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Abstract 

 
Analysis of Neural Activity in Human Motor Cortex – towards Brain 

Machine Interface System 
by 

Lavi Secundo 
 

Doctor of Philosophy in Neuroscience 
University of California, Berkeley 

 
Professor Robert T. Knight, Chair 

 
The discovery of directional tuned neurons in the primary motor cortex has advanced 
motor research in several domains. For instance, in the area of brain machine interface 
(BMI), researchers have exploited the robust characteristic of tuned motor neurons to 
allow monkeys to learn control of various machines. In the first chapter of this work we 
examine whether this phenomena can be observed using the less invasive method of 
recording electrocorticographic signals (ECoG) from the surface of a human’s brain.  Our 
findings reveal that individual ECoG channels contain complex movement information 
about the neuronal population.  While some ECoG channels are tuned to hand movement 
direction (direction specific channels), others are associated to movement but do not 
contain information regarding movement direction (non-direction specific channels).  More 
specifically, directionality can vary temporally and by frequency within one channel.  In 
addition, a handful of channels contain no significant information regarding movement at 
all.  These findings strongly suggest that directional and non-directional regions of cortex 
can be identified with ECoG and provide solutions to decoding movement at the signal 
resolution provided by ECoG. 
In the second chapter we examine the influence of movement context on movement 
reconstruction accuracy. We recorded neuronal signals recorded from electro-
corticography (ECoG) during performance of cued- and self-initiated movements. ECoG 
signals were used to train a reconstruction algorithm to reconstruct continuous hand 
movement. We found that both cued- and self-initiated movements could be reconstructed 
with similar accuracy from the ECoG data. However, while an algorithm trained on the cued 
task could reconstruct performance on a subsequent cued trial, it failed to reconstruct self-
initiated arm movement.  The same task-specificity was observed when the algorithm was 
trained with self-initiated movement data and tested on the cued task. Thus, the correlation 
of ECoG activity to kinematic parameters of arm movement is context-dependent, an 
important constraint to consider in future development of BMI systems. 
The third chapter delves into a fundamental organizational principle of the primate motor 
system - cortical control of contralateral limb movements.  However, ipsilateral motor 
areas also appear to play a role in the control of ipsilateral limb movements.  Several 
studies in monkeys have shown that individual neurons in ipsilateral primary motor cortex 
(M1) may represent, on average, the direction of movements of the ipsilateral arm.  Given 
the increasing body of evidence demonstrating that neural ensembles can reliably 
represent information with a high temporal resolution, here we characterize the 
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distributed neural representation of ipsilateral upper limb kinematics in both monkey and 
man.  In two macaque monkeys trained to perform center-out reaching movements, we 
found that the ensemble spiking activity in M1 could continuously represent ipsilateral 
limb position.  We also recorded cortical field potentials from three human subjects and 
also consistently found evidence of a neural representation for ipsilateral movement 
parameters.  Together, our results demonstrate the presence of a high-fidelity neural 
representation for ipsilateral movement and illustrates that it can be successfully 
incorporated into a brain-machine interface.   
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1 Introduction  
Every year, severe spinal cord injuries alone are responsible for the occurrence of 
nearly 11,000 new cases of permanent paralysis in the US. These cases add to an 
already sizeable population of patients, estimated at 250,000 people in the US who 
cope with varying degrees of partial or almost total body paralysis. It is hoped that in 
the near future Brain-Machine Interfaces (BMIs) will have a strong impact on society, 
especially on the quality of life of people with various degrees of disabilities. This 
research seeks to advance our understanding of the ways the cortex control upper 
limb movement and to find ways to utilize this information in the context of BMI, 
because of this specific focus I will use here the term BMI as the capability to control 
robots or graphical cursors in real-time through signals obtained from the brain 
without overt arm movement. The long term goal is to create a brain-controlled 
prosthesis capable of reproducing the wide range of motor and sensory functions 
carried out by the human upper limb. And to enable amputees and patients with 
various nerve impairments to use artificial limbs as natural ones. 

It is assumed that there is a compromise between the level of invasiveness and the 
accuracy of controlling the artificial device using the BMI. By implanting multi-
electrode arrays in various sites of a macaque monkey cortex Velliste et al. 2008 
(Velliste et al., 2008) have demonstrated the most accurate control so far. The 
researchers enabled the monkey to feed itself and perform basic reach and grasp 
movement through BMI without the use of the animal’s own limb. A similar setup 
performed on a quadriplegic human patient enabled the patient to open simulated e-
mail, operated devices such as a television using a 'neural cursor' and perform 
rudimentary actions with a multi-jointed robotic arm. In addition, several researches 
have demonstrated that information regarding arm movement can be extracted from 
LFP (Pistohl et al., 2008; Waldert et al., 2009), ECoG (Leuthardt et al., 2004; Leuthardt 
et al., 2006; Schalk et al., 2008), and EEG (Wolpaw et al., 2002; McFarland et al., 2006) 
signals and those less invasive methods might be a better choice for the use of BMI as 
a clinical tool. However, LFP, ECoG, and EEG suffer from a lower SNR compared to 
single-spike recording and it is still debatable if information required controlling a 
complex prosthetic device is present in those signals.  

In this work I propose that ECoG might an optimal choice for BMI. First, the use of 
ECoG technique enables recording from multiple neurons and from multiple areas of 
the brain simultaneously and to study the correlated behavior between ensembles of 
neurons in different regions of the brain. Second, as our movement reconstruction 
results detest the ECoG signal is a good compromise between signal quality and 
invasiveness. This is achieved due to the placement of electrodes directly on the 
surface of the cortex.  

One of the main questions still needed to be answered is the characteristics of the 
control signal for BMI. While it is known that the cortex plays a critical role in the 
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production of complex movements, it is still debatable how motor commands, and 
which motor commands are represented in different parts of the motor cortex. In this 
work I examine these two questions from three perspectives. First, since directional 
tuning is one of the corner-stones in movement related activity research in primates’ 
cortex, I examine whether directional tuning information persists in the level of ECoG 
signals. Second I examine the influence of movement context on the ability to 
reconstruct hand position and velocity from ECoG signal. And finally I examine the 
ability to use ipsilateral cortex to decode hand movements. 

1. ECOG directional tuning: Despite extensive experimental efforts, recording and 
stimulating primarily from the arm area of motor cortex, it still remains controversial 
whether motor cortex encodes specific dynamic features such as the force/torque 
applied by the hand/joint (Evarts, 1968; Cheney and Fetz, 1980; Taira et al., 1996), 
kinematic features such as position, velocity, and direction of the limb (Georgopoulos 
et al., 1982; Georgopoulos et al., 1986; Georgopoulos et al., 1989; Moran and 
Schwartz, 1999; Paninski et al., 2004a; Paninski et al., 2004b), muscle synergies (Bizzi 
et al., 2000; Bizzi et al., 2002; d'Avella et al., 2003; d'Avella and Bizzi, 2005), or 
behaviorally relevant gestures (Graziano et al., 2005; Aflalo and Graziano, 2006; 
Graziano, 2006; Aflalo and Graziano, 2007). Different behavioral paradigms and 
various experiments have supported all views. Answering this debate is crucial in 
understanding how the brain generates the large movement repertoire performed by 
the primate upper limb, and to improve BMI performance. In the first chapter of this 
work we try to shed some light on this debate. We show that ECoG channels contain 
substantial information about arm movement direction hence ECoG channels are 
directionally tuned. However, non-direct measures indicate that motor-unit activity 
might actually be better represented in the ECoG signal   

2. Context specificity: Reaching for objects is one of the common activities we 
perform during our daily routine. Sometimes we reach for an object because we are 
instructed to do so (e.g. ‘…could you pass the salt please?’) and sometimes we 
generate the movement internally without any external cue. By exploring the 
difference in neuronal activity when these two kinds of actions are performed we aim 
to advance our understanding of the mechanisms by which the brain controls the 
upper limb movements. Our overarching goal was to determine the extent to which 
brain signals recorded from the electrocorticogram (ECoG) can be used for a brain 
machine interface (BMI).  Substantial evidence from scalp EEG and fMRI studies 
suggests that brain activity during cued vs. self-initiated movement is different. 
Several studies have attempted to dissociate neuronal activity of self-initiated and 
externally triggered voluntary movement (Tanji et al., 1988; Papa et al., 1991; 
Jahanshahi et al., 1995; Deecke and Lang, 1996; Hoshi et al., 1998; Pedersen et al., 
1998; Yazawa et al., 2000; Cunnington et al., 2002; Hoshi and Tanji, 2004), and those 
studies found that there is a significant difference in the activity of cortical and sub-
cortical areas during cued and non cued movement, as well as in the network 
configuration involved in these two tasks. Moreover, many studies argue that the 
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medial prefrontal cortex (MPFC) is more engaged during self initiated movement 
while the lateral prefrontal cortex (LPFC) has an important role in generating cued 
movement. Since the ECoG grid is usually placed on the LPFC and not on the MPFC it 
may well be that a BMI system acquiring signals from the LPFC will not be able to 
predict self initiated arm movements. Given that future BMI systems should operate 
in both conditions (self initiated and cued) we decided to test whether there is a 
difference in prediction accuracy while these two kinds of movements are preformed. 
In the second chapter I aim to address two basic questions on the difference between 
the cued and self-initiated movement using ECoG. First, I want to investigate whether 
ECoG recordings can be used to predict internally-generated arm movements as well 
as guided movement. Second I want to test if a system that was trained on one kind of 
movement will suffer from degradation in performance when applied to another 
kind. 

