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Electroreduction of Nitrate in Acidic Nickel Solutions,
and

Frequency-Response Analysis of Porous Electrodes
by
Paul Shain

Abstract ,

Models of electrochemical systems were developed to interpret experimental results. Linear
sweep voltammetry and frequency-response analysis (electrochemical impedance spectroscopy) were the
experimental techniques considered; the reduction of nitrate in acidic nickel solutions and the frequency

response of redox couples in porous electrodes, the electrochemical systems.

Linear sweep voltammetry has been used to study the kinetics of nitrate reduction in acidic
nickel solutions. This is a step in the manufacture of nickel battery electrodes and would also be impor-
tant in the corrosion of steel by nitric acid. The reaction is interesting because negative ions react at the

negative electrode.

Bernardi studied this reaction with pote.mial step and linear sweep voltammetry experiments.
The voltammetry model was developed to explain the results of the latter. It was based on earlier work by
Matlosz and Newman but allows for the participation of adsorbed species in the reactions. The assump-
tion of a stagnant-diffusion layer was relaxed. The model accounts properly for the beginning of the

sweep before the boundary layer develops.



The analysis showed that the transfer coefficient for desorption must be greater than that for
reduction to insure the presence of a peak in the voltammogram. Two possible explanations for the pres-

ence of the peak: catalysis by underpotential-deposited nickel and double-layer effects are ruled out.

Frequency-response analysis was applied to a porous electrode system related to the NASA
iron/chromium redox battery. Porous electrodes (including porous flow-through electrodes and redox bat-

teries) and the frequency-response analysis of electrochemical systems are reviewed briefly.

The results of frequency response experiments are bften analyzed in terms of analogous elec-
tric circuits, A model of the frequency response of porous electrodes based on a first-principles approach
is presented. The model concerns porous electrodes with and without flow of reactant through the elec-
trode. The frequency-response mod;l.is based on the steady-state models of Newman and coworkers but

has been modified to account for small sinusoidal time variations of the variables.

Results of the model are compared to éxperimem, and the effect of various dimensionless

/@/W Thowrmar

parameters on the frequency response is explored.



Et je me disais, avec ravissement, Voild une chose que je pourrai

tudier toute ma vie sans jamais la comprendre.

-— Samuel Beckett, Molloy
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CHAPTER 1

Overview and List of Symbols

This dissertation deals with two subjects: studying the reduction of nitrate in acidic nickel
solutions with linear sweep voltammetry (Chapters 2 through 4) and the frequency-response analysis of
flow-through porous electrodes (the following chapters). Mathematical models are developed to provide

tools for studying these two distinct experimental problems.

In Chapter 2 experiments on the reduction of nitrate ion in acidic. nitrate solutions with and
without nickel are discussed. These experimeﬁts give some clues about what the reaction mechanism is
and eliminate possible mechanisms. In Chapter 3 a model is developed to simulate the linear sweep vol-
tammetry experiments. Following this chapter are several appendices containing the solutions to problems
needed for developing ti1e programs used and listings of the programs. This model is used in Chapter 4 to

simulate the experiments described in Chapter 2.

The rest of the thesis is concerned with a different problem: the frequency-response or elec-
trochemical impedance analysis of flow-through porous electrodes. Chapter 5 contains a discussion of this
type of electrochemical reactor, its practical uses, redox batteries in general, and the iron-chromium redox
battery in particular. The next chapter provides some background on electrochemical impedance meas-

urements and our philosophy of modeling such systems.

In Chapter 7 experiments on a rotating-disk electrode to determine diffusivities of the elec-
troactive species in an iron chloride and hydrochloric acid solution are presented. Chapter 8 presents the
development of a model for the simulation of impedance experiments on a flow-through porous electrode.
Measurements of the impedance of the ferrous/ferric chloride redox reaction in a flow-through porous

electrode are discussed and compared to the above-mentioned model in Chapter 9. The effect of the mag-



nitude of several dimensionless groups on the model’s predictions is explored also.

Literature references are found at the end of each chapter or appendix.

The definitions of symbols used in this work follow. Some symbols have been used in more

than one context.



erf(x)
erfc(x)

List of Symbols

integral used as a coefficient in calculating superposition integrals; hydro-
dynamic constant 0.51023; bed specific area, cm™!

dimensionless form of a

area, cm?; integral used as a coefficient in calculating superposition integrals
nth constant

concentration, mole/cm®

capacity or double-layer capacity, F; transmission line capacitance, F/cm
dimensionless double-layer capacity ‘

initial concentration of species i, mole/cm?

diffusion coefficient, cm%s

axial dispersion coefficient, cm%/s

error function of x

error function complement of x

Faraday’s constant, 96,487 C/equiv

transmission line leakage, S/cm

current or current density, A or A/cm?

current or current density, A or A/cm?

partial current density of reaction j, A/cm*

exchange current density, A/cm*

dimensionless current density
V-1; flux, mol/cm?s

mass transfer coefficient, cm/s



max

bed length, cm; transmission line inductance, H/cm
number of electrons taking part in a reaction

charge transferred between phases in reaction j

flux, mol/cm?s

dimensionless group

Peclet number

charge, C

radius of disk electrode, cm

transmission resistance, Q/cm

Laplace transform variable; stoichiometric coefficient
Sherwood number

time, s

open circuit potential for secondary reference state at infinite dilution, V
potential, V; superficial velocity, cm/s

potential, V

axial velocity near the surface of a rotating disk, cm/s
applied potential, V

ohmic potential drop, V

distance, cm

distance, cm; dimensionless distance

charge of species i

impedance, Q or Qcm?

n® eigenfunction

transfer coefficient; penetration depth, cm
combination of transfer coefficients

total surface concentration of sites, mole/cm?



I'(x)

AG?

AU

(4]

O 3 v

Q0

Q

subscripts

gamma function of x

Nernst diffusion layer thickness for species i, cm
a combination of terms

gibbs energy of formation

difference in open-circuit potentials between the side and main reactions, V
bed porosity

dimensionless distance

distance variable; overpotential, V
dimensionless time, dimensionless concentration
surface concentration of species i, mole/cm?
solution conductivity, S/cm

nth eigenvalue

electrochemical potential of species i for secondary reference state at infinite
dilution (gibbs energy of formation), J/mole

kinematic viscosity, cm?/s
3.14159...

bed conductivity, S/cm

time, s; dimensionless time
phase shift, rad

potential, V

rotation rate or frequency, s’

rotation rate, s'; dimensionless frequency

anodic
bulk value
cathodic

feed stream



i species index

j reaction index

0 limiting current

n normal direction

P product

R reactant, main reaction

S side reaction

w wall

1 matrix phase

2 ~ solution phase

superscripts

old value for the previous time step
ref reference or at reference concentration
ss steady state

t transient

’ first derivative, dimensionless form
g second derivative

over marks

time-average or steady-state value, Laplace transform, or response to a unit

change in concentration at the boundary

time-varying value (a complex function of position).



CHAPTER 2

Electrochemical Reduction of Nitrate in Acidic Nickel Solutions

To understand the mechanism of the electroprecipitation of nickel hydroxide from acidic,
nickel solutions, Bernardi conducted an experimental investigation of nickel nitrate reduction with a
rotating-disk electrode.*2 Nickel hydroxide precipitation has practical importance: nickel hydroxide is
the active material in nickel battery electrodes. Knowledge of the reduction of nitrate, in addition to being
used to produce nickel battery electrodes,>* can be used to synthesize hydroxylamine and to protect

metals from corrosion by nitric acid.**

Nickel battery electrodes are produced by impregnating a porous electrode with nickel nitrate
~ and then reducing the nitrate to increase the pH of the solution near the electrode. If the pH increases

sufficiently, nickel hydroxide precipitates.

The reduction of nitrate can be written as producing hydroxide ions or as consuming protons:

NO7 + H,0 + 2¢~ — NOj + 20H" 1)

or

NOj +3H' +2¢~ — HNO, + H,0.. @
The increase in pH will cause nickel hydroxide to precipitate when its solubility product ((K,, = i)

is exceeded:

Ni?* + 20H" — Ni(OH), . A3

Bemnardi conducted both potential step and linear sweep voltammetry experiments under con-
ditions at which no precipitation occurs. She proposed a three-step mechanism: adsorption of nitrate,

reduction of nitrate to an adsorbed intermediate, and reduction of the intermediate to a soluble product. It



was not assumed that any of these three steps was elementary.

After Bernardi’s and my experimental results are discussed in this chapter, a mathematical
model of the experimental system is developed in Chapter 3 which is used to examine the mechanism of

the reduction of nitrate in Chapter 4.
2.1. Bernardi’s experimental procedure

In her voltammetry experiments, Bernardi used a Stonehart BC1200 potentiostat, a Princeton
Applied Research 175 universal programmer, a Hewlett-Packard 7047A x-y plotter, and a Nicolet 206
digital oscilloscope. Her working electrode was a 0.764 cm diameter glassy carbon disk in a 2 cm diame-
ter insulating shaft. She ramped the potential from -0.1 V to -0.7 V versus a saturated calomel reference
electrode (SCE) at a constant rate while the disk rotated at a constant speed. The electrode was polished
with successively finer grades of diamond paste—9 um, 3 um, 1 um. The polished electrode was dipped
for about ten seconds in each of three solutions: 70% nitric acid, carbon tetrachloride, and 70% nitric acid.
Each dip was followed by a rinse with purified water. The polished, dipped, and rinsed electrode was
cycled at 1 V/s in 1 M nitric acid, rinsed, and placed in the experimental cell. To obtain reproducible
results, it was necessary to dip the electrode after each experiment and to polish it after every one or two
experiments. The counterelectrode was a platinum screen. The nickel nitrate and nitric acid solution in

the experimental cell was sparged with nitrogen for two hours before the experiment to remove oxygen.

The water was purified by filtration and reverse osmosis.’
2.2, Bernardi’s experimental results

The results of Bernardi’s linear sweep voltammetry experiments are given in Chapter 7 of her
dissertation.!® The experiments were repeated under different conditions; however the base case was a
solution composition of 2.56 M nickel nitrate and 0.006 M nitric acid, a rotation speed of 800 rpm, and a
sweep rate of 1 mV/s. As in any well-controlled experiments, only one parameter was changed at a time

while the others were maintained at the base conditions. The other experiments included a S mV/s sweep

rate; 0.06, 5-107%, and 10" M nitric acid concentrations; 1.5 and 0.5 M nickel nitrate concentrations; and a



400 rpm rotation speed.

The results of these experiments, shown in Figures 7-5 through 7-10 in Bemnardi’s disserta-

tion,!! are reproduced here as Figures 2-1 through 2-6.

To explain the experimental results, Bernardi proposed that nitrate was adsorbed on the elec-
trode and reduced to nitrite that was then further reduced. This explained the peak with a shoulder. At
more cathodic potentials hydrogen production would explain the increase in current. The model discussed

in the next chapter was developed to account for all phenomena relevant to such a mechanism.

Information gleaned from examining the experimental results of Figures 2-1 to 2-6 should

help in the modeling of the experiments.

Figure 2-1 shows that the peak disappears at high sweep rates. This suggests that at the high
sweep rate something necessary to producing the peak is not being allowed time to happen. The steady-
state results shown in Figure 2-6 show that steady-state phenomena produce a peak. During the modeling

of the experiments, we may try to find parameters by fitting the steady-state results.

Figures 2-2 and 2-3 show that the peak heights decrease with decreasing electrolyte concen-
tration. The one result that seems anomalous is that for 10-° M nitric acid. It is not clear from the figure
whether the peak has disappeared and the hydrogen reaction has shifted to the left or there is a huge peak.
Simulations suggest that the latter is the case. This curve is reproducible. There seems to be a slight

shoulder that may be what is left of the peak.

Figure 24 shows that the reaction rate increases with rotation speed. However the increase is
less than a factor of 2 for a doubling of the rotation speed, so the supply of the soluble reactant is not

mass transfer limited.

Figure 2-5 shows that a solution that has been used gives a larger current than a freshly made
solution. This shows that there is an intermediate reactant produced during the first experiment that aug-

ments the current during the next experiment.
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Figure 2-1. Current density on a glassy carbon rotating-disk electrode as a function of applied potential at
two different sweep rates. The solution was 2.56 M Ni(NO,),, 0.006 M HNO,; the rotation speed, 800

rpm. The sweep rate for the other figures is 1 mV/s unless otherwise noted.!
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The area under the peak is too large to be accounted for by the reduction of a monolayer of

adsorbed nitrate. Therefore nitrate must adsorb while it is being reduced.

To ensure that nitrate desorbs sufficiently fast at the higher cathodic potentials to stop the

reaction, the transfer coefficient for the reduction must be less than that for adsorption of nitrate.

The explanation that we have accepted for the presence of a peak in the current is that nitrate
is adsorbed and available for reduction until the potential reaches a sufficiently high value that it can no
longer be adsorbed. On the other hand, the peak resembles that for passivation of a corroding surface and
could be caused by the formation of a film (perhaps of nickel hydroxide) on the surface. Since Bemardi
did not observe the formation of a film on the electrode and claims that the conditions of the experiment

do not lead to formation of a film, we discount this possibility.

A possible explanation of the cause of the peak is the structure of the double layer. This is an
effect discussed by Frumkin in the 1950’s.'>* It is possible that the peak caused by the reduction of an
anion represents a limiting current that then decreases at more cathodic potentials because the anions are
repelled from the electrode. If the concentration of electrolyte is increased, the current reduction becomes
less pronounced because the anions are shielded from the electrode. We see no evidence of this concen-
tration effect in Figures 2-1 and 2-2. In addition, if the observed peak is a limiting current it would have

to represent the reduction of hydroxide to hydride—a reaction that seems unlikely.

2.3. Experiments without nickel

Another possible explanation for the experimental results is that nickel deposited on the elec-
trode catalyzes the reduction reaction. The experiments described in this section were intended to test this
hypothesis. If the nickel deposits as islands, the perimeter of these islands may have catalytic activity that
vanishes after a monolayer is formed. From the experimental conditions and the Pourbaix diagram for

nickel'> shown schematically in Figure 2-7 we would not expect nickel ions to be reduced to nickel

[Ni%*(aqueous) + 2¢" — Ni(solid)]. For potentials where water is stable in acidic solutions, nickel dis-

solves. However we do not yet rule out underpotential deposition. To determine if the observed behavior
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Figure 2-7. Pourbaix diagram showing regions of stability of water, nickel, nickelous ions, and nickel ox-

ides (after Reference 15).
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is due to the presence of nickel and not merely to the reduction of adsorbed nitrate, we repeated the exper-
iment with other nitrate compounds: sodium nitrate and nitric acid. First we repeated the experiment with

nickel nitrate to show experimental competence, to show the reproducibility of the results, and to control

properly the experiment.!$
2.3.1. Experimental procedure

For the experiments with sodium nitrate, we followed Bernardi’s procedure as closely as pos-
sible. However, there were changes made. The working electrode was a 0.5-centimeter diameter, glassy
carbon rotating disk. The water was purified in the same apparatus to a resistivity of at least 16.0 MQ-cm.
The electrode was polished between runs only with 1 um diamond paste. Acetone was used for dipping
the polished electrode instead of carbon tetrachloride. The digital oscilloscope recorded the results at the

rate of 500 ms per point in most cases.

The effect of hydrolysis on the pH of the solution was accounted for. Nickel, unlike sodium,
is the cation of a weak base so nickel solutions are more acidic than sodium solutions. Instead of using a

solution of 2.56 M nickel nitrate and 0.006 M nitric acid, we used a solution of 5.126 M nitrate and the

same pH as the former solution—about 0.75'"—or 0.178 M nitric acid and 4.948 M sodium nitrate.

2.3.2. Expected results

There are two mutually exclusive possibilities for the role of nickel in the reaction:

(1) nickel plays no role in the reaction and there will be no difference in the results of the two experi-

ments, and

(2) nickel acts as a catalyst and without it there is no reaction or possibly less reaction.

2.4. Results and conclusions

The results of the experiments conducted to reproduce Bemardi’s results with solutions of

2.56 M nickel nitrate and 0.006 M nitric acid were themselves reproducible, but the peaks were smaller
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than those obtained by Bernardi and had no shoulder. One such voltammogram is reproduced here in Fig-
ure 2-8. The results are plotted as points, not curves like Bernardi’s, because they were recorded by a

digital oscilloscope, not a chart recorder.

As described in Section 2-3, we performed experiments without nickel in the solution to ﬁnd»
out if we would still observe a peak. Figure 2-9 is the result of an experiment with a 0.2 M nitric acid
solution. The sweep rate was 20 mV/s; the rotation speed, 800 rpm. It is obvious that the presence of
nickel is not necessary for the appearance of a peak. Figure 2-10 is the result of an experiment with a
" solution of 4.948 M NaNO; and 0.178 M HNO,? Only wishful thinking would convince us that there is a
peak near 0.5 V vs. SCE. However, after several potential sweeps, a pronounced peak is observed. This

is seen in Figure 2-11.

We conclude from these experiments—especially from Figure 2-9—that the presence of
nickel is not necessary for the formation of a peak and that the reduction in current (following the peak) is

not caused by nickel covering the surface of the electrode.



[mA/sq cm]

6 - ' : .
5 : i
)
Nickel nitrate . '
4F ; .
3 B -
2r . -
d . . 7
of  indsmuiETERiemiedl
-1 1 A i L i 1
0.0 0.2 0.4 0.6 0.8
-V [V vs. SCE]

20

Figure 2-8. Voltammogram produced from a solution of 2.56 M Ni(NO,), and 0.006 M HNO; with a
glassy carbon rotating-disk working electrode and a SCE reference electrode. The sweep rate was 1
mV/s; the rotation speed, 800 rpm (the same conditions as Figure 2-1),
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Figure 2-9. Voltammogram produced from a solution of 0.2 M HNO; and a SCE reference electrode.
The sweep rate was 20 mV/s; the rotation speed, 800 rpm; the working electrode glassy carbon.
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Figure 2-10. Voltammogram produced from a solution of 4.948 M NaNO, and 0.178 M HNO, and a SCE
reference electrode. The sweep rate was 1 mV/s; the rotation speed, 800 rpm; the working electrode

glassy carbon.
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Figure 2-11. Voltammogram produced from the same solution and conditions as Figure 2-10, but after
several potential cycles (from -0.1 t0 0.8 V).
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CHAPTER 3

Voltammetry Modeling

Voltammograms (graphs of the current produced by a system as a function of the applied
potential) can be simulated using a mathematical model of the experiment. Such a model is developed
here to understand the experimental results presented in Chapter 2. The model is essentially a material
balanée of the reacting species at the electrode-solution interface. The model can handl_e‘ an arbitrary
number of species and reactions, the reactiqn of uncharged species, adsorption and desorption, and rotat-

ing and stationary electrodes.

The concentration derivatives in the material balance equations can be evaluated using supér-
position integrals! (Duhamel’s principle). These relate a concentration derivative at the electrode surface
(which changes in response to the applied potential) to the history of the concentration profile. The arbi-
trary applied potential is approximated by step functions. The response to each of these steps is weighted
by its distance in time and summed. This is done using the method of Acrivos and Chambré? that is
related to Wagner’s method for solving Volterra integral equations.? We adopted the algorithm and
computer programs of Matlosz and coworkers,*” and we adapted them to the problem at hand. The
governing equations, superposition integrals, and Matlosz’s programs will be discussed in the next three
sections. Modifications necessary to the programs will be discussed in Section 3.4.

3.1. Governing equations

Matlosz’s model accounts for electron transfer reactions at an electrode. The hydrodynamic
situations that were included were diffusion through a stagnant film (to a rotating disk) and semi-infinite
diffusion (to a stationary electrode). The present model accounts for the participation of adsorbed species

in heterogeneous reactions which may not involve electron transfer. Charge may also be transferred
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between the solution and the surface by adsorption or desorption. We account for this by substituting

nj' =-3's;;z; for n;, the number of electrons transferred. In addition to the concentration of each solute and

adsorbate, the ohmic drop is treated as an unknown. Its value is a function of the current being passed and
could be eliminated by using this function of the other unknowns, but this leads to computational prob-

lems.

The equations to be solved are material balances for each species at the electrode surface, that
is to say, on the surface (for adsorbates) or in the solution immediately outside the diffuse part of the dou-

ble layer (for solutes). For solutes, the material balance is:

m%i,éfﬁ; 3-1)
y J nF
for adsorbates:
e, X s
Tpg——=— —= -
~F =5 G2
or
. — Qod MERES ld"]
zrm 81 ex =_§ S‘J[J _ 3 ) (3_3)

The surface concentration of unoccupied sites is treated as a species and is determined not from a

material balance, but from the condition:

Z6=1. (34)
The spatial derivatives in Equation 3-1 are calculated using superposition integrals. The equation defining

the ohmic drop is

(3-5)

VQ = VSuxf(t) - 4F£ ZADI {'ék‘—x] o .

3.2. Superposition integrals

A linear partial differential equation (e.g., the equation of heat conduction) valid in a one-

dimensional domain and subject to given initial conditions and transient boundary conditions can be
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solved if the solution to the equatidn is known for a unit-step change in the boundary condition. The solu-
tion of the original problem is the superposition (linear combination) of solutions to the step-change prob-
lem denoted c(x,t). In other words, if the arbitrary, possibly nonlinear, transient boundary condition is
expressed as the sum of step changes of different magnitudes made at different times, then the response of
the system to this linear combination of step changes on the boundary is the linear combination of the

responses 1o these step changes.

For example, consider Fick’s second law:
If we want to know how the concentration distribution c(x,t) (or how the flux to the electrode) changes in
response to changes in concentration at the electrode surface (which may result from an applied time-
varying potential), we can divide the transient surface boundary coﬁditions into step changes in concentra-
tion at the surface made at different times and add up the responses to these changes. This summation can
be represented in the limit by Duhamel’s integral:!

c(x) = { -53% {m- x t-)d G-7
The first term in the integrand (the time derivative at the surface) comes from the imposed transient boun-
dary condition; the second term, the solution to the unit-step change problem (c(x,t—t) is the concentration
distribution at time ¢ in response to a unit-step change at the boundary at time ). Wagner® and Acrivos
and Chambré? suggest dividing the integral into the sum of integrals over small increments of t. They

approximate the time derivative of the surface concentration as constant over the small time intervals and

rewrite Duhamel’s integral for the derivative of the surface concentration as

acl _“" cm‘ck ) J-
ox los k-o Bx m_.,

Thus the derivative can be expressed in terms of the unknown concentration, the known concentrations at

(3-8)

all previous times, and known functions of c.

At a step n, the values of the surface concentrations for all the previous steps have been calcu-
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lated, and it is possible to evaluate all these terms before any iteration. This can be seen from:

ol =2 ey o |
Ey N i =4
X Jox k=0 KAt Jona—)
(3-9)
ndt 2|
ST 1

At pha 9% jopay
The integrals in the above equation depend only on the solution to the unit-step problem and the index n-k,

so they can be calculated only once and stored. Matlosz calls these integrals A, and writes

Any= I dr. (3-10)

*x I(OaAt-t)
For convenience the A__,'s are expressed as the difference of two simpler integrals

A, = a[(n-k)At] - a[(n—k-1)At] , (3-11)
where
t aal
t —| drt. 3-12
a(t) = { % L i (3-12)

3.3. Matlosz’s CycVoit program

Matlosz wrote a computer program to simulate cyclic voltammetry.® He and his coworkers
used the program to model the iodide/tri-iodide/iodine system in propylene carbonate solution*® and the

deposition of mercury from chloride solution”

This program CycVolt con_tains the governing equations; the procedure SuperPose calculates
the concentration derivatives using superposition integrals. Matlosz® incorrectly derived the integral a, for

the Nemnst-layer case. His Equation 3-21 should be written

2& mzlrle
a,(t)——a-— E D o [1 exp[ &2 t}] . (3-13)

The corresponding corrections should also be made in his Equations 3-22 and 3-23. Implications of the



result of this error are discussed in appendix A.'
3.4. Changes in CycVolt and SuperPose

The programs CycVolt and SuperPose written by Matlosz were changed to model the nitrate-
reduction reaction. To allow adsorbed species to participate in the reactions, a more general reaction
mechanism was incorporated. The details of this change are discussed in Section 3.4.1. The solution for
convective diffusion to a rotating-disk electrode was added to SuperPose. The derivations for this change
are discussed in Section 3.4.2}. Listings of the modified versions of the programs are found m appendices

D through 1. (CV supercedes CycVolt; Pose2Mod, PoseMod; SuperPose2, SuperPose.)

Another change to SuperPose was to account for the time between the immersion of the elec-
trode in the solution with the potential set at a given value and the time when the potential ramp is begun
(t= 0). To do this we added a term to the superposition integral to account for the change in concentra-
tions at a time far in the past (t = -s). This term represents the solution to the steady-state mass transfer

problem:

dc [ ] 9c(t=—o0)
— = |c(t=0) — =] -14
3 c(t=0) — Coux Ix (3-14)
This allows us to determine the values of the concentrations and coverages at time zero, the starting point

of the experiment.

The Newton-Raphson routine that solves for the unknowns was also changed. The numerical
derivatives are calculated by incrementing the unknown by an amount proportional to the value of the
unknown. For the unknown ohmic potential drop it is reasonable to increment the potential by a specified
amount, i.e. one millivolt. The unknowns include surface coverages and the ohmic potential as well as
concentrations adjacent to the surface. Since the potential can be negative and the coverages can not
exceed unity, changes were made in the convergence routine and in the section of the program where new .

guesses are kept within the appropriate range. Another change is that values of U® are calculated from

The appendices are at the end of this chapter.
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values of p°. This is done because values of U® are not tabulated for reactions involving adsorbed species.
The values of p® are not tabulated for adsorbed species either, but using these as parameters reduces the
number of unknown fitting parameters, allows us to calculate the U®'s as needed, and ensures that these

values are thermodynamically consistent. (The values of u® or AG? are tabulated for solute species.®?)
3.4.1. Mechanism of the chemical reactions

Matlosz’s program CycVolt deals oaly with solute species. We want to allow adsorbed
species to participate in the reactions (either chemical or electrochemical) as well. Each chemical species
can exist in solution or adsorbed on the surface. The adsorbed species were treated as additional, separate

species with their own governing equations.

The rates of all the reactions, whether they involve adsorbed species or not, are given in
Butler-Volmer form. The parameters in this equation are i , Ue, @, and e, We might ordinarily think of
adsorption or other reactions without charge transfer as having as parameters forward and backward rate

constants. The relation between the two sets of parameters is discussed by Newman.!®
3.4.2. Transient convective diffusion to a rotating disk

Matlosz’s superposition program (SuperPose) simulates two hydrodynamic situations: semi-
infinite diffusion and diffusion through a stagnant layer. We wanted to use the exact solution for a

rotating-disk electrode instead of the latter to obtain mare accurate simulations. Matlosz® suggested doing

this using the analysis by Nisancioglu and Newman.'

The difference between the two situations enters the problem in the solution to the unit-step
response problem (in procedure SetCoeffs). If the rotation speed is zero, SuperPose calculates coefficients
appropriate to the semi-infinite diffusion case, otherwise it calculates those appropriate to the rotating-disk

case.!

_ 'The stagnant diffusion-layer approximation can be used instead of the Nisancioglu and New-
man solution by specifying a negative rotation speed.
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The difference in currents predicted by the stagnant diffusion-layer approximation and the

rotating-disk solution may not be large.

Because the series solutions (for transport to the disk) require many terms to converge for
short times, it is convenient to use the semi-infinite diffusion solution at times for which the problem
behaves as semi-infinite diffusion, i.e. before the mass transfer boundary layer has grown to its steady-
state thickness. A question arises about Matlosz’s choice of when to use the short-time (semi-infinite dif-

fusion) solution and when to use the solution for longer times (fully-developed boundary layer). He gives

2
no justification for his choice of a time: % .

We use the short-time solution for times less than -3%25— This choice is justified in appendix

3.43. Unit-step. problem

For the rotating disk-electrode geometry, in the absence of migration, the unit-step problem to

be solved is
k& ¥k __ K
— —_—=D — 3'15
a ey TG G-139)
subject to the initial and boundary conditions
¢;=0att=0,
c=1laty=0,t>0,and (3-16)

Ei=Oasy—)°°.

The derivation presented in this section follows that of Nisancioglu and Newman.!!  They solved this

problem by introducing the dimensionless time

13 23
e=n[2] [1] ¢ | G-17)

and distance



33

13

av
ap| V- (3-18)
If we substitute for the axial velocity the first term of its series expansion in powers of y,

C=y

v,=-a Q yON y? (3-19)
and introduce dimensionless quantities, Equation 3-15 becomes
= < %
E.C‘_ = 3{2.1‘:‘_ + 74 ] (3-20)
a0 a  ag?
The above equation is subject to the conditions
c=0at6=0,
c¢=1at{=0,0>0,and (3-21)
c;=0asf oo,
They then express ¢, in terms of steady-state and transient parts:
G=et-g, 32
each of which satisfies Equation 3-20 separately. The boundary conditions for ¢, are
c*=0as{ —oand
(3-23)

c*=1atl=0.
This yields the solution

1 s

o= Je7dy .

: ri 4 I l (3-24)
3

This integral is tabulated as a function of {.'> Abramowitz!? gives formulas for the calculation of this

integral. If we define

y
Iy) = [ du, (3-25)
0
we can differentiate with respect to y to obtain

(y)=¢7, (3-26)
which for y = 0 gives

10=1. | | G-27)
The concentration profile’s transient part ¢; satisfies



c¢i=0as{ oo,
C'=cat0=0,and (3-28)
c'=0at{=0,0>0.

