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Association between DNA methylation levels in
brain tissue and late-life depression in community-
based participants
Anke Hüls 1,2, Chloe Robins3, Karen N. Conneely2, Philip L. De Jager 4,5, David A. Bennett6, Michael P. Epstein 2,
Thomas S. Wingo 2,3 and Aliza P. Wingo 7,8

Abstract

Objective: Major depressive disorder (MDD) arises from a combination of genetic and environmental risk factors and
DNA methylation is one of the molecular mechanisms through which these factors can manifest. However, little is
known about the epigenetic signature of MDD in brain tissue. This study aimed to investigate associations between
brain tissue-based DNA methylation and late-life MDD.

Methods: We performed a brain epigenome-wide association study (EWAS) of late-life MDD in 608 participants from
the Religious Order Study and the Rush Memory and Aging Project (ROS/MAP) using DNA methylation profiles of the
dorsal lateral prefrontal cortex generated using the Illumina HumanMethylation450 Beadchip array. We also conducted
an EWAS of MDD in each sex separately.

Results:We found epigenome-wide significant associations between brain tissue-based DNA methylation and late-life
MDD. The most significant and robust association was found with altered methylation levels in the YOD1 locus
(cg25594636, p value= 2.55 × 10−11; cg03899372, p value= 3.12 × 10−09; cg12796440, p value= 1.51 × 10−08,
cg23982678, p value= 7.94 × 10−08). Analysis of differentially methylated regions (p value= 5.06 × 10−10) further
confirmed this locus. Other significant loci include UGT8 (cg18921206, p value= 1.75 × 10−08), FNDC3B (cg20367479, p
value= 4.97 × 10−08) and SLIT2 (cg10946669, p value= 8.01 × 10−08). Notably, brain tissue-based methylation levels
were strongly associated with late-life MDD in men more than in women.

Conclusions: We identified altered methylation in the YOD1, UGT8, FNDC3B, and SLIT2 loci as new epigenetic factors
associated with late-life MDD. Furthermore, our study highlights the sex-specific molecular heterogeneity of MDD.

Introduction
Major depressive disorder (MDD) severely limits psy-

chosocial functioning, diminishes quality of life, and is a
leading cause of disability worldwide1. The 12-month
prevalence of MDD is ~6%2 and similar when comparing

high-income countries with low-income and middle-
income countries, indicating that MDD is neither a sim-
ple consequence of modern day lifestyle in developed
countries, nor poverty3,4. Furthermore, although social
and cultural factors such as socioeconomic status can
have a role in major depression, genomic and other
underlying biological factors ultimately drive the occur-
rence of this condition5. Twin studies have provided
heritability estimates of the MDD of ~30–40%6. One of
the molecular mechanisms through which environmental
and genetic factors can modulate a disease outcome is
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epigenetics, with DNA methylation being one of the most
studied modifications of the genome.
Recent epigenome-wide association studies (EWAS)

showed an association of whole blood DNA methylation
levels with depressive symptoms7,8 as well as MDD9–11,
but little is known about brain epigenetic markers of
depression or MDD. The EWAS of depressive symptoms
were both conducted in late middle-aged and elderly
people from the general population (mean age 70 years8

and 65 years7), an age group with an increased risk of
developing dementia12. However, both studies could not
determine whether their findings were confounded by
dementia, which is known to be highly associated with
late-life depression13. On the other hand, recent EWAS of
MDD were performed in younger participants (mean age
42 years)9–11 and it is unclear if their findings can be
generalized across age groups. Furthermore, most pre-
vious EWAS on depression were limited owing to mea-
suring DNA methylation changes in blood7–10. Two
recent studies conducted EWAS of MDD in 206 post
mortem brain samples, but the MDD diagnosis was based
on information obtained from a family member and there
was no information on dementia9,11. Thus, there is need
to understand the epigenetic changes in the human brain
that are associated with late-life MDD and to determine
whether these changes are independent of dementia.
In this study, we investigated associations between both

brain tissue-based individual CpGs as well as regions of
differential methylation and late-life MDD in 608 parti-
cipants from the Religious Order Study and Rush Memory
and Aging Project (ROS/MAP) cohorts. To reduce the
risk of confounding by cognitive status, we excluded
participants with a diagnosis of dementia at the time of
MDD assessment and adjusted for cognitive status at the
last follow-up visit (closest to methylation assessment) in
our analyses. Furthermore, we performed a stratified
analysis for men and women to investigate the sex-specific
methylation patterns of MDD.