3. Ipsilateral control: Current BMI systems are based on using functioning cortex 
capable of controlling the contralateral side of the body (Taylor et al., 2002; Wolpaw 
and McFarland, 2004; Leuthardt et al., 2006; Buch et al., 2008) and therefore offer 
little hope for patients suffering from hemispheric stroke. To enable hemiparetic 
patient the use of a BMI system it is necessary to facilitate a control using the 
unaffected motor cortex ipsilateral to the affected limb. The actual manner in which 
the motor cortex is involved with ipsilateral movements in humans is still not well 
understood. Nevertheless the idea that the motor cortex plays a role in ipsilateral 
movements has become evident in recent years. Functional MRI (fMRI) and positron 
emission tomography (PET) studies showed various levels of ipsilateral motor and 
motor-associated cortex are active with ipsilateral hand movements (Rao et al., 1993; 
Li et al., 1996; Catalan et al., 1998; Baraldi et al., 1999). Clinical studies have 
demonstrated that injury to motor cortex affects both contralateral and ipsilateral 
movements (Jones et al., 1989), indicating the involvement of ipsilateral cortex in 
motor control. To achieve a functional BMI for the future, an expanded understanding 
of how motor cortex participates in processing ipsilateral arm and hand movements 
is essential. In the third chapter of this work we provide evidence that signals 
recorded from motor areas of humans (ECoG) and monkeys (single-unit) can be used 
to reconstruct ipsilateral limb kinematics with high precision.  Moreover, this 
representation can be used in a closed-loop BMI.  These findings suggest the 
possibility of eventually creating fully functional BMIs for patients suffering from 
extensive unilateral hemisphere brain injury.  
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2 Complex directional tuning properties as 
revealed by human subdural recordings 

2.1 Background 

The seminal paper by Georgopoulos (Georgopoulos et al., 1982) initiated the study of 
directional tuned neurons in the primary motor cortex of monkeys. This approach has 
been used as one of the main tools to study movement-related cortical activity 
(Donoghue et al., 1998; Amirikian and Georgopoulos, 2003; Amador and Fried, 2004).  
Neuronal directional-tuning is defined as the change in average firing rate of a neuron 
when a subject’s limb moves to a specific direction. Based on the notion that a 
population of directionally-tuned neurons can also predict a subject’s movement 
direction intention, directional-tuning curves have become a corner stone of most 
modern BMI studies (Carmena et al., 2003; Hochberg et al., 2006; Ganguly et al., 
2009). The most accurate control to date has been demonstrated from multi-regional 
multi-electrode arrays implanted in the macaque monkey cortex (Carmena et al., 
2003; Velliste et al., 2008). This method has enabled the monkey to perform basic 
reach and grasp movement through BMI without the use of the animal’s own limb. A 
similar approach performed on a quadriplegic human patient enabled the patient to 
perform various tasks including opening simulated e-mails, operating devices, and 
performing rudimentary actions with a multi-jointed robotic arm(Hochberg et al., 
2006).  

These results, achieved with ensembles of spiking neurons, encouraged others to 
demonstrate that directional tuning information can also be derived from multi-unit 
activity (Stark et al., 2009), as well as from local field potentials (LFPs) (Mehring et 
al., 2003; Rickert et al., 2005). Heldman, et al. (Heldman et al., 2006) found that 
almost 20% of LFPs recorded in motor cortex of monkeys during a standard center-
out reaching task showed movement direction tuning in the high gamma spectral 
frequency band of LFPs (60–200 Hz). Little is known about the properties of neurons 
and LFPs in the homologous area (M1) of humans during normal movement due to 
the invasive nature of the single-unit approach. To our knowledge, only a recent 
single study, performed in a BMI setting for clinical purposes, showed that human 
(M1) neurons are also often directionally tuned (Truccolo et al., 2008). 

The invasiveness of penetrating microarrays raises the question of whether 
comparable accurate prediction of direction can be achieved with less invasive 
methods.  Electrocorticography (EcoG) involves recording from subdural surface 
electrodes.  This method provides an alternative to the penetrating single-unit 
approach. It can potentially provide useful data about movement related activity from 
extended areas of the cortex and therefore may also be well-suited for the practical 
application of BMI (Leuthardt et al., 2004; Leuthardt et al., 2006; Pistohl et al., 2008; 
Schalk et al., 2008; Ball et al., 2009; Ganguly et al., 2009), However only few studies 
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have examined the specific properties of directional-tuning that can be derived from 
ECoG signals (Sanchez et al., 2008; Ball et al., 2009; Waldert et al., 2009). 

Here we investigate the properties of directional-tuning curves of ensembles of 
neurons recorded using multiple ECoG electrodes. We find a complex distribution of 
cortical tuning based on hand movement direction. Electrodes showing non-
directional tuning are driven by power in the intermediate frequency range.  
Electrodes showing directional tuning are associated with power changes in the raw 
time series, the delta band, and the high gamma band. We also show that two 
different movement directions can be decoded from the same ECoG channels by 
means of different temporal activation pattern.  Finally, the tuning curve derived from 
single ECoG channels is flexible and can change over short temporal intervals. Taken 
together these results provide evidence that a distributed neural network involving 
directional and non-directional regions of the cortex supports goal-directed 
movement in humans. 

2.2 Methods 

Subjects: Two subjects (age 25-35 years) with refractory epilepsy were recruited 
from a pool of patients undergoing intracranial monitoring for the localization of an 
epileptogenic focus. Each patient had undergone a craniotomy for chronic (1-2 
weeks) implantation of a subdural electrode array and/or depth electrodes. Electrode 
placement was determined on clinical grounds and varied between subjects (Figure 
2). One subject was left handed (S1) and one was right handed (S2). The grids were 
placed in the hemisphere contralateral to the dominant hand.   

None of the subjects manifested major cognitive deficits and antiepileptic drug 
therapy had been terminated during the week-long period of ECoG recording.  The 
study protocol, approved by the UC San Francisco and UC Berkeley Committees on 
Human Research, presented minimal risk to participating subjects and did not 
interfere with the clinical ECoG recordings.  All participants provided informed 
consent. 

2.2.1 Data Recordings 

The electrode grids used to record ECoG signals for this study were 64-channel 8 × 8 
platinum–iridium electrodes (Ad-Tech Medical Instrument Corporation, Racine, 
Wisconsin). Electrode diameter was 4 mm (2.3 mm exposed), with 10 mm center-to-
center spacing. Signals from the ECoG grids were sent to both a clinical monitoring 
system and a custom-recording system used for the experimental procedures 
described below. A broadband (256 channels, ~50 kHz) preamplifier (PZ2-256 256-
Channel PreAmp, Tucker-Davis Technologies (TDT), Inc) was used to amplify the 
ECoG signals with the electrode furthest from the motor cortex used as a reference 
for all other grid electrodes. The amplified data were sent to an ultra-high 
performance data acquisition processor over a fiber optic connection (RZ2 Z-Series 
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Base Station, Tucker-Davis Technologies (TDT), Inc) that digitized the signal at 3052 
Hz with 16-bit resolution.  

Subjects used a stylus to perform arm movements on a touch-screen connected to a 
laptop computer. The stylus was registered as a mouse and the x-y position was 
sampled with custom-made MATLAB software (sampling rate > 70Hz). A PC-based, 
bus-powered USB device (Measurement Computing's USB-1208FS) was used to 
convert the mouse position to an analog voltage (1-4 V) and these voltages were sent 
to the analog input of the data acquisition processor (RZ2 Z-Series Base Station, 
Tucker-Davis Technologies, Inc) to be digitally sampled and stored together with the 
ECoG signals. During task performance, additional event markers (e.g. beginning of a 
trial, appearance of a target, acquisition of a target, etc.) were recorded from the 
digital ports of the PC-based bus-powered USB analog to digital convertor 
(Measurement Computing's USB-1208FS).  

2.2.2 Behavioral task 

 Subjects were seated in a hospital bed with a touch-screen (KEYTEC INC.) placed in 
front in the horizontal plane. The subjects were asked to use a stylus to perform arm 
movements on the touch screen, with movements were mainly limited to rotations 
about the shoulder and elbow joints.  They were instructed to minimize rotation 
about the wrist.  All movements were made with the hand contralateral to the 
hemisphere containing the grid. For the purpose of another experiment (not reported 
here), we connected 4 rubber bands between the four corners of the touch screen and 
the stylus on some blocks. This manipulation generated a centro-symmetric resistive 
force; the subjects performed the same movements while reaching against the 
resistive tension imposed by the rubber bands. 

The subjects performed several blocks of center out reaching task to 8 (or 6) targets 
on the touch screen. Each block lasted about 5 minutes and was composed of 240 (or 
180) trials. A trial began with the appearance of a rectangular target at the center of 
the reach field. The subject then moved the stylus to the central location.  Once that 
position was achieved, and following a delay of 0.6 ± 0.2 sec, a peripheral target 
appeared on the touch screen.  These targets were arranged on a circumference of a 
15 cm radius non-visible circle around the center target.  Although the target 
locations were not marked on the screen, they remained fixed during the task.  After a 
brief delay (100 - 500 ms), the center target disappeared. This served as the 
imperative signal, indicating that the subject should move the stylus to the target 
location.  Once the stylus moved into the target location, the target disappeared, the 
center rectangle reappeared, the subject moved back to the center location. Each 
subject made 30 reaches to each target (total of 240 reaches), with the target location 
selected at random on each trial. We did not give specific instructions regarding eye 
movements. Based on observation, subjects naturally made a saccade towards the 
target prior to each hand movement.   
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2.2.3 Analysis 

ECoG data, kinematic (position and velocity) variables, and discrete event markers 
(e.g. go cue, target position etc.) were continuously monitored and recorded. The 
kinematic data were stored with the ECoG data in the Multi-channel Acquisition 
Processor system (Tucker-Davis Technologies, Inc) for off-line analysis using custom-
made MATLAB (MathWorks Natick, Massachusetts) software. 

