211
http://dx.doi.org/10.1088/0004-637X/731/1/7
http://adsabs.harvard.edu/abs/1965RvPP....1..205B
http://dx.doi.org/10.1046/j.1365-8711.2001.04068.x
http://dx.doi.org/10.1088/0004-637X/721/2/1105
http://dx.doi.org/10.1086/591665
http://dx.doi.org/10.1088/0067-0049/182/1/12
http://dx.doi.org/10.1111/j.1365-2966.2010.17056.x
http://dx.doi.org/10.1086/320053
http://dx.doi.org/10.1046/j.1365-8711.2001.04591.x
http://adsabs.harvard.edu/abs/1980MNRAS.191..399C
http://dx.doi.org/10.1051/0004-6361:20079154
http://dx.doi.org/10.1086/163168
http://dx.doi.org/10.1088/0004-637X/713/1/52
http://dx.doi.org/10.1086/150460
http://dx.doi.org/10.1086/520573

BIBLIOGRAPHY 124

Dolag, K., Jubelgas, M., Springel, V., Borgani, S., & Rasia, E. 2004, ApJ, 606, .97

Dursi, L. J., & Pfrommer, C. 2008, ApJ, 677, 993

Fabian, A. C. 1994, ARA&A, 32, 277

Fabian, A. C., Allen, S. W., Crawford, C. S., et al. 2002, MNRAS, 332, 150

Fabian, A. C., Johnstone, R. M., Sanders, J. S., et al. 2008, Nature, 454, 968

Fabian, A. C., & Nulsen, P. E. J. 1977, MNRAS, 180, 479

Fabian, A. C., Sanders, J. S., Crawford, C. S., et al. 2003, MNRAS, 344, 1.48

Fabian, A. C., Sanders, J. S., Allen, S. W., et al. 2011, Monthly Notices of the Royal
Astronomical Society, 418, 2154

Faucher-Gigueére, C.-A., Keres, D., & Ma, C.-P. 2011, MNRAS, 417, 2982

Ferland, G. J., Fabian, A. C., Hatch, N. A., et al. 2009, MNRAS, 392, 1475

Field, G. B. 1965, ApJ, 142, 531

Fox, D. C., & Loeb, A. 1997, ApJ, 491, 459

Fromang, S., & Papaloizou, J. 2007, A&A, 476, 1113

Gardiner, T. A., & Stone, J. M. 2008, Journal of Computational Physics, 227, 4123

George, M. R., Fabian, A. C., Sanders, J. S., Young, A. J., & Russell, H. R. 2009, MNRAS,
395, 657

Gunn, J. E., & Gott, III, J. R. 1972, ApJ, 176, 1

Guo, F., & Oh, S. P. 2008, MNRAS, 384, 251

Hattori, M., & Habe, A. 1990, MNRAS, 242, 399

Heckman, T. M., Baum, S. A., van Breugel, W. J. M., & McCarthy, P. 1989, ApJ, 338, 48

Holtzman, J. A., Faber, S. M., Shaya, E. J., et al. 1992, AJ, 103, 691

Hu, E. M., Cowie, L. L., & Wang, Z. 1985, ApJS, 59, 447

Johnson, B. M., & Quataert, E. 2007, ApJ, 660, 1273

Jones, T., Ellis, R. S., Jullo, E., & Richard, J. 2010, ArXiv e-prints: astro-ph.CO/1010.1538

Joung, M. R., Bryan, G. L., & Putman, M. E. 2011, ArXiv e-prints

Kaufmann, T., Mayer, L., Wadsley, J., Stadel, J., & Moore, B. 2006, MNRAS, 370, 1612

Keres, D., & Hernquist, L. 2009, ApJ, 700, L1

Kochanek, C. S., Pahre, M. A. Falco, E. E., et al. 2001, ApJ, 560, 566

Komatsu, E., & Seljak, U. 2001, MNRAS, 327, 1353

Kunz, M. W., Bogdanovié¢, T., Reynolds, C. S., & Stone, J. M. 2012, ApJ, 754, 122

Kunz, M. W., Schekochihin, A. A., Cowley, S. C., Binney, J. J., & Sanders, J. S. 2011,
MNRAS, 410, 2446

Kunz, M. W., Schekochihin, A. A., & Stone, J. M. 2014, ArXiv e-prints, arXiv:1402.0010
[astro-ph.HE]