Methods
Study design and study population
The study population included deceased subjects from

two large, prospectively followed cohorts recruited by
investigators at Rush Alzheimer’s Disease Center in Chi-
cago, IL: The Religious Orders Study (ROS) and the Rush
Memory and Aging Project (MAP)14,15. Participants pro-
vided informed consent, an Anatomic Gift Act for organ
donation, and a repository consent to allow their data to
be repurposed. Both studies were approved by an Insti-
tutional Review Board of Rush University Medical Center.
To be included in the present study, participants must
have been assessed for MDD and have available genotype
data and methylation profiles derived from the dorso-
lateral prefrontal cortex. Furthermore, we excluded

participants with a diagnosis of dementia at the time of
MDD assessment (at baseline evaluation). As in previous
publications, the ROS and MAP data were analyzed
jointly since much of the phenotypic data collected are
identical at the item level in both studies and collected by
the same investigative team14,16.

DNA methylation
DNA methylation was measured from the dorsolateral

prefrontal cortex (dPFC; Broadman area 46) as previously
described in 737 ROS/MAP participant samples14. DNA
was extracted from cortically dissected sections of dPFC
and DNA methylation was measured using the Illumina
HumanMethylation450 Beadchip array. Initial data pro-
cessing, including color channel normalization, and
background removal, was performed using the Illumina
GenomeStudio software. The raw IDAT files were
obtained from Synapse (www.synapse.org; Synapse ID:
syn7357283) and the following probes were removed: (1)
probes with a detection p value > 0.01 in any sample, (2)
probes annotated to the X and Y chromosomes by Illu-
mina, (3) probes that cross-hybridize with other probes
owing to sequence similarity, (3) non-CpG site probes,
and (4) probes that overlap with common SNPs. After this
filtering, the remaining CpG sites were normalized using
the BMIQ algorithm in Watermelon R package17, and the
ComBat function from the sva R package was used to
adjust for batch effects18. After quality control, 408,689
discrete CpG dinucleotides in 608 subjects were used for
analysis.

Genotype data
Genotyping data were generated using two microarrays,

Affymetrix GeneChip 6.0 (Affymetrix, Inc, Santa Clara,
CA, USA), and Illumina HumanOmniExpress (Illumina,
Inc, San Diego, CA, USA) as described previously19.
Genotyping was imputed to the 1000 Genome Project
Phase 3 using the Michigan Imputation Server20, and the
following filtering criteria were applied minor allele fre-
quency (MAF) > 5%, Hardy–Weinberg p value > 10−5 and
genotype imputation R2 > 0.3. Principal components were
estimated using common (MAF > 0.05) unlinked (R2 <
0.1) autosomal markers by EIGENSTRAT21.

Diagnosis of MDD
A clinical diagnosis of current MDD was rendered by

an examining clinician. The diagnosis was based on
clinical interview using the criteria of the Diagnostic and
Statistical Manual of Mental Disorders, 3rd Edition,
Revised (DSM-III-R)22. The MDD diagnosis included
present versus not present. In this study, we focused on
the diagnosis of MDD at the baseline assessment to
reduce the risk that our findings are confounded by
dementia.
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Clinical diagnosis of cognitive status
A clinical diagnosis of dementia status was rendered

based on a three-stage process including computer scor-
ing of cognitive tests, clinical judgment by a neu-
ropsychologist, and diagnostic classification by a clinician.
All participants undergo a uniform, structured, clinical
evaluation including a battery of 21 cognitive tests of
which 19 are in common. These tests were scored by
computer using a decision tree designed to mimic clinical
judgment and a rating of severity of impairment was given
for five cognitive domains. A neuropsychologist, blinded
to participant demographics, reviews the impairment
ratings and other clinical information and renders a
clinical judgment regarding the presence of impairment
and dementia. A clinician (neurologist, geriatrician, neu-
ropsychologist, or geriatric nurse practitioner) then
reviews all available data and examines the participant and
renders a final diagnostic classification. Clinical diagnosis
of dementia and clinical Alzheimer’s disease (AD) are
based on criteria of the joint working group of the
National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and
Related Disorders Association (NINCDS/ADRDA). The
diagnosis of AD requires evidence of a meaningful decline
in cognitive function relative to a previous level of per-
formance with impairment in memory and at least one
other area of cognition. Diagnosis of mild cognitive
impairment (MCI) is rendered for persons who are judged
to have cognitive impairment by the neuropsychologist
but are judged to not meet criteria for dementia by the
clinician. Persons without dementia or MCI are categor-
ized as having no cognitive impairment.

Statistical analysis
For the brain EWAS of MDD, we ran a multivariate

robust linear regression model with empirical Bayes from
the R package limma (version 3.40.6)23 using clinical
diagnosis of MDD at baseline as the independent variable
and each CpG methylation as a dependent variable,
adjusting for age at death, sex, post mortem interval
(PMI), proportion of neurons, and the first three genetic
principal components. The effect estimates from the
adjusted models (Δ beta) refer to the difference in mean
DNA methylation beta values between groups (with and
without MDD). We applied a Bonferroni threshold to
correct for multiple testing based on the number of tested
CpG sites (threshold: 0.05/408,689= 1.22 × 10−07). Fine
mapping of our epigenome-wide associations was done
with coMET24, which is a visualization tool of EWAS
results with functional genomic annotations and estima-
tion of co-methylation patterns. We conducted the fol-
lowing sensitivity analyses: (1) We included the cognitive
status at the last follow-up visit (closest to methylation