2.2.4 Preprocessing 

The first step in our analysis included filtering, re-referencing, and down-sampling of 
ECoG signals. Line noise (60 Hz. and its harmonics) was removed using a notch filter 
and then re-referenced by subtracting the common average reference (CAR) from 
each electrode. CAR was calculated by averaging the raw signal of all the electrodes, 
omitting those that, upon visual inspection, had poor signal quality due to electrode 
drift, poor electrode contact or high frequency noise.  The data were then bandpass 
filtered between 1 and 250 Hz and down-sampled to 500 Hz (Matlab function 
‘resample’). 

2.2.5 Time frequency decomposition 

To generate event related spectrograms (ERS) plots we used a method similar to the 
one described previously (Canolty et al., 2007; Voytek et al., 2009). In brief, data were 
band-pass filtered across 10 frequency bands (4-7Hz 6-10Hz 8-12Hz 10-21Hz 13-
30Hz 19-40Hz 31-59Hz 45-95HZ 61-120Hz 80-150Hz), using a Gaussian-shaped filter 
with a standard deviation of one-tenth the center frequency (CF), (full width half 
maximum of 0.2355 of the CF). The signal’s envelope (analytic amplitude) per 
frequency band of the original series was extracted by the Hilbert transform.  Each 
analytic amplitude was cross-correlated with another time series (with the same 
length) containing ones to mark the times of the events and zeros at all other times. 
This procedure resulted in a new time series (again, same length) that contained all 
the event-related potentials (ERP) for all possible time lags between the events and 
the analytic amplitude of a specific band-passed ECoG signal. The central section of 
the resulting vector was used as the ‘real’ ERP’ while the other vectors were 
considered ‘surrogate ERPs’’. The ‘real’ ERP’ was z-scored using the mean and 
standard deviation (SD) of the ‘surrogate ERPs’’ to create a normalized, or z-scored, 
ERP (Note, that while the raw analytic amplitude values are well-fit by a Gamma 
distribution, the mean analytic amplitude across epochs is well-fit by a Gaussian, in 
accord with the Central Limit Theorem). Since the standard deviation of the ensemble 
of ‘surrogate ERPs’ is a measure of the intrinsic variability of the across-epoch mean, 
it can be used to directly determine the uncorrected two-tailed probability of the 
deviation seen in the ‘real ERP’ at time t.   It can be easily determined if the variation 
is due to chance or is correlated with the stimulus. For computational efficiency this 
procedure was computed in the frequency domain rather than in the time domain by 
using the convolution theorem. The full algorithm and MATLAB codes can be found in 
the supplementary material.  
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2.2.6 Electrodes classification 

We defined three classes of electrodes:  

1. Movement related but not directionally tuned: This class included electrodes 
that showed significant increase or decrease (alpha=0.01, p<0.001) in power, 
but the power did not change in a reliable manner for different directions. i.e., 
electrodes for which the standard deviation of power (across all directions) 
was less than half of the averaged power (across all directions).  

2. Movement related and directionally tuned: This class included electrodes that 
showed significant increase or decrease (alpha=0.01, p<0.001) in power and 
showed strong variability of power for different directions. i.e., electrodes for 
which the standard deviation of powers across different directions was larger 
than half of the power average.   

3. Neutral: Electrodes that did not show a significant increase or decrease 
(alpha=0.01, p<0.001) in power.  These are omitted from further analysis. 

Once an electrode was classified, we determined the times and frequencies at which 
the power crossed significance threshold. We then interpolated the measured power 
in the 8 cardinal directions of movement to 36 values (MATLAB function: resample 
(data,36,8) where the first point was appended to the data to avoid edge effects and 
removed after the interpolation). We determined the preferred direction of a channel 
at a specific time and frequency by: finding the angle of the maximum and minimum 
power. The preferred direction was defined as the angle of the maximum z-scored 
power (power>5 sd). If the z-scored power value was negative (power<-5) we 
defined the preferred direction as the angle of the minimum z-scored power+180 
degrees.  

2.3  Results 

The two subjects were asked to use a stylus to perform center-out arm movements on 
the touch screen, with movements mainly limited to the shoulder and elbow joints. 
Both subjects performed the center-out movements without difficulty. The 
movements generally reversed in or near the randomly selected target and, as 
expected, were relatively straight with a bell-shaped velocity curve. The average time 
to complete a movement from the center to a target and back was 0.6 sec. 
Characteristic traces for one subject and the movement’s profiles are shown in Figure 
1 
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Figure 1 : Reconstructed trace of characteristic hand position and velocity profile of the task. 

2.3.1 Movement Related spectrograms (non dir tuned) 

To visualize movement related activity of ECoG signlas in various frequencies we 
generated Movement Related Spectrograms (MRS) and co-localized the results with 
the MR image of the subjects’ brain (Figure 2, Figure 3).  

  

Figure 2 : ECoG electrode arrays with electrode numbers superimposed on 3D MR surface 
reconstruction images for subjects 1-2 

The MRSs are calculated by passing the ECoG signal through several band-pass filters 
centered on a particular frequency. The output of each filter is Hilbert transformed 
(to extract the signal’s envelope) and averaged across trials to obtain an estimate of 
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the instantaneous signal power at the filter's centre frequency. The band power 
estimates for all frequencies are combined to form a time–frequency map (see 
methods). 

Movement related spectrograms (MRS) were first calculated by including all 
movements, independent of direction. We defined the movement onset as time zero 
and computed the MRS in a window of -500msec to +200mesc compared to 5000 
surrogate runs. A representative MRS for all the electrodes can be seen in Figure 3 
and in Supplementary figure 1; we only displayed MRSs of electrodes that crossed 
significance level (t-test alpha=0.001, p=0.0001 multi-comparison corrected). A 
stereotypical increase in amplitude power (often referred to as synchronization) can 
be seen in the high frequencies (f>50Hz) during the movement, preceded by a 
decrease in power (commonly referred to as desynchronization). The opposite 
phenomena (power decrease during movement is observed in the Beta freq 
(10<f<30). Task-related activation can be seen in electrodes located over 
sensorimotor cortex, dorsolateral prefrontal cortex, and parietal cortex confirming 
our MR X-ray co-localization.   

 

Figure 3 : Event-related time–frequency plots, time-locked to movement onset for Subject 1, the 
spectrograms are averaged over all movement directions. The location of the electrodes with the 
electrode number is depicted in the MR scan. X axis of each ERSP is time with 0 (vertical line) 
indicating movement onset.  Y axis is frequency. Color code represent z-score values based on 
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permutation analysis (see methods). Electrodes with activations below significance threshold (t-test 
alpha=0.001, p=0.0001 multi-comparison corrected) are omitted. 

2.3.2 Directional Tuning curves 

To determine if cortical activity was related to movement direction, we determined 
the ECoG signal for each direction separately. Figure 4 and Figure 5 depicts significant 
changes in evoked potentials for each channel, with the octagonal shape indicating 
the directional tuning of the raw time series.  Several frequency bands are overlaid 
over the MR scan. Electrodes that did not cross significance threshold in movement to 
any direction (t-test alpha=0.001, p=0.0001 multi-comparison corrected) were 
omitted from the figure. Each sector angle represents the averaged change in power 
(measured in SD compared to 5000 random permutations, see methods) over the 
course of hand movement to a specific direction. The radius of the octagon represents 
the time course of the hand movement with the inner and the outer most points 
corresponding to 500 msec prior and 200 msec after movement onset, respectively.  
We performed this analysis on the raw time series as well as on the analytic 
amplitudes (extracted using the Hilbert transform – see methods) of several 
frequency bands and the activation pattern for the 8 directions for each frequency 
band can be seen in Figure 4. 
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Figure 4:  Directional tuning curves ECoG electrodes overlaid over the MR scans for Subject 1.  
Curves are shown for the raw-time series and five different frequency bands (4-7, 8-12, 12-30, 30-59, 
61-120 Hz).  Electrodes are omitted if significance threshold (t-test alpha=0.001, p=0.0001 multi-
comparison corrected) was not crossed. 

Some electrodes showed different patterns of activation as the hand moved in 
different directions, at least within certain frequency bands.  These are referred to as 
directionally-tuned. Other electrodes showed a similar pattern of activation 
regardless of hand movement direction.  These were classified as movement-related, 
but directionally non-specific.  
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Figure 5 shows a directionally tuned and a non-directionally tuned channel analyzed 
using the raw time-series as an input.  

 

 Figure 5 : Directional tuning curves (raw time series) for Subject 1, electrodes 32 (A) and 15 (B).  The 
central octagon depicts the averaged change in power in 8 different directions. Surrounding graphs 
show cross sections of the curve in the 8 directions. X axis of each Surrounding graphs is time 
(0.5sec till 0.2 after prior to movement onset), Y axis is z-score values based on permutation analysis 
(see methods). 

In panel A (channel 32) the activation level in all directions is similar throughout the 
time course of the hand movement. In panel B (channel 15) we see directional tuning; 
for example, there is a significant difference between movements to the upper-left 
and lower-right.  

2.3.3 Spectral specificity of directional tuning curves  

A dissimilar pattern of activation was found when we compared tuning curves 
between the raw time series and the analytic amplitude of several frequency bands. 
First, many electrodes that show a significant movement power change in the raw 
time-series did not exhibit significant activity when analyzed in the frequency 
domain. Second, the directional tuning was reduced (both in the number of channels 
and in the tuning depth) in the frequency domain compared to the raw time series 
analysis, similar to what was reported by Rickert et al. (Rickert et al., 2005).  