Lau, E. T., Kravtsov, A. V., & Nagai, D. 2009, ApJ, 705, 1129

Leccardi, A., & Molendi, S. 2008, A&A, 486, 359

Lemaster, M. N., & Stone, J. M. 2008, ApJ, 682, .97

Loewenstein, M., Zweibel, E. G., & Begelman, M. C. 1991, ApJ, 377, 392

Lynds, C. R., & Sandage, A. R. 1963, ApJ, 137, 1005

Lynds, R. 1970, ApJ, 159, L151

Malagoli, A., Rosner, R., & Bodo, G. 1987, ApJ, 319, 632


http://dx.doi.org/10.1086/420966
http://dx.doi.org/10.1086/529371
http://dx.doi.org/10.1146/annurev.aa.32.090194.001425
http://dx.doi.org/10.1046/j.1365-8711.2002.05510.x
http://dx.doi.org/10.1038/nature07169
http://adsabs.harvard.edu/abs/1977MNRAS.180..479F
http://dx.doi.org/10.1046/j.1365-8711.2003.06856.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19402.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19402.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19457.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14153.x
http://dx.doi.org/10.1086/148317
http://dx.doi.org/10.1086/305007
http://dx.doi.org/10.1051/0004-6361:20077942
http://dx.doi.org/10.1016/j.jcp.2007.12.017
http://dx.doi.org/10.1111/j.1365-2966.2009.14547.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14547.x
http://dx.doi.org/10.1086/151605
http://dx.doi.org/10.1111/j.1365-2966.2007.12692.x
http://adsabs.harvard.edu/abs/1990MNRAS.242..399H
http://dx.doi.org/10.1086/167181
http://dx.doi.org/10.1086/116094
http://dx.doi.org/10.1086/191081
http://dx.doi.org/10.1086/513065
http://adsabs.harvard.edu/abs/2010arXiv1010.1538J
http://adsabs.harvard.edu/abs/2011arXiv1105.4639J
http://dx.doi.org/10.1111/j.1365-2966.2006.10599.x
http://dx.doi.org/10.1088/0004-637X/700/1/L1
http://dx.doi.org/10.1086/322488
http://dx.doi.org/10.1046/j.1365-8711.2001.04838.x
http://dx.doi.org/10.1088/0004-637X/754/2/122
http://dx.doi.org/10.1111/j.1365-2966.2010.17621.x
http://adsabs.harvard.edu/abs/2014arXiv1402.0010K
http://arxiv.org/abs/1402.0010
http://arxiv.org/abs/1402.0010
http://dx.doi.org/10.1088/0004-637X/705/2/1129
http://dx.doi.org/10.1051/0004-6361:200809538
http://dx.doi.org/10.1086/590929
http://dx.doi.org/10.1086/170369
http://dx.doi.org/10.1086/147579
http://dx.doi.org/10.1086/180500
http://dx.doi.org/10.1086/165483

BIBLIOGRAPHY 125

Malagoli, A., Rosner, R., & Fryxell, B. 1990, MNRAS, 247, 367

Maller, A. H., & Bullock, J. S. 2004, MNRAS, 355, 694

McBride, J., Fakhouri, O., & Ma, C.-P. 2009, MNRAS, 398, 1858

McCarthy, I. G., Balogh, M. L., Babul, A., Poole, G. B., & Horner, D. J. 2004, ApJ, 613,
811

McCourt, M., Parrish, I. J., Sharma, P., & Quataert, E. 2011a, MNRAS, 413, 1295

—. 2011b, MNRAS, 413, 1295

McCourt, M., Quataert, E., & Parrish, 1. J. 2013, MNRAS, 432, 404

McCourt, M., Sharma, P., Quataert, E., & Parrish, 1. J. 2012, MNRAS, 419, 3319

McDonald, M., Veilleux, S., & Mushotzky, R. 2011a, ApJ, 731, 33

McDonald, M., Veilleux, S., Rupke, D. S. N., & Mushotzky, R. 2010, ApJ, 721, 1262

McDonald, M., Veilleux, S., Rupke, D. S. N., Mushotzky, R., & Reynolds, C. 2011b, ApJ,
734, 95