The solution of ¢/ is derived in terms of a boundary-value problem. First ¢} is expressed in the form

BEDN: WA (4 (3-29)
nl)
where Z; and A, are an eigenfunction and its eigenvalue. Z, is the solution to
Zy+30%Z, +3Z2,=0 (3-30)
subject to
Z(=)=0, Z,(0)=0, Z(0)=1. (3-31ab)

~ The values of A, and B, are tabulated in Reference 11. The concentration profile is given by substituting

its steady and transient parts, Equations 3-24 and 3-29, into Equation 3-22 to obtain
- 1 7o - 4w .
G= eV dy - Y B.Z,(De ™ .
4 { Z (3-32)
ri ?i

3.4.4. Coefficients required by the algorithm

The computer program needs coefficients a, which are calculated from the derivative of the

concentration at the surface:

¢ = |
aci |
ay(t) = £ % dr. (3-12)
fo.c ‘
The surface derivative of the concentration profile is found from

S { J%ad (3-33)
9y joe 9G dy
The zeta derivative is found by differentiating the definition of zeta (Equation 3-18)
in
L2 o8 .
dy | 3D, QN _ (3-34)

The concentration derivative is found by differentiating Equation 3-22
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= ~t
o _ %7 _d (3-35)
The first term on the right side comes from differentiating Equation 3-24 and substituting the value of I'(0)
from Equation 3-27

c.® |
&I ol 19| ___1_
C s K FH r[i] (3-36)
3 3
0x
The second term on the right side of Equation 3-35 is found by differentiating Equation 3-29

® s
=2 TRz (3-37)

ag o

Performing the differentiation and using the boundary condition Z.(0) = 1 from Equation 3-31c, we find

= E“: TR, (339
o)

into which we can substitute for 8 its definition from Equation 3-17. This can be combined with Equa-

tions 3-35 and 3-36 to yield

- - ¥ B,
=0

&
L joe r[ 4 (3-39)

I
|
o
3
We multiply this by %3 from Equation 3-34 and integrate to find a; as in Equation 3-32

13 12
-jav| (2
(]9

13 {_a_] mt (3-40)




3.4.5. Effect on the limiting current of including the velocity profile

Matlosz simulated the linear sweep voltammetry of mercury deposition from chloride solu-
tion."* The stagham diffusion-layer approximation predicts different limiting currents than the experi-
ments produced. To see if this is due to the stagnant-diffusion-layer approximation, we ran the model for
this case using the same data used by Matlosz for convective diffusion and for the stagnant diffusion layer
approximation. The results of the calculations for several rotation speeds are displayed in Figure 3-1.
There is not much difference between the curves in this case. At the first time step (10mV, 18.9s) and
400 rpm the current calculated using the stagnant diffusion layer approximation is 0.035% higher than that

calculated using the convective-diffusion equation. The difference decreases with increasing rotation

speed.

We expect the difference to be greater for high sweep rates and kinematic viscosities, low
rotation speeds and diffusivities, and short times. We would like to quantify this difference so we com-
pare the first ten terms of the summations which represent the concentration derivatives at the surface for
the Nernst-layer and convective-diffusion cases for a concentration of zero at the surface and unity in the

bulk. These derivatives are

&l 12 2 =i
A e D R e : 141
ag jG=0 r 4 il r 4 ( )
3 3
for the Nemst-layer approximation and
- .
icgl ' == L - ZBne-u ’
X g 4] = (3-42)
3

for the convective-diffusion equation. To compare the relative differences between these summations, we

divide their absolute difference by their long-time asymptote and plot this value,

4|lden]  Beepl | S ) : : :
IFl—{l—=~1 = —=—1| |, versus dimensionless time, 0, in Figure 3-2. The difference is large at short
3)1 K g0 K e

times and decreases exponentially with increasing time.



600
500
400
<
=
= 300
2
3
Q
' 200
100
0

37

] r R M T v ¥ v 1 v 1 M ¥ v I

2500 rpm

900 rpm

i ) A 1 i 1 A 1 i i 2 1

0 100 200 300 400 500 600 700

-Applied Potential (mV vs. SCE)

Figure 3-1. Simulated voltammograms for the deposition of mercury from brine on a rotating-disk elec-
trode for several rotation speeds. The symbols indicate the convective-diffusion result; the lines, the
stagnant-diffusion-layer result.
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Figure 3-2. Relative difference between currents calculated from the Nernst-layer approximation and the
convective diffusion equation.



39

3.5. First-order homogeneous reactions

For completeness we include the solution to the transient convective diffusion equation with
first order homogeneous reaction kinetics. If there are homogeneous (bulk) chemical reactions that have
first order or pseudo-first order kinetics, the problem is linear, and the superposition method remains appli-

cable. If the rate of disappearance of species i is kc;, the governing equation becomes

dc; _ 2, 3‘3:
subject to
¢i=0asf oo,
¢;=0att=0,and (3-44)
=fit)at{=0.
The definition of x is
K= K .
a3 13
v 3
Assume a solution of the form'
c=e"2g(.90). (3-46)

This allows us to reduce the problem to that of convective diffusion to a rotating-disk electrode:

-35 322”523;& (347)
The boundary conditions are:

g=0as{ 5o,

g=0at0=0,and (348)

g=fe®atf=0.
The solution for g is the same as that used for the rotating-disk, Instead of using the boundary condition

on ¢, ¢(0,8) = f(6), one uses the boundary condition g(0,0) = f(6)e™. If the SuperPose algorithm is used,

|
the ‘‘currents’’ calculated are based on the value of 3{%' To determine the true current, these values

 Mr. Alan West suggested this solution.



must be multiplied by ™.
3.6. Nonlinear problems

As stated earlier, superposition integrals can only be used to solve linear equations. If we
want to include non-first-order bulk chemical reactions or migration in a model, a different technique

would be used. For this type of problem, a finite-difference method could be used with time-steppi'ng.' .
Matlosz gave an example of how his BandAid program'® could be used with time stepping to simulate

linear sweep voltammetry on a rotating-disk electrode including the migration flux.’
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APPENDIX A

The Incorrect Transient Term in al(t)

For use in an algorithm for the simulation of cyclic voltammetry using superposition integrals,

Matlosz derived an equation for the integral a(t). For the Nemst stagnant diffusion-layer case, Equation
3-21 in Reference 5 (in Chapter 3) is

I S .
a0=-5 - L 5 expl[ T (A1)
The correct equation is Equation 2-13 o
' = % mz"zDit 2-13
) =- -mZ.:ID 25 |1 exp|- 32 . (2-13)

Since we are concerned with difference between values of a; at different times, the constant
term in Equation 2-13

B
D

may not bother us."!  If we do not include this term, we are left with an expression similar to Matlosz’s,

iMs

1
> (A-2)

except that we will add the summation term to —t/§; instead of subtracting it. At long times, the transient-
(summation) term is negligible, so its sign is irrelevant. At short times, this term is more important, but a
different expression (for semi-infinite diffusion) is used instead. The transient term influences the results

of the simulation only at intermediate times.

t The summation of m'2 from one to infinity converges to 1.64493406684822643637.!



1.

43

Reference

William H. Beyer (Editor), CRC Standard Math Tables, 25th ed., CRC Press, Boca Raton, FL
(1974).



APPENDIX B

Short-Time Solution to the Convective-Diffusion Equation

B.1. Problem

To determine the coefficients used when solving the convective-diffusion equation using

superposition integrals, we need to know the value of certain coefficients. These coefficients are

tac |
a(:)=j3°-| dr . (B-1)
B.2. Solution
In dimensionless terms, we can calculate
, D
(1) = - ﬁ%— (B-2)
where the dimensionless time is
Dt
T= ? . (B-3)
For the case of diffusion through a stagnant film
, 2 51 2 = emrr
a=t+— —_—— .
Pl m 2l (B-4)

For short times, many terms are needed to make the series converge, so we would like to use a separate

solution for short times. Once we have the solution, we have to decide at what value of T to switch

between the two solutions. Matlosz' used T = 4/%2, but gave no reason for this choice.

To decide the range of T for which we will use the short-time solution, we will consider the
problem of diffusion through a stagnant layer, briefly postponing consideration of the problem of

convective-diffusion to a rotating disk. We will derive the short-time solution and compare the series
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solutions for different numbers of terms to decide when to switch between the solutions in a region where

they overlap.
B.3. Short-time solution

For a similar problem, Newman? derives the concentration and its gradient in a stagnant diffu-

sion layer using Laplace transforms. For the present boundary conditions, these become

sinh[\[%(x-ﬁ)]

c(x.8) =~ -i- (B-5)
s 59
and
5 coshl \/}S)-_SI
x —-== (B-6)

' 1
| =-—
j=0 \sD int ,s

where c(x,s) is the Laplace transform of c(x,t). At short times (or large values of s),

1+ exp[—2‘\’%8

&| __ 1
ax lxw @ 3
1 -exp{-24/—8
D
(B-7)
—24/L3 —44/28 —64)L8
=-L1+25 \/:-#23 ‘/:+2e \/:+
VsD
which is inverted to give
il =k (1+2e“"°‘+2e*‘"’°‘+2e'”"°‘+ ] (B-8)
ox =0 VrDt

To find the coefficients a’(t), we integrate this equation. It should be integrable by parts, but it is simpler

to integrate its Laplace transform by dividing by s:



1 oc | 1 o -2::\/%5
R e @

This can be inverted to give, in dimensionless terms

a’(t) = - /—1‘ {1 + 25: [e.n'n - n\/? erfc[%] } (B-10)
=1

The value of a’(t) for semi-infinite stagnant diffusion is \/4—;—. It is the limiting value for

diffusion through a finite film for the shortest times. The terms in the series in Equation B-10 represent
corrections to this limiting, *‘zero-term,’’ case. The method used for calculating the error function com-

plement is discussed in appendix C.

The values of a’(t) for the zero-, one-, two-, and three-term short-time series and the ten- and
hundred-term series (which overlap for long times) are plotted in Figure B-1. The zero-term solution, pro-
portional to xf-t. is a straight line. As more terms are added to this solution, the value of a’ follows the
long-time solution until larger times before diverging. The long-time solution intersects the ordinate axis

at positive values which decrease as the number of terms used increases.

The relative errors for the different series are plotted in Figure B-2. The error is

1)
|truca' |.

The true value of a’ is taken to be the hundred-term long-time solution for T > 0.1 and the three-term
short-time solution for t < 0.1; from this figure we decide 10 use the ten-term long-time solution for log © >
-1.5 (where the relative error is less than 6:10°%) and the zero-term short-time solution for logt<-1.5

(where the relative error is less than 4-1075%).
B.4. Complete convective-diffusion problem

The coefficient a(t) for convective diffusion to a rotating-disk was derived in Section 3.2.4.

In dimensionless terms, we have
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Figure B-1. Coefficients for the superposition integral program. Curves 0, 1, 2, 3: short-time solution for
a stagnant diffusion layer with 1, 2, and 3 correction terms added to the semi-infinite solution. Curve L.:

stagnant diffusion layer solution with 10 and 100 terms (the two curves overlap).
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Figure B-2. Coefficients for superposition integral. ‘‘n’’ and ‘‘s’’ refer to the Nemst-layer approximation
and to the short-time series, respectively. The numbers refer to the number of terms in the series.
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ot

d@M=1+ Yy —¢ (B-11)
|

4
i
which is similar to the result for diffusion through a stagnant film (Equation B-4). The hundred-term

m=0

stagnant-diffusion a” and the ten-term convective-diffusion a” are plotted in Figure B-3. The curves match
well, especially at larger values of T. This can be seen also in a plot of the relative difference between the

— L ) | &’ pvectve diffusion |
two terms in Figure B-4. This difference is expressed as |1 - v | and decreases
| Nemst |

exponentially at large times.
We would expect our answer to be wrong by a constant: the summation E-—l—z— does not con-
m

verge for few terms (see Table B-1). Since we know the value of Y, —1—2. we used it in the stagnant-
me] M
diffusion problem for the sum of the reciprocals of the eigenvalues rather than ten or one hundred terms as

in the other series term. In the convective-diffusion problem we cannot do this: Nisancioglu and Newman

oo B
give only the first ten eigenvalues and constants. To find the difference between ¥ ———— and
m=0 _|4

, we looked at the value of a’ for the ten-term convective-diffusion series and the short-time

Table B-1. The summation of m'2 for various numbers of terms.

N i 1
mm] m2
10 | 1.54977
100 | 1.63498
200 | 1.63877
o 1.64493
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Nernst layer, 100 terms
------ ~------  Convective diffusion, 10 terms

Figure B-3. Coefficients for superposition integral. Dashed curve: 100-term Nernst diffusion layer solu-
tion. Solid curve: 10-term convective diffusion solution.
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Figure B-4. Coefficients for the superposition integral.
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solution where they should overlap (log t ~ -1.5). The difference between the two is about 0.055. There-
fore we should subtract this value from the ten-term convective-diffusion a’. Figure B-5 contains the same
data as Figure B-4 but with the correction term 0.055 included. Since the superposition program only uses

differences in a’, the value of the constant need not be precisely known for this purpose.
B.5. Selman’s work

In appendix B of his dissertation,? Selman considers the flux at a rotating disk after a concen-

tration step at the surface in the limit of high Schmidt numbers.

Selman writes the equation of convective diffusion and notes that the convective term is
negligible for smail times and derives the concentration gradient at the surface for small times. He then
recognizes the long-time (steady-state) solution to the convective-diffusion equation and derives the sur-

face concentration gradient.

Then, he rewrites the convective-diffusion equation in terms involving its short-time solution.
'He writes a perturbation expansion about the short-time solution and derives the concentration gradient at
the surface. He solves the convective-diffusion equation numerically using two sets of variables: one for
short times and one for long times, and explores the relationship between the flux and time for different

numbers of terms.

His Equation B.22 gives his short-time series for the flux at the surface

ac | 3t 3PR

—_—] = +

1
i Vet 4 20vx

where his notation differs slightly from ours. While the form of this equation differs from our Equation

+0(h, (B-12)

B-8, he shows that the exact solution differs from the steady-state solution at nearly the same time that we

found.

In his Figure B.1,* Selman plots (3¢/dy), against T,. The exact solution diverges from the

steady-state solution (1/yTs) at 7 = 0.035, where
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Figure B-5. Coefficients for superposition integral, the correction term 0.055 was added to the convection
term. The ordinate is the same as Figure B-4.
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21
‘tsstw[—;—] Sc3 . (B-13)
- Since
13 A4
-rl4ll13D| (v
8—1‘[3] ~ {m] , (B-14)

and since substituting the value of 1 into Equation B-13 gives

21
tm[-g-] Sc1P = 0035, (B-15)

we determine a threshhold value for t:
log(t) = log[%] =-1.36. (B-16)

This value is close to our choice of log(t) = -1.5. .
B.6. An alternative approach

The solution to the problem of diffusion into a semi-infinite medium initially at zero concen-

tration from a boundary at unit concentration is

cx,)=1-erf

wf—m] : ®-17)
We know the fully developed boundary layer thickness & and ask, ‘‘At what time does the semi-infinite
diffusion boundary layer grow to this thickness?’’ To answer the question, we pick a value of the con-
centration sufficiently close to zero where we can say that the boundary layer ends. Then we use a table
of error functions to determine the time at which the boundary layer has this ﬁichm. This represents the
longest time at which the semi-infinite diffusion would be appropriate for the rotating-disk problem.
Matlosz’s choice leads to a value of c(8, n/4) =1 —erf(0.78) =0.27. Clearly, this time is too large
because the boundary layer has extended so far that the concentration is about equal to a fourth where it
should be nearly zero. If we say that ¢(3,t) should be 0.01, 0.05, 0.10, or 0.50, we find the corresponding
times listed in Table B-2. From this we conclude that the rotating-disk solution must be used for times

greater than §%10D. Our more rigorous analysis showed that we should switch solutions at log T = -1.5,
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Table B-2. Time before the boundary layer develops.

cBr) | == t
®.) D
82
0.01 1.82 13.25D
82
0.05 1.38 762D
82
0.10 1.16 538D
0.50 &
. 0.48 0.92D

or a time of 8%/30D, a time one-third as large.
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APPENDIX C

Calculation of Error Function Complements

The error function complement is needed in the short-time solution to the problem of diffu-

sion through a stagnant film.

Abramowitz and Stegun' give the formulas:

- Py o 1. o 2 1
Jmzeerfc@) - 1+ ¥ (-1 13 2meD) D
m=l [222]
which is valid forz — e and |arg z| < gf-,and
2 S .
erfc(z) =e™* Yait', B (6))
i=0

where t = —1-:1;; and the a’s and p are specified constants.

Although Abramowitz and Stegun use infinity as the upper limit in the summation in Equation
C-1, the series diverges for finite zz How many terms should we use? We can add terms until the absolute

value of a term is larger than that of the previous term. If

| mth term | - 2m-1
, |(m-1thterm| 27
the mth term should not be used. The upper limit on the summation in Equation C-1 should be the largest

>1, (C-3)

integer less than or equal to z2+'%.

Table C-1 shows how the values calculated by the two formulas compare to each other and to

the exact value given by Abramowitz and Stegun.>  The function ze"erfc(z) is convenient for comparis-

1
z

ons because it approaches 1 + ~— for large z.



Table C-1. A comparison of the the value of erfc(z) calculated different ways.

Z

2.94
2.88
2.82
2.77
272
2.67
2.62
2.58

z

0.1150
0.1200
0.1250
0.1300
0.1350
0.1400
0.1450
0.1500

eqn C-1

0.5362552
0.5352233
0.5342090
0.5332133
0.5322385
0.5312844
0.5303536
0.5294481

ze*erfc (2)
eqn C-2

0.5364946
0.5353977
0.5343167
0.5332505
0.5321984
0.5311595
0.5301332
0.5291188

exact

0.5361729
0.5351147
0.5340672
0.5330302
0.5320035
0.5309867
0.5299798
0.5289825

Figure C-1 shows how the values of the error function complement calculated both 'ways
compare. Their difference is smallest when the value of the argument is 2.747192. For arguments larger

than 2.747192, we use the large-argument asymptote (Equation C-1); for smaller arguments, Equation C-

2.
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Figure C-1. Comparison of the values of the error function complement calculated by the formula (Equa-
tion C-2) and by the large-argument asymptote (Equation C-1).
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[GFLOATING,ENVIRONMENT(Pose2Mod.pen”)]
module Pose2Mod( input, output );

const StepMax = 601;
NMax = 8
NSpcsMax = §;
SystemZero = 1.0d-100;

type RealNumber = double;
Vector = array [1.NMax] of RealNumber;
IVector = array [1.NMax] of integer;
Matrix = array [1..NMax] of Vector;
IMatrix = array [1.NMax] of IVector;

IterationStore = array [0..StepMax] of integer;

ErrorStore = array [0..StepMax] of boolean;
ResultSiore = array [0..StepMax] of RealNumber;
SurfaceValueArray = array [1.NSpcsMax] of ResultStore;

string = record chars : array [1..100] of char;
length : integer end;

var dtOriginal : RealNumber;
%include Tshain.super]IOPkg.pas’
%include Tshain.super]NewtRaph.pas”
%include Tshain.super]SuperPose2.pas”

end. { Pose2Mod module }
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[GFWATWGMERTT(Tmmsuﬁ]PWeZModwn'. “{shain.super]PrintCV .pen)]
{ Date last modified: November 2, 1989 }

program cv( input, output );

label 1;

const R = 8.314;
F = 96487;
pi = 3.141592654;
MuH20 = -237.129e+3;

var C, dCdx : SurfaceValueArray;

Co, Cref, ioRef, MuTheta, Utheta, alphaA, alphaC, n, nPrime,
sH20 : Vectwor;
S, p» q : Marrix;
nSpcs, nRxns, Maximumlterations, TotalSweeps : integer;
Solutes, SolutesPlusOne : integer;

Ure, Tolerance, GammaMax : RealNumber;
t. L 12, V : ResultStore;

Iterations : IterationStore;
Errl, Er2 : EmrorStore;

tStart, tReversal, tRange, dt : RealNumber;
StartStep, ReversalStep, CPUTime : integer;
Sweep : integer;

Vstart, Vreversal, dV : RealNumber;

Uref : Vector;
D, del, z : Vector;

kappa, radius, b, A, RotationSpeed, omega, rhoZero, Temp, nu
: RealNumber;

k : integer;
kAl, kA2, kD1, kC2, Determ, Sum : RealNumber;

procedure ReadAndPrintParameters;
var j : integer;

begin
Rl(nSpcs);
RI(Solutes);
SolutesPlusOne := Solutes + 1;

RI(nRxns);
RIMaximumlterations);
RR(Tolerance);
RR(GammaMax);

RV(D);
RV(z);
RR(Ure);
RR(Temp);



RR(rhoZero);
RR(nu);

RV(MuTheta);
RV(alphaA);
RV(alpheC);
RVY(n);
RV(ioRef);
RM(s);
RV(sH20);

RV(Cref);
for k := SolutesPlusOne to (nSpcs—1) do
Creflk] := 1.0;

RVY(Co);

RR(Vstart);
RR(Vreversal);
RRAYV);
RR()

RR(radius);
radius := sqrt(1.0 /pi);

RR(kappa);
RR(RotationSpeed);
RI(TotalSweeps);

LF(2); TB(20);
write( Parameters: ); LF(3);
TB(20); write(" Input Data ——7); LF(2); TB(10)

write( Number of unknowns (nSpcs) = 7); WI(nSpcs,1); LF(1); TB(10)
write('Number of solutes = °); WI(Solutes,1); LF(1); TB(10);
write(“Solutes plus one = %); WI(SolutesPlusOne,1); LF(1); TB(10);
write( Number of reactions (nRxns) = 7); WI(nRxns,1); LF(2); TB(10)
write( Maximumlterations = 7); WI(Maximumlterations,1);

LF(1); TB(10);

write(“Tolerance = 7); WR(Tolerance,10,5); LFQ2); TB(10);
write("GammaMax (mol/em2) = 7); WR(GammaMax,10,5); LF(2); TB(10);
write( Dk] (cm2/s) = 7); WV(D,10,5,Solutes); LF(2); TB(10);
write(z[k] = 9); WV(z4,2,(nSpcs~1)); LF(2); TB(10);
write("Ure (V) = 9); WR(Ure,10.5); LF(2); TB(10)
write( T (K) = 9); WR(Temp,10,5); LF(1); TB(10)
write( ‘rthoZero (kg/cm3) = %); WR(rhoZero,10,5); LF(1); TB(0);
write('ma (cm2/s) = 7); WR(nu,10,5); LF(2), TB(10)

write('MuTheta{k] (V) = 9; WV(MuTheta,10,5,(nSpcs-1));

LF(1); TB(10);
write(“alphaA[j] = 7); WV(alphaA.4,2,nRxns); LF(1); TB(10)
write(“alphaC[j] = ); WV(alphaC,4,2,nRxns); LF(1); TB(10)
write(‘number of electrons (n) = °); WV(n,10,5,nRxns);LF(1); TB(10);
write(ioRef[j] (A/cm2) = 7); WV(ioRef,10,5,nRxns); LF(2); TB(10);

write("s(k,j] = 7 WM(s,10,5,(nSpcs—1),nRxns); LF(2); TB(10);
write("sH20(j] = °); WV(sH20,10,5,nRxns); LF3); TB(10);
write("Cref[k] mol/em3 = 7); WV(Cref,10,5,(nSpes—1)); LF(3); TB(10);
write("Co{k] mol/cem3 = 7); WV(Co,10,5,Solutes); LF(2); TB(10);
write( Vstart (V) = 9); WR(Vstar,10,5); LF(1); TB(10);
write( Vreversal (V) = 9); WR(Vreversal,10,5); LF(1); TB(10);
write("dV (V) = 7); WR(dV,10,5), LF(1); TB(10)

write('d (V/s) = 7); WR(b,10.5); LFQ1); TB(10)
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write(‘radius (cm) = °); WR(radius,10,5); LF(1); TB(10);
write('A (cm2) = °); WR(A,10,5); LF(1); TB(10)
write(’kappa (mho/cm) = °); WR(kappa,10,5); LF(1); TB(10);
write( RotationSpeed (rpm) = °); WR(RotationSpeed,10,5);

LFQ2), TB(10);
write( TotalSweeps (forward and reverse) = °); WI(TotalSweeps,1)

end; { ReadAndPrintParameters }

procedure SetParameters;
var i, j, k : integer;
begin { SetParameters }
tStart := O;
If (b< 0) then
begin
dt := abs(dV /b); :
tReversal := abs( (Vreversal - Vstart)/b )
end;

tRange := tReversal — tStart;

if ( Vreversal > Vstart ) then

elseb := abs(b) {... anodic sweep first }
b := —abs(b); {... cathodic sweep first }
for ;= 1 to nRxns do { accounts for charge leaving solution}
begin { and thus for charge transfer in }
nPrime(j] := 0; { reactions with n{j] = 0}

for i := 1 to Solutes do
4 nPrime{j] := nPrime(j] — z[i] * s{ij]
end;

for j := 1 to nRxns do

n
Uthetafj] = 0;
for i :== 1 to (nSpcs — 2) do
Utheta[j] := Utheta[j] — s[i,j] * MuTheta[i];
Uthetaj] := Utheta[j] - sH20(j] * MuH20;
Utheta(j] := Uthetalj] / ( nPrime(j] ®* F )
end;

[

for j :== 1 to nRxns do

begin
Uref[j] := Utheta{j] — Ure;
for k := 1 to (nSpcs—~1) do

begin
if ( sikjl = 0 ) or ( nPrime(j] = 0 ) then
Uref[j] := Uref{j]
else
begin

if ( k <= Solutes ) then
Uref[j] := Uref[j] - (s{kj]*R*Temp /(nPrime{j}*F))
* In(Creffk] /thoZero)
else



Ureflj] := Uref[j] - (s[kj]*R*Temp /(nPrime(j]*F))
* In(GammaMax)
end
end
end;

for j := 1 to nRxns do
for k := 1 to (nSpcs—-1) do
if ( s(kj] > 0 ) then
gin

be
plk.jl = s(kjk
qlk,j] =0
end
else if ( sfk.j] < 0 ) then
begin
qlk,j] = -slkjl;
plk.j] = 0
end
else
begin
plkj] = 0;
qlk.jl = 0
end;

omega := RotationSpeed*(2.0*pi)/60.0;

for k := 1 to Solutes do

begin
if ( omega = 0 ) then
del(k] := 1.0
else '

del(k] := 1.6117 * ( D(x] ** (1.0/3.0) ) *
( abs(omega) ** (-1.0/2.0) ) * ( nu ** (1.0/6.0) )

end;
LF(3); TB(20);
write("——— Derived Quantities »% LF(2); TB(10);
write(‘dt (s) = 7); WR(d10,5); LF(2); TB(10);
write("Utheta[j] (V) = ); WV(Utheta,10,5,nRxns); LF(2); TB(10);
write( Urefj] (V) = 9); WV (Uref,10,5,nRxns); LF(2); TB(10);
write( 'nPrime(j] = 7); WV(nPrime,10,5,nRxns); LF(2); TB(10);
write("p{i.j] = ) WM(p.10,5,(nSpcs—1).nRxns); LF(2); TB(10);
write("q[i,j] = ) WM(q,10,5,(nSpcs—1).nRxns); LF(2); TB(10);
write(“omega (rad/s) = 7); WR(omega,10,5); LFQ1); TB(10);
write(“del[i] (cm) = ); WV(del,10,5,Solutes); LF(Q1); TB(10);

end; { SaParameters }

procedure RunSweep( tBegin, tEnd : RealNumber;

StepBegin : integer;
var StepEnd : integer );

Step : integer;

CPUTime : integer;

j : integer;

CStep : Vector;

V : ResultStore;

IBV : SurfaceValueArray;
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function VSurf ( t : RealNumber ) : RealNumber;

VSurf := C[nSpcs,StepBegin] + b*(t — tBegin)
end; { VSwyf}

function BVrate( j : integer; C : Vector ) : RealNumber;

var k : integer;
PiA, PiC, rA, rC : RealNumber;

begin { BVrate }
PiA = 1.0;
1.0;

PiC

for k ;= 1 to (nSpcs-1) do
begin

if ( plkj] > 0 ) then
in

it (Ck] = 0 ) then
PIA =0
else
| PiA := PiA*( (C[k]}/Cref[k])**plk.j] )
end; :
if ( qkj) > 0 ) the

if ( Clk] = 0 ) then
PiC:=0
else
PiC := PiC*( (C[k]/Creflk])**q[k,j] )
end
end;

TA := PiA*exp( (alphaA[j]*F /(R*Temp))*(C[nSpcs] — Uref[j]) )
1C := PiC*exp( —(alphaC[j]*F /(R*Temp))*(C[nSpcs] - Uref[j]) %

BVrate := ioRef[j] * (rA - 1C )
end; ({ BVrate}

function SurfBC( k : integer; _
C, dCdx, OldC, OlddCdx : Vector;
t : RealNumber ) : RealNumber;

var Sum : RealNumber;
1 : integer;

function FickFlux : RealNumber;

FickFlux := -D{k]*dCdx{k]
end; { FickFlux }

function FaradayFlux( C: Vector ) : RealNumber;
var j : integer;



Sum : RealNumber;
begin
Sum := 0;
for j:=1 to nRxns do
Sum := Sum - ( s{kj] /nPrime(j]/F ) * BVrate(j,C);
FaradayFlux := Sum
end;

function I( dCdx : Vector ) : RealNumber;
var kInteger;
Sum : RealNumber;
begin
Sum := 0;
for k ;= 1 to Solutes do
Sum := Sum - F * A * z[X] * D{k] * dCdx[k];
I:= Sum;
end; (7}

begin  { SwyBC }

if ( k <= Solutes ) then

SwrfBC := FickFlux ~ FaradayFlux(C) { =0}
else if ( k = nSpcs ) then

SurfBC := C[nSpcs] - VSurf(t) + [(dCdx) /(4.0*kappa*radius)
else If ( k = nSpcs — 1 ) then

begin
Sum := 1.0;
for l = SolutesPlusOne to (nSpcs ~ 1) do
= Sum - C[1];
SurfBC =81 (=20}
end
else

if (t < dt) then
SurfBC := FaradayFlux(C) { =0}
else
SurfBC := 2.0 * GammaMax * ( (C[k] — OldC[k])/dt )

~ FaradayFlux(C) — FaradayFlux(OldC)

end; { SwfBC }

begin  { RunSweep }

SuperPose2( nSpcs, nRxns, Solutes, StepBegin, StepEnd,
D, del, Co, s, nu, omega,
tBegin, tEnd, dt, C, dCdx, t,
Iterations, Errl, En2, CPUTime,
SurfBC, Maximumlterations, Tolerance);

for Step := StepBegin to StepEnd do
begin
I[Step]
I2({Step]
for k:=1 to nSpcs do
CStep(k] := C[k.Step];
for k:=1 to Solutes do

L2

0}

{=
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I{Step] := I{Step] — F * A * z[k] * D[k] * dCdx(k,Step};
V[Step] := VSurf(t{Step]);
for j := 1 to nRxns do
IBV[j,Step] := A * BVrate(j,CStep);
for j := 1 to nRxns do
| iStep) = 12(Step) + BV St
end,

VI0] := Vstart;

PrintSweep(StepBegin, StepEnd, V, I, 12, IBV, C, dCdx, Iterations,
Errl, Emr2, CPUTime)

end; { RunSweep }

begin { cv }
writeln;

PrintTitle; .
ReadAndPrintParameters;
SetParameters;

{ Set initial concentrations (for n=0, t=-infinity) to bulk values }
for k := 1 to (nSpcs-1) do
Clk0] := Colk];
dCdx[k,0] := 0.0
end; -

C[nSpcs,0] := Vstary

{ Make guesses to be used for the first time step, i.e. the
steady—-state result. For subsequent steps, the result of the
previous step will be used. )}

Co[1] := 5.12579E-003;

Co[2] := 5.63961E-006;
Co[3] := 0.00000E+000;
Co[d] := 1.59517E-007;
Co[5] := 8.00169E-001;
Co[6] := 1.99781E-001};
Col[7] := 4.93045E-005;
Co[5] := Cof6] — Co[7];

Co[nSpcs)] := Vstart;

{0] := tStart - dg;
I[0] := O;

Er1{0] := false;
Em2{0] := faise;
Tterations{0] := O;

StartStep := 0;

if (b<o 0) then
for Sweep := 1 to TotalSweeps do
begin
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tReversal := (Start + tRange; '
RunSweep(tStart, tReversal, StartStep, ReversalStep);
tStart := tReversal;

StartStep := ReversalStep;

b:=-b
end
else
LF(2); TB(20);
write( WARNING: Sweep Rate (b) = 07);
LF(1); TB(20);
write(’=> dt undefined; PROGRAM EXECUTION HALTED.");
LF(5)
end;

1 : LF(1); TB(20); writeln("Program End”); LF(1)

end. {cv}
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Procedure Title:  SuperPose2
Modified by: Paul Shain

Date last modified: ~ November 2, 1989

Based on: SuperPose
Written by: Michael Matlosz
Date: December 15, 1984
Copyright: (c) 1985 M. Matlosz
Purpose: SuperPose is a subprogram for the solution of the

unsteady—state, multi-component diffusion equations at
an electrode during cyclic voltammetry. The routine
uses a multidimensional Newton—-Raphson routine (found in
procedure NewtonRaphson of module PoseMod) to determine
the appropriate change in concentration of each species
at each time step, such that the boundary conditions at
the electrode surface (supplied by the calling program)
are satisfied. The fiux of each species to the
electrode surface (at each time interval) is computed
from the superposition theorem (Duhamel’'s integral),
constructed from the solution to the unsteady-state
diffusion equation in a semi~infinite stagnant medium or
to a rotating—disk electrode resulting from a step
change in surface concentration. The integral is
evaluated by the method of Acrivos and Chambre.