Interestingly, ECoG signals may be tuned to one direction in one frequency band (or 
in the raw time series analysis) and to another direction in a different frequency 
band. Similar patterns of shift in directional tuning can be found in the time domain, 
i.e. an ECoG channel can be tuned to one direction 400msec prior to peak velocity and 
may shift its preferred direction at 200 mesc prior to peak velocity. An example of a 
channel exhibiting different preferred-directions in different frequency bands and 
different times can be seen in Figure 6 
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Figure 6 : Directionally tuned channel for Subject 1 Channel 3 exhibiting different directional 
preference in different frequency bands and times. The green circles in each plot indicate significance 
threshold, the red trace is the polar tuning curve (i.e. activation in Z-score units vs. movement 
direction) for a specific time and frequency, the black arrow point toward the max of the polar tuning 
curve or away from the minimum (in case that the minimum crossed negative significance level).  

2.3.4 Preferred directions distributions in different spectral frequency bands 
for a single electrode 

Figure 7 show the number of tuned vs. non-tuned electrodes in each frequency band. 
It can be seen that the raw time series and the delta band exhibit the largest number 
of directional tuned channels. Finally, we computed the distribution of preferred 
directions in different frequency bands over all channels. Note that a channel may be 
tuned to more than one direction in different times. If two or more preferred 
directions of a particular channel where 10 degrees apart or less (i.e. in different 
times) we considered them as one preferred direction.  Figure 7 also show the 
number of electrodes that are tuned to each direction in any time point. It can be seen 
that the distribution of preferred-directions is not even and there are directions that 
are represented more than others but only one sector (240-270 deg) did not have any 
electrode tuned towards it. 
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Figure 7 : Number of tuned and non-tuned electrode (subject 1 top subject 2 bottom). Blue bars show 
the number of tuned electrodes red bars show the number of non-tuned electrodes in each frequency 
band, maximum number of channels is 64. Polar histograms (above the bars) show the distribution of 
preferred directions in different frequency bands over all electrodes 
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2.4 Discussion 

Movement evoked potentials (MEP) and movement related power changes in 
oscillatory activity of LFP and ECoG have been shown in several studies in monkeys 
(Murthy and Fetz, 1992; Sanes and Donoghue, 1993; Donoghue et al., 1998) and 
humans (Miller et al.; Crone et al., 1998a; Pfurtscheller et al., 2003; Leuthardt et al., 
2004; Miller et al., 2007). Studies conducted in monkeys attempted to relate 
oscillations between 15 and 50 Hz to exploratory behavior (Murthy and Fetz, 1992), 
movement preparation, movement execution (Donoghue et al., 1998) and 
maintenance of a precise grip (Baker et al., 1999). Studies conducted in humans 
reported that high-frequency (30–90 Hz) power often increased during movements, 
whereas the amplitude of oscillations between 15 and 30 Hz decreased (Pfurtscheller 
et al., 1993; Aoki et al., 1999). Leuthardt et al. (Leuthardt et al., 2004) observed a 
direction-dependent increase in amplitudes in the high-frequency (40–180 Hz) band 
of human ECoG recordings during joystick movements in four different directions. 
Data from a hemicraniectomy model reported increased high gamma and decreased 
beta power during movement in accord with these findings (Voytek et al., 2009). 

In our study we show that EGoG channels retain directional tuning information, 
similar to what has been found in studies involving single unit recordings or LFP 
measures (Donoghue et al., 1998; Mehring et al., 2003; Ball et al., 2009).  

By examining ECoG tuning properties in the time domain, we show that ECoG tuning 
is manifested differentially in the power of different frequency bands. We also show 
that one channel may exhibit different preferred-directions in different times and that 
an ECoG channel have different direction tunings in different frequency bands. The 
finding that ECoG channels may contain directional tuning information may seem 
puzzling, given there are on the order of a million neurons contributing to the signal 
recorded in one ECoG electrode. Nevertheless one might predict that the activity of 
different neurons with different tuning curves will average out and no directional 
preference should be seen at the ECoG level.  To explain these results we considered 
the following 4 hypotheses.  

The partial distribution of neuronal preferred directions might not be random: If 
neurons sharing the same PD are clustered together, an ECoG chancel located over a 
cluster of preferentially tuned neurons should exhibit directional tuning properties.  
Such clustering has been reported in neurons in area M1 (Amirikian and 
Georgopoulos, 2003; Ben-Shaul et al., 2004; Stark et al., 2009) area V1 (Kamitani 
(Kamitani and Tong, 2005) and MT Tong (Kamitani and Tong, 2006) of monkeys as 
well as in fMRI voxels in the human cortex. If this hypothesis is correct it would not be 
surprising to find directionally tuned ECoG channels. However, we found that a large 
portion of the ECoG channels exhibit a very similar PD in the raw time series data and 
the power in the low frequency band in opposition to this hypothesis.   
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Conversely, the high frequency data supports this hypothesis. First, we found much 
broader distribution of different PD across channels in the high frequency data and 
second there are evidences that directly link the power in the gamma and high 
gamma bands to the firing rate of underling neuronal tissue (Feige et al., 2000; Nir et 
al., 2007).  Thus, our data suggest that if such clustering of neurons sharing preferred 
directions exists it is mainly manifested in the activity of the high frequency bands.  

Hypotheis two is that there are random fluctuations in the neural populations that 
are picked up by the ECoG channel. In this scenario, even though there is no 
clustering of preferred directions, an ECoG channel may be located over a local 
cluster due to chance fluctuations in power. In such a case all the preferred directions 
will be averaged out and the only remaining signal will be due to this random 
increase in one preferred direction population over all the others (Waldert et al., 
2009). While we cannot rule out this possibility, it seems unlikely. First we find many 
channels tuned to similar directions and it is unlikely that this rare event (of non-
equal distribution of directionally tuned neurons) will occur in several locations to a 
similar direction. Second, given the large number of neurons under each electrode 
and given the robust significance level of our directional tuned channels it is unlikely 
that a random fluctuation in the population would result in such a strong effect. 

A third explanation is that the ECoG channels are correlated with muscle activity and 
not movement direction. It may be that the directional tuning of ECoG channels is an 
epi-phenomenon of encoding motor-units activity. If we assume that a power change 
of an ECoG channel is related to the number of motor-units involved in the 
movement, then hand movement to a direction that involves more motor-units will 
be categorized as preferred direction of such channel. For example, when using the 
left arm in 2D planar movements, movements to the front-left or rear-right 
(extension and contraction) involves mainly 4 major muscle groups (Biceps, Triceps, 
Pectoralis major, Deltoid), while movement to the front-right or rear-left (rotation 
about the elbow) involves mainly 2 major muscle groups (Biceps, Triceps). Many 
channels in our ECoG recordings showed this pattern.  

Another piece of evidence arises from comparing the results of our two subjects. 
While in subject 1 the PD of a majority of the channels is to the front-left rear-right 
axis, the PD of a majority of channels in subject 2 is in the front-right rear-left axis see 
Figure 7. This is in accordance with the fact that the two subjects were using different 
arms to perform the movement (subject 1 – right arm, subject 2 – left arm). Note that 
this non-uniform distribution of PDs observed mainly in the MEP and in the delta 
band (1-4 Hz) and is not present in the activity of the higher bands. This may suggest 
that those two spectral domains represent different aspects of movement related 
activity. 

Additional support for the motor-units hypothesis comes from the MEP data obtained 
(or the power increase in a certain frequency band) when the subject moved his arm 
against a resistive force (see methods). We found that the median MEP (and the 
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power in a certain frequency band) when the subject moved against a resistive force 
was greater than the median MEP when the subject did not move against a resistive 
force (Wilcoxon rank-sum test, alpha=0.001, p<0.00001). This increase was observed 
both in the directionally tuned neurons as well as in the non-directionally tuned ones. 
These results are also support the idea that the activity of neurons in the motor 
cortex represents muscle activity or muscle synergies rather than hand movement 
direction (Todorov, 2000; d'Avella et al., 2003; Pohlmeyer et al., 2007; Morrow et al., 
2009). 

Hypothesis four is that the tuning curves do not represent arm movement but rather 
a high level signal such as target location or directional attention. Our experiment was 
not designed to distinguish between tuning to direction of movement and tuning to 
target location.  Previous studies have shown that directional tuning of motor and 
premotor neurons can occur without movement (Kalaska and Hyde, 1985; 
Georgopoulos et al., 1989; Wallis et al., 2001). The change in the tuning depth due to 
movement against a resistive force and the uneven distribution of the PD are not 
consistent with this hypothesis. 

2.4.1 Relation between the high-frequencies, low frequencies and movement: 

In our recordings, we found a different pattern of activity in the low, intermediate, 
and high frequency bands: the amplitude of the 16–42 Hz band decreased during 
movement execution, confirming previous results for monkeys and humans 
(Pfurtscheller et al., 1993; Sanes and Donoghue, 1993; Donoghue et al., 1998). 
Furthermore, in our study, the majority of the electrodes that showed movement-
related activity in the raw time series and the low frequency band were also tuned to 
the direction of movement. In contrast, in the intermediate frequency band, very few 
of the electrodes showed directional tuning. We found a significant increase in high-
gamma band activity around movement onset confirming other ECoG studies on 
humans (Crone et al., 1998a; Crone et al., 1998b; Pfurtscheller et al., 2003). Moreover, 
in our recordings, we also found that the power of some channels in the frequency 
band from 61–120 Hz was additionally modulated by the direction of movement and 
the preferred direction may be different than the one found in the PD of the raw time 
series and the low frequency band. When examining the distribution of PDs between 
the two bands (high and low) one can see that the strong directional preference of 
many electrodes observed in the low frequency analysis is absent in the high 
frequency data. We conclude that oscillations in the low frequency range, the 
intermediate frequency range and the high-frequency may reflect different functional 
roles in motor control. This difference in functionality of the two bands (high and 
low) was also observed in a recent study by Miller et al. (Miller et al. 2010) 

Even though the activity in the intermediate frequency band was modulated by 
movement we did not observe strong directional tuning in this band. This is in 
agreement with the idea that this band related to more global and less specific 
involvement in the task such as attention modulation or target location.  Some studies 
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suggest that high-frequency oscillations are a signature of combining movement 
primitives (considered as being represented by neuronal assemblies) into a complex 
movement (Murthy and Fetz, 1992; Donoghue et al., 1998).  Additional studies are 
required to further differentiate between any of these possibilities for each respective 
frequency range. 