assessment) as a covariate to investigate if our findings
were confounded by dementia, (2) We confirmed our
associations using linear regression with p values obtained
from normal theory (lm() function in R) as well as from a
permutation test, (3) we corrected the p values for infla-
tion and bias using a Bayesian method for estimation of
the empirical null distribution as implemented in the R/
Bioconductor package bacon25, and (4) We adjusted our
association models for a polygenic risk score (PRS) for
MDD (calculated with PRSice26 and UK Biobank sum-
mary statistics from27 with a p value < 0.05) to test if our
EWAS findings were independent of genetic risk for
MDD. Furthermore, we investigated the overlap between
CpG sites associated with MDD and those associated with
the PRS for MDD.
CpG sites that reach epigenome-wide significance were

replicated using the summary statistics from a cell type-
specific EWAS of MDD, which is based on methylation
enrichment-based sequencing data from three collections
of human post mortem brain (n= 206)11. This replication
was used to validate our findings and to provide
mechanistic insights about the most relevant cell types for
our associations.
Differentially methylated regions (DMRs) in MDD were

identified using DMRcate, that identifies DMRs from
tunable kernel smoothing process of association signals28.
Input files were our single-CpG EWAS results on MDD
including regression coefficients, standard deviations, and
uncorrected p values. DMRs were defined based on the
following criteria: (a) a DMR should contain more than
one probe; (b) regional information can be combined
from probes within 1000 bp; (c) the region showed FDR
corrected p value < 0.05.
To identify plausible pathways associated with MDD,

we performed an over-representation analysis based on
the 1000 CpGs with the lowest p values for the association
with MDD. We used the R Bioconductor package mis-
sMethyl (version 1.18.0 gometh function), which performs
one-sided hypergeometric tests taking into account and
correcting for any bias derived from the use of differing
numbers of probes per gene interrogated by the array29.

Results
Description of study participants
There were 608 ROS/MAP participants included in this

study with an average age at baseline visit of 81 years and
an average age of death of 86 years (Table 1). Sixty-four
percent of the participants were female. At baseline, 5% of
the participants were diagnosed with MDD, which is
consistent with the 12-month prevalence rate of MDD in
the general population2. Women showed a slightly higher
prevalence of MDD than men (5.4% versus 4.1%, differ-
ence not significant).
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Differentially methylated CpG sites in brain tissue are
associated with late-life depression
Differentially methylated CpG sites in the YOD1

(cg25594636, p value= 2.55 × 10−11; cg03899372, p value
= 3.12 × 10−09; cg12796440, p value= 1.51 × 10−08,
cg23982678, p value= 7.94 × 10−08), UGT8 (cg18921206,
p value= 1.75 × 10−08), FNDC3B (cg20367479, p value=
4.97 × 10−08) and SLIT2 (cg10946669, p value= 8.01 ×
10−08) loci were associated with MDD at the epigenome-
wide significance level (Bonferroni-adjustment) after
adjusting for sex, PMI, proportion of neurons, first three
genetic principal components, and age at death (Table 2,
Fig. 1a, Table S1). These associations were robust to
additional adjustment for dementia diagnosis assessed at
the last follow-up visit (Table 2). Overall, four CpG sites
in YOD1 were significantly associated with late-life MDD
(Table 2) and these were all located in the same CpG
island, but only moderately correlated with each other
(Fig. 2). This CpG island is located in an exon of YOD1
and in an intron of PFKFB2. The distribution of the DNA
methylation beta values of the four most significant CpG
sites in the YOD1 locus stratified by MDD diagnosis is
shown in Fig. S1 and the distribution of the DNA
methylation beta values of the other three significant CpG
sites (cg18921206, cg20367479, and cg10946669) is shown

in Fig. S2. The significant associations were confirmed in
sensitivity analyses using linear regression models, per-
mutation tests (Table S2) as well as correcting p values for
potential inflation and bias (Fig. S3). Furthermore, asso-
ciations were robust to additional adjustment for a PRS
for MDD, which shows that our EWAS findings were
independent of a genetic risk for MDD (Table S3).
Only two of the seven CpG sites that were significantly

associated with MDD in ROS/MAP were included in the
cell type-specific EWAS published in ref. 11 (cg18921206
and cg20367479, Table S4). Of these, only cg20367479
was nominally significant for bulk brain (p value= 0.022)
and the effects were not robust across different cell types
in the replication cohort11 and not in the same direction
as in ROS/MAP.

Analyses of differentially methylated regions
We identified one significant DMR from our EWAS

results on late-life MDD that is located in the YOD1/
PFKFB2 locus (Fig. 2, Table S5, minimum FDR p value for
the region= 5.06 × 10−10), which is not surprising given
the differential CpG site analysis. This DMR includes
three CpG sites that are located downstream of the most
significant CpG site from our EWAS on late-life MDD
(cg25594636, Table 2).