SuperPose2 is a modification of SuperPose. It is
used with the program CV to account for adsorption and
desorption of chemical species, and for chemical and
electrochemical reaction of adsorbed species.

Superpose? includes the solution for convective—
diffusion to a RDE (in addition to the Nernst-layer
solution found in Superpose). If the rotation speed is
zero the stagnamt—diffusion case is used; positive,
convective—diffusion; negative, Nernst layer.



procedure SuperPose2(  NSpcs, nRxns, Solutes : integer;
nStart : integer;
var nStop : integer;
D, del, Co : Vector;
s : Matrix;
nu, omega : RealNumber;
tStart, tStop, dt : RealNumber;
var ¢, dedx : SurfaceValueArray;
var t : ResultStore;
var Iterations : IterationStore;
var Errl, En2 : ErrorStore;
var CPUTime : integer;
function SurfBC( i : integer;
¢, dedx, OldC, Olddcdx
: Vector;
t : RealNumber ) : RealNumber;
ItMax : integer;
Tolerance : RealNumber );

const pi = 3.14159;
gammad3 = 0.8928795116;
aConst = 0.51023;

var  Acoeff : SurfaceValueArray;
cGuess, cResult, IntegralSoFar, cDeriv, Ginf, ExtraTerm : Vector;
i, n, ClockStart, ClockStop : integer;
lambda, B : array [0..9] of RealNumber;

procedure SetCoeffs;

{... Purpose: Calculate the various coefficients needed for the
calculation of the superposition integral. These values are
only functions of the index (n — k), where n is the step and
k is the summation index. Here, n is set to StepMax so that
all possible Acoeff[n—k] can be evaluated.

const n = StepMax;

var i, k : integer;

procedure SetLambdaB;

begin

lambda(0] := 7.21644439;  B[0] := 1.12818046;
lambdafl] := 18.1596045;  B[1] := 0.90505798;
lambdaf2] := 31.1962389;  B{2] := 0.7907692;
lambda(3] := 45.7926549;  B(3] := 0.718387;
lambda(4] := 61.6691473; B[4] = 0.666834;
lambda(5] := 78.6461928; B[S] := 0.627481;
lambda(6] := 96.5966836; B[6] := 0.596032;
lambda(7] :=  115.424957, B[7] := 0.570071;
lambda(8] := 135.05591; B[8] := 0.548117,;
lambda[9} := 155.42872; B[9] := 0.52920

end; { SetLambdaB }
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procedure SetGinf;

var System : ( Semilnfinite, RDE, NemstLayer );
k : integer;

begin { SaGinf }
if (omega = 0) them System := Semilnfinite
else if (omega < 0) then System := NernstLayer
else System := RDE;

case System of

Semilnfinite:
for k := 1 to Solutes do
Ginflk] := 0.0;
RDE:

for k := 1 to Solutes do
Ginf[k] := - (aConst*nu/3.0/D[k]) ** (1.0/3.0)
* sqrt(omega/nu) * gammad3;

NemstLayer:
for k := 1 to Solutes do
Ginf[k] := -~ 1.0 / del(k]

end { System cases }

end; { SaGinf}

function a( i : integer; t : RealNumber ) : RealNumber;

var System : ( Semilnfinite, RDE, NernstLayer );
tau, Sum, Term : RealNumber;
m : integer;

begin {a}

if (t = 0) then a := 0.0
else

begin

if (omega = 0) then
System := Semilnfinite
else if ( t <= exp( —1.5 * In(10) ) * sqr( del{i]) / D[i] ) then
System := Semilnfinite
else if (omega < 0) then
System := NemstLayer
else
System := RDE;

case System of

Semilnfinite:
begin
a ;= =2*sqrt( t/(pi*D(i]) )
end; { Semilnfinite case }

RDE:
begin
tau := Dfi] * t / sqr(delli]);
Sum := 0;

form ;=0 to 9 do

75



begin
Term := exp{ — lambda[m] * sqr( gammad3 ) * tau );
Sum ;= Sum + B[m]*(1.0 - Term) / lambda{m] / gammad3
end;
a:=— ( tau + sum ) * delfi] / DIi]

end; { RDE case }

NemstLayer:
begin
Sum = 0;
for m:= 1 to 10 do
begin
Term := exp( — sqr ( m* pi / deli] ) * D[i] * t )
. / sqr(m);
Sum := Sum + Term;
end;
a:=—t / delfi]

— (2 * del[i] / D[i] / sqr(pi))
: * (1.64493406684822643637 — Sum)
end { NernstLayer case } .

end { System cases }
end

end; {a}

begin { body of SetCoeffs }

SetLambdaB;
SetGinf;

for k :=0to (n - 1) do
for i := 1 to Solutes do
Acoeff[i,n-k] := a(i,(n-k)*dt) - a(i,(n-k-1)*dt)

end; { SetCoeffs }

function LeadingTerms( i, n : integer ) : RealNumber;

{... Purpose: For a given step n, c ompute the "leading terms" in
the summation representation of the superposition integral,
i. e., the sum from k=0 to n-2 (since the total sum runs from
k=0 to n—1). Because the weights for the present step are as
yet unknown, the complete integral cannot be calculated. How-
ever, all terms involving weights from previous steps can be
calculated, and by computing this part of the integral prior
to the call to the Newton routine (which involves iterations)
the execution time of the program can be reduced substantially.

var k : integer;
Sum : RealNumber;

begin  { body of LeadingTerms }
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if (n<2) then
Sum := 0
else
begin
Sum := 0;
for k:= 0 to (n—2) do
Sum := Sum + ( (c[i,k+1] - c[i,k])/dt )*Acoeff[i,n—k]
end; { else}

LeadingTerms := Sum

end; { LeadingTerms }

function Completelntegral( i, n : integer;
cNew : RealNumber;
IntegralSoFar : Vector ) : RealNumber;

{... Purpose: From the IntegralSoFar (i. e., the LeadingTerms),
compute a complete superposition integral, by adding the
last term (i. e., the term for k = n - ).

var Kk : integer;

begin { Completelntegral }
if (n < 2) then
Completelntegral := 0
else
Completelntegral := IntegralSoFar{i] +
( (cNew — ci,n—1]) / dt ) * Acoef]i,1]
end; { Completelntegral }

function BCTrial( eqn : integer; cTrial : Vector ) : RealNumber;

var i : integer;
dcdxTrial, OldC, OlddCdx : Vector;

begin { body of BCTrial }
for i := 1 to Solutes do

n
ff (n=1) then
dedxTrial(i] :=
Completelntegral(i,n,cTrial(i],IntegralSoFar)
: + ( cTralli] - C[i,0] ) * Ginffi)
{old version} {+ ( cTrialfi] - Cofi] ) * Ginfli]}
else
dedxTrialli] :=
Completelntegral(i.n,cTrial(i],IntegralSoFar)
+ ExtwaTerm(i};
OlddCdx(i] := dCdx[i,n—1}
end;
for i := 1 to nSpcs do
O1dCli] := ¢lin-1];
BCTrial := SurfBC(eqn,cTrial,dcdxTrial,O1dC,01ddCdx,1{n])



end;

begin

{ BCTrial }

{ body of SuperPose2 }

ClockStart := Clock;
n := nStart;
SetCoefTs;

if (n=0) then

begin
n:=1 .
1] := 0.0;
for i ;== 1 to Solutes do IntegralSoFar{i] := 0.0;
{cGuess := Co;}
for i:=1 to nSpcs do cGuess[i] := C[i,0]; {old version}
NewtonRaphson( BCTrial, cGuess, NSpcs, Solutes, 50,

Tolerance, Iterations{1], cResult, Errl{1], Err2[1] )

for i := 1 to NSpcs do c[i,1] := cResulti];
for i := 1 to Solutes do

ExtraTerm[i] := (c[i,1] = C[10}) * Ginfli];

{ExtraTerm{i] := (c[i,l] — Cofi]) * Ginfli];} {old version}
for i := 1 to Solutes do dcdx[i, 1] := ExwraTerm[i]

end;

repeat
n:=n+l;
t{n] := t{n-1] + d;

for i := 1 to Solutes do IntegralSoFar{i] := LeadingTerms(i,n);
for i := 1 to NSpcs do cGuess{i] := c[in-1];
NewtonRaphson( BCTrial, cGuess, NSpcs, Solutes, ItMax,

Tolerance, Iterations(n], cResult, Errl{n], Err2{n] );
for i := 1 to NSpcs do c[in] := cResult{i];
for i := 1 to Solutes do
dcdx[i,n] := Completelntegral( i, n, c[i,;n), IntegralSoFar )

+ ExtraTerm(i];

until Errl[n] or (in) >= (tStop ~ dt/2)) or (n >= StepMax);

nStop := n;

writeln;writeln('nStop (Superpose2) = “,nStop:4);
writeln;writeln(‘t{n] = *,t(n}:10:3);

writeln; writeln("StepMax = °,StepMax:4);

writeln;
ClockStop := Clock;
CPUTime := ClockStop — ClockStart

end;

{ SuperPose2 }
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Procedure Title: NewtonRaphson
Written by: Michael Matlosz

Date: April 17, 1984
UpDated: August 26, 1984 and December 15,1984

Copyright (C) 1985 by Michael Matlosz
All rights reserved.

Modified by: Paul Shain
Date: August 24, 1989

Purpose:  Determine the solution vector cfi] that satisfies
the system of equations F(i,c) = 0. The technique employed
is a multi-dimensional Newton-Raphson method. Derivatives
are determined numerically, and the coefficient matrix
(Jacobian) is inverted using the matrix inversion algorithm
of Newman (MATINV), which is reproduced here in Pascal as the
subprogram Matrixinversion. The routine is intended to be
used with procedure Superpose to solve the multi~component
diffusion equations occurring in cyclic-voltammetry problems.
(See module PoseMod for a listing of the SuperPose procedure.)

procedure NewtonRaphson( function FTrial( i : integer;
¢ : Vector ) : RealNumber;
cGuess : Vector;
N, Solutes, ItLim : integer;
Tolerance : RealNumber;
var  Totallterations : integer;
var cResult : Vector;
var Errl, Em2 : boolean %

label 2;
type Matrix = array [1.NMax, 1..NMax] of RealNumber;
var cNew, cOld, cDiff, dedxOld : Vector;

Iteration : integer;

Determinant : RealNumber;

F : array [1..NMax] of RealNumber;
dFde, dFdcInverse : Matrix;

DetermlIsZero : boolean;

i, j ¢ integer;



procedure MatrixInversion( M : Matrix;

label

var

Purpose:

Method:

var Minverse : Matrix;
N : integer %

Determine the inverse, Minverse, of the square (N by N)
matrix M.

Gaussian Elimination using elementary row operations.
The algorithm is adapted from Newman’s subroutine
MATINV. For each of the N row—elimination steps, the
following four steps are repeated:

Step 1: Determination of the pivot. Go through the
rows of M, one at a time (skipping rows already used),
in order to determine the location of the largest entry
(in absolute value) in the row with the smallest ratio
of second—largest enury to largest emry (i. e., the
smallest ratio NextToMaxEntry IMaxEntry). Thus, the
BestMaxEntry is the largest entry in the row with the
BestRatio. This BestMaxEntry will become the Pivot.
(This choice of pivot reduces roundoff error.)

Step 2: Row interchange. If the BestMaxEntry (the
choice for pivot) is not on the diagonal of M, then two
rows are interchanged such that BestMaxEntry is on the
diagonal.

Step 3: Division by Pivot. BestaxEn:ry becomes the
Pivot, and each element of the row corsaining the Pivot
is divided by Pivot. (The dcagonal entry of this row

of M is now wnity.)

Step 4: Elimination. All entries in the column
containing the Pivot (except the Pivot itself) are
eliminated by suitable row multiplications and
subtractions.

Variables global to the routine: from calling routine —

1;

DetermlsZero, Size

Row, Column, PivotColumn, PivotRow, RowChoice : integer;
NumberOfRowEliminations, ColWithMaxRowEntry : integer;

UsedRow, UsedCol : array [1.NMax] of boolean;

MaxRowEntry, NextToMaxEntry : RealNumber;
PresentRatio, BestRatio : RealNumber;
Multiplier, Pivot, SavedValue : RealNumber;

procedure Search(Row:integer);

{..

Purpose:

Search through a row of matrix M to find the largest

entry of the row (MaxRowEntry) and the second—largest
entry of the row (NextToMaxEntry). Also, indicate the
column containing the MaxRowEntry, and activate the
DetermisZero flag if the row contains only zeros.
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Variables global to the routine: from Matrixinversion. —
M, N, ColWithMaxRowEniry,

MaxRowEntry, NextToMaxEntry,
UsedCol, DetermlsZero

var Column : integer;
begin  {body of Search}

MaxRowEntry = O;
NextToMaxEntry := 0;

for Column := 1 to N do
if not UsedCol[Column] then
it abs(M[Row,Column]) > MaxRowEnrry_ then

NextToMaxEntry := MaxRowEnury;
MaxRowEntry := abs(M{Row,Column]);
ColWithMaxRowEntry := Column

end

else if abs(M[Row,Column]) > NextToMaxEntry then
NextToMaxEntry:=abs(M[Row,Column]);

if MaxRowEntry=0 then
begin
DetermlsZero := tue
end

end; {Search}

begin {body of GaussElimination)
{... Initializations ...}

for Row := 1 to N do
for Column := 1 to N do
if (Row = Column) then Minverse[Row,Column] := 1
else Minverse[Row,Column] := 0;

DetermIsZero := false;

for Row := | to N do UsedRow(Row]:=false;
for Column := 1 to N do UsedCol{Column]:=false;

{... Solve the equations ...
for NumberOfRowEliminations := 1 to N do
begin { row eliminations }
{... Step 1: Pivot Determination ...}
BestRatio := 1.1; {... setting BestRatio to 1.1 guaraniees

that the test "if PresentRatio < BestRatio”
below will fail on the first pass ...}



for Row := 1 to N do
if not UsedRow[Row] then
begin
Search(Row);
if DetermisZero then goto 1;

PresentRatio := NextToMaxEntry /MaxRowEntry;
if PresentRatio <= BestRatio then
BestRatio := PresentRatio;

RowChoice := Row;
PivotColumn := ColWithMaxRowEntry
end
end;

PivotRow := PivotColumn;
UsedCol[PivotColumn] := true;

{ Step 2: Row Interchange ...}

If RowChoice < PivotRow then

begin
for Column := 1 to N do

n
SavedValue := M[RowChoice,Column];
M([{RowChoice,Column] := M[PivotRow,Column];
M{PivotRow,Column] := SavedValue

end;

for Column := 1 to N do

begin
SavedValue := Minverse[RowChoice,Column];
Minverse[RowChoice,Column] :=

Minverse[PivotRow,Column];

Minverse{PivotRow,Column] := SavedValue

end

end;

UsedRow[PivotRow]:=true; |
{... Step 3: Divide by Pivot ...}
Pivot := M[PivotRow,PivotColumn];

for Column:=1 to N do
M(PivotRow,Column]:= M[PivotRow,Column] /Pivot;

for Column:=1 to N do
Minverse{PivotRow,Column]:= Minverse[PivotRow,Column] /Pivot;

{... Step 4: Elimination ..}

for Row := 1 to N do
f Row < PivotRow then

Multiplier := M{[Row,PivotColumn];
for Column := 1 to N do
M[Row,Column] := M[Row,Column]
— Multiplier*M(PivotRow,Column];
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for Column := 1 to N do
Minverse{Row,Column] := Minverse[Row,Column]
— Multiplier*Minverse[PivotRow,Column]
end;

end; { row eliminations }

1:  if DetermlsZero then

begin
Errl := true;
writeln; writein("***** 7ERO DETERMINANT! ***%s"),
writeln(Itn= °, Iteration:2);
write(“cOld= ); WV(cOld,15,10,N);
write( 'Fli]= ); WV(F,15,10,N);
writeln(‘dFdc{ij] = 9 ; WM(dFdc,15,10,N,N);
goto 2

end

end; { Matrixlnversion }

function NumericalDeriv( ¢ : Vector;
i, j : integer ) : RealNumber;

{... Purpose: Compute dFdc by numerical differentiation ..}
const Small = le-6;

var epsilon : RealNumber;
cincremented : Vector;

begin { body of NumericalDeriv }

clncremented := c;

epsilon := abs(c[j])*Small;

if (epsilon < SystemZero) then epsilon := small;

if (j = N) then epsilon := 0.0001;

cincremented[j] := c[j] + epsilon;

NumericalDeriv := ( FTrial(i,cIncremented) - F[i] ) / epsilon

end; { NumericalDeriv }

function Converged( cOld, cNew : Vector ) : boolean;
{. Purpose: Determine if a solution has been found ..}

var j : integer;

Converged := true;
for j:=1to N do
if ( abs(cOld[j] = cNew(j]) > Tolerance * abs(cOld(j]) ) then
Converged := false
end; { Converged }



procedure MatrixVectorMult({ M : Matrix;

V : Vector;
var MV : Vector;
N : integer )

{... Purpose: Multiply a square (N by N) matrix M by a vector V
of length N to produce the vector MV. e}

. var i j: integer;
Sum : RealNumber;

begin
for i= 1 to N do
begin
Sum := 0;
for j:=1to N do
Sum := Sum + MI[Lj]*V[j];
MYV(i] := Sum
end
end; { MatrixVectorMult }

begin { body of NewtonRaphson }

Ermrl := false;
Er2 := false;
Iteration := 0;

cNew := cGuess;
repeat

Iteration := Iteration + 1;
cOld := cNew;

for i :=1 to N do
Fli] := FTrial(i,cOld);
for j ;=1 to N do
dFdcli,j] := NumericalDeriv(cOld,i,j)
end;
MatrixInversion(dFdc, dFdcInverse, N);
MarrixVectorMult{ dFdcInverse, F, c¢Diff, N );

for j :=1to N do

begin
cNew(j] := cOld(j] — <Diff[j];
if (§ < N) then
n
if (cNew[j] <= 0) then
cNew(j] := 0.1*cOld[j);
if (j > Solutes) and (cNew(j] > 1.0) then
cNew(j] := 1.0 - 0.1 * (1.0 - cOId(j])
end
end;

untll  Converged(cOld,cNew) or (Iteration >= ItLim);
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2:  cResult := cNew;
Totallterations := Iteration;

if (Iteration >= ItLim) then En2 := true

end; { NewtonRaphson }
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[GFLOATING,ENVIRONMENT( PrintCV .pen ), INHERIT([shain.super]Pose2Mod.pen )]
module PrintCV( input, output );
const Every = 10.0;

var Step : integer;
Counter : RealNumber;

procedure PrintSweep( InitialStep, FinalStep : integer;
V, L, 12 : ResultStore;
IBV, C, dCdx : SurfaceValueArray;
IterationValue : IteratonStore;
Errl, Err2 : ErrorStore;
ClockTime : integer );

procedure EmorMessage;

in
LF(2); TB(20);
write( WARNING: Zero determinant found”);
LF(1); TB(20),
write(” in MatrixInversion routine.”);
LF(1); TB(20)
write( PROGRAM EXECUTION INTERRUPTED.");
LF(2)
end; { ErrorMessage }

procedure ResultLine;
var j : integer;

LE(1);
write(-V{Step]:5:3,” %
I{Step] := -I{Step] * 1.0e3;
write(I[Step]:13,” 7,
for j:=1 to 3 do
BV[j,Step] := -IBVI[j,Step] * 1.0e3;
for j:=1 to 3 do
write(IBV[j,Step]:13,” 9);
for j:= 1 to 6 do
write(C[j,Step]:13,” *);
it ( Em2[Step] ) and ( Step <> InitialStep ) then write(” |)
else write(IterationValue[Step]:2)
end; { ResultlLine }

in
LF(5); TB(25); write('Final Results: *);

if ( C[8,FinalStep] > C[8.InitialStep] ) then
write( “Anodic—direction Sweep”)

else
write( ‘Cathodic—direction Sweep”);

LF(3); write("-V(V)?);
TB(1); write("-i(mA)°);
TB(1); write("-iBV1);
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TB(1); write("~iBV2");
TB(1); write("—iBV3");
TB(1); write('NO3-");
TB(1); write("H+");
TB(1); write(CHNO2");
TB(1); write(’H2");.
TB(1); write(' NO3-*");
TB(1); write(’Sites”);
TB(1); write('It'ns");
LF(1);

if (Step = InitialStep) then
if ( Errl[Step] ) then ErrorMessage
else ResultLine;

Counter := 1.0;
Step :=0;

repeat
Step := Step + 1;
it (Counter >= 1.0) then
begin
ResultLine;
Counter := 0
end;
Counter := Counter + 1.0 / Every;
until Errl[Step] or (Step = FinalStep);

if Err1{Step] then
begin
Step:= Step - 1;
ResultLine;
ErrorMessage
end;

LF(3);
TB(25); write(” Sweep End (Execution Time = °);
WI(ClockTime,1); write(” milli-seconds)”); LF(5)

end; { PrinSweep }

procedure PrintTitle;

var DateString, TimeString : packed array [1..11] of char

begin

Date(DateString); Time(TimeString); LF(5); TB(25);
write(” Cyclic Voltammogram Program?); LFQ2); TB(25);
write(” Written by: Michael Matlosz?); LF(2); TB(25);
write(" Modified by: Paul Shain");LF(1); TB(25);

write(” Last Update: November 2, 19897); LF(3); TB(40);
write(” Program begun at " TimeString); LF(1); TB(40);
write(” on ’DateString); LF(5)

end; { PrinfTitle }

end. { PrintCV module }
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9

IOPkg: A collection of useful formatting procedures for
input to and output from BandAid calling routines.

