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The “infinity-Laplace” equation

Asot =

N =

n
(D(|Dul?), Du) = Z Uz Uz Ug;z; = 0
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arises when one attempts to find a real-valued function « which minimizes max | Du|
subject to u having prescribed values on the boundary of a given set. Here Dv =
(Vs -, Ug;) is the gradient of v. From the first expression for A, u, solutions
of the eikonal equation |Du| = 1 are “infinity harmonic”, that is, they satisfy
Asu = 0. Particular solutions of the eikonal equation are given by the linear
function u(z) = (p, x) where p € IR", |p| = 1, and the distance to a point z € IR",
u(x) = |x—z|. In the latter case, u is a solution on x # z; it has a single singularity.
The distance to a line segment is also a solution of the eikonal equation off the line
segment; it has a one dimensional set of singularities.

We will explain a result obtained with L. Caffarelli which states, roughly speak-
ing, that there is nothing between the cone functions and the distance to a line
segment. That is, if u is a solution of the eikonal equation |Du| = 1 in IR" ex-
cept on some set whose 1-dimensional measure is zero, then there are only the two
possibilities above: either u is affine or u(z) = a £ |x — z| for some a € IR, z € IR".

Motivation for the question arose partly from the fact that the “cone functions”
are fundamental to theory of the infinity Laplacian, as infinity harmonic functions
are exactly those which obey the maximum principle relative to functions of the
form alz — z| where @ € IR. One wondered if there might be other important
solutions with, say, some finite number of singularities. The answer is no.