Table 1 Study characteristics.

All Male Female

N 608 220 388

Age at baseline visit 80.55 ± 6.51 78.76 ± 6.72 81.57 ± 6.17

Age at death, mean ± sd 86.31 ± 4.73 84.94 ± 5.41 87.09 ± 4.11

Female, n (%) 388 (63.82%) 0 (0.00%) 388 (100.00%)

Post mortem interval (PMI), mean ± sd 7.55 ± 6.01 7.80 ± 7.50 7.41 ± 4.98

Proportion of neurons, mean ± sd 0.45 ± 0.06 0.44 ± 0.06 0.45 ± 0.06

Clinical diagnosis of cognitive status at baseline visit

No cognitive impairment, n (%) 396 (65.13%) 142 (64.55%) 254 (65.46%)

Mild cognitive impairment (MCI), n (%) 212 (34.87%) 78 (35.45%) 134 (34.54%)

Alzheimer’s disease dementia (AD)a, n (%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Other dementiaa, n (%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Clinical diagnosis of cognitive status at last follow-up visit

No cognitive impairment, n (%) 232 (38.16%) 93 (42.27%) 139 (35.82%)

Mild cognitive impairment (MCI), n (%) 177 (29.11%) 66 (30.00%) 111 (28.61%)

Alzheimer’s disease dementia (AD), n (%) 184 (30.26%) 53 (24.09%) 131 (33.76%)

Other dementiaa, n (%) 8 (1.32%) 5 (2.27%) 3 (0.77%)

Clinical diagnosis of MDD at baseline visit 30 (4.93%) 9 (4.09%) 21 (5.41%)

aParticipants with a clinical diagnosis of dementia at baseline were excluded from the analysis sample.
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Associations are stronger in men than in women
Interestingly, we found more methylation sites asso-

ciated with MDD in men than in women (Fig. 1, Table 3,
Table S1, Fig. S4), although the sample size was much
smaller in men (N= 220 men vs N= 388 women). Dif-
ferentially methylated CpG sites in YOD1 were more
strongly associated with late-life MDD in men than in
women (e.g., for cg03899372, men: beta= 0.041, p value
= 8.80 × 10−09; women: beta= 0.010, p value= 0.0024;
p value sex interaction= 4.51 × 10−06; Table 3). Methy-
lation in PRICKLE4 (p value sex interaction= 1.26 ×
10−09), GFAP (p value sex interaction= 6.88 × 10−05),
RP11-1E3.1 (p value sex interaction= 1.11 × 10−07) and
UBB (p value sex interaction= 1.54 × 10−11) was only
associated with MDD in men, but not in women or in
both men and women (Table 3).

Pathway analysis
No significantly enriched pathway was found among the

1000 most significant CpG sites from the EWAS of late-
life MDD (Table S6). The smallest p value (6 × 10−5) was
reached for calmodulin-dependent protein phosphatase
activity (GO:0033192). The genes that belong to this
pathway are PPM1A (chr12), PPM1F (chr16), PPP3CA
(chr3), PPP3CB (chr14), and PPP3CC (chr14) (Table S7).
To identify biological pathways associated with MDD

across both sexes, we conducted a pathway analysis of the
CpG sites that reached at least nominal significance in
both sex-specific EWAS (p value < 0.05). In total, 807
CpG sites reached at least nominal significance in both
sex-specific EWAS (Fig. S5), but no significantly enriched
pathway was found among these (Table S8).

Differential DNA methylation in association with polygenic
burden for MDD
DNA methylation was not associated with the PRS for

MDD at the epigenome-wide significance level (Bonfer-
roni-adjustment) after adjusting for sex, PMI, proportion
of neurons, first three genetic principal components, age
at death and additional unmeasured confounding using
the R package “cate” (Fig. S6, Table S9). Furthermore, the
PRS for MDD was not associated with late-life MDD in
our study (Fig. S7) and there was only minimal overlap
between MDD-associated differentially methylated posi-
tions and those associated with the PRS for MDD (Fig.
S8).

Discussion
In this study, we found epigenome-wide significant

associations between brain tissue-based DNA methylation
and late-life MDD in >600 participants from the ROS/
MAP cohorts. The most significant and robust association
was found with altered methylation levels in the YOD1/
PFKFB2 loci. This association was not confounded by
dementia or a genetic risk for MDD and significant in
both the single site and region-based analysis. Interest-
ingly, brain tissue-based methylation levels were stronger
associated with late-life MDD in men than in women.
The most significant CpG sites were found in a region

covering an exon of YOD1 and an intron of PFKFB2.
YOD1 is a highly conserved deubiquitinase similar to
yeast OTU130 that is associated with regulation of the
endoplasmic reticulum-associated degradation to main-
tain the proper folded state of proteins31. In addition,
YOD1 is a negative regulator of TRAF6/p62-triggered

Table 2 Significant associations between DNA methylation and MDD.