McNamara, B. R., & Nulsen, P. E. J. 2007, ARA&A, 45, 117

Nagai, D., Kravtsov, A. V., & Vikhlinin, A. 2007, ApJ, 668, 1

Narayan, R., & Medvedev, M. V. 2001, ApJ, 562, 1.129

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493

Navarro, J. F., Hayashi, E., Power, C., et al. 2004, MNRAS, 349, 1039

Nulsen, P. E. J. 1986, MNRAS, 221, 377

O’Dea, K. P.; Quillen, A. C., O’Dea, C. P., et al. 2010, ApJ, 719, 1619

Oh, S. P., & Benson, A. J. 2003, MNRAS, 342, 664

Padmanabhan, T. 1993, Structure Formation in the Universe (Cambridge Press)

Parrish, I. J., McCourt, M., Quataert, E., & Sharma, P. 2012a, MNRAS, 422, 704

—. 2012b, MNRAS, 419, 1.29

Parrish, 1. J., & Quataert, E. 2008, ApJ, 677, L9

Parrish, I. J., Quataert, E., & Sharma, P. 2009, ApJ, 703, 96

—. 2010, ApJ, 712, L194

Parrish, 1. J., & Stone, J. M. 2005, ApJ, 633, 334

—. 2007, ApJ, 664, 135

Parrish, 1. J., Stone, J. M., & Lemaster, N. 2008, ApJ, 688, 905

Peek, J. E. G., Putman, M. E., & Sommer-Larsen, J. 2008, ApJ, 674, 227

Peterson, J. R., & Fabian, A. C. 2006, Phys. Rep., 427, 1

Pfrommer, C., & Dursi, J. L. 2010, Nature Physics, 6, 520

Piffaretti, R., Jetzer, P., Kaastra, J. S., & Tamura, T. 2005, A&A, 433, 101

Pizzolato, F., & Soker, N. 2005, ApJ, 632, 821

—. 2010, MNRAS, 408, 961

Quataert, E. 2008, ApJ, 673, 758

Rafferty, D. A., McNamara, B. R., & Nulsen, P. E. J. 2008, ApJ, 687, 899

Rasia, E., Ettori, S., Moscardini, L., et al. 2006, MNRAS, 369, 2013

Rees, M. J., & Ostriker, J. P. 1977, MNRAS, 179, 541

Riquelme, M., Quataert, E., & Verscharen, D. 2014, ArXiv e-prints, arXiv:1402.0014 [astro-
ph.HE]


http://adsabs.harvard.edu/abs/1990MNRAS.247..367M
http://dx.doi.org/10.1111/j.1365-2966.2004.08349.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15329.x
http://dx.doi.org/10.1086/423267
http://dx.doi.org/10.1086/423267
http://dx.doi.org/10.1111/j.1365-2966.2011.18216.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18216.x
http://dx.doi.org/10.1093/mnras/stt476
http://dx.doi.org/10.1111/j.1365-2966.2011.19972.x
http://dx.doi.org/10.1088/0004-637X/731/1/33
http://dx.doi.org/10.1088/0004-637X/721/2/1262
http://dx.doi.org/10.1088/0004-637X/734/2/95
http://dx.doi.org/10.1088/0004-637X/734/2/95
http://dx.doi.org/10.1146/annurev.astro.45.051806.110625
http://dx.doi.org/10.1086/521328
http://dx.doi.org/10.1086/338325
http://dx.doi.org/10.1086/304888
http://dx.doi.org/10.1111/j.1365-2966.2004.07586.x
http://adsabs.harvard.edu/abs/1986MNRAS.221..377N
http://dx.doi.org/10.1088/0004-637X/719/2/1619
http://dx.doi.org/10.1046/j.1365-8711.2003.06594.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20650.x
http://dx.doi.org/10.1111/j.1745-3933.2011.01171.x
http://dx.doi.org/10.1086/587937
http://dx.doi.org/10.1088/0004-637X/703/1/96
http://dx.doi.org/10.1088/2041-8205/712/2/L194
http://dx.doi.org/10.1086/444589
http://dx.doi.org/10.1086/518881
http://dx.doi.org/10.1086/592380
http://dx.doi.org/10.1086/524374
http://dx.doi.org/10.1016/j.physrep.2005.12.007
http://dx.doi.org/10.1038/nphys1657
http://dx.doi.org/10.1051/0004-6361:20041888
http://dx.doi.org/10.1086/444344
http://dx.doi.org/10.1111/j.1365-2966.2010.17156.x
http://dx.doi.org/10.1086/525248
http://dx.doi.org/10.1086/591240
http://dx.doi.org/10.1111/j.1365-2966.2006.10466.x
http://adsabs.harvard.edu/abs/1977MNRAS.179..541R
http://adsabs.harvard.edu/abs/2014arXiv1402.0014R
http://arxiv.org/abs/1402.0014
http://arxiv.org/abs/1402.0014