Written by Michael Matlosz
Last modified by Paul Shain on August 23, 1989

procedure FIND( ¢ : char ); {... find next occurence of a character c }
var ch : char;

repeat read(ch) until ( EOF or (ch = ¢) )
end;

procedure RR( var r : RealNumber ); {... read a RealNumber r }
in
FIND(’="); read(r)

end;

procedure RI( var i : integer ); (... read an irnteger i }

begin
FIND("="); read(i)

end;

procedure StringRead( var s : sting ); (... read a string s,
(generic version,
used below) }
var ‘c : char;
i : integer;

repeat read(c) untll (¢ = <" );
i=0
repeat
read(c);
if (c <o >°) then
begin
i=1i+1;
s.chars{i] := ¢
end
untll (¢ = > );
s.length := i
end; { StringRead }

procedure RS( var s : string ); {.. read a string s }
begin

FIND(’="); StringRead(s)
end; { RS )

procedure RRowRead( var v : Vector ); (... read a vector v,
: or a row of a matrix
(generic version, used below) }
var c : char;
i : integer;

begin
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i:=0;
repeat read(c) until (¢ = <" );
repeat
i=i+1;
read(v[i]);
repeat read(c) until (¢ = "")or (c = >")
until ( ¢ = >" ) or EOF
end; { RRowRead }

procedure IRowRead( var v : IVector ); {... read an integer-vector v,
or a row of a matrix
(generic version, used
below) }var ¢ : char;
i : integer;
begin
ii=0;
repeat read(c) until (¢ = <* ),
repeat
t=i+ 1
read(v(i]);
repeat read(c) until (c = " )or (c = >")
until (¢ = >" ) or EOF
end; { /RowRead }

‘procedure RVY( var v : Vector ); {... read a vector v }

in
FIND("="); RRowRead(v)
end; { RV }

procedure RIV( var v : IVector ); {... read an integer—-vector v }
begin

FIND(’="); IRowRead(v)
end; { RIV}

procedure RM( var m : Matrix ); {.. read a matrix m }
var ¢ : char;
j @ integer;
begin
FIND('=");
j=0
repeat read(c) unmtil (c = <" )
repeat
j=ji+ L
RRowRead(m[j]);
repeat read(c) untll (c="")or (c=">")
until ( ¢ = >" ) or EOF
end; { RM}

procedure RIM( var m : IMatrix ); {... read an integer-matrix m }
var ¢ : char;
j : integer;

begin

FIND("=");

j=0

repeat read(c) umtil (c= <" );

repeat
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j=ji+ L
IRowRead(m(j});
repeat read(c) untli (c="")or (c=">")
until (¢ = >" ) or EOF
end; { RIM}

procedure TB( n : integer ); (... print n blank spaces (1ab) }
begin

write(’ “n)
end; {TB)}

procedure LF( n : integer ); {... print n blank lines (line feeds) }
var lines : integer;

for lines := 1 to n do writeln
end; {.LF}

procedure WR( r : RealNumber; el, e2 : integer ); {.. write a Real-
Number r, el
and e2 are
Jield lengths
..}begin
if ( abs(r) = 0 ) then
write(r:el:e2,” 4) (... decimal notation ..}
else if ( abs(r) >= 0.001 ) and ( abs(r) < 0.01 ) then
write{r:(e142):(e2+2),” :2)
else if ( abs(r) >= 0.01 ) and ( abs(r) < 0.1 ) then
write(r:(e1+1):(e2+1),” ":3)
else If ( abs(r) >= 0.1 ) and ( abs(r) < 1 ) then
write(r:el:e2,” “:4)
else if ( abs(r) >= 1 ) and ( abs(r) < 10 ) then
write(r:(el-1):(e2~-1),” ":5)
else if ( abs(r) >= 10 ) and ( abs(r) < 100 ) then
write(r:(e1-2):(e2-2),” “:6)
eise if ( abs(r) >= 100 ) and ( abs(r) < 1000 ) then
write(r:(e1-3):(e2-3),” ":7)
else if ( abs(r) < 0.001 ) or ( abs(r) >= 1000 ) then
begin
it ( (e1—e2) >= 3) then
’ write(* “(el—e2-3));
write(r:(e2+6),” 1) {... scientific notation ...}
end
else
write(rzel:e2,” “4); (... decimal notation ...}
end; { WR}

procedure WI( i : integer; el : integer ); {... write an integer i }
write(i:el)

end; { W/}

procedure WS( s : string ); (... write a string s }

var i : integen;

for i := 1 to s.length do write(s.chars{i])
end; ( WS}



procedure WV( v : Vector; {... write a vector v }
el, e2 : integer; :
1 : integer );

var i : integer;

fori:=1toldo

n
TB(1); WR(v[i},el,e2)

end;
LF(1);
end; {( WV}
procedure WIV( v : [Vector; {... write an integer—vector v }
el : integer;
1 : integer );

var i : integer,

for i :=1 to ] do

begin
TB(1); WI(v[il,el)
end;
LF(1);
end;, {(WIV}
procedure WM( m : Matrix; {... write a matrix m }

el, e2 : integer;
: 11, 12 : integer );
var il, i2 : integer;
begin
for il := 1 to 11 do

LF(1);
for i2 ;=1 to 12 do

TB(2); WR(m{il,i2],el,e2)
end
end;
LF(1)
end; { WM

procedure WIM( m : IMatrix; {... write an integer-matrix m }
el : integer;
11, 12 : integer );

var il, i2 : integer;

for il := 1 to 11 do

LF(1); TB(15);
for i2 :=1 to 12 do

TB(2); WI(m[il,i2],el)
end
end;
LF(1)
end; {WIM}
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(no3 reduction on a RDE)

nSpcs=7
Solutes =3
nRxns = 3

MaxIts = 40
Tolerance = 1.0e-8
GammaMax = 1.0e-7

D =< 1.9e-5,9.312e-5, 1.0e-5 >
z=<-1,1,0,-1,-1,0>
Ure = 0.2415

T =298.15

rhoZero = 1.0e-3

nu = 0.994e-2

MuTheta = < -111300, 0.0, 36000, -120.000e+3, -136.470e+3, 0.0 >

alphaA =< 1.0,0.5,0.5>
alphaC=<1.0,0.5,0.5>
n=<0,2,2>

ioRef = < 1.0e+3, 1.0e-10, 1.0e-13 >

§s=<<1,0, 0 >,
< 0,-2,-1

0, 0, 0.
-1,-1, 0
0 1,-1
1

1

>
5>,
>

°
-

>
, 0, >>
sH20=<0,1,1>
cRef = < 5.126e-3, 0.006e-3, 1.0e-13, 1.0e-13 > mol/cm3
Co=<5.126e-3, 0.178e-3,0.0, 0.0 >

Vstart = -0.100
Vreversal = -0.700
dV = 1.0e-3
b=1.0e-3

radius = 0.56413 cm
kappa = 0.111 mho/cm
RotSpeed = 800
Sweeps = 1
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Cyclic Voltammogram Program
Written by: Michael Matlosz

Modified by: Paul Shain

Last Update: November 2, 1989

Program begun at 11:39:24.76
on 21-JAN-1990

Parameters:

Number of unknowns (nSpcs) = 7
Number of solutes = 3

Solutes plus one = 4

Number of reactions (nRxns) = 3

MaximumIterations = 40

= 1.000E-008

GammaMax (mol/cm2) = 1.000E-007

(cm2/s) = 1.900E-005 9.312E-005

-1.0 1.0 0.00 -1.0

0.24150

298.15

rhoZero (kg/cm3) = 1.000E-003
(cm2/s) = 0.0099400

1.000E-005
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MuTheta{k] (V) = -1.113E+005 0.00000 3.600E+004
alphaA{j] = 1.0 0.50 0.50
alphaC(j] = 1.0 0.50 0.50
number of electrons (n) = 0.00000 2.0000 2.0000
ioRef[j] (A/cm2) = 1.000E+003 1.000E-010 1.000E-013
slk, 3] =
1.0000 0.00000 0.00000
0.00000 ~-2.0000 -3.0000
0.00000 0.00000 0.50000
-1.0000 -1.0000 0.00000
0.00000 1.0000 -1.0000
1.0000 0.00000 1.0000
sH20([]) = 0.00000 1.0000 1.0000
Cref (k] mol/cm3 = 0.0051260 6.000E-006 1.000E-013
Colk]} mol/cm3 = 0.0051260 1.780E-004 0.00000
Vstart (V) = -0.100000
Vreversal (V) = -0.70000
dv (V) = 1.000E-003
b (V/s) = 1.000E-003
radius (cm) = 0.56419
A (cm2) = 1.0000
kappa (mho/cm) = 0.11100
RotationSpeed (rpm) = 800.00
TotalSweeps (forward and reverse) = 1

-1.000E+005

1.0000

-1.365E+005

1.0000

0.00000

1.0000
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dt (s) = 1.0000
Utheta(]j) (V) = 0.11711 1.4178 0.28556
Uref[]j] (V) = -0.16637 1.0449 0.011220
nPrime(j) = 1.0000 2.0000 3.0000
pli, 31 =

1.0000 0.00000 0.00000

0.00000 0.00000 0.00000

0.00000 0.00000 0.50000

0.00000 0.00000 0.00000

0.00000 1.0000 0.00000

1.0000 0.00000 1.0000
qli, ) =

0.00000 0.00000 0.00000

0.00000 2.0000 3.0000

0.00000 0.00000 0.00000

1.0000 1.0000 0.00000

0.00000 0.00000 1.0000

0.00000 0.00000 0.00000
omega (rad/s) = 83.1776
del[i] (cm) = 0.0021787 0.0037009 0.0017591

nStop (Superpose2) = 601
t(n] = 600.000

StepMax = 601

001



-i(ma)

0.00000E+000
3.03260E-005
3.68417E-005
4.47572E-005
1.74792E-004
2.12346E-004
2.57968E-004
2.18977E-003
2.65611E-003
1.78431E-002
2.11241E-002
1.30355E-001
1.47984E-001
1.65644E-001
7.64307E-002
4.67215E-002

Final Results:

-iBV1

0.00000E+000
-7.58151E-006
~-9.21042E-006
-1.11893E-005
-4.36979E-005
~5.30862E-005
~6.44912E-005
-5.44206E-004
-6.57090E-004
-1.06611E-003
-8.59218E-004
-2.04816E-005
-1.36717E-005
-9.04664E-006
-7.01527E-008
-3.97183E-008

-iBV2

0.00000E+000
1.51630E-005
1.84208E-005
2.23786E-005
8.73959E-005
1.06172E-004
1.28982E-004
1.08841E-003
1.31418E-003
2.13222E-003
1.71844E~003
4.09632E~005
2.73434E-005
1.80933E-005
1.40305E-007
7.94365E-008

Cathodic-direction Sweep

-iBV3

.00000E+000
.27445E-005
.76312E-005
.35679E-005
.31095E-004
.59260E-004
.93477E-004
.64556E-003
.99902E-003
.67770E-002
.02649E-002
.30335E-001
1.47970E-001
1.65635E-001
7.64306E-002
4.67215E-002

P SIS o I R SR = ]

NO3-

5.12600E-003
5.12600E-003
5.12600E-003
5.12600E-003
5.12600E-003
5.12600E-003
5.12600E-003
5.12600E~-003
5.12600E-003
5.12600E-003
5.12600E-003
5.12600E-003
5.12600E-003
5.12600E-003
5.12600E-003
5.12600E-003

B+

.78000E-004
. 78000E-004
.78000E-004
.78000E-004
. 78000E-004
.78000E-004
.718000E-004
.77999E-004
.77999E-004
.77992E-004
.77991E-004
. 77946E-004
. 77939E-004
.77932E-004
1.77968E-004
1,.77981E-004

P N

HNO2

0.00000E+000
8.66804E-012
1.46893E-012
3.26940E-012

.3.28473E-011

4.13894E-011
5.17666E-011
4.92156E-010
5.99353E-010
5.08146E-009
6.13941E-009
3.95444E-008
4.49015E-0080
5.02704E-008
2.33154E-008
1.42699E-008

H2

0.00000E+000
.62576E-011
.62576E-011
.62576E-011
.62574E-011
.62573E-011
.62570E-011
.59720E-011
.57535E-011
.82778E-012
.53080E-012
.28109E-014
.04927E~015
3.84517E-015
4.22715E-018
1.96520E~018

QoW W W W W W W W

NO3-*

0.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
1.00000E+000
9.99994E-001
9.99987E-001
9.87847E-001
9.82464E-001
7.49696E-001
7.01654E-001
6.47482E-001
4.23474E-002
2.12550E-002

Sites

0.00000E+000
7.79166E-013
1.47664E-012
2.82101E-012
.37751E-010
.93448E-010
.43472E-009
.83494E-006
.25482E-005
.21526E~002
.75361E-002
.50304E-001
2.98346E-001
3.52518E-001
9.57653E-001
9.78745E-001

[

[T -

It ' ns

B WWW W WWWwwwwwwwo
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CHAPTER 4

Using the Model

4.1. Fitting the experimental results

The model in the previous chapter was developed to test possible mechanisms and sets of
kinetic and thermodynamic parameters to find how well each would match the results of the linear sweep
voltammetry experiments on the reduction of nitrate in acidic nickel solutions discussed in Chapter 2.
There are many reactions that may occur when nitrate is reduced. These reactions and their reduction
potentials relative to the reduction of hydrogen are shown in Figure 4-1 for basic solutions and Figure 4-2
for acidic solutions. They may be used as a guide to reduce the number of reactions to a manageable
amount. Some reactions can be ruled out as unlikely because of their large potentials (e.g., the reduction
of nitrogen), The figures can be used to find reactions to try ﬁm the model based on their potentials. If
the results from using the model suggests that the potential of a step in the mechanism should have a cer-
tain value to match experimental results, one can use the figures to find an appropriate reaction to try

instead. Many of the species listed on this figure are known to be present in solution when nitrate or

nitrite is reduced.?

_For each reaction there are several parameters that may be adjusted to fit the experiments.
These parameters are listed in Table 4-1. Not all these parameters may be adjusted independently to fit
the experimental results. For example, because it is desirable that the reactions be balanced properly, we

can not arbitrarily vary the stoichiometric parameters 55 and n. We can, however, change these parame-

ters by changing the trial mechanism.

To ensure that nitrate desorbs sufficiently fast to stop the reaction at higher cathodic poten-
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Oxidation

State
+5 o N():'3
-0.86
+4 0.01 N,O,
0.867
+3 L no, ——
0.46
+72 -0.14 NO 0.15
°|18 o.'lzs
+1 —H,N,0, N,O l
e 0.94
+0 -0.76 — N, | h
-3.04
-1 NH,OH -1.16
0.73
-2 -0.42 lel-l4
0.1
-3 —NH ,OH ——

Figure 4-1. Electrode potentials for the reactions of nitrogen compounds in basic solution relative to the
hydrogen electrode. (From Reference 1.)



Oxidation
State

+5

+4

+3

+2

+1

+0

0.86
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NO,
0.803
N204———‘
]
1.07
NO, S
0.996
NO , 1.297
0.71 1.59
| I
—H,N,0, N,O |
2!65 1.77
-0.05
— N, |
-1.87
NH,OH — -0.23
1.41
N.H,
1.275
———NH ,OH ——

Figure 4-2. Electrode potentials for the reactions of nitrogen corhpounds in acidic solution relative to the
hydrogen electrode. (From Reference 1.)
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Stoichiometric S
n;
Kinetic Qyjy O
o

Thermodynamic  p2(ads)

Other ) .

Table 4-1. **Adjustable’’ parameters.

tials, the transfer coefficient for reduction must be less than that for adsorption of nitrate.

The exchange current densities can be varied to change the rates of the reactions. Peak

heights often can be changed by changing an exchange current density.

We might try shifting the position of a peak by changing the open circuit potential of a reac-
tion. However, this potential is not an ‘*adjustable’” parameter. The program calculates it from the free
energies of formation of the species involved in the reaction. This ensures that the equilibrium potentials
for all the reactions are consistent. It also changes—and we hope reduces—the number of fitting parame-
ters from one (potential) for each reaction to one (free energy) for each adsorbed species: the formation

energies are tabulated for solutes. Because any adsorbate may be involved in more than one reaction
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(either as a reactant or a product), the equilibrium potentials for the reactions may not be independent.
Thus we may not be able to change one without changing another by a proportionate amount. The direc-
- tion of change may not be the same unless the adsorbate is a reactant or product in both reactions. A
change in an equilibrium potential resulting from a change in the free energy of an involved species may

result in a shift in the location of a peak, a change in the height of a peak, or both.

The transfer coefficients are adjustable, but we would assume that they are small numbers
adding up to the numim of electrons in the elementary, rate-controlling step, i.e. one or two. As men-
tioned above, the transfer coefficient for reduction should be less than that for desorption of nitrate. If this
is not the casé, peaks from different reactant concentrations may not occur at the same potential and may

not be caused by the same reaction.

The final unknown parameter that we can change is the maximum concentration of adsorbed
species on the surface, I'_ . Based on the size of a nitrate ion, we can estimate that a monolayer of
adsorbed nitrate would have a surface concentration of about 3-10° mole/cm2. Bernardi® claimed that to
predict reasonable currents she had to use the large value of 1.43-10 mole/cm?. We did not find it neces-

sary to use a value of I, as high as Bemardi’s, but we couldn’t use one as low as 3-107,

A recent paper by Ho and Jorné examined the impregnation of nickel hydroxide in porous
electrodes with and without flow. They credit Kandler* with proposing that the precipitation is caused by
a change in pH from the reduction of nitrate. They acknowledge the work of others in determining the

overall stoichiometry of the reaction under different conditions but recognize that the details of the

mechanism are not completely understood.’

Bernardi proposed a mechanism that accounts qualitatively for the features of her experimen-
tal results.® The following four equations are her proposed reaction sequence.
NO7 + Site — NO;3(ads) @-1)

NOj(ads) + 3H* + 2¢™ — NOj(ads) + H,0 @-2)
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NO;(ads) + TH* + 6e~ — NH{ + 2H,0 + Site 4-3)

2H* +2¢" — Hz (4'4)

4.2, Difficulties in fitting the experimental data

One difficulty in finding a mechanism and the values of parameters that will fit the experi-
mental results is that the experimental results tell us only the total current, not how much is produced by
which reaction or what reactions are taking place. To obtain more information of this kind it is necessary
to do additional experiments. In the next section we will suggest some experiments that may answer the

questions we have.

A large part of the problem is finding the parameters for a set of reactions that best fit the
experimental results. A recent article’ suggested an interesting method for finding a set of numbers. The
method is supposedly based on the principle of natural selection. To use this method one guesses several
sets of numbers, uses each, and decides which are best. Each pair of good sets (genes) is then cut into two
parts and mated with the other member of the pair. There will be two “‘offspring’’: one will contain the
first part of the ‘‘mother’’ and the second part of the *‘father’’; the other, the first part of the ‘‘father’’ and
the second part of the ‘‘mother.”” Other pairs (of the same numbers) are split in other places and spliced to
produce different ‘‘offspring.”* The results of these pairings (the ‘*offspring’’) are tested and the best are
“‘bred” to produce new sets of numbers until the perfect set is evolved. Provision for mutation may be
allowed to avoid dead ends. The algorithm might include a small probability that a number might be

changed during the splicing (‘‘mating’") process rather than be copied correctly.
43. Proposed experiments

The problem of not knowing the partial currents illustrates how using techniques such as pho-

tospectrometry and ring-disk electrodes would be helpful.

If any of the products or reactants of any reaction absorbs visible or ultraviolet light, one can

conduct the electrochemical experiment in a spectrophotometer and follow the change in concentration of
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that particular species. This will show the rate of a particular reaction or a partial current.

Instead of starting by reducing the nitrogen species with the highest oxidation state (nitrate),
one might start with the species with the next-to-lowest oxidation state (hydrazine) and reduce it to the
lowest state (ammonia). In other words we could start at the bottom of Figure 4-2 and work our way up to
nitrate one reduction reaction at a time. This way there would be but one reaction with unknown parame-

ters being studied at a time.

Another way to detect and identify intermediate or product species is by using ring-disk elec-

trodes. The reaction of interest can be effected on the disk; the products, detected on the ring.

4.4, Choice of trial mechanism and parameters

To find the mechanism and parameters to fit the experimental data, it is best to start with as
simple a case as possible. The mechanism may be made more complicated as reasons are found to justify
changes or additions. The mechanism suggested by Bernardi (Equations 4-1 through 4-4) is simple, but it
is not the simplest imaginable. The reduction of hydrogen ion can be eliminated until the rest of the

mechanism is decided as this will reduce CPU and turn-around time. One could try the mechanism:

NOj + Site — NO3(ads) 4-5)

NOj(ads) + 3H* + 2¢” — HNO, + H,0O + Site (4-6)
which could lead to a peak without a shoulder. One advantage of this two-step mechanism is that an

expression for the steady-state current may be easily derived and used to determine parameters that will
yield a peak of the correct height at the correct potential. The steady-state current is represented by the
dashed line on Figure 2-6. The model predicts the steady-state potential at the first time step of a sweep so
it can be run at different starting potentials or at a very slow sweep rate (about 1 mV/s here) to find the
steady-state current-potential relationship. Examination of this mechanism also led us to conclude the
relation of the transfer coefficients is as described above. This mechanism was used with the parameters
listed in Table 4-2 to generate Figure 4-3. This figure shows the peak height decreasing to a point with

decreasing nitric acid concentration.
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[mA/sq cm]

-V [V vs. SCE]

Figure 4-3. Simulated voltammograms for different concentrations of nitric acid. For other parameters
see Table 4-2.
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NOj + Site — NO;(ads) ¢))

NO;7(ads) + 3H* + 26~ — HNO, + H,0 + Site @

Reaction o o i Akcm?

. %
1 1 1 0.73
2 1 1 10
species D,cm¥s  u% J/mole c¢™, mole/cm® ¢,, mole/cm®
NO3 19x10° ° -111300  5.126x10%  5.126 X 10° + ¢y,
H 9.312x 10°° 0 6x10¢ CHno,
HNO, 10% -55,600 10" 0
NO;3(ads) -107,770 0
Sites : 0 0

Table 4-2. Mechanism and parameters used to generate Figure 4-3. The concentrations of adsorbed
species are expressed as fractional coverages (0 = I'/T,,,,) and are dimensionless. The reference concen-
trations of these species were taken to be unity.

Instead of reducing and desorbing nitrate in one step, we can reduce nitrate to another
adsorbed species that may be reduced further or desorbed. Such a mechanism is contained in Table 4-3 as
are the parameters used to generate Figure 44, This figure shows the peak height increasing with

increasing nickel nitrate concentration.

The same mechanism was used with the parameters in Table 4-4 to generate Figure 4-5. This

figure shows the peak height increasing with rotation speed.

So far we have neglected any changes in solution composition due to hydrolysis. We have

taken the initial concentrations of hydrogen and nitrate ions to be equal to the nitric acid and the nitric acid
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mA/cm

-V, Vvs.SCE

Figure 44. Simulated voltammograms for different concentrations of nickel nitrate. For other parameters
see Table 4-3.
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0.25 r T v T v Y
0.20 I Sweep rate .
-—6— SmV/s
—_—— 1mV/s
_ 0.15
E
o
3
<
E
- 0.10
0.05
0.00 : :
0.3 0.4 0.5 0.6 0.7
-V [V vs. SCE]

Figure 4-5. Simulated voltammograms for different rotation speeds. For other parameters see Table 4-4.
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NOj + Site —» NO3(ads)

NOj(ads) + 2H* + 2¢™ — NO,(ads) + H,0

NO;(ads) + H* — HNO, + Site

. : ref 2
Reaction a o i, , A/cm

1 1 1 071
2 B oW 10710
3 1 1 1
species D,cm¥s % J/mole c¢™, mole/cm®
NO; 19%x10°  -111,300  5.126x10°
H* 9.312x 10°S 0 6x10¢
HNO, 10° -55,600 101
NOj3 (ads) -107,770
NO; (ads) 90,000
Sites 0

Table 4-3. Mechanism and parameters used to generate Figure 4-4.

¢, mole/cm’®
6x10%+ 2°M<No,),
6x10%

0

M
2
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NO; + Site - NOj(ads) )
NO;(ads) + 2H* + 2 — NO,(ads) + H,0 @)
NO;(ads) + H* — HNO, + Site 6)

: . ot -
Reaction o o i;7, Alcm

1 1 1 10
2 % % 10°
3 111
species D, em¥s % Jmole ¥, mole/cm® ¢, mole/cm’
NO; 19 10° -111300 5.126x107 5.126x 107
H* 9.312x 10°% 0 6x 10 6x 10
HNO? 10° -55,600 1012 0
NO; (ads) -107,770 0
NO;(ads) -90,000 0
Sites | 0 0

- Table 4-4. Mechanism and parameters used to generate Figure 4-5.

plus twice the nickel nitrate concentrations, respectively. Bemardi ignored the effects of hydrolysis, but
she measured and reported the pH of solutions with different nitric acid and nickel nitrate concentra-
tions.® Her results are reproduced in Figure 4-6. It can be seen that the pH of a nickel nitrate, nitric acid
solution is not in general the same as the p(HNO,). This is caused by hydrolysis due to the presence of

nickel.

Hydrolysis can be accounted for by reading the pH from Figure 4-6 to get a number to use

instead of the nitric acid concentration for the initial hydrogen ion concentration. The mechanism and
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Figure 4-6. Electrometric pH measurement as a function of the concentrations of nitric acid and nickel nitrate. From Reference 7.
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parameters (for which hydrolysis is taken into account) in Table 4-5 were used to generate Figure 4-7.
This figure shows the effect of changing the sweep rate. The interesting feature is the way the curves
overlap. At the high sweep rate, the increase in current occurs at a slightly higher potential than at the

slow sweep rate. This agrees with experimental observations, but is not easy to produce with the model.

The experimental results have been qualitatively produced by the model although with dif-

ferent sets of parameters. Finding a mechanism and parameters with a model solely by trial and error is

NOj + Site —» NO;3(ads) ¢)
NO;(ads) + 2H* + 2¢~ — NO(ads) + H,0 - 03]
NO;3(ads) + 3H* + 2™ %H;N;0, + H;0 + Site ©)
Reaction o a i, Akm?
1 1 1 1000
2 “n W 1010
3 % % 1012
species D, cm¥/s % Jmole <, mole/cm® ¢, mole/cm?
NO5 1.9 x 10°% -111300  5.126x10°  5.126x10°
H 9.312x 10 0 6x 10 1.78 x 10
HN,0, 10°% 36,000 10" 0
NOs(ads) -107,770 0
NOj3 (ads) -136,500 0
Sites 0 0

Table 4-5. Mechanism and parameters used to generate Figure 4-7.
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difficult. Use of the suggestions for further experimental work discussed in Section 4.3 would make this

task easier.
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Figure 4-7. Simulated voltammograms for different sweep rates. For other parameters see Table 4-5.
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CHAPTER 5§

Electrochemical Packed-Bed Reactors

Electrochemical packed-bed reactors resemble the packed-bed reactors familiar to chemical
engineers in many ways: the reactor is filled with a high-surface-area, porous medium on which a chemi-
cal reaction occurs and contains void volumes through which a fluid containing a reactant species (electro-
lyte) flows. The packing may contain or be composed of material with catalytic properties. The advan-
tages of packed-bed reactors with their large amounts of surface area per unit volume are well known to
chemical engineers. Unlike the traditional packed-bed reactor, the electrochemical version is the site of an
electrochemical reaction. Energy is required or released by the reactions not only as heat but also as elec-
tricity. Thus the packing and fluid must both be electrically conducting; the packing acts as an electrode
on which an electron transfer reaction occurs. In such reactors we are concemed not only with concentra-
tion and temperature distributions, but also with current and electric potential distributions. For a com-
plete circuit to exist, the reactor must contain at least one other electrode where another electron transfer
reaction will occur. This counterelectrode could be placed upstream or downstream from the first elec-
trode. In either case the current will flow in the same direction as the electrolyte and this configuration is
known as a ‘‘flow-through’’ porous electrode. This counterelectrode could be placed in parallel or con-
centric with the first electrode. In these cases the current will flow perpendicular to the electrolyte; this
configuration is known as a ‘‘flow-by’’ porous electrode. The flow-by configuration is inherently two-
dimensional and has been analyzed by Alkire and Ng.!? It is not necessary that a flow-by porous elec-
trode have a constant width in the direction of fluid flow (perpendicular to the counterelectrode). Fedkiw
and Safemazandarani analyzed this configuration and quoted Kreysa’s argument that it more efficiently
uses the available electrical driving force and has a higher space-time yield at the limiting current.’> The

electrodes are often separated by an ion-exchange membrane to prevent mixing of anolyte and catholyte.
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In this work we are concemed with the flow-through configuration: with the development of
mathematical models describing the operation of systems with this configuration and their experimental
verification. Models of these reactors are a combination of models of packed-bed (chemical) reactors and
of porous electrodes (without convection). Models developed in this work are based on that of Trainham
and Newman*® Newman and Tiedemann reviewed the theory of porous electrodes and its

development.®®

Newman and Tobias® presented a macroscopic model of the behavior of porous electrodes. In

the limit of linear kinetics and constant concentrations, their general model reduces to that of Euler and

Nonnenmacher.!?

The modeling of porous electrodes in this work is based on Trainham’s model, which in tum
was based on the above-mentioned review by Newman and Tiedemann.® By mentioning only the work of
our own laboratory, I do not mean to recommend that the work of others be ignored, but to show the

development of the model used in the present work.

Trainham solved several problems dealing with porous flow-through electrodes.’ He
estimated the lowest concentration possible in the effluent of a flow-through porous electrode.!! He
developed a model for the removal of metal ions from a dilute stream.* The model of the present work is
based on this model. Trainham investigated the effect of design and operating parameters on the perfor-
mance of flow-through porous electrodes.!> He showed that a flow-through porous electrode would be

effective for removing mercury from brine. Both he!? and Risch'*'S compared the performance of flow-
through and flow-by porous electrodes. Trainham concluded that the flow-by configuration is superior for

redox battery applications.
5.1. Uses of flow-through porous electrodes

This section is a summary of the uses of electrochemical, packed-bed reactors. They can be
used for chemical synthesis, wastewater treatment, and energy storage (batteries); this last use is what
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motivated this work. -
5.1.1. Chemical synthesis |

Porous flow-through (or flow-by) electrodes may be used for electro-organic syntheses. Elec-
trochémical synthetic processes may have the advantages of high yields and (stereo)selectivities (by con-
trolling the electrode potential) and mild operating conditions.'® Swann and Alkire compiled a bibliogra-

phy of electro-organic chemical reactions.!” Textbooks on organic electrochemistry are also available.!®

Electro-organic syntheses may have other advantages: electricity may be cheaper than other
reducing or oxidizing agents, and may eliminate reagents that are dangerous to use or difficult to dispose
of. High-priced organics such as pharmaceuticals may be attractive targets for electrochemical routes

since the price of electricity will be relatively small.

There are few commercial examples of electro-organic symheseé, the best known is
- Monsanto’s process for producing adiponitrile (a component of nylon). There are fewer still that use a

packed-bed electrode. One of these is Nalco’s process for producing lead alkyls (e.g. tetraethyl lead) from
alkyl magnesium halides and the cell’s lead pellet anodes.!? A recent pair of articles presented a model

for the syntheses of 2,3-butanediol, gluconate, and sorbitol in packed-bed flow reactors.?

5.1.2. Wastewater decontamination

Studies in this lab have shown how metal ions can be removed from an aqueous solution by
depositing them on the surface of a porous electrode. The ions can be removed and concentrated by rev-
ersing the cell polarity to dissolve the deposits. Bennion and Newman described using a porous flow-
through electrode to remove copper from a dilute solution. Their device reduced the concentration of
copper from 667 pg/ml to less than 1 ug/mL2'  Van Zee and Newman reduced the silver concentration of
a simulated photographic fixing solution from 1000 mg/1 to less than 1 mg/l.2 Trost removed up to 98%
of the lead from a l‘M sulfuric acid solution containing 4 mg/l Pb.2 Matlosz and Newman used a flow-

through porous electrode to remove mercury from brine solutions. They reduced the concentration of
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mercury in 4.3 M sodium chloride solution from 40 ppm to as little as 40 ppb. They also verified the
applicability of Trainham and Newman’s modeL.¥® Kuhn and Houghton reduce the concentration of

antimony in 1 M sulfuric acid from 100 ppm to 5 ppm.*

A few studies have looked at the possibility of removing metal ions or salt from solution by
adsorption in the electrical double layer at the electrode surface. Johnson and Newman presented a
model, supported by experimental evidence, for the desalting of water by the sorption of ions in the elec-
trical double layer at the interface between a brine solution and a porous flow-through electrode.?’  Sisler
used a similar system to remove zinc from sodium chloride solutions by double-layer adsorption.?
Alkire and Eisinger presented a model® for the potential-dependent adsorption of neutral organic solutes
on flow-through porous electrodes and the experimental confirmation of the model® for the adsorption of

B-naphthol on glassy carbon. Zabasajja and Savinell®! treated theoretically the potential-dependent
adsorption of organics on carbon. They developed an experimental method to determine isotherm param-
eters and demonstrated it by adsorbing a-pentanol and a-heptanol on graphite and activated carbon.

Mayne and Shackleton®? used such a process for adsorbing bacteria and proteins.

Packed-bed electrochemical reactors can also be used to destroy cyanide present in electro-

chemical plating baths. The cyanide can be oxidized to carbon dioxide and nitrogen. 334
5.2, Development of the iron-chromium redox flow battery

This section is a discussion of the use of electrochemical flow cells for enefgy storage. Redox

flow batteries in general and the iron-chromium battery in particular are discussed.
5.2.1. Redox flow batteries

A redox flow cell is an electrochemical reactor used for storing energy by charging and
discharging ionic species in solution (i.e. a battery). The ionic species constitute redox couples that are
completely soluble. This type of battery differs from the more well-known types used in automobiles,

watches, and flashlights where the active materials remain more or less fixed in place and are often
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insoluble. These redox flow batteries could be used for load leveling by electrical utilities or for storing

energy produced by intermittent sources, e.g. solar cells and windmills.