Main modela Additionally adjusted for

dementia at last follow-up

cpg chr Position Nearest gene Δ beta p value Δ beta p value

cg25594636 1 207224388 YOD1 0.013 2.55E-11 0.013 2.98E-11

cg03899372 1 207224102 YOD1 0.020 3.12E-09 0.020 3.76E-09

cg12796440 1 207224331 YOD1 0.022 1.51E-08 0.022 1.34E-08

cg18921206 4 115320920 UGT8 −0.067 1.75E-08 −0.068 9.45E-09

cg20367479 3 171873675 FNDC3B −0.032 4.97E-08 −0.032 3.89E-08

cg23982678 1 207224227 YOD1 0.021 7.94E-08 0.021 7.91E-08

cg10946669 4 20253130 SLIT2 0.013 8.01E-08 0.013 6.65E-08

Bonferroni threshold: 1.22 × 10−07.
aAdjusted for age at death, sex, PMI, neuron subtype proportion, and the first three principal components from the genotype data.
Δ beta: this coefficient represents the mean difference of DNA methylation beta values between participants with and without MDD. Negative coefficients refer to
smaller mean DNA methylation beta values in participants with MDD and positive coefficients refer to larger mean DNA methylation beta values in participants
with MDD.
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IL-1 signaling32 and IL-1 has an important role in the
regulation of inflammatory responses as well as in
depression33–35. Together, these suggest that YOD1 is
associated with depression perhaps via influencing the
inflammatory responses. At last, previous studies suggest
that YOD1 contributes to pathogenesis of neurodegen-
erative disease like Huntington disease and Parkinson’s
disease30. PFKFB2 has been studied in the context of brain

tumors36,37, but there is no evidence for an association
with neuropsychological disease. Therefore, we hypothe-
size that the CpG sites we found to be associated with
late-life MDD are most likely linked to YOD1 regulation.
Further associations with MDD were found for CpG

sites in the UGT8, FNDC3B, and SLIT2 loci. UGT8 is a
known blood biomarker gene for low mood with evidence
of differential expression in human post mortem brains

Fig. 1 Manhattan and QQ-plots EWAS on clinical diagnosis of MDD. Adjusted for age at death, sex, PMI, neuron proportion and the first three
principal components from the genotype data. Bonferroni threshold: 1.22 × 10−07.
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from mood disorder subjects38. In addition, lower
expression of UGT8 have been shown in brain tissue from
subjects with MDD compared with normal controls39.
Therefore, our study extends the current literature by
highlighting that not only gene expression, but also brain
tissue-based methylation in UGT8 is linked to MDD.
FNDC3B and SLIT2 have been discussed in association
with brain tumors40, but there is no evidence for an
association with neuropsychological disease.
We found stronger associations between brain tissue-

based methylation levels and late-life MDD in men than
in women. This finding is in line with previous studies

showing sex-specific differences in serum biomarkers,
mRNA expression, and brain activity of MDD cases,
demonstrating that sex has an important role in the
molecular heterogeneity of MDD41–43. Our findings
expand the existing literature by adding DNA methylation
from brain tissue to the list of biological patterns that
differ between women and men with MDD, which may
have important implications for diagnosis as well as
treatment strategies.
This is to our knowledge, the first brain tissue-based

epigenome-wide study of late-life MDD in a community-
based study, and the first EWAS of MDD, which

Fig. 2 Fine mapping of the association between DNA methylation in YOD1 and MDD. EWAS results of the association between CpG sites and
MDD adjusted for age at death, sex, PMI, neuron proportions and the first three principal components from the genotype data. The most significant
CpG site (cg25594636) is marked in purple. The three CpG sites marked in yellow belong to a DMR (p value= 5.06 × 10−10, Table S3). The y axis
indicates the strength of association in terms of negative logarithm of the association P value. Each circle represents a CpG site. Red dashed line
within the graph indicates the genome-wide significance threshold (Bonferroni threshold: 1.22 × 10−07). The regulatory information and correlation
matrix of other CpG sites in the region with the top hit are shown below the x axis. Color intensity marks the strength of the correlation and color
indicates the direction of the correlation.
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incorporates cognitive status at time of MDD diagnosis as
well as at time of death. Two previous EWAS investigated
the association with depressive symptoms in middle-aged
and elderly people using methylation levels from whole
blood7,8. Beside the difference in phenotype definition, the
biggest difference between these studies and ours is the
tissue in which methylation was measured. In line with a
previous study comparing signals from blood and brain
tissue44, we could not replicate the whole blood methy-
lation signals from ref. 7,8 in our brain tissue-based EWAS
(Tables S10 and S11). In two recent brain tissue-based
EWAS of MDD, differential methylation was measured in
206 post mortem brain samples by enrichment-based
sequencing9,11. However, as in ROS/MAP methylation
was measured with the Illumina HumanMethylation450
Beadchip array, loci overlapping between blood and brain
in9 (chr2: 208,230,169; chr9: 101,119,679; chr4:
71,632,888) were not available in ROS/MAP; therefore, we
could not use the data set from Aberg et al. for replication
purposes. Using the same samples, Chan et al.11 con-
ducted a cell type-specific EWAS, in which none of the
CpGs reached epigenome-wide significance for neurons
and glia or for bulk brain. Owing to the different assess-
ment of methylation (array-based versus sequencing),
only two of our seven significant CpG sites were available
in ref. 11 and both of them were not successfully
replicated.
Strengths of this study include the ROS/MAP cohort