In summary, while it is known that the cortex plays a critical role in the production of 
complex movements, it is debatable how motor commands and which motor 
commands are represented in different parts of the motor cortex (Mussa-Ivaldi, 1988; 
Scott, 2000b, c, a; Todorov, 2000) . Answering this debate is important to understand 
how the brain generates the large movement repertoire performed by the primate 
upper limb, and to improve BMI performance. Commonly, BMI systems extract 
kinematic parameters (position, velocity) from the neuronal activity and use this 
information to control the BMI, thus treating the primate’s brain as a pure motion 
source. This makes intuitive sense considering that numerous studies show that 
neuronal activity in M1 and PMd can be correlated with higher-level features of hand 
movement such as position (Georgopoulos et al., 1982) and velocity (Schwartz, 1994; 
Moran and Schwartz, 1999).   

It is also evident that the motor system directly modulates muscle activity (Evarts, 
1968; Kalaska et al., 1989; Padoa-Schioppa et al., 2004) and numerous studies have 
shown that this modulation is essential for versatile interaction with the 
environment. We have shown that ECoG channels contain substantial information 
about arm movement’s direction and that complex tuning properties can be found 
both in the time and frequency domain analysis. Thus, ECoG can be a good model to 
study neuronal correlates of movement and may shed light on the organization of the 
motor cortex in humans. This study bridges some of the gaps between the non-human 
primate laboratory and the human intracranial setting and suggests that neuronal 
ensembles recordings from human cortical motor regions may be able to provide 
informative control signals for BMI application. Moreover the clinical implications of 
this study are obvious in the rapidly growing field of brain machine interface. 
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3 Representation of arm kinematics in 
human cortex is context specific 

3.1 Background  

At the turn of the 21st century, Brain Machine Interface (BMI) research has made its 
way from the realm of science fiction to that of reality. Using signals obtained from 
movement-related cortical areas, non-human primates (NHP) and humans are able to 
control computers, wheel-chairs and robotic arms in real time (Serruya et al., 2002; 
Wolpaw et al., 2002; Carmena et al., 2003; Nicolelis et al., 2003; Wolpaw and 
McFarland, 2004; Hochberg et al., 2006; Velliste et al., 2008). Yet state-of-the-art BMI 
systems remain limited to basic and stereotypic movements.  To date, human BMI 
research has been largely influenced by NHP studies in which the behavioral task 
consists of controlling a 2-d device to reach to an externally-cued target. Decoding 
algorithms, such as the Wiener filter, Kalman filter, or artificial-neural-networks are 
then used to reconstruct direction and/or velocity of limb movement from neuronal 
activity (Carmena et al., 2003; Hochberg et al., 2006; Leuthardt et al., 2006; Pistohl et 
al., 2008; Schalk et al., 2008). These decoding algorithms require an initial training 
stage to adjust the model parameters to the specific task and subject. In these studies, 
the performance of the BMI reconstruction model is tested on a new data set from the 
same task that was used to train the algorithm.  

Neural representations of effector-related variables are observed in many regions of 
parietal and frontal cortex (Georgopoulos et al., 1982; Kalaska and Hyde, 1985; Kakei 
et al., 1999, 2001; Crutcher et al., 2004). While there remains considerable debate 
concerning the nature of these representations, an important observation is that the 
signals frequently show contextual affects (Donoghue et al., 1998; Hoshi et al., 1998; 
Asaad et al., 2000; Ben-Shaul et al., 2004; Crutcher et al., 2004). While such contextual 
specificity might not be surprising in prefrontal cortex, context-dependency is also 
observed in secondary and primary motor cortices (Hoshi et al., 1998; Hoshi and 
Tanji, 2004).  For example, Donoghue et al. (Donoghue et al., 1998) showed that 
oscillatory activity in the gamma band (20-80 Hz) varied when the monkey 
performed cued vs. untrained, exploratory movements. These differences were 
evident even when the monkey performed similar gestures in the two conditions.      

We address the general problem of context-specificity in the present study. Patients 
implanted with ECoG grids were required to perform two tasks, one in which they 
made center-out movements to visual targets and a second in which the movement 
trajectories were self-selected.  We first asked whether the ECoG data could be used 
to train decoders in each task independently. Given that the grids spanned primary 
sensorimotor cortex, we expected that decoding would be successful for both types of 
movements. However, since the grids were placed on the lateral surface, it may be 
that a decoding algorithm based on the externally-cued movements would prove 
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superior to one based on internally-generated movements.  Assuming that we would 
obtain accurate decoding reconstruction for both types of movement, we then turned 
to the context-specificity question. Specifically, can a model trained on one class of 
movements generalize such that it can reconstruct movement produced in the other 
context?   

3.2 Methods 

Subjects: Five subjects (age range 18–35 years) with refractory epilepsy were 
recruited from a pool of patients undergoing intracranial monitoring for the 
localization of an epileptogenic focus. Each patient had undergone a craniotomy for 
chronic (1-2 weeks) implantation of a subdural electrode array and/or depth 
electrodes. Electrode placement was determined on clinical grounds and varied 
between subjects (Figure 8 A-E). Three of the subjects were left handed (S1, S3, S5) 
and two were right handed (S2, S4). The grids were placed in the hemisphere 
contralateral to the dominant hand, except for subject 3 who had bilateral strips.  

  

Figure 8: ECoG electrode arrays superimposed on 3D MR surface reconstruction images for subjects 
1-5 (A-E) 

None of the subjects manifested major cognitive deficits and antiepileptic drug 
therapy had been terminated during the week-long period of ECoG recording.  The 
study protocol, approved by the UC San Francisco and UC Berkeley Committees on 
Human Research, presented minimal risk to participating subjects and did not 
interfere with the clinical ECoG recordings.  All participants provided informed 
consent. 
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3.2.1 Data Recordings 

The electrode grids used to record ECoG signals for this study were either 64-channel 
8 × 8 (patient 1, 2, 4, 5) or 4 strips of 8x1 (patient 3) platinum–iridium electrodes 
(Ad-Tech Medical Instrument Corporation, Racine, Wisconsin. Electrode diameter 
was 4 mm (2.3 mm exposed), with 10 mm center-to-center spacing. Signals from the 
ECoG grids were sent to both a clinical monitoring system and a custom-recording 
system used for the experimental procedures described below. A broadband (256 
channels, ~50 kHz) preamplifier (PZ2-256 256-Channel PreAmp, Tucker-Davis 
Technologies (TDT), Inc) was used to amplify the ECoG signals with the electrode 
furthest from the motor cortex used as a reference for all other grid electrodes. The 
amplified data were sent to an ultra-high performance data acquisition processor 
over a fiber optic connection (RZ2 Z-Series Base Station, Tucker-Davis Technologies 
(TDT), Inc) that digitized the signal at 3052 Hz with 16-bit resolution.  

Subjects used a stylus to perform arm movements on a touch-screen connected to a 
laptop computer. The stylus was registered as a mouse and the x-y position was 
sampled with custom-made MATLAB software (sampling rate > 70Hz). A PC-based, 
bus-powered USB device (Measurement Computing's USB-1208FS) was used to 
convert the stylus position to two voltages (1-4V), one for X and the other for Y.  
These signals were sent to the analog input of the data acquisition processor (RZ2 Z-
Series Base Station, Tucker-Davis Technologies, Inc) to be digitally sampled and 
stored together with the ECoG signals. During task performance, additional event 
markers (e.g. beginning of a trial, appearance of a target, acquisition of a target, etc.) 
were recorded from the digital ports of the PC-based bus-powered USB analog to 
digital convertor (Measurement Computing's USB-1208FS).  

3.2.2 Behavioral task 

Subjects were seated in a hospital bed with a touch-screen (KEYTEC INC.) placed in 
front in the horizontal plane. The subjects were asked to use a stylus to perform 
planar arm movements on the touch screen, with movements mainly limited to the 
shoulder and elbow joints.  They were trained to minimize rotation about the wrist. 
The patients were instructed to keep the tip of the stylus in contact with the screen at 
all times.  All movements were made with the hand contralateral to the hemisphere 
containing the grid (Subjects 1, 5 left, subject 3 both hands, subject 2, 4 right).  

Each block was composed of two phases, one in which subjects performed externally-
cued movements and one in which they performed internally-generated movements. 
The two phases were completed in one session and the subjects maintained their 
posture, as well as grip of the stylus, for the entire session (approximately 6 minutes).  
Subjects 1-5 performed blocks that included 285 sec (4.5 minutes for training and 45 
sec for testing) phase of externally-cued movement followed by a 45 sec phase of 
internally-generated movement.  Subjects 4 and 5 performed a second block in which 
they began with 285 seconds phase of internally-generated movement followed by a 
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45 sec phase of externally-cued movement. The description of the two tasks is 
detailed below. 