BIBLIOGRAPHY 126

Rudd, D. H., & Nagai, D. 2009, ApJ, 701, L.16

Ruszkowski, M., Lee, D., Briiggen, M., Parrish, 1., & Oh, S. P. 2011, ApJ, 740, 81

Ruszkowski, M., & Oh, S. P. 2010, ApJ, 713, 1332

Saro, A., Borgani, S., Tornatore, L., et al. 2006, MNRAS, 373, 397

Sharma, P., Chandran, B. D. G., Quataert, E., & Parrish, I. J. 2009a, ApJ, 699, 348

Sharma, P., Chandran, B. D. G., Quataert, E., & Parrish, I. J. 2009b, in American Institute
of Physics Conference Series, Vol. 1201, American Institute of Physics Conference Series,
ed. S. Heinz & E. Wilcots, 363

Sharma, P., & Hammett, G. W. 2007, Journal of Computational Physics, 227, 123

Sharma, P., Hammett, G. W., Quataert, E., & Stone, J. M. 2006, ApJ, 637, 952

Sharma, P., McCourt, M., Parrish, I. J., & Quataert, E. 2012a, MNRAS, 427, 1219

Sharma, P., McCourt, M., Quataert, E., & Parrish, 1. J. 2012b, MNRAS, 420, 3174

Sharma, P., Parrish, I. J., & Quataert, E. 2010, ApJ, 720, 652

Sharma, P., Quataert, E., & Stone, J. M. 2008, MNRAS, 389, 1815

Shaw, L. D., Nagai, D., Bhattacharya, S., & Lau, E. T. 2010, ApJ, 725, 1452

Shcherbakov, R. V., & Baganoff, F. K. 2010, ApJ, 716, 504

Sijacki, D., & Springel, V. 2006, MNRAS, 366, 397

Silk, J. 1977, ApJ, 211, 638

Simionescu, A., Allen, S. W., Mantz, A., et al. 2011, Science, 331, 1576

Smith, B. D., O’Shea, B. W., Voit, G. M., Ventimiglia, D., & Skillman, S. W. 2013, ArXiv
e-prints, arXiv:1306.5748 [astro-ph.CO]

Soker, N. 2006, New A, 12, 38

Soker, N., Blanton, E. L., & Sarazin, C. L. 2004, A&A, 422, 445

Sommer-Larsen, J. 2006, ApJ, 644, L1

Spitzer, L. 1962, Physics of Fully Tonized Gases (John Wiley & Sons Inc.)

Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Nature, 435, 629

Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., & Simon, J. B. 2008, ApJS, 178,
137

Tozzi, P., & Norman, C. 2001, ApJ, 546, 63

Turner, J. 1979, Buoyancy Effects in Fluids, Cambridge Monographs on Mechanics (Cam-
bridge University Press)

Vazza, F., Brunetti, G., Gheller, C., Brunino, R., & Briiggen, M. 2011, A&A, 529, A17

Voit, G. M. 2011, ApJ, 740, 28

Voit, G. M., Balogh, M. L., Bower, R. G., Lacey, C. G., & Bryan, G. L. 2003, ApJ, 593, 272

Voit, G. M., Cavagnolo, K. W., Donahue, M., et al. 2008, ApJ, 681, L5

Voit, G. M., & Ponman, T. J. 2003, ApJ, 594, L.75

Wechsler, R. H., Bullock, J. S., Primack, J. R., Kravtsov, A. V., & Dekel, A. 2002, ApJ,
568, 52

White, M. 2001, A&A, 367, 27

White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341

Wu, H.-Y., Hahn, O., Wechsler, R. H., Mao, Y.-Y., & Behroozi, P. S. 2013, ApJ, 763, 70