itself, which is notable for its longitudinal nature with very
high follow-up rates, prospective collection of data, a
community-based cohort design, and high autopsy rates.
Furthermore, the 12-month prevalence of MDD in our
study population matches that in the general population2,
which makes our findings generalizable beyond our study
population. Another strength of our study is the analysis

of methylation levels from brain tissue, which is the most
relevant tissue for the pathophysiology of depression. In
addition, we reduced the risk of confounding by cognitive
status by excluding participants with a diagnosis of
dementia at time of MDD assessment and by adjusting
our analyses for cognitive status at the last follow-up visit
(closest to methylation assessment).
The study is potentially limited by the use of bulk tissue

analysis, which might obscure signals from different cell
populations. This problem was mitigated in our analysis
by adjusting for cell type composition. Future studies
should investigate the role of YOD1, UGT8, FNDC3B, and
SLIT2 in specific cell types from brain and investigate
whether there is a causal relationship between gene dys-
regulation and MDD in animal models. Up to now, there
is only one study analyzing cell type-specific associations
between DNA methylation and MDD. However, the
authors did not find any significant associations with
MDD and owing to the different approach of assessing
differential DNA methylation (array-based versus
sequencing), our most significant CpG sites were not
available in their data11. Therefore, there is an urgent need
for more large-scale brain tissue-based EWAS of MDD to
validate our and the previous9,11 findings and to better
understand the consequences of MDD on the human
brain. Another limitation of our EWAS was the small
number of MDD cases in our study population. However,
to reduce the risk of false positive findings owing to the
imbalanced study design, we validated our findings by
using different modelling approaches (limma, linear
regression, permutation tests, DMR analysis).
In conclusion, we have presented evidence for brain-

based DNA methylation in association with late-life
MDD. We identified methylation in YOD1, UGT8,
FNDC3B, and SLIT2 as new epigenetic factors associated

Table 3 Significant associations between DNA methylation and MDD in male.

Men Women Interactiona Men and women

cpg chr Position Nearest gene Δ beta p value Δ beta p value p value Δ beta p value

cg10675453 6 41754588 PRICKLE4 0.036 1.07E-09 0.003 0.2796 1.26E-09 0.013 1.92E-06

cg25594636 1 207224388 YOD1 0.023 4.58E-09 0.008 6.03E-05 0.0001 0.013 2.55E-11

cg03899372 1 207224102 YOD1 0.041 8.80E-09 0.010 0.0024 4.51E-06 0.020 3.12E-09

cg17265120 17 42987382 GFAP −0.054 5.22E-08 −0.006 0.3968 6.88E-05 −0.021 0.0002

cg22969689 5 96845117 RP11-1E3.1 −0.036 6.74E-08 0.000 0.8953 1.11E-07 −0.011 0.0004

cg00618087 17 16282382 UBB −0.049 6.79E-08 0.002 0.5535 1.54E-11 −0.013 0.0009

Bonferroni threshold: 1.22e-07.
Adjusted for age at death, PMI, neuron subtype proportion and the first three principal components from the genotype data.
aInteraction between sex and MDD diagnosis is tested for each CpG site.
Δ beta: this coefficient represents the mean difference of DNA methylation beta values between participants with and without MDD. Negative coefficients refer to
smaller mean DNA methylation beta values in participants with MDD and positive coefficients refer to larger mean DNA methylation beta values in participants
with MDD.
Associations in men, women, and all participants are ordered by the p values from the analysis of male participants.
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with late-life MDD, which are not confounded by cogni-
tive status or a genetic risk for MDD and stronger asso-
ciated with MDD in male than in female.

Acknowledgements
The authors are grateful to the participants of the Rush Memory and Aging
Project and Religious Orders Study and the Medical Research Counsel Brain
Bank. Furthermore, the authors would like to thank Dr. Yiyi Ma (Columbia
University Medical Center) for her valuable feedback on the manuscript. AH
was supported by a research fellowship from the Deutsche
Forschungsgemeinschaft (DFG; HU 2731/1-1) and by the HERCULES Center
(NIEHS P30ES019776). MPE was supported by NIH grant R01 GM117946. APW is
supported by NIH grants R01 AG056533, VA I01 BX003853, and NIH U01
MH115484. TSW was supported by NIH grants P50 AG025688, R56 AG062256,
R56 AG060757, and R01 AG056533. CR was supported by NIH grant T32
NS007480. DAB was supported by P30AG10161, R01AG15819, R01AG17917,
R01AG16042, R01AG36042, U01AG61356. The funders had no role in the study
design, data collection and analysis, decision to publish, or preparation of
manuscript.