 EXTERNALY CUED- A center-out task was used for the externally-cued condition.  
Each trial began with the appearance of a rectangular target at the center of the reach 
field. The subject then moved the stylus to the central location.  Once that position 
was achieved, and following a delay of 0.6 ± 0.2 sec a peripheral target appeared on 
the touch screen.  These targets (6 or 8, depending on the participant) were arranged 
on a circumference of a 15 cm radius non-visible circle around the center target. The 
possible target locations were not marked on the screen but remained fixed during 
the task.  After a brief delay (100 - 500 ms), the center target disappeared. This 
served as the imperative signal, indicating that the subject should move the stylus to 
the target location.  Once the stylus moved into the target location, the target 
disappeared, the center rectangle reappeared, the subject moved back to the center 
location. Each subject made 30 reaches to each target (total of 180 reaches), with the 
position of the target selected at random on each trial. We did not give specific 
instructions regarding eye movements. Based on observation, subjects naturally 
made a saccade towards the target prior to each hand movement.   

INTERNALLY GENERATED- In most blocks, the internally-generated condition was 
performed immediately following the end of the externally-cued condition. The 
transition was indicated when the display background turned yellow and a 15 cm 
radius circle appeared. The subjects were trained to freely move their arm about the 
touch screen while staying within the perimeter of the circle; the later was used to 
confirm that the movement’s amplitudes were similar to the target directed 
condition.  The subjects were explicitly instructed not to look at the screen.  Beyond 
this criterion, we did not provide instructions as to where they should direct their 
eyes.  The subjects generally kept their eyes open and either looked straight ahead or 
about the room while performing the internally-generated movements.   

For the blocks that began with the internally-generated phase, participants were 
instructed to produce the free movements at the start of the block and to switch to 
the externally-cued condition when the background switched back to gray, along with 
the presentation of the center stimulus.  

3.2.3 Analysis 

 ECoG data, Kinematic (position and velocity) variables, and discrete event markers 
(e.g. GO cue, target position etc.) were continuously monitored and recorded. The 
kinematic data were stored with the ECoG data in the Multi-channel Acquisition 
Processor system (Tucker-Davis Technologies, Inc) for off-line analysis using custom-
made MATLAB (MathWorks Natick, Massachusetts) software. 
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3.2.4 Preprocessing 

The first step in our analysis included filtering, re-referencing, and down-sampling of 
ECoG signals. Line noise (60 Hz. and its harmonics) was removed using a notch filter 
and then re-referenced by subtracting the common average reference (CAR) from 
each electrode. CAR was calculated by averaging the raw signal of all the electrodes, 
omitting those that, upon visual inspection, had poor signal quality due to electrode 
drift, poor electrode contact or high frequency noise.  The data were then bandpass 
filtered between 1 and 250 Hz and down-sampled to 500 Hz (Matlab function 
‘resample’). 

3.2.5 Wiener Filter 

We used a weighted linear combination of ECoG activity to reconstruct hand position 
and velocity. The basic form of this multidimensional linear regression algorithm or 
Wiener filter is: 

 

where m is a vector of positions and velocities at time t; Ni is an input vector of ECoG 
time-series signal at times t, t-1, t-2… t-i; wi is a vector of weights; b is a vector of the 

DC shift; and  is the residual error. Note that while lags in this equation can be 
negative (in the past) or positive (in the future) with respect to time t, we only 
considered lags into the past.  

This equation can be written in matrix form as 

 

Each row in each matrix is a unit of time and each column is a data vector. The matrix 
N contains lagged data and thus has a column for each lag multiplied by the number 
of channels; e.g., 64 channels and 15 lags would correspond to 960 columns. The DC 
shift is handled by pre-appending a column of ones to matrix N. Matrix W is then 
solved by 

 

In order to reconstruct the X-Y position of a movement from the ECoG data, we used 
the ECoG activity as an input to the Wiener filter. ECoG signals were band-passed into 
9 frequency bands (1-8Hz 9-15Hz 16-30Hz 31-50Hz 51-70Hz 71-90Hz 91-110Hz 
111-131Hz 131-150Hz), followed by calculating the analytic amplitude of each 
frequency band using the Hilbert transform. The resulting nine time-series were 
appended to the original time series of the ECoG signal, which generated a total of 
64x10=640 ECoG channels. The 640 elements of this new time series were down-
sampled to 15 Hz, and 1 s of ECoG data (15 bins) preceding a given point in time was 
used to train the model and generate reconstructions. We first tested the contribution 
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of each individual new time-series to the reconstruction of the hand movements, 
selecting as inputs to the Wiener filter those that produced the best reconstruction.  

The model was trained using 4 min of data from the initial condition (Externally-
cued: Subjects 1-5; Internally-generated: Block 2 for Subjects 4-5) and the 
reconstructive power was always tested using 45 sec of movement outside of the 
training window. First we tested within-context reconstructions by using the trained 
weights on 45 sec of the remaining data from the initial condition (Externally-cued: 
Subjects 1-5; Internally-generated: Block 2 for Subjects 4-5). To test context-
dependency, we kept the weights fixed and tested the model's reconstruction against 
the movements produced during the last 45 sec of the block in which the subject 
performed in the novel context. The reconstructive power of each decoder was 
determined by comparison of neural reconstructions of X and Y position and velocity 
with that of the actual, measured values.   

Similarity coefficient: To assess the accuracy of our model we defined a similarity 
coefficient (rSC) that captures the resemblance between the real and the 
reconstructed movement.  
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Measures of the correlation coefficient (CC) and percentage of variance accounted 
have been used as indices to calculate reconstructive accuracy in a number of BMI-
related studies (Carmena et al., 2003; Pistohl et al., 2008; Schalk et al., 2008). The 
correlation coefficient, the PVA, and the similarity coefficient used here vary between 
0 and 1, with a value of 1 representing two identical traces and a value of 0 
representing two very dissimilar traces.  

We found the similarity coefficient to be a better metric of reconstruction accuracy 
because, unlike the other measures, it does not result in large values when the two 
signals show a similar pattern but differ in scale (CC) or when the predicted signal is 
much smaller than the original one. Given that rSC is always smaller or equal to CC or 
the PVA, this new metric is conservative. 

3.2.6 Statistical Analysis 

Bootstrapping was used to test for statistical significance of our results.  We 
compared similarity coefficient (rsc) distributions between real runs and randomly 
time-shifted data.  This analysis also avoids any bias that might be introduced by 
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using a specific starting point. We constructed similarity-coefficient distributions by 
circularly shifting (MATLAB function circshift) both ECoG and movement data with a 
random shift 300 times. We found the best Wiener filter weights using the first 4 
minutes of the shifted data and then applied this model to the remaining portion of 
the data. We applied this procedure, using both types of movements as the training 
set.  The obtained weights were then used to reconstruct 45 sec of data from the same 
context, as well as from the other movement context.  This process resulted in a 
distribution of rSC for each block and each movement parameter (X-pos, Y-pos, X-vel, 
Y-vel). A Wilcoxon signed rank test was used to compare the actual runs to ‘chance’ 
runs. To generate ‘chance’ runs we created a random lag between the movement and 
the ECoG data. Again, we circularly shifted the ECoG data 300 times with a random 
shift, except this time, we did not shift the movement data to obtain the best Wiener 
filter weights that were then used to test the remaining data set. The result of this 
procedure is another distribution of rSC for each block that is referred to as a ‘chance’ 
distribution.   
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3.3 Results  

The center-out movements used for the externally-cued phase of training were 
performed without difficulty. The movements generally reversed in or near the 
targets and, as expected, were relatively straight with a bell-shaped velocity curve. In 
the internally-generated phase, participants tended to produce curved, continuous 
movements. Characteristic traces from the externally-cued phase and internally-
generated phase for one subject are shown in Figure 9 (A, F). Hand movements were 
faster and more evenly distributed over the working space during the internally-
generated phase. Nevertheless, as can be seen in Figure 9  (B-E, G-J) the range of 
movement in both the x and y directions was similar for the two phases.  

 

Figure 9: Reconstructed traces (A, F) and spans of hand position and velocity for the externally-cued 
condition (left side, A-E) and internally-generated condition (right side, F-J).    

3.3.1 Decoding accuracy within context 

Using an algorithm based on a Wiener filter, we were able to reconstruct arm 
movement with reasonable accuracy.  We first tested whether a Wiener filter trained 
with data from one type of movement could reconstruct movement from a 
subsequent epoch of that same condition; that is, we tested the reconstructive ability 
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of the model on data from the same movement condition but had not been used to 
train the model. To this end, using the ECoG signals, we trained a Wiener filter model 
using 4.5 min of the data set.  With the weights fixed, we then tested the model with 
45 s of data that had been excluded from the training set.  A representative 
reconstruction of hand trajectory is depicted in Figure 10 A, D. The black trace shows 
the actual X and Y coordinates of hand position as recorded by the TDT system. The 
red trace is the reconstructed hand position from the ECoG signals. The group 
averaged rSC values for the externally-cued and internally-generated movements 
were 0.50 and 0.47, respectively. Similar results were obtained when we used hand 
velocity (rather than position) as an input to the Wiener filter (Supplementary figure 
2 E, F) 

 

Figure 10:  Comparison of observed hand position and reconstructed hand position based on a model 
derived from ECoG data. The reconstructions were always generated for 45 sec of data from the same 
movement condition that had been excluded from the training data set (A.U. means arbitrary units). 
Upper row: Externally-cued condition. Lower row: Internally-generated condition. Left column (A, D): 
Black traces show hand position across time and red traces show the ECoG-based reconstruction of 
hand position for a representative 45 s segment.  The r value is the similarity coefficient between the 
reconstructed and the actual traces (averaged Activation maps 

To evaluate the contribution of individual electrodes on decoding accuracy, we 
calculated individual electrode rsc values for each grid.  Representative maps 
displayed over MRI scans are shown in Figure 10 B, E. Electrodes located over M1 and 
dorsal premotor cortex contributed more to the reconstruction of movement than 
other sites (see Figure 10 B, E). We also assessed the contribution of individual 
frequency bands to reconstruction accuracy. No single band stood out in a qualitative 
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assessment (see Figure 10  C, F).  Rather, in most cases, the raw time series provided 
the strongest contribution to accuracy, similar to that reported by Schalk et al.(Schalk 
et al., 2007) Across the frequency spectrum the highest contribution to 
reconstruction accuracy was generally observed in the high gamma band, consistent 
with other reports (Miller et al., 2007; Pistohl et al., 2008). 