Flow batteries are promising candidates for large-scale energy storage. In addition to iron-
chromium there are zinc-bromine, zinc-chlorine, and zinc-ferricyanide batteries.”® Flow batteries are
attractive for various reasons: cheap reactants, easily mass-produced cell stacks, easy scaleup, simple ther-
mal management owing to the electrolyte circulation, mild operating conditions (allowing cheap materials
of construction to be used), no cﬁcle life or depth-of-discharge limitations, and the existence of a technol-

ogy base in the fuel cells and electrodialysis areas. ¢

The reactants are stored in tanks and pumped through the electrochemical cells where they
are charged or discharged and then returned to the storage tanks. The bipolar stacks of cells consist of
porous electrodes made of graphitized or carbonized felt. The anodes and cathodes are separated by
selective, ion-exchange membranes to keep the reactants apart. The electrolyte is fed in parallel Lhrough
electrodes and flows perpendicular to the direction of current flow (the ‘‘flow-by’’ configuration). A cell
is provided to rebalance the state of charge between the positive and negative couples. This may become
unbalanced by hydrogen generation in the chromium cells or by the presence of oxygen in the iron solu-

tion. Another cell is available to monitor the open-circuit voltage, which is related to the state of charge.

One advantage of this type of battery lies in the separate design of storage and reactor com-

ponents allowing for simple changes or enlargement. Since the reactants and products are both soluble,

there are no phase changes and none of the associated life-limiting processes.’

522. The iron-chromium battery

Several groups have worked on developing iron-chromium redox energy storage systems.
NASA developed the system proposed by Thaller.®**® Another large effort was put forth by the Electro-
technical Laboratory in Tsukuba, Japan.*® Several other institutions, including the Universidad de Ali-

cante in Spain, had smaller efforts.*!
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The DOE-supported NASA program to develop a redox flow battery began as a response to
the oil embargo in the early seventies and the resulting increase in fuel prices. Large batteries could be
used by electric utilities for load-leveling, which would allow the maximum use of the most efficient
power plants. They could also be used to store energy produced by intermittent sources. NASA was
selected to develop a 1 kW, 13 kWh system because of their expertise in fuel cells from the Apollo pro-
ject. The iron and chromium couples were chosen for reasons of chemical and materials compatibility,

safety, cell voltage, reaction kinetics, and reactant vapor pressure. The half-cell reactions are:

discharge
Positive electrode Fe**+e” : Fe?*
charge
and
. discharge
Negative electrode cr* : Cr*+e .
' charge

The system was originally intended to operate at ambient temperatures (25° C), but the operating tempera-
ture was increased to 65° C to shift the chromium equilibrium from an inert to an electroactive complex.
This reduced membrane selectivity but allowed the use of membranes with lower resistivity. Since the
membranes are not selective, reactants are mixed: the fully charged positive reactant is 1 M FeCl, 1 M
CrCl,; the fully charged negative reactant, 1 M FeCl,, 1 M CrCl, both with 2 to 3 N HCl. The project’s
final report discusses the advantages and disadvantages of the mixed-reactant operation. It also discusses
design considerations and tradeoffs: shunt currents versus pumping losses, pumping losses versus cell

efficiency, flow distribution in the cells, reactant and product mixing in the tanks, and the use of two tanks

(for supply and return, instead of returning the reactant to the supply tank).>

Johnson and Reid identified the Cr(III) species as Cr(H,0)s* and Cr(H,0)sCI?* and followed
the reaction spectrophotometrically to show that it is the divalent species that is the predominant reactant
during discharge. Cr(H,0)sCI"* is the predominant reactant during charge. This can be explained by dif-

ferent equilibrium potentials and reduction rates for the hexa- and pentahydrate couples. ‘2

The existence of chromium complexes with different electrochemical activities causes
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problems after several charge-discharge cycles because of the loss of active material.**** The group at
the Electrotechnical Laboratory (ETL) in Japan used chromous/chromic chloride and ferric/ferrous
chloride in HCI, but unlike NASA used a cation- rather than an anion-exchange membrane. They used
electrode materials that did not require electrocatalysts. (NASA'’s battery required gold and lead: lead to
increase the overpotential for hydrogen evolution and gold to catalyze the chromium reaction and to pro-
vide a substrate for lead deposition.) The ETL workers increased current and energy efficiencies by
adding lead chloride to the electrolyte.® They gave no reason for the increase; it is possible that the lead
increased the hydrogen overpotential as it did in the NASA battery. They tested different electrode
materials and treatments including plasma etching in an oxygen atmosphere. The treatments increased the
surface area, introduced functional groups onto the electrode surface, and decreased the internal resis-
tance. They used 3 to 4 M HCl with 1 M chromous/chromic chloride. Substitution of bromide for
chloride ion does not influence the electrode reaction. Substitution of sulfate and especially of perchlorate

for chloride increased the cell resistance. Perchlorate seemed to degrade the carbon fabric electrodes.*

They also described how to monitor state of charge by measuring the open-circuit voltage.*$

A 1979 cost estimate prepared for NASA concluded that the costs were dominated by the cost
of reactants, electrolyte, and storage tanks for both 100-MWh (10 MW for 10 hours) and SOO-kWh (10
kW for 50 hours) systems. The large system would have an electric utility load-leveling application; the
small, residential or commercial application including stand-alone photovoltaic systems. The major costs
are for the chromium chloride reactant and the large tanks needed to store the electrolytes. The electro-
lytes were assumed to be aqueous solutions of 1 M CrCl, or FeCl, for the 500 kWh design, 2 M for the 10

MWh, both in 2 M HCL In addition to cost, they gave sizes, layout, and methods of manufacture for vari-

ous components.

Watts and Fedkiw present a mathematical model of NASA's redox flow cell. They conclude
that optimum electrode thickness and electrolyte flow rate exist and that the charging procedure affects the
amount of hydrogen evolved.” They conducted a parametric study to aid in the design, operation, and
scale-up of the battery. They concluded that countercurrent flow is better than cocurrent and performance
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improves at 65° C (as opposed to 25°). They relaxed Trainham and Newman’s assumptions of potential

variations only in the current flow direction and concentration variations only in the fluid flow direc-

tion!24
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CHAPTER 6

Frequency Response Analysis

This chapter is a discussion of frequency response analysis. A description of the technique is
followed by examples of its use in heat transfer and chemical kinetics. Following this background
material is a discussion of impedance measurements and their application to electrochemical systems. Our

approach to modeling problems in this area is included.
6.1. Description

If one varies periodically some property of a linear system’s” input, a property of the output
will exhibit a periodic variation at the same frequency. We can measure the system’s response and com-
pare it to the input variation. By comparing these measurements, we can determine the gain (ratio of out-
put to input amplitudes) and phase shift (time lag between the input and output) of the system. We hope
to learn something about what is happening inside the system by measuring the gain and phase shift at a

variety of frequencies.
6.2. Examples

Frequency-response techniques have existed for over a century. In 1861, Angstrom!
described a frequency-response method for determining the thermal conductivity of a solid bar by varying
the temperature at one end of the bar and measuring the temperature fluctuation at some distance from the

end.

*If the system is not linear, it should respond as though it were if the stimulating si is
sufficiently small. y PO & g signal
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More recently, Naphtali and Polinski® introduced a frequency-response technique to hetero-
geneous catalysis. They used their method to study adsorption kinetics for the hydrogen-nickel system by

sinusoidally varying the pressure and following the amount of adsorbed gas.

Frequency-response techniques have been used by Evnochides and Henley® to measure solu-
bility and diffusion coefficients of a gas in a polymer. They suspended a polymer in a gas, varied the gas
pressure sinusoidally, and measured the variation of the weight of the polymer. The diffusion coefficient
fo‘r‘the gas was determined from the phase shift; the‘ Henry’s law solubility, from the gain and the phase

shift.

Yasuda and coworkers*® measured the pressure oscillations that resulted from sinusoidally
varying the volume of a chamber containing zeolite and gas. They then calculated the diffusion
coefficient of the gas in the zeolite pores. This technique was used by Goodwin et al.” to study hydrogen

adsorption on CO hydrogenation catalysts.

Li et al.® determined adsorption and desorption rate constants for carbon monoxide on silica-

supported platinum by varying the inlet gas concentration and measuring surface coverage.

The use of chopped molecular beams to supply reactant to a solid target while monitoring the

volatile products to gain insight into the reaction mechanisms and kinetics is another example of a fre-

quency response technique in chemical kinetics.?

6.3. Impedance

Electrical impedance is a transfer function: it relates the response of an electrical circuit (a
network of resistors, capacitors, inductors, voltage sources, current sources, efc.) to an excitation. Usu-
ally, the properties of the individual elements of these networks, which may be either lumped or distri-
buted, are constant and independent of the frequency of the excitation signal. In these systems, one meas-
ures either the voltage response to a change in current, or the current response to a change in voltage. The

impedance (or transfer function) of a circuit is the ratio of the voltage perturbation to the current
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6.4. Electrochemical impedance

Electrochemical systems also have impedances. Impedance measurements made over a range
of frequencies can separate the effects of the various processes that occur in these systems if the time con-
stants of the processés are sufficiently different. This type of measurement is also referred to as

frequency-response analysis or electrochemical impedance spectroscopy. People have studied the

response of electrochemical systems to alternating currents for nearly a century.'*?

Small-amplitude perturbations are applied so that the frequency response of a system will be
linear. Linear systems respond to a signal of frequency o only at that frequency. If the sinusoidal pertur-
bation is too large, the nonlinear response will not be sinusoidal and will contain components of frequen-
cies that are multiples of the frequency of the applied signal, i.e. the harmonic frequencies. This ﬁroperty
can be used to determine if a sufficiently small perturbation is being used. Since linear systems don’t
respond at second (or higher) harmonics, a response at a frequency of 20 shows that the system is not

linear and a smaller excitation should be used.

Bard and Faulkner'* discussed different types of voltammetry based on the' concept of
impedance. With an excitation of frequency ® one can measure the direct current response. With excita-
tions of frequency ®, and w, one can measure the response at frequencies ©,-, or @ +w,. The advan-
tage to these techniques is that the double-layer capacitance is more linear than the charge-transfer
processes so its effects are eliminated from these measurements. The disadvantage is that the (non-linear)

analysis is more difficult.

Impedance measurements can be used with a mathematical model to determine physical pro-
perties of components of and chemical mechanisms occurring in the system being studied. Because itisa
nonintrusive, nondestructive diagnostic technique, it could be applied to quality control in plating, battery

manufacturing, or electrolytic or hydrometallurgic processes.
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Suchanski'’ claimed that frequency-response analysis can determine the state of charge of
lithium/carbon monofluoride batteries. However, according to Sandifer,'S the state-of-charge of these bat-
teries can not be determined by impedance techniques as attempted by himself and Suchanski!” because of
the insensitivity of the impedance parameters or because of time-after-discharge dependences. He
claimed that chronopotentiometry is a good way to measure the state-of-charge. (He drained the batteries

at a constant current and recorded the potential drop.)

Jardy et al.!® studied the improvement in corrosion resistance in galvanized steel caused by a

coating of zinc diphosphate. From their impedance data, they developed a criterion for quality control.

O’Keefe et al.!? used cyclic voltammetry to monitor additive concentrations in an electrolyte.
They proposed comparing a polarization curve obtained from a solution of unknown composition with
those obtained from standard solutions to determine the additive content of the solution. Since automated

impedance experiments are fast, it might be better to use this instead of cyclic voltammetry.

Another electrochemical transfer function is the electrohydrodynamic impedance. This func-
tion relates the current response of a rotating-disk system to perturbations in the rotation speed.. This tech-
nique was originated by Tokuda et /. Tribollet and Newman?' claimed that this method is useful for
determining diffusion coefficients from Schmidt numbers and found excellent agreement between theory

and experiment for a redox reaction below the limiting current under galvanostatic regulation.
6.5. Equivalent circuits

Electrochemical systems may behave, or be conceived of as behaving, like a network of elec-
trical circuit elements such as resistors, capacitors, inductors, etc. These analogies are useful conceptu-
ally: they allow us to think of the response of an electrochemical system to an alteﬁxaﬁng current (or vol-
tage) signal in terms that are familiar to us. They are useful pedagogically: they present a convenient
starting point for learning about electrochemical impedance. However, they may not be the best way to

interpret the frequency response of electrochemical systems.
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We believe in interpreting the frequency response of electrochemical systems by comparing
them to predictions based on the application of fundamental knowledge of the phenomena known to occur
in the system. If we can develop a mathematical model of a system that behaves as a real system, we can
be certain that we understand what is happening in the real system. One reason for avoiding the
equivalent circuit analogy is that to reproduce the behavior of an electrochemical system, often one must
either use a circuit network that does not contain a finite number of elements, or use a network containing
elements for which their values (resistance or capacitance) are functions of frequency unlike real ele-
ments. Another reason is that mathematical {node;ls can be changed easily to reflect a chemical or
geometric change in a system by changing physical properties input or boundary conditions; this is not
necessarily true with equivalent circuits. Or conversely one wants to be able to extract from experiments
or include in 2 model independently determinable physical properties of the components of the system, not

the size of electric circuit elements that have no direct connection to the problem of interest. Grahame
recognized this in 1952:2

Many persons who have worked on this problem in the past have attempted to represent the behavior of a
metal-solution interface by means of an equivalent electrical circuit. The objection to this procedure is that
one has no way of knowing whether or not a given equivalent circuit is, in fact, equivalent to the interface
under consideration except by carrying out an independent analysis of the problem which it is the objective
of those who use this method to avoid. It will be found, in fact, that in most instances no finite combination
of resistors, condensers, and inductors can represent the variation with frequency of a metal-solution inter-
face across which a current flows. Indeed, there is no reason to expect that it should be otherwise, except
that we have not heretofore met a case where the equivalent circuit concept has been demonstrated to be

fallacious.

Impedance data can be displayed graphically in many forms. Two popular ways of plotting
data are Nyquist plots— -Im(Z) vs. Re(Z)—and Bode plots—both |Z] and ¢ vs. frequency. It is often
difficult to determine resistances and capacitances of an equivalent circuit from these plots. These values
are are found from the plots’ slopes, inflection points, and extrema. Resistances and capacitances thus
found must then be related to physical properties of the system such as diffusivities, conductivities,
exchange current densities, oben-circuit potentials, etc. It is easy to compare graphically model predic-

tions with experimental results.
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6.5.1. Examples

What are the impedances of resistors and capacitors? Ohm'’s law applies to resistors; their

impedance is the same as their resistance, a real number or a point on the real axis in the complex plane.

For capacitors the charge stored is proportional to the applied voltage: g=CV. This relation
can be differentiated with respect to time to find that the current is proportional to the rate of change of the
potential:

i=c 9V
i=Co-. (6-1)

If the applied voitage is a sine wave of frequency ® and magnitude V,

v = Vsin(wt) , 6-2)
and the current response has the magniwde I, frequency ®, and phase shift ¢:

i = Isin(ot+¢) , (6-3)
then v from Equation 6-2 can be substituted into Equation 6-1 to obtain:

i= CV%sin(mt) = CVacos(wt) = .CVmsin(mt—%) . 64)
So the magnitude of the current response I=wCV and the phase shift is -90°. The magnitude of the
impedance is given by |Z|=V/I=1/0C. In the complex plane the magnitiude of the impedance will be
inversely proportional to the frequency and the direction will always be in the negative imaginary direc-
tion. (Rotating by 90° is the same as multiplying by -j or dividing by j.) Thus the capacitor’s complex
impedance is

Z= T!of . (6-5)

This is the negative imaginary axis in the complex plane.
6.52. Coordinate system

We have described the relation or transfer function between these signals in terms of a magni-
tude (gain) and an angle (phase shift) as though using polar coordinates. We could also use the in- and
out-of-phase components, or the real and imaginary parts, as though using Cartesian (rectangular)
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coordinates.

We prefer to discuss impedance in terms of its real and imaginary parts rather than its gain
and phase shift because of the advantages in using rectangular instead of polar coordinates. Using rec-
tangular coordinates means replacing sine and cosine functions with exponential functions containing
exp(jot). This has some of the advantages found in using Laplace transforms: we use frequency as the
independent variable instead of time, and partial derivatives of a quantity with respect to time become the
product of jo and that quantity. Another advantage is that the exp(jwt) terms cax;cel. The most important
advantage is that it is much easier to work with exponentials than with the sines and cosines of composite

angles.

These points can be demonstrated by considering the impedance of a capacitor using complex

notation. The variables are, in general, the sum of constant and transient terms. The transient term is the
product of a complex function of position and ¢**, a sinusoidal variation in time.® For the voltage this
gives
v=Vv+ 7™, (6-6)
The current can be expressed in these terms and is proportional to the rate of change of the voltage:
. : T e dv .
i=i+ie =Cd—t=CVJu)e’°". 67
The impedance is the ratio of the voltage and current perturbations, giving
Z=—=——=- -—J—— (6.8)

as before.
6.5.3. Networks

Electrochemical systems often behave similarly to simple networks of resistors and capaci-
tors. The ohmic drop is a resistance to the flow of current. The charge transfer (faradaic) resistance also
acts as a resistor. The double layer acts as a capacitor. A resistor in series with a resistor and capacitor in

parallel can represent the ohmic drop of a solution in series with the parallel double-layer capacitance and
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charge-transfer resistance at the solution-electrode interface. This representation is the ‘‘Randles circuit’’
shown in figure 6-1. The impedance of this circuit is a semicircle with a diameter equal to the charge-
transfer resistance lying above the positive real axis in the complex (-Im(Z) vs. Re(Z)) plane. The semi-
circle is displaced from the origin a distance equal to the ohmic resistance. The frequency of the max-

imum in the curve is the reciprocal of the time constant for the parallel resistor and capacitor.

Porous electrodes are often approximated as transmission lines, since there are two parallel
conductors: a solid phase and an electrolyte phase, connected by a faradaic resistance and a double-layer

capacitance. Cheng discusses the behavior of infinite and finite transmission lines.*
6.5.4. Warburg impedance

Two circuit elements commonly used in constructing ‘‘equivalent circuits’ are inductances
and the Warburg impedance. Inductance is the complement to capacitance: the potential is proportional to
the speed at which the current changes. Diffusion to a planar surface with a sinusoidal flux (current) or
driving force (concentration, potential) causes what is known as the Warburg impedance. The response is
a sine wave which decreases in amplitude with distance from the surface and which has a 45-degree phase
shift (i.e. the real and imaginary parts of the impedance are equal). This problem is analogous to deter-

mining the temperature profile into earth due to temperature variation at the surface.25-
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Figure 6-2. Nyquist plot of the impedance of the Randles equivalent circuit in Figure 6-1.



10.

11.

12,

13.

14,

15.

16.

140

References

A.J. Angstrom, ‘‘Neue Methode, das Wirmeleitungsvermdgen der KGrper zu bestimmen,”” [*‘A
New Method of Determining the Thermal Conductivity of a Body,’’] Ann. Phys. Chem., 114, 398
(1861).

L. M. Naphtali and L. M. Polinski, ‘A Novel Technique for Characterization of Adsorption Rates
on Heterogeneous Surfaces,”’ J. Phys. Chem., 67, 369 (1963).

S. K. Evnochides and E. J. Henley, *‘Simultaneous Measurement of Vapor Diffusion and Solubility
Coefficients in Polymers by Frequency Response Techniques,’’ J. Polym. Sci.: Part A-2, 8, 1987
(1970).

Yusuke Yasuda, ‘‘Determination of Vapor Diffusion Coefficients in Zeolite by the Frequency
Response Method,’” J. Phys. Chem., 86, 1913 (1982).

Yusuke Yasuda and Goichi Sugasawa, ‘A Frequency Response Technique to Study Zeolitic Diffu-
sion of Gases,”” J. Caual., 88, 530 (1984).

Yusuke Yasuda and Akemi Yamamoto, ‘‘Zeolitic Diffusivities of Hydrocarbons by the Frequency
Response Method,” J. Catal., 93, 176 (1985).

J. G. Goodwin, Jr., J. E. Lester, G. Marcelin, and S. F. Mitchell, ‘‘Frequency Response Chemisorp-
tion Studies of Carbon Monoxide Hydrogenation Catalysts,”” in Catalyst Characterization Science,
ACS Symp. Ser. 288, p.67 (1985).

Yao-En Li, David Willcox, and Richard D. Gonzalez, *‘Determination of Rate Constants by the Fre-
quency Response Method: CO on PYSiO,,’” AIChE J. 35, 423 (1989).

James A. Schwarz and Robert J. Madix, **Modulated Beam Relaxation Spectrometry: Its Applica-
tion to the Study of Heterogeneous Kinetics,”* Swrf. Sci., 46, 317 (1974).

Max Wien, *‘Ueber die Polarisation bei Wechselstrom,”” [*‘On Polarization in the case of Altemnat-
ing Current,’’} Ann. Phys. Chem., 58, 37 (1896).

E. Warburg, ‘‘Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom,””
[**On the Behavior of So-Called Unpolarizable Electrodes Toward Altemnating Current,”’] Ann.
Phys. Chem., 67, 493 (1899).

Elsa Neumann, ‘‘Ueber die Polarisationscapacitd t umkehrbarer Elektroden,’’ {*‘On the Polarization
Capacity of Reversible Electrodes,’’] Ann. Phys. Chem., 67, 500 (1899).

E. Warburg, ‘‘Ueber die Polarisationscapacitd' t des Platins,”” [**On the Polarization Capacity of Pla-
tinum,’’] Ann. Phys. Chem., 6, 125 (1901).

Allen J. Bard and Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications,
John Wiley & Sons, 318ff, 354ff (1980).

Mary R. Suchanski, **AC Impedance of the Carbon Monofluoride Electrode,’ J. Electrochem. Soc.,
132, 2059 (1985).

James R. Sandifer, ‘‘State-of-charge measurement of the lithium/carbon monofluoride battery by
chronopotentiometry,”” J. Appl. Electrochem., 16, 307 (1986).



17.

18.

19.

21.

22,

23.

141

J. R. Sandifer and M. R. Suchanski, ‘‘Electrochemical characteristics of the lithium/carbon
monofluoride battery and its component half-cells,’’ J. Appl. Electrochem., 14, 329 (1984).

A. Jardy, R. Rosset, and R. Wiart, *‘Diphosphate coatings for protection of galvanized steel: quality
control by impedance measurements,”’ J. Appl. Electrochem., 14, 537 (1984).

T. J. O’Keefe, S. F. Chen, E.R. Cole, Jr., and M. Dattilo, **Electrochemical monitoring of electro-
galvanizing solutions,’’ J. Appl. Electrochem., 16,913 (1986).

Koichi Tokuda, Stanley Bruckenstein, and Barry Miller, *““The Frequency Response of Limiting
Currents to Sinusoidal Speed Modulation at a Rotating Disk Electrode,’’ J. Electrochem. Soc., 122,
1316 (1975). '

Bemard Tribollet and John Newman, ‘“The Modulated Flow at a Rotating Disk Electrode,’” J. Elec-
trochem. Soc., 130, 2016-2026, 1983.

David C. Grahame, ‘‘Mathematical Theory of the Faradaic Admittance (Pseudocapacity and Polari-
zation Resistance),”’ Journal of the Electrochemical Society, 99, 370C (1952).

Bemard Tribollet and John Newman, *‘Impedance Model for a Concentrated Solution: Application
to the Electrodissolution of Copper in Chloride Solutions,’” J. Electrochem. Soc., 131, p. 2781

(1984).
David K. Cheng, Analysis of Linear Systems, Addison-Wesley, Reading, Mass. (1959).

R. Byron Bird, Warren E. Stewart, and Edwin N. Lightfoot, *‘Problem 11.L Periodic Heating of the
Earth’s Crust,”* Transport Phenomena, Wiley & Sons, New York, 1960.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., pp. 64-70,81-83, Clarendon
Press, Oxford (1986).



142

CHAPTER 7

Rotating Disk Experiments’

To determine transport and kinetic parameters for use in an iron redox battery model, we con-

ducted linear sweep voltammetry experiments on a solution of 0.25 M FeCl,, 0.25 M FeCl,, and 1 M HCL

The model is developed in Chapter 8. We determined three parameters: the diffusion coefficient of the

ferric-containing species, the cathodic transfer coefficient, and the exchange current density.
7.1. Theoretical

The diffusion coefficient was calculated from the Levich equation once the limiting current
was measured as a function of the rotation speed:

L4 = 0.62nFADX v %' 2C, -1y
where L4 is ihe limiting current to the disk (mA); Cb, the bulk concentration of the electro-active species
(M); A, the electrode area (cm?); D, the diffusion coefficient (cm?/s); v, the kinematic viscosity (cm?/s);
and o, the angular velocity of the electrode (rad/s). A plot of limiting current versus square root of rota-

tion speed yields a straight line. The diffusion coefficient was calculated from the slope.

The kinetic parameters we determined were the cathodic transfer coefficient and the exchange
current density. The cathodic transfer coefficient is the fraction of the overpotential that is applied to the
cathodic part of the reaction. The anodic transfer coefficient can be calculated from the cathodic
coefficient since the sum of the two equals unity (assuming the reaction is an elementary, or one-step, pro-

cess). The exchange current density is the forward or (equal) reverse reaction rate at the equilibrium

potential.

' am grateful to Mr. John Sukamto for his careful performance of these experiments.



143

Both the cathodic transfer coefficient and the exchange current density were calculated from

the Butler-Volmer equation:

i= io[e“-“’"“" - e-"‘f“] . (7-2)
where o is the cathodic transfer coefficient; f = F/RT = 38.92 V (at 25° C); i , the exchange current den-
sity (A/cm?); n, the number of electrons transferred; and 7, the overpotential (V). (The overpotential is
the difference in potential between the electrode and the solution adjacent to it. It is equal to the applied
potential difference between the working and reference electrodes corrected for the ohmic potential drop
in the solution. This correction is important because not all the applied potential is available to drive the
reaction.) At high (positive or negative) overpotentials one exponential term can be neglected, leaving

either

i=igelomM or (7-3)

i= i, (74)

A plot of log |i} versus overpotential (a Tafel plot) has linear branches at high overpotentials. The
cathodic transfer coefficient can be calculated from the slope of the cathodic branch (negative overpoten-

tial); extrapolation of either branch to zero overpotential yields the exchange current density.

The Tafel plot is only valid at high overpotentials. To use lower overpotentials, the Butler-

Volmer equation can be rewritten as

i =i,e o= [e"f" - l] . (7-5)

I |
Thus a plot of log | m‘ N | versus overpotential (an Allen-Hickling plot) yields a straight line. The
(e =11

cathodic transfer coefficient can be calculated from the slope; the exchange current density can be calcu-

lated from the intercept (the value of the ordinate at zero overpotential).
7.2. Experimental

The equipment used included: a Pine Instruments RD3 potentiostat, two Keithley 173A mul-

timeters, a Hewlett Packard 7047A x-y recorder, a Nicolet 206 digital oscilloscope, a Pine Instruments



144

PIR rotator, and a Pine Instruments glassy carbon rotating-disk electrode. The potentiostat regulated the
potential difference between the working and (calomel) reference electrode. The multimeters were used

to monitor the voitage and the current that were recorded by the oscilloscope and the x-y recorder,

The electrolyte was a solution of 0.25 M FeCl,, 0.25 M FeCL,, and 1 M HCL

Since we could not measure the complete anodic plateau, we applied our linear voltage
sweeps to the cathodic plateau. An optimal sweep rate (one that was neither so slow that it would waste
time, nor so fast that the reaction could not keep pace) was found by sweeping at various rates. A rate as
high as 7 V/min could be used without changing the results of the sweep. A faster sweep rate mighi have

been used but the chosen rate was convenient for use with the oscilloscope.

Limiting currents were determined for different rotation speeds: 4900, 3600, 2500, 1600, 900,
and 400 rpm. The solution was purged with nitrogen for thirty minutes between each set of six sweeps
and the working electrode was and polished between sweeps. The limiting currents are plotted versus the

square root of the rotation speeds in Figure 7-1.

The oscilloscope recorded the currents to a precision of 1 part in 2048 on a scale of £1 V or

about three significant figures.
7.3. Conclusions

The slope of the line in Figure 7-1 gave a diffusion coefficient of 4.20 x 10°6 cm¥s. Diffusion

coefficients in aqueous solutions are usually of this order of magnitude, i.e., 105

The Tafel plot (Figure 7-2) and the Allen-Hickling plot (Figure 7-3) were used to calculate

the kinetic parameters. The cathodic transfer coefficient was 0.26; the exchange current density, 0.227
mA/cm?. Although one might expect a transfer coefficient of 0.5, the value of 0.26 is not surprising and
indicates that the reaction is not an elementary one. The is lower than the 7.5 mA/cm? estimated by

Fedkiw and Watts® (for a solution of 0.55 M Fe?*, 0.55 M Fe**). However, it does agree with experimen-
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Figure 7-1. Limiting currents for different rotation speeds plotted versus the square root of
rotation speed. Used to determine the diffusion coefficient for the ferric-containg species in aqueous HCI.
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tal work on the Fe**/Fe* electrode summarized by Vetter.2 Accounting for the concentration of ferric

ion, our value agrees with that obtained by Gerischer” in H,SO, and by Randles and Somerton* in HCIO,

on platinum electrodes. Gerischer and others™ ® determined values of the transfer coefficient near 0.5.
This with Gerischer’s determination that the electron-transfer reaction is the same as the overall reaction
indicate that, at least in sulfuric acid, the reaction is an elementary one. However, on a different surface
and especially in a different solution with the possibility of complexation of the reactant, the mechanism
may be different. In chloride solution, the ferric and ferrous ions are likely to by complexed with

chloride. The difference in speciation may result in a difference in mechanism and kinetic parameters.
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CHAPTER 8

Flow-Through Porous Electrode Model

This chapter presents a model of the frequency response of flow-through porous electrodes.
The model is based on a first-principles approach—not on equivalent circuits. To use this transient model,

one must have the results of a steady-state model. This model is presented first.
8.1. Steady-state model

Past work on modeling porous flow-through electrodes was summarized in Chapter 5. Here
we present Trainham and Newman’s derivation of the goveming equations for this system. The deriva-
tions are based on Newman and Tiedemann'’s review. For the details the reader can refer to the original

work.!3

The model is that of the reduction of a soluble reactant to a soluble product in excess support-
ing electrolyte. There may be a side reaction characterized by its rate at the half-wave potential of the
main reaction. The products of the side reaction are also dissolved. The bed is one-dimensional, of length
L, porosity €, specific area a, and conductivity 6. These properties do not change with time or position.
The effective solution conductivity is x (corrected for void fraction). There is a superficial fluid velocity v

and an average mass transfer coefficient k .