Author details
1Department of Epidemiology and Gangarosa Department of Environmental
Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
2Department of Human Genetics, Emory University, Atlanta, GA, USA.
3Department of Neurology, Emory University School of Medicine, Atlanta, GA,
USA. 4Cell Circuits Program, Broad Institute, Cambridge, MA, USA. 5Center for
Translational and Computational Neuroimmunology, Department of
Neurology, Columbia University Medical Center, New York, NY, USA. 6Rush
Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA.
7Division of Mental Health, Atlanta VA Medical Center, Decatur, GA, USA.
8Department of Psychiatry, Emory University School of Medicine, Atlanta, GA,
USA

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41398-020-00948-6).

Received: 21 April 2020 Revised: 6 July 2020 Accepted: 14 July 2020

References
1. Malhi, G. S. & Mann, J. J. Depression. Lancet 392, 2299–2312 (2018).
2. Kessler, R. C. & Bromet, E. J. The epidemiology of depression across cultures.

Annu Rev. Public Health 34, 119–138 (2013).
3. Global Burden of Disease Study 2013 Collaborators. Global, regional, and

national incidence, prevalence, and years lived with disability for 301 acute
and chronic diseases and injuries in 188 countries, 1990-2013: a systematic
analysis for the Global Burden of Disease Study 2013. Lancet 386, 743–800
(2015).

4. Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases
and injuries 1990-2010: a systematic analysis for the Global Burden of Disease
Study 2010. Lancet 380, 2163–2196 (2012).

5. Heim, C. & Binder, E. B. Current research trends in early life stress and
depression: review of human studies on sensitive periods, gene-environment
interactions, and epigenetics. Exp. Neurol. 233, 102–111 (2012).

6. Sullivan, P. F., Neale, M. C. & Kendler, K. S. Genetic epidemiology of major
depression: review and meta-analysis. Am. J. Psychiatry 157, 1552–1562 (2000).

7. Jovanova, O. S. et al. DNA methylation signatures of depressive symptoms in
middle-aged and elderly persons: meta-analysis of multiethnic epigenome-
wide studies. JAMA Psychiatry 75, 949–959 (2018).

8. Starnawska, A. et al. Epigenome-wide association study of depression symp-
tomatology in elderly monozygotic twins. Transl. Psychiatry 9, 214 (2019).

9. Aberg, K. A. et al. Methylome-wide association findings for major depressive
disorder overlap in blood and brain and replicate in independent brain
samples. Mol. Psychiatry 25, 1344–1354 (2018).

10. Clark, S. L. et al. A methylation study of long-term depression risk. Mol. Psy-
chiatry 25, 1334–1343 (2019).

11. Chan, R. F. et al. Cell type–specific methylome-wide association studies
implicate neurotrophin and innate immune signaling in major depressive
disorder. Biol. Psychiatry 87, 431–442 (2020).

12. Prince, M. et al. The global prevalence of dementia: a systematic review and
metaanalysis. Alzheimer’s Dement. 9, 63–75.e2 (2013).

13. Steffens, D. C. Late-life depression and the prodromes of dementia. JAMA
Psychiatry 74, 673–674 (2017).

14. De Jager, P. L. et al. Alzheimer’s disease: early alterations in brain DNA
methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci. 17,
1156–1163 (2014).

15. Bennett, D. A. et al. Religious orders study and rush memory and aging
project. J. Alzheimer’s Dis. 64, S161–S189 (2018).

16. Bennett, D. A., Wilson, R. S., Boyle, P. A., Buchman, A. S. & Schneider, J. A.
Relation of neuropathology to cognition in persons without cognitive
impairment. Ann. Neurol. 72, 599–609 (2012).

17. Teschendorff, A. E. et al. A beta-mixture quantile normalization method for
correcting probe design bias in Illumina Infinium 450 k DNA methylation data.
Bioinformatics 29, 189–196 (2013).

18. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package
for removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics 28, 882–883 (2012).

19. De Jager, P. L. et al. A genome-wide scan for common variants affecting the
rate of age-related cognitive decline. Neurobiol. Aging 33, 1017.e1–15 (2012).

20. Das, S. et al. Next-generation genotype imputation service and methods. Nat.
Genet. 48, 1284–1287 (2016).

21. Price, A. L. et al. Principal components analysis corrects for stratification in
genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

22. Wilson, R. S. et al. Late-life depression is not associated with dementia-related
pathology. Neuropsychology 30, 135–142 (2016).

23. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

24. Martin, T. C., Yet, I., Tsai, P. C. & Bell, J. T. coMET: Visualisation of regional
epigenome-wide association scan results and DNA co-methylation patterns.
BMC Bioinformatics 16, 1–5 (2015).