3.3.2 Generalization to a novel context 

To evaluate context-specificity, we next asked if the ECoG decoding algorithm could 
generalize to the novel task context.  For all subjects (5 subjects, total of 19 blocks), a 
Wiener filter model in which the weights were fixed from data obtained during 4.5 
min of externally-cued movements was used to reconstruct 45 s of internally-
generated movements.  For two of these subjects, we also used the reverse test of 
generalization, fixing the weights from the first 4.5 min of internally-generated 
movements and using this model to reconstruct a subsequent 45 s phase of 
externally-cued movement. 

As noted above, when the Wiener filter was trained on the externally-cued 
movement, the group average similarity-coefficient (rSC) for reconstructed 
movements produced in the same context was 0.5 (sd 0.08).  When the same model 
was used to reconstruct internally-generated movement from the same block, the 
group average rSC fell to 0.13 (sd 0.09), a value that was reliably different from the 
reconstruction for the external phase of that block (Wilcoxon signed rank test n=19, 
α=0.05, p= 0.00013). The group average results are depicted in Figure 11 E, F (see 
also, Supplementary figure 2 E, F). Similar results were obtained when the data were 
analyzed on a subject-by-subject basis. The averaged rSC for externally-cued 
movements were larger for each subject in comparison to averaged rSC for internally-
generated movement. The individual values for the five subjects on externally-cued 
epochs were 0.44, 0.53, 0.59, 0.36 0.47.  The corresponding values on internally-
generated epochs were 0.14, 0.15, 0.24, 0.06, 0.06. 
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Figure 11: Generalization test of ECoG-based model. Comparison of observed and reconstructed hand 
position based on a model derived from ECoG data (A.U. means arbitrary units). Upper row: Model 
with externally-cued condition as training set used to reconstruct hand position for same condition (A) 
or internally-generated condition (B). Middle row: Model with internally-generated condition as training 
set used to reconstruct hand position for same condition (C) or externally-cued condition (D).  The 
traces and r values are as described in Figure 10.  (E-F) Grand average of similarity coefficients 
between the reconstructed and actual traces. Blue bars: reconstructed externally-cued movement; 
Red bars: reconstructed internally-generated movement. G) Similarity coefficients for the two 
movement conditions from individual blocks. Solid and empty marks are data points derived by 
training the model on externally-cued and internally-generated condition respectively. The X value is 
the rSC for reconstructing externally-cued movement and the Y value is the rSC for reconstructing 
internally-generated movement. Colors indicate different subjects.   

We also tested whether the ECoG signals obtained during the externally-guided phase 
could reconstruct movement during the internally-generated phase on a block-by-
block basis. Representative traces of the two conditions are shown in Figure 11 A, B 
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(see also Supplementary figure 2 A, B).  A close match is apparent between the actual 
and reconstructed movement during the externally-cued phase. In contrast, a poor 
match is seen between the two traces during the internally-generated phase. A 
scatter-plot comparing the block-by-block similarity coefficients for the two 
conditions is shown in Figure 11 G (and in Supplementary figure 2 G).  As seen from 
the plot, all of the solid data points fall below the unity line, the function for which 
reconstructive value would be identical for the two conditions.  Thus, in every block, 
the rSC values obtained for the externally-cued movement were larger than the rSC 
values obtained for the internally-generated movement when the Wiener filter was 
trained with externally-cued data.  

A similar pattern was observed in the more limited generalization test in which the 
model was trained with data from an extended internally-generated phase and then 
used to reconstruct an untrained segment of internally-generated movement or 
externally-cued movement (2 subjects, total of 5 blocks).  The group average rSC 
values for internally-generated and externally-cued movements were 0.47 (SD=0.1) 
and 0.07 (SD=0.05), respectively (Figure 11 F and Supplementary figure 2 F). 
Statistical analysis confirmed that the difference between the two conditions was 
reliable (Wilcoxon signed rank test n=5, α=0.05, p=0.04). These values were 
essentially the same when the data for the two subjects were analyzed separately. A 
representative trace from a block-by-block analysis is depicted in Figure 11 C, D and 
the similarity coefficients for the data pairs are included in the scatter plot of Figure 
11  G (see also Supplementary figure 2 C, D and G).  These pairs all lie above the 
diagonal; hence, in every block when the Wiener filter was trained on internally-
generated movement, the rSC obtained for the internally-generated movements were 
larger than the rSC obtained for the externally-guided movement.  

3.3.3 Control analysis of generalization assessment 

As a further statistical analysis, we compared similarity coefficient distributions 
between real runs and randomly time-shifted data.  This analysis avoids biases that 
might be introduced by using specific starting points.  We found that the real-shifted 
distributions were different than the chance-shifted distributions (Wilcoxon signed 
rank test, n=300, α=0.05, p<0.00001,). However, when the Wiener filter was trained 
on one mode of movement and then tested on the different mode (trained on 
internally-generated and tested on externally-guided and vice versa) the distribution 
of rSC was not different from chance (Figure 12).  
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Figure 12: rsc distributions for actual runs and chance runs used in the bootstrapping analysis. Top 
panels show data from a model trained on externally-cued movements and lower panels show data 
from a model trained on internally-generated movement. Red histograms are reconstructed rsc for 
externally-cued movement, blue histograms are reconstructed rsc for internally-generated movement, 
and green histograms are chance runs. 

3.4 Discussion 

This study demonstrates that ECoG neural signals can be used to reconstruct both 
internally-generated and externally-cued continuous hand movement. We were able 
to make reasonably good within-context reconstructions of 45 s of untrained data by 
devising a reconstruction algorithm (e.g. Wiener filter) based on 4.5 min of training 
data from the same condition. This procedure was successful for all five subjects even 
though there were considerable differences in the coverage of the ECoG grids. The 
accuracy of the reconstruction was not only similar between subjects, but also 
between different blocks within a single subject.  
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A novel feature of our study was the assessment of generalization between 
externally-cued and internally-generated modes of movement. To address this, we 
tested whether ECoG signals obtained in one mode could reconstruct continuous arm 
movement performed in the other mode.  The results showed a marked reduction in 
reconstruction accuracy in the generalization tests.  Indeed, using weights acquired in 
one mode resulted in similarity coefficients that did not exceed chance when applied 
to movements produced in the other mode.  This observation indicates that Weiner-
filter training weights are context-specific. 

3.4.1 Specificity of movement training weights 

The reduction in reconstruction accuracy across tasks may be related to the 
differential contribution of frontal and parietal regions to the control of externally-
cued and internally-generated movement.  Several EEG studies have attempted to 
dissociate neuronal activity of self-initiated and externally triggered voluntary 
movement (Papa et al., 1991; Jahanshahi et al., 1995; Deecke and Lang, 1996; Gerloff 
et al., 1998; Pedersen et al., 1998; Thut et al., 2000; Yazawa et al., 2000; Weilke et al., 
2001; Cunnington et al., 2002). Thut et al.(Thut et al., 2000) found that, although 
movement selection evoked similar surface potentials independent of whether a 
movement was externally-cued or self-selected, these potentials differed in duration 
depending on the selection mode. Similarly, Gerloff, et al.(Gerloff et al., 1998) showed 
that functional coupling in the beta frequency range was enhanced during internally 
paced finger movements in comparison to cued finger movements. They suggested 
that internally paced movement poses higher demands on the motor system, leading 
to increased regional activation and an enhancement of information flow between the 
premotor and the sensorimotor areas of both hemispheres.  Moreover, activations in 
subcortical structures including basal ganglia, cerebellum and thalamus, vary as a 
function of movement context, and this will influence their impact on cortical activity 
(van Donkelaar et al., 1999; Vaillancourt et al., 2003). As noted in the Introduction, 
LFP oscillations in a motor cortex of a monkey are strongly modulated by the context 
in which the task is performed (Donoghue et al., 1998). Given that the LFP oscillations 
were only loosely correlated with neuronal firing rates, the authors proposed that the 
fast LFP oscillations may represent processes that are not related to specific aspects 
of movement but rather to more abstract or global features of action goals. Taken 
together these studies are consistent with the notion that ECoG signals may markedly 
differ during similar gestures as a function of context. 