The governing equations are material and charge balances. The material balance for the reac-

dNg
T =3JRa » 8-1

where the superficial flux of the reactant in the direction of fluid flow is
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. ch
NR = —E(DR + D.)-d';" + Crv (8'2)

and the local flux from the pore wall to the flowing solution is given by

JRa = ken(CRw = CR) - (8-3)
The concentrations ¢, and ¢, are wall and pore concentrations of the reactant averaged over the volume

of the pores. A correlation for the average mass transfer coefficient k_ (Sh vs. Pe) was determined by

Matlosz* for his experimental 9 system. Dy is the effective diffusion corrected for tortuosity and D, is the

axial dispersion coefficient
3v
D.= —(1-
A a£( e) 84)

The transport of electrons in the matrix and current in the solution are governed by Ohm’s

law:
. 4 q @-5)
=-0 an -
dd,
iy = =)g— 8-6
I ==X , (8-6)

Because charge is conserved between phases

—_— =0 . 8-
dx+dxo 8-7

The transfer current is the sum of the currents from the individual reactions:

di, anF . )
& s jRa + @lns - (8-8)

Generally the average transfer current density from any reaction may be given in Butler-Volmer form:

L. Cpw | OugF 1 crw orF }
Lr = P exv[ RT G %). " Cu exp [— RT G ‘D:)]} (8-9)
and
F ] F
ls = ins.a{exp [%—(4’1 -, - AU)J - exp[- %(q -y - AU)]} (8-10)

where AU is the difference in open-circuit potentials between the side and main reactions (AU = U - Up).
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The local overpotential 1 is @, - ®,. Therefore its derivative is

= e——— S e e — 8-11
dx dx g K @-1D)
It will be convenient to eliminate the concentrations of reactants and products near the wall. We can
replace ¢, with ¢, and ¢, because of the stoichiometry. We can eliminate c, , from the expression for

Jp,, using the Butler-Volmer equation for i p and substitute this and the equation for N into the material

balance to arrive at
deg
de—
S| Smemcr| | (Gt p)FN

- -~ = P RT (8-12)
eDgr+D)—— ~a

dx 1___nF aann+ 1| @+ oR)Fn

cxkm  Sniket T\ RT Y kgtn | RT

The potential distribution is obtained by eliminating i, i,, and i ¢ and by differentiating the

equation for the derivative of 1:

d_"L_[L+L}ax

2 |x o

F
{ios,g[exp[ “‘R;. M- AU)] —exp [— %m - AU)H

SR [1+ cN—cR]exp[(%wa)Pn}
Cpt RT

[%::] - [acRFn]+ 1 e;p[m.“wm]}‘

(8-13)

. orken  Snicirt | RT 7 Yeprr RT

These equations may be expressed in dimensionless form. The material balance is

o—[14+1=8 P,exp e n
o .., d% Opr Or
— =D'—- ; . (8-14)
ay dy* 1+exp(M)+ PiPr exp Sr +1|n
Opy R

the potential distribution,
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8-15)

The variables were made dimensionless and the dimensionless parameters carefully defined to emphasize

the relevant phenomena. The concentration was made dimensionless with respect to the feed concentra-

tion:

c
9= —-;
Cre
the distance, with respect to the penetration depth:
y=0x= T X.
The quantity D’ combines the effects of axial diffusion and dispersion:

_ Dx+Doakee

D =

The overpotential was made dimensionless using:

nFk,¢ Ll
SRioR ot RT
The backward term of the main reaction is characterized by
o[ sR. 1 + 0a/0a
P nFkaCee
The importance of the ohmic potential drop is characterized by
p o SR (1 1
77 sakeRT |k o)’

The side reaction is characterized by

P=- €
3= T AFcr P| T RT

The backward term of the side reaction is characterized by

SRioR ruf

Snibst _ [%FAU][_ m,,,cg,]w.

(8-16)

(8-17)

(8-18)

(8-19)

(8-20)

(8-21)

(8-22)
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s + Oles

SRloRef | @ F(a,s + 05)AU
= | = Rk —_—— e 8-23
P, [ cm] exp[ _T J . 8-23)

P, and P characterized the ohmic potential drops in the solution and matrix phases and are related to P,as

follows:
P = 22 @824
5= C+X ’ ( = )
P, <P 8-25
6= G+K ) ( = )
thus
‘Pz = Ps + P6 . (8-26)
The final two dimensionless terms are
Copr
Opr= o (8-27)
Rf
and
- knr
Py= E;— . (8-28)

The current density was made dimensionless with respect to the current density that would be produced if

all the reactant in the feed were consumed:

I’ Sl
- ancm )

(8-29)

This current density is expressed in units of amps per cm? of electrode cross-sectional (not surface) area.

The concentration boundary conditions are the Danckwerts,’ Wehner-Wilhelm® conditions at

the inlet
dcg
Crev=cpv—€Dyg + D,)I atx=0 (8-30)
and at the exit
dc
—d;k-=0atx=L. (8-31)

The boundary conditions for the current and potential depend on the electrode configuration.
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These are listed for the potential in Table 8-1.74

These equations are solved by a program called steady.pas to give the steady-state solution

that is needed to solve the transient problem.

8.2. Frequency response

To derive the govemning equations for the frequency response of the flow-through porous
electrode, we start with the usual governing equations and make the substitutions described in section
6.5.2 as was done by Tribollet and Newman for the rotating-disk electrode.” To the steady-state material
and charge balance equations we add accumulation and doule-layer charging terms, respectively. We take
these equations and separate the concentration, potential, and current terms into steady and transient parts.
For example, the concentration variable becomes

0=0+8e™ (8-32)
Many terms in the resulting equations can be eliminated by subtracting the steady-state equations. -

The starting equations are the material balance:

Configuration | dn’ { day’ i
4y |0 4y |year
uD Pl P
DU Pl Pl
uu Pl 0
DD 0 P

Table 8-1. Boundary conditions on the potential for various electrode configurations. The first letter of
the two-letter designation refers to the counterelectrode placement; the second, the current collector: U =
upstream, D = downstream.
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(8-33)

The charge balance is the same as for the steady state except for the addition of a term that accounts for

charging the double layer:*

a i
o’

1-0 LR ,
™ ]Plexp[[%n + 1]11}

-

, 6—[l+
s Olys + Ocs
P.exp|l- ——|]1 - Peexp| ——n’|| +

PP, LR
1+exp(m)+ exp|i— + 1|1’
Opc OeR
p.C, I
+ chl ot
After making the substitutions and simplifying, we end with the following:

lsq-pr 40, 8
A[é)ﬂ Ddy2+dy]
iPy

+ ﬁ'[[e'-" + P:: Beﬁ'] [P,Fleﬂ'." - 5]]

~ P, -
+ GA[I + —lep"] =0
Opr

and

(8-34)

(8-35)

*The steady-state case included no double-layer chm?ing current. To determine the contribu-

tion of this current to the governing an

rent o U min wations we considered
case the potential distribution is given

Yy
ﬁ=[_1_+_1_]acﬂ ,
S x at

ox?

electrode with no faradaic current. In this

The right-hand side of this equation can be non-dimensionalized and added to the previously derived

governing equation.
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A2 [3—3} - chuj(}ﬁ']

— _ - _ _&;‘, acs a.s Q“'aﬂ.’-‘l -
P4 F PP — 6)Xe™ + gBefn) — A%Pye ™= ot -&:me % | - AP,F,Be® (8-36)
P -l
-APzé{l +—-‘-eﬂ"] =0,
Opr
where A is given by:
, PPy .,
A=1+e"+ e+n’- (8-37)
and B by:
B=1+ % : (8-38)

Each quantity with a tilde has a real and an imaginary part. Therefore these two equations represent four
equations for the four unknowns: Re(6), Im(6), Re(®"), and Im(8"). The additional dimensionless terms

are

Q= ak:;e (8-39)
and

1= i:‘;x ) (8-40)

8.3. Porous electrodes without flow

Many useful batteries contain porous electrodes but do not force reactants to flow through the
electrode. Therefore it is interesting to include this case as well. The govemning equations are essentially
the same, but lack the convection terms and are non-dimensionalized in a slightly different way because
dividing quantities by a zero velocity will lead to problems. We will use k__ instead of v to non-
dimensionalize the various quantities. The resulting dimensionless groups may not have exactly same

significance but the governing equations need not be changed much.

If the fluid velocity is zero, there will be no dispersion and D, will be zero. The equation for
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the concentration loses its convective term and becomes

dze 0- [l + le;e]Plexp[[% + l] n'j!

0=D'"—;- o P - ; @n
1+ ex + —Texp| | = + 1|0’
p(n") ™ p[[aa H
For the transient case, the equation for the concentration perturbation becomes:
. d%
AbiQ-D'—
[ s df]
- v P2P -, — -
+ n'[[e“ + (;H’ lk”"] [P,F,e”“ - e]] 42)

+ éA[l + ie"'-"] =0
Opr

The definitions of several dimensionless groups will change as follows:

_ ognFknpcre (1 1
Py= ———asRRT [¥ + ;] , (843)
aeD
Di=—,
Kom (8-44)
r=—=_ (8-45)
nFknCre
and
a=a. (8-46)

If the mass transfer coefficient is a flux divided by a concentration difference, instead of using a correla-

uonforkmnwecanusc

nm=§5—. (8-47)

pore

For a porous electrode without electrolyte flow, the concentration boundary conditions are
different than for the electrode with flow. If the end of the ¢electrode is near a large reservoir of electro-
Iyte, the boundary condition is

8=1; 6=0, (48)
if it is a physical barrier to flow (like a current collector) the boundary condition is
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dy dy

8.4. Calculation of the impedance
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(49)

So far we have shown how the potential and concentration distributions are calculated. From

the potential at one end of the electrode and the applied current, we can calculate the quantity of

interest—the measured impedance of the system.

The time-varying potential and currents are

v =Re(vel™)
and
i=Re(ie™®) ,
respectively.
The impedance is the ratio of ¥ to i:

7= _ Re(9) + jIm(¥)
1 Red)+jm@

Multiplying the numerator and denominator by the complex conjugate of the denominator yields:

Re(W)Re(1) + Im(HIm(1) + jlIm(¥)Re(d) ~ Re(#)Im(i)]
[Re(®]? + [Im(D)? '
If i = Asin(wt), then Re(i) = 0 and Im(f) = -Ai. Thus

= Im()
Re(Z) = Al
and
_Re®
Im(Z) = Al

(50)

(63))

(52

(53

9

53

Since the program calculates 7’ as a function of position, it can pick the value of eta at the appropriate end

of the electrode (depending on the current collector position), convert it to volts, divide it by Ai, and

change the sign if appropriate. The impedance is calculated in units of Qcm?.
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8.5. Description of programs

Parts of the programs used to solve the equations are in separate modules that are compiled
separately and linked together. The governing equations and boundary conditions for the steady-state and
frequency response problems are contained in the programs Steady and Impedance, respectively. The
declaration statements for these programs are in the modules SteadyDcl and ImpedanceDcl. These pro-
grams read their data files steady.dat and imped.dat and write to their output files steady.out and imped.out
using the modules Steady/O and ImpedancelO. SteadylO also creates the file barprofiles.dat (read by
Impedanceio) that contains the steady-state concentration and potential profiles (é(x) and 1—]'(x)) needed by
Impedance. Impedance contains a loop to solve the governing equations for different values of the
applied frequency at some value of the applied current. Aidmod contains global declarations and includes
the procedures BandAid and BandShell as well as useful input and output routines. Program listings are

found in appendices following this chapter.

The goveming equations are simultaneouﬁ, one-dimensional, ordinary, partial differential
equations. They are solved by a finite-difference method using Matlosz’s BandShell procedure. A listing
of this procedure is not included here, but can be found elsewhere.!® A more complete description of
BandAid and BandShell is found in References 10 and 11. BandAid sets parameters (e.g., the type of
difference approximations and whether image points are used) (o be passed to BandShell. (These parame-
ters that relate to the numerical method, are set by /mpedance and Steady so the program BandAid is not
needed.) BandShell is a finite-difference program that solves simultaneous, ordinary, differential equations
by using Newman’s BAND routine to set up and invert (using Newman’s MATINV routine) tridiagonal

matrices. !>

8.6. Possible source of difficulty

When solving second order, ordinary differential equations by finite difference methods, one

must be sure that the second order terms do not disappear. Consider the equation
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D8” - 6’ =f(n,0) . (8-56)
If D’ is small compared to the mesh size, the second arder term will be negligible with respect to the first,

and the finite-difference program will solve the equation with different boundary conditions for the odd
and even mesh points and will converge on different solutions for the odd and even points. This can be

avoided by making sure that the mesh spacing h is not much greater than the coefficient D’.
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12,

13.

14.
14,

- 162

References

John Newman and William Tiedemann, ‘‘Porous Electrode Theory with Battery Applications,”
AIChE ., 21,25 (1975).

James A. Trainham and John Newman, “‘A Flow-Through Porous Electrode Model: Application to
Metal-Ion Removal from Dilute Streams,’’ J, Electrochem. Soc., 124, 1527 (1977).

James Arthur Trainham, Flow-Through Porous Electrodes, Ph. D. Dissertation, pp. 3547 and 132-
138, University of California, Berkeley (1979)

Michael John Matlosz, Experimental Methods and Software Tools for the Analysis of Electrochemi-
cal Systems, pp. 31-33. Ph.D. dissertation, University of California, Berkeley (1985) LBL-19375.

P. V. Danckwerts, ‘‘Continuous Flow Systems: Distribution of Residence Times,”* Chem. Eng. Sci.,
2,1(1953).

J. F. Wehner and R. H. Wilhelm, ‘‘Boundary conditions of a flow reactor,’’” Chem. Eng. Sci., 6, 89
(1956).

James Trainham and John Newman, *‘The Effect of Electrode Placement and Finite Matrix Conduc-
tivity on the Performance of Flow-Through Porous Electrodes,”” J. Electrochem. Soc., 125, 58
(1978).

Trainham, op. cit., pp. 75-81.

Bemard Tribollet and John Newman, *‘Impedance Model for a Concentrated Solution: Application
to the Electrodissolution of Copper in Chloride Solutions,’’ J. Electrochem. Soc., 131, 2780 (1984).

Matlosz, op. cit.

M. Matlosz and J. Newman, ‘‘Solving 1-D Boundary-Value Problems with BandAid: A Functional
Programming Style and a Complementary Software Tool,”” Comput. Chem. Eng., 11,45 (1987).

John Newman, Numerical Solution of Coupled, Ordinary Differential Equations, Lawrence Radia-
tion Laboratory, University of California, Berkeley, August, 1967, UCRL-17739.

John Newman, ‘‘Numerical Solution of Coupled, Ordinary Differential Equations,”” Ind. Eng.
Chem. Fund., 7, 514 (1968).

John Newman, Electrochemical Systems, Appendix C, Prentice-Hall, Englewood Cliffs, NJ (1973).

Ralph White, Charles M. Mohr, Peter Fedkiw, and John Newman, The Fluid Motion Generated by a
Rotating Disk: A Comparison of Solution Techniques, LBL-3910, Lawrence Berkeley Laboratory,
November, 1975.



163

APPENDIX L

Listing of Program Steady
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(INHERIT("AidMod.pen’, ‘SteadyDcl.pen’, "SteadylO.pen”)]
{... FH++++++++++tttrrrrttirrrrbrrrtttbttbbttr bttt bttt bbb+
Program Title: Steady
Written By: Paul Shain
Date written:  December 15, 1983
Date Modified: May 21, 1990

Purpose:  This program calculates the steady—state concentration

and potential distribution in a flow—through porous electrode

according to the model of Trainham and Newman ( ELECTROCHIMICA
ACTA, 26, p. 455 (1981) ).

Variable Number 1 == dimensionless concentration
Variable Number 2 == dimensionless potential

Parameters are those for reduction of a reactant in a redox
system. A side reaction and axial diffusion and dispersion are
included.

B o S m e s a s S S o S S |

program Steady( input, output );

{...The constant, type, and variable declarations below are actually
declared in a another file, ‘SteadyDclpas’. This program was
written in separate pieces, or modules, to remove from view parts,
like inpwt and output routines, which do not contribute to an
understanding of how the program works. The following list details
the pascal files that make up the program and their contents.

AidMod - Comnains const, type, and var declarations required by
BandShell, and the BandShell procedure. Is inherited
by all the other fies.

SteadyDcl — Contains all declarations needed by the program Steady.
Is inherited by SteadylO and Steady.

Steadyl0 - Contains I/0 routines used by Steady. Is inherited by
Steady.
Steady —  Contains the equations to be solved by BandShell and

their boundary conditions.

Inheriting is a nonstandard feature available in VAX Pascal. A
“module” containing declarations and procedures can be compiled to
produce an object file of filetype “obj" and am enviromnmens file of
filetype “pen”. Other files can “inherit” environments in order to

use the declarations or procedures contained therein. After a program
is compiled, its object file is linked to the object files of the
environments it has inherited to produce an execuable file. There
should be similar procedures on other machines. It is possible to
combine the separate modules into one program.
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const (... BandAid Parameters ...)
nEgns = 2;
ImageFirstPoint = true;
ImageLastPoint = true;

Factorincrement = [e-6;
Absolutelncrement = le—6;
ReduceTimeOption = true;

(... Physical Constants ...)

96487.0; (Faraday’s constant, coulombs /equivalent)
8314, (ideal gas constant, joules Imole-K)

)
non

type DateType = packed array(l..11]of char;

var (... BandAid Parameters ...)

Guess, FinalResult, Deviation, Residual : ValueArray;
J, jMax, ItMax : integer;
Tolerance : RealNumber;

(... Physical Parameters ..)

v, e, CRf, CPf, AlphaaR, AlphacR, AlphaaS, AlphacS : RealNumber;

L, a, D, Da, kmR, rPore, sR, ioRref, ioSRef, Theta, kmP : RealNumber;
i, kappa, sigma, DeltaU, T : RealNumber;

n : integer;

(... Dimensionless Parameters ...)

P!, P2, P3, P4, PS, P6, P7 : RealNwnber;
IStar, DPrime, Alphal, ThetaPf : RealNumber,;
yMin, yMax : RealNumber;

(... Other Parameters ...)

Configuration : (UD, DU, UU, DD);
CounterElectrode, CurrentCollector : char;
ThetaGuess, EtaGuess : RealNumber;

BarProfiles : text;
pFactors : text;

MeshSize : RealNumber;
CPUTimeUsed, Clockinitial : integer;
NumberOflterations : integer;
BeginDate, BeginTime : DateType;

function Equation( i, j : integer;

y, h : RealNumber;

var NewResult : ValueArray;

function clnterp( k : integer;
y : RealNumber;
var Result : ValueArray) : RealNumber;

function dnFdyn( n : integer;
function F( y : RealNumber ) : RealNumber;
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y : RealNumber;
Approx : Di X ) : RealNumber
) : RealNumber;

function Varl ( y : RealNumber ) : RealNumber;
begin Varl := clnterp(l,y.NewResult) end;

function Var2 ( y : RealNumber ) : RealNumber;
begin Var2 := cInterp(2,y.NewResult) end;

function Theta ( y : RealNumber ) : RealNumber;

begin  Theta := Varl(y) end;
function Eta ( y : RealNumber ) : RealNumber;
begin Eta = Var2(y) end;

function dThetady ( y : RealNumber ) : RealNumber;
begin

end;

dThetady := dnFdyn(1,Varl,y,Cendiff)

function dEtady ( y : RealNumber ) : RealNumber;
begin
dEtady := dnFdyn(1,Var2,y,CenDiff)

end;
ﬁmcﬁon d2Thetady2( y : RealNumber ) : RealNumber;

d2Thetady2 := dnFdyn(2,Varl,y,Cendiff)
end;

function d2Etady2 ( y : RealNumber ) : RealNumber;

d2Etady2 := dnFdyn(2,Var2.y,CenDiff)
end;

function UpStrmBC( i : integer; y : RealNumber ) : RealNumber;
begin

case i of
1: if (v = 0) then
UpStumBC := Theta(y) =1 (=0}
else

UpStmBC := DPrime*dThetady(y) — Theta(y) + I; { =0}

2: case Configuration of

UD: UpStrmBC := dEtady(y) ~ P5*IStar; { = 0 }
DU: UpStrmBC := dEtady(y) — P6*IStar; { = 0 }
uu: UpStrmBC := dEtady(y) + P2*IStar; { = 0}
DD: UpSamBC := dEwady(y) { = 0}

end { Configuration cases }

end { Equation cases }
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end; { UpStrmBC }

function DiffEQ( i : integer; y : RealNumber ) : RealNumber;

var DispersionTerm, Numerator, Denominator,
MainReactionTerm, SideReactionTerm : RealNumber;
Factorl, Factor2, Alphal, Alpha2 : RealNumber;

begin  { body of DiffEQ }

Factorl := 1 + (1 — Theta(y)) / ThetaPf;
Factor2 := 1 + (AlphaaR / AlphacR);
Alphal := —AlphacS / AlphacR;

Alpha2 := (AlphaaS + AlphacS) / AlphacR;

Numerator := Theta(y) — Factorl * P1 * exp(Factor2*Eta(y) );
Denominator := 1 + exp( Eta(y) )
+ (P1 * P7 / ThetaPf) * exp( Factor2*Eta(y) ) ;
- MainReactionTerm := Numerator /Denominator;

SideReactionTerm := exp( Alphal * Eta(y) ) *
~ (P3-P3*P4* exp( Alpha2 * Eta(y)) )i

DispersionTerm := DPrime * d2Thetady2(y);

case i of
1: if (v = 0) then
DiffEQ := DispersionTerm ~ MainReactionTerm { = 0}
else

DiffEQ := DispersionTerm — MainReactionTerm
—dThetady(y); { = 0 }

2 DiffEQ := P2 * ( SideReactionTerm
+ MainReactionTerm ) — d2Etady2(y) { =0}

end { i cases )}

end; { DiffEQ }

function DnStrmBC( i : integer; y : RealNumber ) : RealNumber;
begin

case i of

1: DnStmBC := Theta(y) - 1; { =0}

2 case Configuration of



UD: DnStmBC := dEtady(y) + P6*Istar; { =
DU: DnStrmBC := dEtady(y) + P5*IStar; { =

uu: DnStmBC := dEtady(y); { =
DD: DnStrmBC := dEtady(y) - P2%Istar { =
end { Configuration cases }

end { i cases}

end; { DnStrmBC }

begin { body of Equation }

" (j=1) then

case 1 of
1: Equation := UpStrmBC(1,yMin);
2: Equation := UpStrmBC(2,yMin)

end { i cases }

else if ( j = jMax ) then

case i of
1: Equation := DnStmBC(1,yMax);
2 Equation := DnStrmBC(2,yMax)

end { i cases}

else case i of

1: Equation
2: Equation :

DiffEQ(Ly):
DiffEQ(2.y)

end { i cases}

end; { Equation }

function Converged( function y( j : integer ) : RealNumber;

h : RealNumber;
var NewResult, Deviation : ValueArray;
var Residual : ValueArray;
function cInterp( k : integer;
y : RealNumber;

var Result : ValueArray ) : RealNumber;

function dnFdyn{ n : integer;

function F( x : RealNumber ) : RealNumber;

y : ReaiNumber;
Approx : DiffApprox ) : RealNumber

168
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var k, j : integer;

begin

Converged := true;

for k := 1 to nEqns do
for j := 1 to jMax do
if ( abs(Deviation{k,j] /NewResult{k.j]) > Tolerance ) then
Converged := false

end; { Converged }

procedure NonBandCalcs( Lastteration : boolean;
Iteration, CPUTime : integer;
function y( j : integer ) : RealNumber;
h : RealNumber;
var NewResult, Deviation : ValueArray;
var Residual : ValueArray;
function cInterp( k : integer;
y : RealNumber;
var Result : ValueArray ) : RealNumber;
function dnFdyn( n : integer;
function F( y : RealNumber ) : RealNumber;
y : RealNumber;
Approx : DiffApprox ) : RealNumber );

var j : integer;
begin { body of NonBandCalcs }

if ( Lastlteration ) then

begin
NumberOflterations := Iteration; { rename the parameters passed from }
MeshSize := h; { BandAid for use in the ilo routines }
CPUTimeUsed := CPUTime;

{*}PrintParameters;

RunTimeDiagnostics;

PrintProfiles( y, NewResult ); {*}

PrintBarProfiles( NewResult );
{*}PrintTimeSummary {*}
end

end; { NonBandCalcs }

procedure SetParameters;

procedure Error;



begin
writeln; write( ‘Configuration ‘,CounterElectrode,CurrentCollector,
‘ is not UD, DU, UU, or DD. %;
writeln; write(’Check the data file and try again. °);
writeln; writeln;
halt

end; { Error}

begin { body of SetParameters }

Da=3*v*(1l-¢e)/al/le

if (v = 0) then
DPrime :=e¢ * D * a / kmR
else
DPrime ;= ¢ * (D + Da) *a * kmR / (v * v);
if (v = 0) then
begin
kmR := D / rPore;
kmP := kmR
end;

Pl := ((-sR ®*ioRref ) / (n ®* F* kmR * CRf) ) **
(1 + ( AlphaaR / AlphacR ) ) ;

if (v = 0) then
P2 := AlphacR * n * F*F*kmR *CRf /(sR*a*R*T)
* ( 1/kappa + 1/sigma )
else
P2 :=AlphacR * n * sqr(F * v) * CRf / (sSR *a*kmR * R * T )
* ( 1/kappa + 1/sigma );
P3 :=(-sR *ioSref /(n*F*kmR *CRf))

* exp( AlphacS * F / (R*T) * DeltaU )
*(-n*F*knR*CRf /(sR* joRref ) ) ** (AlphacS /AlphacR );

P4 := (-~ sR*ioRref/(n*F*kmR*CRf)) ** ( (AlphaaS+AlphacS)/AlphacR )

* exp( — F*(AlphaaS+AlphacS)*DeltaU /(R*T) );
P5 := —sigma * P2 / ( sigma + kappa );
P6 := kappa / sigma * PS;

P7 := kmR / kmP;

if (v =0) then
IStar :=sR *i /(n*F *kmR *CRf)
else

IStar :=sR *i /(n*F *v*CRf)

ThetaPf:= CPf / CRf;

if (v = 0) then
Alphal :=a * L
else

Alphal := a * kmR * L / v;

{0.“‘..

170



reset( pFactors );

readin( pFactors, Pl );
readln( pFactors, P2 );
readin( pFactors, P3 );
readln( pFactors, P4 );
readln( pFactors, PS );
readln( pFactors, P6 );
readIn( pFactors, P7 );
readIn{ pFactors, thetapf );
readln( pFactors, Dprime );
readin( pFactors, alphal. );
readin( pFactors, istar );

“t““}

case CounterElectrode of
U” case CurrentCollector of
U  Configuration := UU;
‘D:  Configuration := UD;
otherwise  Error
end; { CurrentCollector cases }
‘D case CurrentCollector of
“‘U”: Configuration := DU;
‘D*:  Configuration := DD;
otherwise Error
end; { CurrentCollector cases }
otherwise. Error
end; { CounterCollector cases }
yMin := 0;
yMax := Alphal;

end; { SetParameters }

begin { body of Steady }
Clocklnitial := SystemClock;
SetTimeString(BeginTime);
SetDateString(BeginDate);
ReadParameters;
SetParameters;

{*} PrintTitle;
EchoParameters; -~ {*}
for j := 1 to jMax do

Guess{1,j} := ThetaGuess;
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Guess[2,j] := EtaGuess
end;

BandSheli( nEgns, jMax, ItMax,
yMin, yMax, FactorIncrement, AbsoluteIncrement,
ImageFirstPoint, ImageLastPoint, ReduceTimeOption,
Guess, FinalResult, Deviation, Residual,
Equation, Converged, NonBandCalcs )

end. { Steady }
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APPENDIX M

Listing of Program SteadyDcl



[INHERIT(“AidMod.pen”), ENVIRONMENT("SteadyDcl.pen”)]

module steadydcl( input, output, BarProfiles, pFactors );

const

{... BandAid Parameters ...}

nEqns = 2;
ImageFirstPoint = true;
ImageLastPoint = true;
FactorIncrement = le-6;
AbsoluteIncrement = le—6;
ReduceTimeOption = true;

type

var

{... Physical Constants ...}
96487.0; { Faraday’s constart, coulombs /equivalent }
8314; { ideal gas constant, joules/mole-K }

DateType = packed array[l..11]Jof char;

{... BandAid Parameters ...}

Guess, FinalResult, Deviation, Residual : ValueArray;
j» jMax, ItMax : integer;
'_I'olerance : RealNumber;

v, e, CRf, CPf, AlphaaR, AlphacR, AlphaaS, AlphacS : RealNumber;
L. a, D, Da, kmR, rPore, sR, ioRref, ioSRef, Theta, kmP : RealNumber;

{... Physical Parameters ...}

i, kappa, sigma, DeltalU, T : RealNumber;
n : integer;

{... Dimensionless Parameters ...}

P1, P2, P3, P4, PS5, P6, P7 : RealNumber;
IStar, DPrime, Alphal, ThetaPf : RealNumber;
yMin, yMax : RealNumber;

{... Other Parameters ...}

Configuration : (UD, DU, UU, DD);
CounterElectrode, CurrentCollector : char;
ThetaGuess, EtaGuess : RealNumber;

BarProfiles : text;

pFactors : text;

MeshSize : RealNumber;
CPUTimeUsed, Clocklnitial : integer;
NumberOflterations : integer;
BeginDate, BeginTime : DateType;

end.
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[INHERIT("AidMod.pen’, ‘SteadyDcl.pen”), ENVIRONMENT("SteadyIO.pen?)]

module SteadylO;

procedure SetTimeString( var TimeString : DateType );
begin time(TimeString) end;

procedure SetDateString( var DateString : DateType );
begin date(DateString) end;

{... +++++++++ttt+++++++ttttrrrrrrtt bttt bbbttt bbb+

Input /Qutput Routines:

The following procedures perform the input and output
Junctions for the BandShell calling program, steadypas.