Zakamska, N. L., & Narayan, R. 2003, ApJ, 582, 162


http://dx.doi.org/10.1088/0004-637X/701/1/L16
http://dx.doi.org/10.1088/0004-637X/740/2/81
http://dx.doi.org/10.1088/0004-637X/713/2/1332
http://dx.doi.org/10.1111/j.1365-2966.2006.11046.x
http://dx.doi.org/10.1088/0004-637X/699/1/348
http://dx.doi.org/10.1063/1.3293077
http://dx.doi.org/10.1063/1.3293077
http://dx.doi.org/10.1063/1.3293077
http://dx.doi.org/10.1016/j.jcp.2007.07.026
http://dx.doi.org/10.1086/498405
http://dx.doi.org/10.1111/j.1365-2966.2012.22050.x
http://dx.doi.org/10.1111/j.1365-2966.2011.20246.x
http://dx.doi.org/10.1088/0004-637X/720/1/652
http://dx.doi.org/10.1111/j.1365-2966.2008.13686.x
http://dx.doi.org/10.1088/0004-637X/725/2/1452
http://dx.doi.org/10.1088/0004-637X/716/1/504
http://dx.doi.org/10.1111/j.1365-2966.2005.09860.x
http://dx.doi.org/10.1086/154972
http://dx.doi.org/10.1126/science.1200331
http://adsabs.harvard.edu/abs/2013arXiv1306.5748S
http://adsabs.harvard.edu/abs/2013arXiv1306.5748S
http://arxiv.org/abs/1306.5748
http://dx.doi.org/10.1016/j.newast.2006.05.003
http://dx.doi.org/10.1051/0004-6361:20034415
http://dx.doi.org/10.1086/505489
http://dx.doi.org/10.1038/nature03597
http://dx.doi.org/10.1086/588755
http://dx.doi.org/10.1086/588755
http://dx.doi.org/10.1086/318237
http://dx.doi.org/10.1051/0004-6361/201016015
http://dx.doi.org/10.1088/0004-637X/740/1/28
http://dx.doi.org/10.1086/376499
http://dx.doi.org/10.1086/590344
http://dx.doi.org/10.1086/378627
http://dx.doi.org/10.1086/338765
http://dx.doi.org/10.1086/338765
http://dx.doi.org/10.1051/0004-6361:20000357
http://adsabs.harvard.edu/abs/1978MNRAS.183..341W
http://dx.doi.org/10.1088/0004-637X/763/2/70
http://dx.doi.org/10.1086/344641

BIBLIOGRAPHY 127

Zhao, D. H., Jing, Y. P., Mo, H. J., & Bérner, G. 2009, ApJ, 707, 354


http://dx.doi.org/10.1088/0004-637X/707/1/354

	Acknowledgments
	Introduction
	Nonlinear Saturation of Buoyancy Instabilities
	Introduction
	Background
	Equations and Assumptions
	The Physics of Buoyancy Instabilities in Dilute Plasmas

	Numerical Method
	Problem Setup and Integration
	Local Simulations
	Global Simulations
	Turbulence

	Nonlinear Saturation
	Saturation of the HBI
	Saturation of the MTI

	Interaction with Other Sources of Turbulence
	Effect of Turbulence on the HBI
	Effect of Turbulence on the MTI

	Discussion
	HBI
	MTI


	Thermal Instability in Gravitationally-Stratified Plasmas
	Introduction
	Plasma Model
	Feedback
	Cooling

	Numerical Model
	Linear Theory Results
	Linear Stability
	Local Stability, Global Stability, and Convection

	Simulation Results
	Multi-phase Structure
	Accreted Mass Flux
	Resolution Study
	Sensitivity to the Heating Function

	Interpretation of the Non-Linear Saturation
	Saturation Amplitudes
	Multi-Phase Structure
	Accreted Mass Flux

	Simulations Including Conduction
	Setup
	Linear Properties
	Numerical Results

	Discussion

	Temperature Profiles in the ICM
	Introduction
	Method
	Simplified Adiabatic Models
	Method
	Results

	Conduction and Realistic Assembly Histories
	Method
	Results
	Mixing-Length Theory and the MTI

	Discussion

	"Semi-"Cosmological Simulations of Cluster Convection
	Introduction
	Plan

	Method
	Potential and Mass Accretion History
	Boundary Condition
	Initial Condition
	Numerical Method

	Results

	Bibliography