25. van Iterson, M. & van Zwet, E. W., the BIOS Consortium, Heijmans BT. Con-
trolling bias and inflation in epigenome- and transcriptome-wide association
studies using the empirical null distribution. Genome Biol. 18, 1–13 (2017).

26. Euesden, J., Lewis, C. M. & O’Reilly, P. F. PRSice: polygenic risk score software.
Bioinformatics 31, 1466–1468 (2015).

27. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102
independent variants and highlights the importance of the prefrontal brain
regions. Nat. Neurosci. 22, 343–352 (2019).

28. Peters, T. J. et al. De novo identification of differentially methylated regions in
the human genome. Epigenetics Chromatin 8, 6 (2015).

29. Phipson, B., Maksimovic, J. & Oshlack, A. missMethyl: an R package for ana-
lyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics 32,
286–288 (2016).

30. Tanji, K. et al. YOD1 attenuates neurogenic proteotoxicity through its deubi-
quitinating activity. Neurobiol. Dis. 112, 14–23 (2018).

31. Rumpf, S. & Jentsch, S. Functional division of substrate processing cofactors of
the ubiquitin-selective Cdc48 chaperone. Mol. Cell 21, 261–269 (2006).

32. Schimmack, G. et al. YOD1/TRAF6 association balances p62-dependent IL-
1 signaling to NF-$κ$B. Elife 6, 1–24 (2017).

33. Howren, M. B., Lamkin, D. M. & Suls, J. Associations of depression with C-
reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom. Med. 71, 171–186
(2009).

34. Ellul, P., Boyer, L., Groc, L., Leboyer, M. & Fond, G. Interleukin-1 β-targeted
treatment strategies in inflammatory depression: toward personalized care.
Acta Psychiatr. Scand. 134, 469–484 (2016).

35. Khazim, K., Azulay, E. E., Kristal, B. & Cohen, I. Interleukin 1 gene polymorphism
and susceptibility to disease. Immunol. Rev. 281, 40–56 (2018).

36. Zakrzewska, M. et al. Expression-based decision tree model reveals distinct
microRNA expression pattern in pediatric neuronal and mixed neuronal-glial
tumors. BMC Cancer 19, 1–11 (2019).

Hüls et al. Translational Psychiatry          (2020) 10:262 Page 9 of 10

https://doi.org/10.1038/s41398-020-00948-6
https://doi.org/10.1038/s41398-020-00948-6


37. He, Z., You, C. & Zhao, D. Long non-coding RNA UCA1/miR-182/PFKFB2 axis
modulates glioblastoma-associated stromal cells-mediated glycolysis and
invasion of glioma cells. Biochem. Biophys. Res. Commun. 500, 569–576 (2018).

38. Le-Niculescu, H. et al. Identifying blood biomarkers for mood disorders using
convergent functional genomics. Mol. Psychiatry 14, 156–174 (2009).

39. Aston, C., Jiang, L. & Sokolov, B. P. Transcriptional profiling reveals evidence for
signaling and oligodendroglial abnormalities in the temporal cortex from
patients with major depressive disorder. Mol. Psychiatry 10, 309–322 (2005).

40. Stangeland, B. et al. Combined expressional analysis, bioinformatics and tar-
geted proteomics identify new potential therapeutic targets in glioblastoma
stem cells. Oncotarget 6, 26192–26215 (2015).

41. Labaka, A., Goñi-Balentziaga, O., Lebeña, A. & Pérez-Tejada, J. Biological sex
differences in depression: a systematic review. Biol. Res. Nurs. 20, 383–392
(2018).

42. Yang, X. et al. Sex differences in the clinical characteristics and brain gray
matter volume alterations in unmedicated patients with major depressive
disorder. Sci. Rep. 7, 1–8 (2017).

43. Ramsey, J. M. et al. Sex differences in serum markers of major depressive
disorder in the Netherlands Study of Depression and Anxiety (NESDA). PLoS
ONE 11, e0156624 (2016).

44. Hüls, A. et al. Brain DNA methylation patterns in CLDN5 associated with
cognitive decline. bioRxiv Prepr. https://doi.org/10.1101/857953 (2019).

Hüls et al. Translational Psychiatry          (2020) 10:262 Page 10 of 10

https://doi.org/10.1101/857953

	Association between DNA methylation levels in brain tissue and late-life depression in community-based participants
	Introduction
	Methods
	Study design and study population
	DNA methylation
	Genotype data
	Diagnosis of MDD
	Clinical diagnosis of cognitive status
	Statistical analysis

	Results
	Description of study participants
	Differentially methylated CpG sites in brain tissue are associated with late-life depression
	Analyses of differentially methylated regions
	Associations are stronger in men than in women
	Pathway analysis
	Differential DNA methylation in association with polygenic burden for MDD

	Discussion
	Acknowledgements