The following procedures are found in BandSheil
(or actually in the file IOPkg pas which is included

in AidMod pas):

LF(n) prints n blank lines (line feed)

Ri(n) reads an integer

RR(n) reads a real number

TB(n) prints n blank spaces (tab)

WR(n.ij) writes a real number (i and j are field lengths)

B B B B e R R R S D R R s s oo 2 S |

procedure ReadParameters;

var

begin

chl, ch2 : char;

Find(™*");
RI(jMax);
RR(Tolerance);
RR(L);

RR(D);

RR(e)

RR(v);
RR(sigma);
RR(CRf);

RI(ItMax);
Ri(n);
RR(T);

RR(a);

RR (kappa);
RR(sR);
RR(CPf);

{ Convert CRf and CPf from units of moles per liter to moles

per cubic centimeter: }

CRf := CRf / 1000; CPf := CPf / 1000;

RR(&mRY); RR(mP);
RR(rPore);
RR(AlphaaR); RR(AlphacR);
RR(AlphaaS); RR(AlphacS);
RR(ioRref); RR(ioSref);
RR(Deltal); RR(G);
RR(ThetaGuess); RR(EtaGuess);



Find(*="); repeat read(chl) until not(chl = * 7);
read(ch2);
CounterElectrode := chl;
CurrentCollector := ch2;
readln;

end; { ReadParameters }

procedure PrintTide;
begin

LF(5); TB(2S); write(’Flow~Thru Porous Electrode Redox Program?);
LF(2); TB(2S); write(’ written by");
LF(2); TB(2S); write(” Paul Shain®);

LF(2), TB(29); write("(Date Written : 11 January 1984)7);
LF(1);, TB(29); write(’( Revised : 21 May 1990)");
LF(2); TB(40); write("Program begun at °, BeginTime);
LF(2); TB(40); write(” on °, BeginDate);
LF(3)

end; { PrinfTitle }

procedure EchoParameters;

procedure PrintReal( number : RealNumber );
begin WR(number,10,5) end;

begin

LF(5); TB(15); write('Input Parameters — °);
LF(2);
TB(30); write("— Dimensional Values —°);
LF(2); TB(20)
write('Number of Electrons Transferred in Main Reaction: °); writeln(n:3);
LF(2); TB(20);
write( ‘Electrode Length (L) =); PrintReal(L); write(” cm?);
LF(1); TB(20);
write( Temperature (T) = °); PrintReal(T); write(" K);
LF(1); TB(20)
write( Reactant Diffusivity (D) = 9); write(D:10,” sq cm/s”);
LF(1); TB(20);
write( Dispersion coefficient (Da) = °); write(Da:10,” sq cm/s*);
LF(2); TB(20);
write( Electrode Void Fraction (epsilon) = °); PrintReal(e);
LF(1); TB(20);
write( ‘Electrode Surface-Area/Volume (a) = °);
PrintReal(a); write(” sq cm/cu cm”);
LF(1); TB(20)

write( ‘Fluid Superficial Velocity (v) = *); PrintReal(v); write(" cm/s”);
LF(1); TB(20);
write( ‘Effective Solution Conductivity (kappa) = °);

PrintReal(kappa); write(" mho/cm”);
LF(1); TB(20)
write("Electrode conductivity (sigma) = 9);

PrintReal(sigma); write(” mho/cm”);
LF(2); TB(20);
write( Reactant Stoichiometric Coefficient (sR) = ); PrintReal(sR);
LF(1); TB(20)
write( Reactant feed concentration (cRf) = °);

177



PrintReal(CRf); write(" mol/cc?);
LF(1); TB(20);
write( Reactant mass—transfer coefficient (kmR) = °);
PrintReal(kmR); write(” cm/s”);
write( Product mass-transfer coefficient (kmP) = °);
PrintReal(kmP); write(" cm/s”);
write("Pore radius (rPore) = ); PrintReal(rPore); write(" cm”);
LF(2); TB(20); write('Main reaction”);
LF(1); TB(25); write("anodic alpha = °); PrintReal(alphaaR);
LF(1); TB(25); write('cathodic alpha = °); PrintReal(alphacR);
LF(1); TB(20); write(’Side reaction”);
LF(1); TB(25); write(‘anodic alpha = °); PrintReal(alphaaS);
LF(1); TB(25); write(‘cathodic alpha = °); PrintReal(alphacS);

LF(2); TB(20); write('Exchange current densities * );
LF(1); TB(25);
write('main reaction (ioRref) = *); PrintReal(ioRref);

write(” amps/sq cm”);

LF(1); TB(25); _
write(“side reaction (ioSref) = °); PrintReal(ioSref);

write(” amps/sq cm”);

LF(1); TB(20)

write(Delta U = °); PrintReal(Deltal); write(” volts?);

LF(2); TB(20);

write("Current density = °); PrintReal(i); write(” amps/sq cm”);
LF(3); TB(20); write( Electrode Configuration = °);

case Configuration of

UD:  begin
write("'UD — Upstream Counterelectrode,);
LF(1); TB(46);
write(” Downstream Current Collector”)
end; '
DU:

write('DU — Downstream Counterelectrode,);
LF(1); TB(20);

write(” Upstream Current Collector”)
end;

UU:  begin
write("'UU — Upstream Counterelectrode, 9);
LF(i); TB(20);

write(” Upstream Current Collector”)
end;
DD: begin
write(' DD — Downstream Counterelectrode,”);
LF(1); TB(20);
write(” Downstream Current Collector”)
end

end; { Configuration cases }

LF(5); TB(30); write("— Dimensionless Groups — °);
 LF(2); TB(20); write('P1 = °); PrintReal(P1);

LF(1); TB(20); write('P2 = “); PrintReal(P2);
LF(1); TB(20); write('P3 = 7); PrintReal(P3);
LF(1); TB(20); write(P4 = 7; PrintReal(P4);
LF(1); TB(20); write('P5 = ); PrintReal(P5);
LF(1); TB(20); write('P6 = 7); PrintReal(P6);
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LF(1); TB(20); write('P7 = ?); PrintReal(P7);

LF(2); TB(20); write('ThetaPf = °); PrintReal(ThetaPf);
LF(1); TB(20); write("Alphal, = °); PrintReal(AlphaL);
LF(2); TB(20); write('DPrime = °); PrintReal(DPrime);
LF(2); TB(20); write(IStar = *); PrintReal(IStar);
LF(5);

end; { EchoParameters }

procedure Indent; { Indent }
begin TB(5) end; { Indent }

N

procedure NL; { NewLine }
begin LF(1); Indent; Indent end; { NewLine }

procedure PrintParameters;

{... Purpose: List all of the characteristic information used in the
execution of BandAid.

Variables global to routine:
from BandAid — nEgns,
yMin, yMax,
MeshSize (via NonBandCalcs),

ImageFirstPoint, ImageLastPoint,

ItMax,
FactorIncremen,
ReduceTimeOption
e}
var PrintTime, PrintDate : DateType;
begin { body of PrintParameters }
Se(TimeString(PrintTime); SetDateString(PrintDate);
LF(11); TB(25);
write(” BandAid — Version 3 (October 20, 1984)");
writeln;
- TB(32);

write("(Start Time = ‘PrintTime, °, Date = *,PrintDate,”)");
LF(4); write(" Procedure Specifications — 7);
LF(1); Indent; write('Number of Equations and Unknowns = “.nEqns:3);
LF(2); Indent; write( " X—Direction specifications —);
LF(1); NL; write( Minimum Distance (XMin) = *); WR(yMin,10,5);
NL; write{ Maximum Distance (XMax) = *); WR(yMa.x.lO.S),
NL; write('Number of Mesh Points = ‘jMax:4);
NL; write{ Mesh Size = 7); WR(MeshSize,10,5);
NL; write('ImagePoint at °);
if (ImageFirstPoint) and (ImageLastPoint) then
write(‘the First and Last Mesh Points )
else if (ImageFirstPoint) then
write(‘the First Mesh Point )
else if (ImageLastPoint) then
write(‘the Last Mesh Point )
else write('None of the Mesh Points 9);
LF(2); Indent; write(’Options and Parameter Settings —);
LF(1); NL; write('Maximum Number of Iterations = °, [tMax:3);
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LF(1); NL;
if ReduceTimeOption then

write( “Calculation-Time Reduction Option Selected”)
else

write( ‘Calculation—-Time Reduction Option Not Selected”);
NL;
write(Increment Factor For Numerical Differentiation = );

WR(FactorIncrement, 10,3);

LF(3)

end; { PrintParameters }

procedure RunTimeDiagnostics;

{... Purpose: Report diagnostic information on the execution of

BandCore.
Variables global to the routine from BandAid (via NonBandCalcs):
NumberOflterations,
CPUTimeUsed
...}'
begin { body of RunTimeDiagnostics }
LF(8); write(" Run~Time Diagnostics — °);
LF(2); write(" Number of Iterations = “NumberOflterations:2);
LF(1);
write(" Computation Time?); write(” = ",CPUTimeUsed:6,” MilliSeconds °);
LF(3)

end; { RunTimeDiagnostics }

procedure PrintProfiles( function x( Node : integer ) : RealNumber;
FinalResult : ValueArray );

{... Purpose: List values of the dependent and independent variables
a each mesh poins.

Variables global to the routine from BandAid —
ImageFirstPoint, ImageLastPoint, XDist,
.}

var j : integer;

OtherResult : ValueArray;

procedure PrintReal( number : ReailNumber );
begin WR(number,10,5) end;

{ calculate the dimensional distance, concentration, and potential
and store them in the array OtherResult }

function dist : RealNumber;
begin dist := x(j) * v / a / kmR end;

function conc : RealNumber;
begin conc := FinalResult{1,j] * cRf end;



function pot : RealNumber;
begin
pot := ( FinalResult{2,j] — In{ —n * F *kmR * cRf / sR / ioRref ) )
*R*T /F / alphaCR
end; { pot }

function yfunction( y : RealNumber ) : RealNumber;
begin yfunction := y end;

function distfunc( y : RealNumber ) : RealNumber;

begin
if (v =0) then
disthnc ==y / a
else
distfunc ;= y * v / a / kmR
end;

begin { body of PrintProfies )

for j := 1 to jmax do
begin
OtherResult[1,j] := conc;
OtherResult{2,j] := pot
end;

writeln(” DIMENSIONLESS CONCENTRATION AND POTENTIAL PROFILES”);
writeln; writeln;

writeln(” j Y Theta Eta’);
writeln;

ListPrint(FinalResult, yfunction, 2, jmax, ImageFirstPoint,
ImageLastPoint, yMin, yMax);
LF(4);
writeln(* DIMENSIONAL CONCENTRATION AND POTENTIAL PROFILES");
writeln(” === %
writeln; writeln;
writeln(” Node X, cm conc, mol/cc eta, V°);
writeln;
ListPrint(OtherResult, distfunc, 2, jmax, ImageFirstPoint,

ImageLastPoint, yMin, yMax)
end; { PrintProfiles }

procedure PrintBarProfiles( FinalResult : ValueArray);
var j : integer;

function ThetaBar( j : integer ) : RealNumber;
begin ThetaBar := FinalResult{1,j] end;

function EtaBar( j : integer ) : RealNumber;
begin EtaBar := FinalResult{2,j] end;
procedure PrintHeading;
begin

write( BarProfiles, ‘Node ‘
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“ThetaBar ‘
‘EtaBar?);
writeln( BarProfiles ); writeln( BarProfiles )
end; { PrintHeading }

procedure PrintLine;
begin
write( BarProfiles, j 14, ~ “: 5 );
write( BarProfiles, ThetaBar( j ) : 22, * “: 5§ );
write( BarProfiles, EtaBar( j ) : 22 );
writeln( BarProfiles )
end; { PrintLine }

begin { body of PrintBarProfiles }
rewrite( BarProfiles );
PrintHeading;
for j := 1 to jMax do PrintLine
end; { PrintBarProfiles }

procedure PrintTimeSummary;

{... Purpose: Report a summary of the runtime diagnostics for the
execution of BandAid.

Variables global to the rouwtine: from BandAid — Clockinitial

var PrintTime, PrintDate : DateType;
ComputTime : integer;
RoundedComputTime : integer;

begin { body of PrinfTimeSummary }

SetTimeString(PrintTime); SetDateString(PrintDate);

LF(8); write("'Summary of RunTime Diagnostics — °); LF(3);
ComputTime := SystemClock — ClocklInitial;

TB(10);

write( Total Computation Time = *,ComputTime:8,” Milli-Seconds?);
TB(5);

RoundedComputTime := round(ComputTime /60000);

write("( “,RoundedComputTime:4,” Minutes)“);

LF(7); TB(2S); write('BandAid — Version 2°);

LF(1); TB(35); write((Stop Time = ’PrintTime);

write(*, Date = °,PrintDate,")");

LF(5)

end; {PrintTimeSumvmary}

{o. ++++++++++++++++ttrttrbtitttrrtbttrtbttdbtbbbrb bbbttt bttt
End of Printout Routines

B D R s s e o L oo 2 2k o b o ST T T S S |

end. { module SteadylO }
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[GFLOATING,INHERIT("AidMod.pen’, ImpedDcl.pen’, Impedlo.pen” )}
T o o SR e S R

Program Title : Impedance
Written By :  Paul Shain -

Date written : May 16, 1984
Date modified: May 22, 1990

Purpose: This program calculates the concentration and poten—
tial distributions in a flow—through porous electrode
with an alternating applied current according to the
model of Trainham and Newman (Electrochim. Acta, 26,
455 (1981)). The approach used is that used by
Tribollet and Newman (J. Electrochem. Soc., 131, 2780
(1984)).

Variable Number 1
Variable Number 2
Variable Number 3
Variable Number 4

real dimensionless concentration
imaginary dimensionless concentration
real dimensionless potential
imaginary dimensionless potential

nuuwu
ounonu

Parameters are those for reduction of a reactant in a redox
system. A side reaction and axal diffusion and dispersion are
included.

Double-layer capacitance is included.

o o ok o o e B e S S R i an ko T S T o |

program Impedance( input, output );

{... The constant, type, and variable declarations are declared in the
file, ImpedDclpas.” This program was wrilten in separate pieces
to remove from view parts which do not contribute to an under—
standing of how the program works. A list of the files that make
up the program follows.

AidMod - Contains constard, type, and var declarations required
by BandAid, and the BandAid procedure. Is inherited
by the other files.

ImpedDcl — Contains all declarations needed by the program Imped.
Is inherited by ImpedlO and Imped.

ImpedlO - Conains 110 routines used by Imped. s inherited by
Imped. -

Imped ~ Contains the equations to be solved by BandAid and
their boundary conditions.

Inheriting is a nonstandard feature available in VAX Pascal. A
“module” comtaining declarations and procedures can be compiled to
produce an object file of filetype "obj"” and an environment file

of filetype "pen.” Other files can "inherit" environments to use

the declarations or procedures contained therein. After a program



1

is compiled, its object file is linked to the object files of the
environments it has inherited to produce an executable file.

.}
function Equation( i, j : integer;
¥, h : RealNumber;
var NewResuit : ValueArray;
function cInterp( k : integer; ]
y : RealNumber;
var Result : ValueArray) :
RealNumber;
function dnFdyn( n : integer; ’
function F( y : RealNumber ) :
RealNumber;
y : RealNumber;
Approx : DiffApprox ) : RealNumber )
. : RealNumber;

function Varl ( y : RealNumber ) : RealNumber;
begin Varl := cInterp(l,y,NewResult) end; '

function Var2 ( y : RealNumber ) : RealNumber;
begin Var2 := cInterp(2,y,NewResult) end;

function Var3 ( y : RealNumber ) : RealNumber;
begin Var3 := clnterp(3,y,NewResult) end;

function Vard4 ( y : RealNumber ) : RealNumber;
begin Vard := cInterp(4,y,NewResult) end;

function T1 : RealNumber;
begin T1 := Varl(y) end;

function T2 : RealNumber;
begin T2 := VarX(y) end;

function El1 : RealNumber;
begin El := Var3(y) end;

function E2 : RealNumber;
begin E2 := Vard(y) end;

function TBar : RealNumber;
begin TBar := 1.0 end;

function EBar : RealNumber;
begin EBar := In( -n*F*kmR*cRf/sR /ioRref ) end;

function dT1dy ( y : RealNumber ) : RealNumber;
begin dT1ldy := dnFdyn(l,Varl,y,Cendiff) end;

function dT2dy ( y : RealNumber ) : RealNumber;
begin dT2dy := dnFdyn(l,Var2,y,Cendiff) end;

function dEldy ( y : RealNumber ) : RealNumber;
begin dEldy := dnFdyn(1,Var3,y,CenDiff) end;

function dE2dy ( y : RealNumber ) : RealNumber;

185



186

begin dE2dy := dnFdyn(l,Vardy,CenDiff) end;

function d2T1dy2( y : RealNumber ) : RealNumber;
begin d2T1dy2 := dnFdyn(2,Varl,y,Cendiff) end;

function d2T2dy2( y : RealNumber ) : RealNumber;
begin d2T2dy2 := dnFdyn(2,Varl,y,Cendiff) end;

function d2E1ldy2 ( y : RealNumber ) : RealNumber;
begin d2Eldy2 := dnFdyn(2,Var3,y,CenDiff) end;

function d2E2dy2 ( y : RealNumber ) : RealNumber;
begin d2E2dy2 := dnFdyn(2,Vard,y,CenDiff) end;

function UpStmBC( i : integer; y : RealNumber ) : RealNumber;
begin
case i of
1: UpStmBC :=T1; { =0}
2: UpStmBC :=T2, { =0}
3: UpStmBC := dEldy(y)y (=0}
4: case Configuration of
UD: UpStrmBC := dE2dy(y) + P5*DeltalStar; { = 0}
DU: UpStrmBC := dE2dy(y) + P6*DeltalStar; { = 0}
UU: UpStmBC := dE2dy(y) — P2*DeltalStar; { = 0}
DD: UpStmBC := dE2dy(y) { =0}
end { Configuration cases }

end { i cases}

end; { UpStrmBC }

function DiffEQ( i : integer; y : RealNumber ) : RealNumber;

var Denom, Beta, SideReactionTerm : RealNumber;
8, F1, AlphaC, AlphaS : RealNumber;

begin { body of DifEq }

F1 :=1 + (1 — TBar) / ThetaPf;

Beta := 1 + (AlphaaR / AlphacR);

AlphaC := AlphacS / AlphacR;

AlphaS := ( AlphaaS + AlphacS ) / AlphacR;

g := P1 * P7 / ThetaPf;

Denom := 1 + exp( EBar ) + g * exp( Beta*EBar ) ;

case i of

1: DiffEQ:= sqr(Denom)*(-T2*Omega ~ DPrime*d2T1dyX(y) )
+El*



(
( exp(EBar) + g*Beta*exp(Beta*EBar) ) *
( F1*P1*exp(Beta*EBar) — TBar )
= P1 * F1 * Denom * Beta * exp(Beta*EBar)
)
— T1 * Denom * (1 + P1 * exp(Beta*EBar) / ThetaPf );
2: DiffEQ := sqr(Denom)*(T1*Omega - DPrime*d2T2dy2(y))
+E2*
(
( exp(EBar) + g*Beta*exp(Beta*EBar) ) *
( F1*P1*exp(Beta*EBar) — TBar )
- P1 * F1 * Denom * Beta* exp(Beta*EBar)
)
~ T2 * Denom * (1 + Pl * exp(Beta*EBar) / ThetaPf );
3: DiffEQ := sqr(Denom) * ( d2Eldy2(y) + P2 * Cdl * Omega * E2 )
~— P2 *El *(
—Denom * P1 * F1 * Beta * exp(Beta*EBar)
+ ( exp(EBar) + g*Beta*exp(Beta*EBar) )
*( F1*P1*exp(Beta*EBar) — TBar )

—sqr(Denom)*P3*exp(-alphaC*EBar) *
( alphaC + P4*exp(alphaS*EBar)*(alphaS—alphaC) )
)

— Denom * T1 * P2 * ( 1 + Pl*exp(beta®ebar) /ThetaPf );

4; DiffEQ := sqr{Denom) * ( d2E2dy2(y) — P2 * Cdl * Omega * El1 )
-P2*E2*(
=Denom * P1 * F1 * Beta * exp(Beta*EBar)
+ ( exp(EBar) + g*Beta*exp(Beta*EBar) )
*( F1*P1%*exp(Beta*EBar) - TBar )
—sqr(Denom)*P3*exp(—alphaC*EBar) *
( alphaC + P4*exp(alphaS*EBar)*(alphaS—alphaC) )
)

— Denom * T2 * P2 * (1 + P1*exp(beta*ebar) /ThetaPf )

end { i cases )

end; { DiffEQ }

function DnStmBC( i : integer; y : RealNumber ) : RealNumber;
begin |
case i of
1: DnSumBC :=T1; { =0}
2: DnStmBC :=T2; { =0}
3: DnStmBC := dEldy(y); (=0}

4: case Configuration of
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UD: DnStmBC := dE2dy(y) - P6*DeltalStar; { = 0 }
DU: DnStmBC := dE2dy(y) — P5*DeltalStar; { = 0}

UU: DnStmBC := dE2dy(y); {=0)}
DD: DnStmBC := dE2dy(y) + P2*DeltalStar { = 0 }

end { Configuration cases }
end { i cases}

end; { DnStrmBC }

begin { body of Equation }
if (j=1) then
case i of

1: Equation := UpStrmBC(1,yMin),
2: Equation := UpStmBC(2,yMin);
3: Equation := UpStmBC(3,yMin);
4: Equation := UpStmBC(4,yMin)

end { i cases }
else if ( j = jMax ) then
case i of

1: Equation := DnStmBC(1,yMax);
2: Equation := DnStrmBC(2,yMax);
3: Equation := DnStmBC(3,yMax);
4: Equation := DnStmBC(4,yMax)

end { i cases)
else case i of

1: Equation := DiffEQ(l.y);
2: Equation := DiffEq(2y);
3: Equation := DiffEQ(3.y);
4: Equation := DiffEQ(4,y)

end { i cases}

end; { Equation }

function Converged( function y( j : integer ) : RealNumber;
h : RealNumber;
var NewResult, Deviation : ValueArray;
var Residual : ValueArray;
function cinterp( k : integer;
y : RealNumber;
var Result : ValueArray ) :
RealNumber;
function dnFdyn( n : integer;
function F( y : RealNumber ) :
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RealNumber;
y : RealNumber;
Approx : DiffApprox ) : RealNumber
):
boolean;
var k, j : integer;
begin
Converged := true;
for k to nEqns do

for j = 1 to jMax do

n
if ( NewResult[k,j] = 0 ) then
if ( abs(Deviation(k,j]) > Tolerance ) then
Converged := false;
if ( NewResult[k,j] < 0 ) then
if (abs(Deviation[k,j] /NewResult[k,j]) > Tolerance) then
Converged := false
end

end; { Converged }

procedure NonBandCalcs( Lastlteration : boolean;
’ Iteration, CPUTime : integer;
function y( j : integer ) : RealNumber;
h : RealNumber;
var NewResult, Deviation : ValueArray;
var Residual : ValueArray;
function clnterp( k : integer;
y : RealNumber;
var Result : ValueArray ) :
RealNumber;
function dnFdyn( n : integer;
function F( y : RealNumber ) :

RealNumber;
y : RealNumber;
Approx : DiffApprox ) :
RealNumber );
var j : integer;
begin { body of NonBandCalcs }
if ( Lastlteration ) thenm
begin
NumberOflterations := Iteration; { rename the parameters }
MeshSize := h; { passed from BandAid for }
CPUTimeUsed := CPUTime; { use in the ilo routines )}
{* PrintParameters;
RunTimeDiagnostics;

PrintProfiles( y, NewResult, Numberoflterations );
PrindTimeSummary *}
end

end; { NonBandCalcs }
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procedure SetParameters;

procedure Error;

begin :
writeln; write(‘Configuration °,CounterElectrode,CurrentCollector,
* is not UD, DU, UU, or DD. 9;
writeln; write("Check the data file and try again. °);
writeln; writeln;
halt
end; { Error}

begin { body of SetParameters }

kmR := D / rPore;
kmP := kmR;

Da = 0;

DPrime := e * D * a / kmR;

Pl := (-sR*ioRref) /(n*F*kmR*CRf) ** (1+(AlphaaR /AlphacR));

P2 := AlphacR*n*F*F*kmR*CRf/(sR*a*R*T) *(1 /kappa + 1/sigma);
P3 := —sR*ioSref /(n*F*kmR*CRf) * exp( AlphacS*F /(R*T)*DeltalU )
* ( —n*F*kmR*CRf/(sR*ioRref) ) ** (AlphacS /AlphacR);
P4 := (- sR*ioRref /(n*F*kmR*CRf)) ** ( (AlphaaS+AlphacS)/AlphacR )
* exp( — F*(AlphaaS+AlphacS)*DeltaU /(R*T) );
PS5 := -sigma*P2/(sigma + kappa);
P6 := kappa/sigma * P5;

P7 := kmR / kmP;
ThetaPf := CP{/CRf;
Alphal, := a*L;

(“““O

reset ( pFactors );

readin( pFactors, Pl );
readln{ pFactors, P2 );
readin{ pFactors, P3 ),
readln( pFactors, P4 );
readin{ pFactors, PS );
readin( pFactors, P6 );
readln{ pFactors, P7 );
readin{ pFactors, thetapf );
readin{ pFactors, Dprime );
readin{ pFactors, alphal. );
readiln{ pFactors, istar );
readin( pFactors, cdl );

.““.“)

case CounterElectrode of
U case CurrentCollector of

U~ Configuration
D Configuration



otherwise Error

end; { CuwrrentCollector cases }
‘D”: case CurrentCollector of

U~ Configuration :=

D" Configuration :=
otherwise Error

DU;
DD

end; { CurrentCollector cases }
otherwise  Error
end; { CounterCollector cases }

yMin := 0;
yMax := Alphal

. end; { SetParameters }

begin { body of Impedance }

Clocklnitial := SystemClock;
SetTimeString(BeginTime); SetDateString(BeginDate);
ReadParameters;

SetParameters;

PrintTitle;

EchoParameters;

OmegaUnits := 1.0e+1;

write("Omega,Hz Re(Z),Ohm.cm2 -Im(Z),Ohm.cm2 °);
writeln( Tterations *);

while ( OmegaUnits < 1000001.0 ) do
begin

omega ;= OmegaUnits / (¢ * a * kmR );

BandShell( nEqns, jMax, ItMax, yMin, yMax, FactorIncrement,
Absolutelncrement, ImageFirstPoint, ImageLastPoint,
ReduceTimeOption, Guess, FinalResult, Deviation,
Residual, Equation, Converged, NonBandCalcs );

if (CurrentCollector = ‘D”) then WhichEnd := jmax
else if (CurrentCollector = U") then WhichEnd := 1;

ZReal := | (R * T) / (alphaCR * F) ) * FinalResult{4,WhichEnd] / Deltal;
ZImag := ( (R * T) / (alphaCR * F) ) * FinalResult{3,WhichEnd] / Deltal;

write(OmegaUnits:20, * %;
writeln( * °, ZReal:20, * °, —ZImag:20, * °,
Numberoflterations:4);
OmegaUnits := 10.0 * OmegaUnits
end

end. ( Impedance }
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APPENDIX P

Listing of Program ImpedanceDcl
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{GFLOATING, INHERIT("AidMod.pen”), ENVIRONMENT(‘ImpedDcl.pen”)]

module ImpedanceDcl( input, output, BarProfiles, pFactors );

const {... BandAid Parameters ..}

nEgns = 4,
ImageFirstPoint = true;
ImageLastPoint = true;
FactorIncrement = le—6;
AbsoluteIncrement = le—6;
ReduceTimeOption = true;

{... Physical Constants ...}

= 96487.0; { Faraday’s constant, coulombs lequivalent }
R = 8.314; { ideal gas constant, joules/mole-K }

type alfa = packed array[l..11]of char;

var {... BandAid Parameters ...}

Guess, FinalResult, OtherResult, Deviation, Residual : ValueArray;
j» jMax, ItMax : integer;
Tolerance : RealNumber;

{... Physical Parameters ...}

v, e, CRf, CPf, AlphaaR, AlphacR, AlphaaS, AlphacS : RealNumber;
L.a, D, Da, kmR, rPore, sR, ioRref, ioSRef, T, kmP : RealNumber;
i, kappa, sigma, DeltalU, Cdl : RealNumber;

n : integer;

{... Dimensionless Parameters ...}

Alphal, DPrime, ThetaPf : RealNumber;

P1, P2, P3, P4, PS5, P6, P7, P8 : RealNumber;
yMin, yMax : RealNumber;

ZReal, ZImag : RealNumber;

{... Other Parameters ...}

Configuration : (UD, DU, UU, DD);

CounterElectrode, CurreniCollector : char;
ThetalGuess, Theta2Guess, EtalGuess, Eta2Guess : RealNumber;
Deltal, DeltalStar, OmegaUnits, Omega : RealNumber;
iStar : RealNumber;

BarProfiles : text;

pFactors : text;

BarValues : ValueArray;

WhichEnd : integer;

MeshSize : RealNumber;

CPUTimeUsed, Clocklnitial : integer;
NumberOflterations : integer;

BeginDate, BeginTime : alfa;

end.
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APPENDIX Q

Listing of Program ImpedancelO



. [GFLOATING, INHERIT(ImpedDcl.pen’, “AidMod.pen”), ENVIRONMENT( ImpedIO.pen~)]
module ImpedancelQ;

procedure SetTimeString( var TimeString : alfa );
begin time(TimeString) end;

procedure SetDateString( var DateString : alfa );
begin date(DateString) end;

R L R o 2 S R R R e R e e DR R e

Output Routines:
The following routines print the input, ouwtput and
runtime diagnostic messages for the BandShell calling
program Imped pas.

B R L R e o o L R S E e e I

procedure ReadParameters;

var chl, ch2 : char;
Node, int : integer;

begin
Find(™*");
RI(jMax); RI(ItMax); RR(Tolerance);
RI(n); RR(L) RR(T);
RR(D); RR(e);
RR(a); RR(v); RR(kappa);
RR(sigma); RR(Cd)); RR(sR);.
RR(CRf); RR(CPf);

{ Convert CRf and CPf from moles per liter to moles per cc }

CRf := CRf / 1000; CPf := CPf / 1000;

RR(kmR); RR(kmP); RR(rPore);
RR(AlphaaR);
RR(AlphacR); RR(AlphaaS); RR(AlphacS);
RR(ioRref); RR(ioSref); RR(DeltalU);
RR(i); RR(Deltal); RR(OmegaUnits);
if (v = 0) then
DeltalStar := (sR / n * F * cRf * kmR) * Deltal
else

DeltalStar := (sR / n * F * cRf * v) * Deltal ;
Omega := OmegalUnits /(e * a * kmR )

RR(ThetalGuess); RR(EtalGuess);
RR(Theta2Guess); RR(Eta2Guess);

Find(’="); repeat read(chl) until not(chl = * °);
read(ch2);
CounterElectrode := chl;
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CurrentCollector := ch2;
readln;
{* reseti{ BarProfiles );
readin{ BarProfiles ); readin( BarProfiles );
for j := 1 to jMax do
readin(BarProfiles, int, BarValues(l,j], BarValues[2j]) *}

end; { ReadParameters }

procedure PrintTitle;

begin
LF(5); TB(25); write(’Flow-Thru Porous Electrode Redox Program?);
LF(2); TB(25); write(” written  by”);
LF(2); TB(2S); write(” Paul Shain?);

LF(2); TB(29), write("(Date Written : 11 January 1984)");
LF(2): TB(29): write("(  Revised : 22 May 1990);
LF(2); TB(40); write('Program begun at *, BeginTime );
LF(2); TB(40); write(” on ’, BeginDate );
LF(3);

end; { PrintTitle }

procedure EchoParameters;

procedure PrintReal( number : RealNumber );
begin WR(number,10,5) end;

begin

LF(5); TB(15);
LF(2); TB(30);
LF(2); TB(20)
LF(2); TB(20);
LF(1); TB(20);
LF(1); TB(20);
LF(1); TB(20);
LF(2); TB(20);
LF(1); TB(20)%
LF(1); TBQ0);
LF(1); TB(20);
LF(1); TB(Q20);
LF(1); TB(20);

write(Input Parameters — °);
write("— Dimensional Values —°);
write('Number of Electrons Transferred in’,
* Main Reaction = 7);
PrintReal(n);
write("Electrode Length (L) =7);
PrintReal(L); write(” cm”);
write( Temperature (T) = °);
PrintReal(T); write(® K);
write( "Reactant Diffusivity (D) = );
write(D:10,” sq cm/s");
write( Dispersion coefficient (Da) = 7);
write(Da:10,” sq emy/s?);
write( Electrode Void Fraction (epsilon) = 7);
PrintReal(e);
write(‘Electrode Surface-Area/Volume (a) = );
PrintReal(a); write(* sq cm/cu cm”);
write(Fluid Superficial Velocity (v) = 9);
PrintReal(v); write(’ cm/s”);
write( ‘Effective Solution Conductivity (kappa) = °);
PrintReal(kappa); write(” mho/cm”);
write( Electrode conductivity (sigma) = °);
PrintReal(sigma); write(” mho/cm?);
write( Double-layer capacity (Cdl) = °);
PrintReal(Cdl); write(® F/sq cm?);



{convert cdl to dimensionless form}
Cdl:=a*Cdl *R*T*sR /(alphacR * e * n * sqr(F) * cRf );

LF(2); TB(20);
LF(1); TB(20);
LF(1); TB(20);
LF(1); TB(20)
LF(1); TB(20);
LF(1); TB(20);
LF(1); TB(20);
LF(2); TB(20);
LF(1); TB(2S);
LF(1); TB(2S);
LF(1); TB(20);
LF(1); TB(2S);
LF(1); TB(25);

LF(2); TB(20);
LF(1); TB(25);

LF(1); TB(25)
LF(1); TB(20);
LF(2); TB(20);
LF(2); TB(20);
LF(3); TB(20);

write("Reactant Stoichiometric Coefficient (sR) = );
PrintReal(sR);
write{ Reactant feed concentration (cRf) = °);
PrintReal(CRf); write(” mol/cc?);
write('Reactant mass—transfer coefficient (kmR) = *);
PrintReal(kmR); write(’ cm/s");
write( 'Reactant mass—transfer coefficient (kmP) = °);
PrintReal(kmP); write(® cm/s7);
write( Pore radius (rPore) = °);
PrintReal(rPore); write(" cm”);
write("Product feed concentration (cPf) = °);
PrintReal(CPf); write(” mol/ce?);
write(Product mass—transfer coefficient (kmP) = *);
PrintReal(kmP); write(” cm/s”);
write("'Main reaction”);
write(“anodic alpha = °); PrintReal(alphaaR);
write(“cathodic alpha = °); PrintReal(alphacR);
write(“Side reaction”);
write( anodic alpha = °); PrintReal(alphaaS);
write(“cathodic alpha = °); PrintReal(alphacS);

write('Exchange current densities ~ );
write(‘'main reaction (ioRref) = 9);

PrintReal(ioRref); write(” amps/sq cm”);
write(“side reaction (ioSref) = °);

PrintReal(ioSref); write(® amps/sq cm”);
write(Delta U = °);

PrintReal(DeltalU); write(” volts?);
write("Current density = °);

PrintReal(i); write(” amps/sq cm”);
write("Current variation = °);

PrintReal(Deltal); write(” amps/sq cm?);
write( ‘Electrode Configuration = °);

case Configuration of

UD: begin

write("'UD — Upstream Counterelectrode,”);
LF(1); TB(46);
write(” Downstream Current Collector”)

end;

DU:

write{' DU — Downstream Counterelectrode,”);

LF(1); TB(20)
write(’ Upstream Current Collector”)

end;
UU:  begin

write{("UU — Upstream Counterelectrode,?);
LF(1); TB(20);
write(” Upstream Current Collector”)

end;
DD: begin

write('DD — Downstream Counterelectrode, 9);
LF(1); TB(20);
write(” Downstream Current Collector”)
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end

end; { Configuration cases }

LF(5); TB(30); write("— Dimensionless Groups — )
LF(2); TB(20); write(P1 = °); PrintReal(P1);
LF(1); TB(20); write(P2 = *); PrintReal(P2);
LF(1); TB(20); write('P3 = ); PrintReal(P3);
LF(1); TB(20); write(’P4 = *); PrintReal(P4);
LF(1); TB(20); write(’PS = °); PrintReal(P5);
LF(1); TB(20); write(’P6 = *); PrintReal(P6);
LF(1); TB(20); write('P7 = °); PrintReal(P7);
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LF(2); TB(20); write( ThetaPf = °); PrintReal(ThetaPf);
LF(1); TB(20); write("AlphaL. = 7; PrintReal(AlphaL);
LF(2); TB(20); write(' DPrime = °); PrintReal(DPrime);

LF(2); TB(20); write( DeltalStar = °); PrintReal(DeltalStar); LF(5);
LF(2); TB(20); write(‘Capacity = *); PrintReal(Cdl); LF(5);

end; { EchoParameters }

procedure Indent; { Indent }
begin TB(5) end; { Indent}

procedure NL; { NewLine }
begin LF(1); Indent; Indent end; { Newline }

procedure PrintParameters;

{... Purpose: List all of the characteristic information used in the
execution of BandAid.

Variables global to routine:
from BandAid — nEqns,

yMin, yMax,
MeshSize (via NonBandCalcs),
ImageFirstPoint, ImageLastPoint,
ItMax,
Factorincrement,
ReduceTimeOption

var Prin(Time, PrintDate : alfa;
begin { body of PrintParameters }
SetTimeString(PrintTime); SetDateString(PrintDate);
LF(11); TB(2S);
write(" BandAid — Version 3 (October 20, 1984)");
writeln; TB(35);
write(’(Start Time = °,PrintTime, °, Date = ‘,PrintDate,”)?);
LF(4); write(" Procedure Specifications — °);
LF(1); Indent; write('Number of Equations and Unknowns = ‘,nEqns:3);
LF(2); Indent; write( X-Direction specifications —°);



LF(1); NL; write(' Minimum Distance (XMin) = ); WR(yMin,10,5);
NL; write(’Maximum Distance (XMax) = °); WR(yMax,10,5);
NL; write('Number of Mesh Points = ‘,jMax:4);
NL; write('Mesh Size = °); WR(MeshSize,10,5);
NL; write( ImagePoint at “);
if (ImageFirstPoint) and (ImageLastPoint) then
write(‘the First and Last Mesh Points )
else if (ImageFirstPoint) then
write( ‘the First Mesh Point )
else if (Imagel astPoint) then
write( ‘the Last Mesh Point )
else write('None of the Mesh Points °);

LF(2); Indent; write(‘Options and Parameter Settings —);
LF(1); NL; write(' Maximum Number of Iterations = °, ItMax:3);
LF(1); NL;
if ReduceTimeOption then

write( "Calculation-Time Reduction Option Selected’)
else write(“Calculation-Time Reduction Option Not Selected?);
NL; write(Increment Factor For Numerical Differentiation = °);
WR(FactorIncrement, 10,3);
LF(3)

end; { PrintParameters }

procedure RunTimeDiagnostics;

{... Purpose: Report diagnostic information on the execution of
BandCore.

Variables global to the routine:
from BandAid (via NonBandCalcs):
NumberOflterations,
CPUTimeUsed

begin { body of RunTimeDiagnostics }

LF(8); write(" Run-Time Diagnostics ~—~ °);

LF(2); write(" Number of lterations = ‘NumberOflterations:2);
LF(1); write(" Computation Time");

write(* = °,CPUTimeUsed:6,” MilliSeconds °);

LF(3)

end; { RunTimeDiagnostics }

procedure PrintProfiles( function y( j : integer ) : RealNumber;
FinalResult : ValueArray;

Iterations :

{. Purpose: List values of the dependent and independent variables
at each mesh point.

Variables global to the routine:
from BandAid — ImageFirstPoint, ImageLastPoint, XDist, N

var j : integer;
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procedure PrintReal( number : RealNumber );
begin WR(number,10,5) end;

function dist : RealNumber;
begin dist := y(j) * v / a2 / kmR end;

function conc : RealNumber;
begin conc := FinalResult{1,j] * cRf end;

function pot : RealNumber;

begin pot := FinalResult{3j] * R * T / F / alphaCR end;

function imconc : RealNumber;
begin imconc := FinalResult{2,j] * cRf end;

function impot : RealNumber;
begin impot := FinalResult{4j] * R * T / F / alphaCR end;

function yfunction(y : RealNumber) ;: RealNumber;
begln yfunction =y end;

function distfunc(y : RealNumber) : RealNumber;

" If (v = 0) then
distfunc ==y / a
else
distfunc ==y * v / a / kmR
end;

begin { body of PrintProfiles }

for j := 1 to jmax do
begin
OtherResult{1,j] := conc;
OtherResult{2,j] := imconc;

OtherResult(3,j] := pot;
OtherResult[4,j] := impot
end;
TB(28); writein(' DIMENSIONLESS CONCENTRATION AND POTENTIAL PROFILES");
TB(28); writeln(" == »%
LF(2);

wﬁte(’Node’); TB(12); write("Y"); TB(14); write('Theta”); TB(13);
write( Thetalm?); TB(14); write('Eta”); TB(15); write(’EtaIm?);
writeln;

Lxstan(anlR&ult. yfunction, 4, jmax, ImageFirstPoint,
ImageLastPoint, yMin, yMax);

LF(4);

{ :

TB(28); writein{ DIMENSIONAL CONCENTRATION AND POTENTIAL PROFILES®);
TB(28); writel ‘=======z==== ===s=zzmzaz===s === ========= ========');
LF(2);

write{ ‘Node’); TB(10); write(’x,cm’); TB(13); write{ ‘conc’); TB(15);
write( ‘imconc’); TB(14), write{ pot’); TB(15); write( impot’); writeln;
LF(Q2);
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ListPrint{OtherResult, distfunc, 4, jmax, ImageFirstPoins,
ImagelastPoint, yMin, yMax);
}

LF(4);

end;

procedure PrintTimeSummary;

{... Purpose: Report a summary of the runtime diagnostics for the
execution of BandAid.

Variables global to the routine:
from BandAid — Clockinitial

var PrintTime, PrintDate : alfa;
ComputTime : integer;
RoundedComputTime : integer;

begin { body of PriniTimeSummary }

SetTimeString(PrintTime);

SetDateString(PrintDate);

LF(8); write("Swmnmary of RunTime Diagnostics — °); LF(3);
ComputTime := SystemClock - ClockInitial;

TB(10);

write( Total Computation Time = *,ComputTime:8,” Milli-Seconds?);
TB(S5);

RoundedComputTime := round(ComputTime /60000);

write("( ",RoundedComputTime:4,” Minutes)”);

LF(7); TB(25); write{ BandAid — Version 3°);

LF(1); TB(35); write("(Stop Time = “PrintTime);

write(’, Date = °,PrintDate,")?);

LF(5)

end; {PridTimeSummary)}
{... +++++++++++++++++++++++t+tttt+trrtrrrtr bbbttt

End of Printout Routines

D B S I e S a e S o G e e s e

end. { module ImpedancelO }
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CHAPTER 9

Porous Electrode Experiments and Simulations

This chapter begins with a discussion of the apparatus for measuring the frequency response

of a flow-through porous electrode. Results of one such experiment are shown.

The responses of various transmission lines, electric circuit networks analagous to porous

electrodes, are discussed to show how porous electrodes are expected to behave.

Results of the model presented in the previous chapter are then presented and compared to the

experimental results. The effect of changing parameters on the results of the model are also shown.

9.1, Experimental apparatus

The flow-through porous electrode apparatus was the same one used by Matlosz! 2 and
(except for the working electrode material) by Trost® and Sisler* A photograph of the apparatus was

included in Trost’s dissertation.’

Figure 9-1 is a schematic diagram of the electrode. The working electrode was a reticulated
vitreous carbon (RVC) cylinder (5 inches long, 2 inches in diameter) in a plastic tube. The RVC was
manufactured by ERG, Inc. (Oakland, California). The counterelectrode was a platinum/rhodium screen
welded to a current collector rod. Both current collectors were made of tantalum. Electrolyte was
pumped through the working and counter electrode compartments (which were separated by a Nafion
membrane) and rotameters were used to measure the flow rate. A calomel reference electrode was placed

downstream from the working electrode for electrical control of the system.

Several pieces of electronic equipment served to control the apparatus. A Stonehart BC1200
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Figure 9-1. Schematic diagram of porous electrode apparatus.
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Potentiostat and a Princeton Applied Research 175 Universal Programmer were used to apply a specified
current to the electrode by conatrolling its potential relative to the reference electrode. A device fabricated
by the Lawrence Berkeley Laboratory Electronics Shop was used to subtract approximately any direct-
current bias, e.g. the open-circuit potential, for more accurate measurement of the potential variation by
the frequency response analyzer.® The main piece of controlling equipment was the Solartron 1254 Fre-
quency Response Analyzer. This device adds a perturbation to the current set by the programmer and
potentiostat and calculates the real and imaginary parts of the impedance from the potential response at
frequencies from 10 pHz to 65.53S kHz. A Central Point Software Laser128 computer (an “‘Apple
clone’”) was used to change the settings on the Solartron via its keyboard and to capture and store experi-
mental data for later manipulation. A Nicolet 206 digital oscilloscope was used to monitor the input and

output signals (current perturbation and voltage response) to check that they were sine waves.
9.2, Experimental results

The solution used as both anolyte and catholyte was 1 N HCI, 0.25 M FeCl,, 0.25 M FeCl,.
The flow rate was zero. The measurements were made around the open-circuit potential. The perturba-
tion was set at 10 mV rms. This voltage was divided by 1000; thus the voltage perturbation was a sine
wave of amplitude 10v2 uV—small enough so that the system’s response was linear. This was shown by

a lack of response at harmonic frequencies.

Figure 9-2 is a Nyquist plot of the experimental results. The experiment was repeated four
times with consistent results. It is not clear why the results cross the imaginary axis. An ohmic potential
drop or contact resistance between electrode and current collector would shift the results in the opposite
direction (i.e., in the positive direction). However, results of the model have this feature if the ohmic

potential drop in the solution is important (P, is large or x is small). In section 9.4 these results and those

of de Levie are compared to the predictions of the model developed in Chapter 8.



208

3.0 —— T T r
Bun
—_— 1 <
25F o
e
—e@ee 4
20F
G o
& 1.5F
E s
1.0
05F
0.0 Sm—
-2.0 -1.5

Figure 9-2. Nyquist plot of the impedance of the experimental system.
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9.3. Transmission lines

It is often convenient to have a simple approximation to a complicated model. Such an
approximation can be used to make certain that the more complicated model behaves correctly. ‘Here we
use an electrical circuit analogous to the porous electrode. The *‘equivalent circuit’’ that comes closest to
resembling a porous electrode is a finite transmission line with leakage and capacitance. Both have two
parallel conduction paths separated by resistance to charge transfer (leakage), capacitance, and possibly
induction. The impedance of finite and infinite transmission lines can be calculated.” For a finite the

transmission line analogous to the electrode of interest, the impedance is

A : %
z= nnh{d[(R +joLY(G + ij)] H&-)’%} , | m

where Z is the impedance of the transmission line; G, the conductance (leakage) per length; R, the resis-
tance per length; C, the capacitance per length; d, the length; and L, the inductance per length. Nyquist
plots of the impedance for finite transmission lines are shown in Figures 9-3 through 9-7. The frequency
range examined is 1 pHz to 1 MHz. For the base case shown in Figure 9-3, the parameter values were
estimated to approximate the experimental conditions: d = 12.7 cm, R = 0225 Q/cm, C = 0.2 F/cm; G=

134.1 S/cm,and L = 0.

The parameters d, C, G, and R are analogous to the packed-bed parameters d, C,, i , and
some combination of -‘l; and %. There is no obvious analog to the inductance L. Knowing how the
values of these parameters affect the impedance will help in fitting experimental results with the model.

The response of a transmission line as a function of length is shown in Figure 9-4. Because
the impedéncc is proportional to the hyperbolic tangent of a factor times the length, its derivative with

respect to length is proportional to the square of the hyperbolic secant of the factor times the length. This

quantity is positive; therefore the impedance increases with increasing length.

Figure 9-5 shows the effect of changing the capacitance. If the capacitance is zero, the

impedance is constant and real. All the curves follow the same path, but over the same frequency range
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extend farther as the capacitance is increased. Different frequencies occur at a given point as the capaci-

tance is changed.

Figure 9-6 shows the effect of changing the leakage in the transmission line. ‘As expected, the

impedance decreases as the leakage increases.

Figure 9-7 shows the effect of changing the conductivity of the transmission line. As
expected, the impedance decreases as the resistance decreases.

Figure 9-8 shows the effect of changing the inductance of the transmission line. As expected,

as the inductance increases, the curve extends farther into the negative complex half plane.

9.4. Model results

Possible sources of exror in the experimental results include ground loops and shunt currents.
The response of more than the electrode alone might have been measured because of the presence of other
current paths. In addition the kinetic parameters used in the porous electrode model may not be the same
for the reaction occurring on the porous electrode’s surface as on that of the polished rotating disk. The

value used for the mass transfer coefficient D/rm is also an approximation which may lead to error.

Finally, the model does not predict, and the experimental results were not corrected for, the ohmic drop.

Calculations using the porous electrode model developed in Chapter 8 were made on a VAX
8650 computer. To solve the four equations at the 203 mesh points, with two iterations at each point, and
a tolerance of 10 takes seven to twenty, but usually fifteen, minutes of CPU time for each frequency. A
more efficient scheme should have been used to solve the equations. The data file used by the model is

reproduced in Table 9-1.

To simulate the experiments, carried out at the open-circuit potential and without electrolyte
flow, the steady-state values 9=1and 1_1 = 0 were used. The curve labelled ‘“0.25 M"’ in Figure 9-9
shows the model prediction of the impedance of the experimental system based on our best estimate for

the physical properties of the experimental system. The measured impedance of the experimental system
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Figure 9-6. Nyquist plot of the impedance of transmission lines of different leakages.
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Figure 9-8. Nyquist plot of the impedance of transmission lines of different inductances.
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Figure 9-9. Model predictions for different electrolyte éoncemrations in a porous electrode. The max-
imum in a curve for an idealized porous electrode doubles when the concentration is reduced by a factor

of four.
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Number Of Mesh Points = 203
Iteration Limit = 10
Convergence Tolerance = 1e4

Number of electrons in main reaction, n = 1

Electrode length = 127 cm
Temperature = 29815 K
Reactant diffusivity =  6.2e-6 sqcmis

Electrode woid fraction= 097

Electrode surface area = 1000.0 sqcmicucm
Fluid velocity = 0.0e4 cml/s

Solution conductivity = 025 mho/cm
Electrode conductivity =  1.73 mhoicm
Double-layer capacity = 10.0e-6 Fisgcm

Stoichiometric coefficient of the reactant, sSR = -1.0
Reactant feed concentration = 025 M

Product feed concentration = 025 M

Pore radius = 1.00e-1 cm

Kinetic parameters:
Main reaction
anodic alpha = 0.74
cathodic alpha = 026
Side reaction
anodicalpha = 05

cathodic alpha = 05
Exchange current densities at the reference (i.e. feed)
composition:
main reaction = 0.227e-3 ampsisq cm
side reaction = 6.708e-13 ampsisq cm

Delta U (Difference in the potentials of the side reaction
and the primary reaction at the reference (feed)
composition) = -0.6513 volts

Current = 0.0 ampisqcm
Current oscillation amplitude = 0.14 amp/sq cm

Table 9-1. Parameters used by the model to simulate experimental results.

is not only much greater than the model’s prediction, but is qualitatively different. The experimental

result is a loop with a width of about 1.75 Q or 35 Qcm?; and a height of 0.8 Q or 16 Qcm?. Because the

model predicts that the system behaves like a capacitor, it can be assumed that the double-layer capacity is

less than the estimated 10 F/cm? that was used in the model.
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If the squares of the real and imaginary parts of the impedance of an idealized porous elec-

trode are plotted (rather than the usual Nyquist plot), de Levie® showed that the resulting curve will be a
semicircle. His experimental results agree with this, but his electrode was closer to the ideal than ours.
Neither the squares of the porous electrode model’s results shown below nor the square of the impedance

of a transmission line are semicircles. However the two curves have the same shape.

The product of the radius of the semicircle in the squared impedance plane and the electrolyte

concentration is a constant.® Therefore doubling the concentration should reduce the curve maximum in
the impedance plane by a factor of ¥2. Figure 9-9 also shows the model’s calculations of Nyquist plots

for 0.25 M, 0.125 M, and 0.0625 M Fe**/Fe?* solutions.

It is more practical to change the values of a few dimensionless groups than many individual
variables to observe the effect of the changes on the model results. Table 9-2 contains the values of the

dimensionless groups for the base case. These values were changed each time the program was run. For

- ﬂkaRC
these simulations, the potential 1}’ was assigned the value - ——=— instead of the natural logarithm of

SRR o

P, 167e+7
P, -693%5
P, 526el4
P, 726e+7
P, 605e5
P, 8756
P, 10

0, 10

D’ 970

ol 1.27e+3
I 0.0

C, -4.223¢-5

Table 9-2. Values of the dimensionless parameters for the base case of the impedance program.
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this value. This is equivalent to using a value of 1-1 of 0.46 V. The value assigned to the concentration )
was unity which is the same as assuming that the measurements are sufficiently fast that they are finished
before the reaction has proceeded appreciably.

Figures 9-9 through 9-17 show the effects of changing the values of the dimensionless groups
listed in Table 9-2.

Figures 9-10 through 9-12 illustrate the effect of changing the importance of the faradaic
processes. Figure 9-10 shows that change P,, the importance of the backward term of the main reaction,
by fourteen orders of magnitude causes little change in the curve under the assumed conditions. On the
other hand, Figure 9-11 shows that decreasing P,, the importance of the backward term in the side reac-
tion, by fourteen orders of magnitude reduces the amount of current that will be passed for a given applied
potential and thus increases the magnitude of the impedance. This same logic explains the difference
between the two curves in Figure 9-12. Increasing P,, the rate of the side reaction, decreases the

impedance because charge transfer is easier.

The impedance should decrease with increasing bed length because there are more paths for
the current to take between the two phases. Figure 9-13 shows that the model predicts this.

Figures 9-14 through 9-16 show the effects of changing the importance of the ohmic terms.
Figure 9-14 shows that if the ohmic drop is very important, i.e., if P, is very large, the electrode acts like a
resistor and the Nyquist curve lies at a point on the real axis. If the potential drop or resistance in the
matrix P, is very large, then the impedance of the electrode is very large as seen in Figure 9-15. The most
interesting result, especially when compared with the experimental results in Figure 9-2, is that shown in
Figure 9-16. Here the curve crosses the imaginary axis, and the impedance is large at most frequencies
for the larger value of P, the ohmic drop or resistance in the solution phase.

In figure 9-17 the curve for the large value of the double layer capacity is nearly vertical

because the bed is acting as a capacitor. It is interesting to note that if the .wrong sign is used for the
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Figure 9-10. Model predictions for the impedance of a porous electrode. All other parameters are as list-
ed in Table 9-2. P, characterizes the importance of the main reaction’s rate.



219

S5e-7 T T v T T T Y T
4e-7 P4 -
o 7.26E+7
" & 1.0E-7
N
E 3e-7F m
Q
d -
T 2e-7[ -
le-7 -
Oe_,_o 9 P 1
3e-26 le-7 2e-7 3e-7 4e-7 Se-7

Re(2Z), Qcm2

-Figure 9-11. Model predictions for the impedance of a porous electrode. All other parameters are as list-
ed in Table 9-2. P, characterizes the importance of the cathodic term of the side reaction.
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Figure 9-12. Model predictions for the impedance of a porous electrode. All other parameters are as list-
ed in Table 9-2. P, characterizes the importance of the side reaction.
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Figure 9-13. Model predictions for the impedance of a porous electrode. All other parameters are as list-
ed in Table 9-2. oL is the dimensionless bed length.



e

222

2.06-7 v N N v 1 L B T T ey
P2 ]
O -6.93E-5 T
1.5e-7 F’ A - -1.0E+5 |
o~ .
E J
o -y
(o
) 1.0e-7 ..
S :
E i -
5.0e-8 -
0.0e+0 —— STV [ S S S S S S S S R s .
6.5¢-27 5.0e-8 1.0e-7 1.5e-7 2.0e-7

Re(Z), Qcm2

Figure 9-14. Model predictions for the impedance of a porous electrode. All other parameters are as list-
ed in Table 9-2. P, characterizes the importance of the ohmic potential drop.
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Figure 9-15. Model predictions for the impedance of a porous electrode. All other parameters are as list-
ed in Table 9-2. P, characterizes the importance of the ohmic potential drop in the matrix phase.
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Figure 9-16. Model predictions for the impedance of a porous electrode. All other parameters are as list-
ed in Table 9-2. P, characterizes the importance of the ohmic potential drop in the solution phase.
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Figure 9-17. Model predictions for the impedance of a porous electrode. All other parameters are as list-
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double-layer capacity, the loop is inverted, i.e., it appears below rather than above the real axis. This is

what intuition would suggest because the out-of-phase or imaginary part of the impedance is usually pro-

portional to C'! so changing the sign of C changes the sign of Im(Z).

The dimensionless groups are related to properties of the experimental system and can be

changed in the experimental system by changing the system appropriately. The dimensionless group P, is
. . . . 1 1

14O/t 2 . : . -

proportional to the experimental variable iRt - P, " + g P, ig _mfexp(a cs1'-‘AU/R’I'), P,, exp[

F(o j+o )AU/RT]; P, /%, P, 1/0; P, k S, Bpf, Cp/Cpp D, (Dg+D,)ak mRe/vz; al, ak mRL/v; I°,i; and

C,.C.

9.5. Conclusions

The model works well in general, but not for the particular case of zero velocity. Its results

change reasonably as the input parameters are changed.

Before the model is used to look at concentration and potential profiles and how they are
affeéted by experimental conditions, it would be wise to make the programs more time efficient. Some
changes that would reduce the amount of CPU time used would be to use single precision, to reduce the
number of function calls, to linearize the equations, and to use directly Newman’s BAND program rather

than BandAid to solve the equations.
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