The relationship between neuronal firing-rate and ECoG activity remains unclear (Nir 
et al., 2007; Ray et al., 2008). Some studies suggest that ECoG signals are better linked 
to synaptic activity rather than to the neuronal firing rate (Freeman and Skarda, 
1985).  Another hypothesis is that ECoG oscillations may help establish long-range 
synchrony among cortical neurons (Schoffelen et al., 2008). These hypotheses suggest 
that, while similar movement patterns might generate similar activity patterns in the 
single unit level (action potentials), ECoG patterns may be context specific even 
during similar gestures.  
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This electrophysiological evidence suggests that motor cortex activity is modulated 
by the task rules, task objectives, and task demands. The degree to which movement-
related cortical activity is modulated by the task-context in humans remains unclear 
(Sochurkova et al., 2006).  Goal-directed and self-initiated movements provide a 
starting point to explore contextual effects.  Similar kinematics may be used to either 
reach to a target location or produce a gesture in the absence of an external cue, yet 
the different contexts may have a significant influence on the neural coding of the 
movement.  Indeed, a large body of literature has described differences observed with 
PET, scalp EEG, and fMRI between externally-cued and self-initiated movement 
(Jahanshahi et al., 1995; Cunnington et al., 2002; Gowen and Miall, 2007; Habas and 
Cabanis, 2008). One theme emphasized in many of these studies is the hypothesis of a 
lateral-medial gradient of control: Medial prefrontal cortex (MPFC), including 
supplementary motor area (SMA), is more strongly engaged during self-initiated 
movements whereas lateral prefrontal (LPFC) and premotor cortex are more strongly 
engaged during externally-cued movements (Gerloff et al., 1998; Deiber et al., 1999; 
Yazawa et al., 2000; Crutcher et al., 2004; Kurtzer and Scott, 2007; Bestmann et al., 
2008). However, this dichotomy has not been supported by other studies (Amador 
and Fried, 2004; Hoshi and Tanji, 2004). The hypothesized distinction between 
lateral and medial cortex is particularly relevant when evaluating the viability of 
ECoG for BMI control since ECoG grids are more commonly placed on the lateral 
surface of the cortex.  

3.4.2 Potential biases 

There are also important methodological differences between the externally-cued 
and internally-generated movement conditions and the failure of generalization may, 
at least in part, be related to this.  First, planning is relatively constrained in time 
during externally-cued center-out movements.  In contrast, planning is presumably 
ongoing and less constrained during the internally-generated task. Thus, ECoG 
activity during the latter may reflect the processes that are completed when there is 
time to prepare movement, but overlap movement when preparation, attentive-
related processes, and movement must be simultaneously processed.   

Second, we must consider whether the lack of generalization is related to differences 
in kinematics between the two tasks.  Are the statistical distributions of hand position 
and velocity sufficiently similar?  The Wiener filter, as well as many decoding 
algorithms, will not generalize well if they are trained in one part of the kinematic 
space and tested in another.  Thus, a lack of generalization would not be surprising if 
there were significant kinematic differences between the two conditions.    

While there are clearly kinematic differences, we do not believe these can account for 
the poor inter-task generalization.  The X and Y data were treated separately with the 
Wiener filter algorithm, finding the best weights to reconstruct the movement in each 
axis independently. Although the spans of X, Y, Vx, Vy (Figure 9 A-J) are different 
between the two tasks, the ranges are similar except for the edges of the kinematic 
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workspace.  If sampling space was important, we might expect the failure of 
generalization to be most pronounced for these extreme positions.  This was not the 
case: models trained with externally-cued movements failed to reconstruct 
internally-generated movement across the workspace.  

Hand velocity in the internally-generated task was sometimes higher than in the cued 
task.  If generalization requires that the decoding algorithm span the range of test 
values, then we might expect to see an asymmetry in that the Wiener filter trained 
with data from the internally-generated task would be able to reconstruct externally-
cued movement. However, there was no evidence of such an asymmetry.  
Generalization failed similarly in both tests.   

Nonetheless, we conducted a simple simulation to explore the effects of kinematic 
differences.   We simulated ECoG signals using movement information, and used this 
to reconstruct hand position and velocity. We used real X and Y kinematics (position, 
velocity) and added a large amount of random noise (signal to noise 1:50) as well as 
some random time lags.  The resulting signal was used to generate 64 simulated ECoG 
channels; that is, these signals contain the movement kinematics, but this information 
is now embedded in lots of noise.  We then used a subset of only the externally-cued 
segment as a training set and used the resulting data to predict real movement (both 
externally-cued and internally-generated), similar to what we have done with the real 
ECoG data. Importantly, the movement reconstruction using the simulated data was 
comparable between the two tasks (SC=0.57, externally-cued; SC=0.52 internally-
generated); that is, we obtained good generalization.  This simulation demonstrates 
that kinematic differences between the two tasks are not sufficient by themselves to 
account for the reduction of prediction accuracy in the inter-task tests based on real 
ECoG signals (Supplementary figure 3).  

Another methodological difference relates to eye position and eye movements. 
During the externally-cued movements, subject typically moved their eyes to the 
target along with the arm movement.  These targets were not present during the 
internally-generated phase and, in fact, the subjects were specifically instructed to 
not look at their hand.  It is possible that the algorithm was actually decoding 
information about eye movement/position rather than arm movement/position.   

We cannot rule out this hypothesis given that our ECoG recording setup did not 
include the measurement of eye movements.  However, two features of the results are 
at odds with an eye-movement account of the lack of generalization.  First, when the 
Wiener filter was trained with internally-generated movement, good reconstruction 
was observed on data from the untrained phase for this condition.  Second, at the end 
of one session, we had one subject (S4) perform a tracking task. In this task (run after 
the main experimental block), a blue dot was visible on the screen.  It followed the 
same trajectory that had been produced by the subject during the internally-
generated phase of that block.  The subject tracked the blue dot with the stylus. 
Wiener filters, trained with either the externally-cued or internally-generated phases, 
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were used to reconstruct performance during the tracking phase. Accuracy was poor 
for either filter.  Thus, we failed to find generalization between tasks with similar eye 
movement control (externally-cued and tracking) as well as between tasks with 
similar kinematics (internally-generated and tracking).  We note that eye movements 
have not been used in most previous studies examining movement decoding.  Any 
limitation with our data would also apply to these studies.   

3.4.3 Conclusion 

Our study demonstrates that continuous hand position, based on either internally-
generated or externally-cued movement can be decoded from ECoG signals.  
However, the results show a surprising lack of generalization between these two 
modes of control, suggesting that the decoding algorithms are highly context-specific.  
Even when movement trajectories are similar, contextual features of the movement 
influence neuronal activity, both within a cortical region and the interactions between 
cortical regions, at least when measured at the meso-scale of ECoG. This finding 
suggests that it is not hand movement or position per-se that is decoded from the 
ECoG signal, but rather a combination of information that incorporates more global 
parameters such as the task goal, form of control, and reward structure of the task. 

BMI holds great clinical value for amputees and patients with spinal cord injury, 
stroke, and neuromuscular disorders. It will become increasingly important to 
further develop signal analysis techniques and derive effective transform algorithms 
for translating neuronal activity into reconstructive and meaningful motor 
parameters for BMIs.  For such algorithms to be of therapeutic utility, it will be 
important to solve the problem of context specificity. 
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4 Cortical Representation of Ipsilateral Arm 
Movements in Monkey and Man 

4.1 Background 

While the main organizational principle of primate motor systems is cortical control of 
contralateral limb movements, motor areas also appear to play a role in ipsilateral limb 
movements (Matsunami and Hamada, 1981; Tanji et al., 1988; Rao et al., 1993; Donchin et 
al., 1998; Cisek et al., 2003; Verstynen et al., 2005; Wisneski et al., 2008; Brus-Ramer et al., 
2009).  Several studies in monkeys have shown that individual M1 neurons, on average, are 
modulated by ipsilateral arm movements (Donchin et al., 1998; Cisek et al., 2003).   
Numerous studies have also presented evidence that, after unilateral damage, the 
‘contralesional’ intact hemisphere plays an increased role in ipsilateral movements 
(Brinkman and Kuypers, 1973; Dancause, 2006; Hummel and Cohen, 2006).  Indeed, 
studies have demonstrated increased activity in homologous regions of the intact 
hemisphere in stroke patients (Blasi et al., 2002).  However, the intact contralesional 
hemisphere may also play a maladaptive role under certain conditions (Dancause, 2006; 
Hummel and Cohen, 2006). 

To better understand the bihemispheric control of movements, it remains important to 
understand the distributed neurophysiological representation of ipsilateral limb control.  
Recent advances in recording technology and computational processing have led to greater 
characterization of information encoded by simultaneously recorded neural ensembles 
(Wessberg et al., 2000; Carmena et al., 2003; Mulliken et al., 2008).  These efforts have 
increasingly highlighted differences in the encoding of information at the ensemble level 
relative to that for single neurons (Wessberg et al., 2000; Averbeck et al., 2006; Mulliken et 
al., 2008).  Here we characterize the distributed ensemble representation of ipsilateral 
kinematics in both monkey and man using linear regression methods.   

We further tested the generality of such a finding by decoding ipsilateral kinematics from 
cortical field potentials (i.e. local field potential (LFP) in monkeys and subdural 
electrocorticogram (ECoG) in human subjects).  Past work has demonstrated that both LFP 
(in monkey) and ECoG (in man) can be used to decode direction of contralateral limb 
movements (Mehring et al., 2003; Schalk et al., 2007). Less is known about continuous 
decoding of ipsilateral movement parameters from cortical field potentials. While two 
recent studies demonstrated that ipsilateral limb movements can result in specific patterns 
of activity (Rickert et al., 2005; Wisneski et al., 2008), it remains unclear if cortical 
potentials can continuously represent ipsilateral kinematics. 

  Reliable, continuous decoding of movement parameters represents an important step 
towards the creation of fully-functional biomimetic Brain-Machine Interfaces (BMI) 
(Wessberg et al., 2000; Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Schalk 
et al., 2007; Mulliken et al., 2008; Schalk et al., 2008).  While the majority of studies 
supporting the development of BMIs have incorporated the contralateral neural 
representation of movements, there is increasing interest in designing BMIs compatible 
with extensive hemispheric injury (Buch et al., 2008; Wisneski et al., 2008).  Ipsilateral 
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control would allow a large cadre of patients with motor cortex damage and contralateral 
weakness to eventually benefit from BMIs.  In this study, we also demonstrate that the 
ipsilateral neural representation can be used in a closed- loop BMI.   

4.2 Methods 

4.2.1 Monkeys 

Surgery. Two adult male rhesus monkeys (Macaca mulatta) were chronically implanted in 
the brain with arrays of 64 teflon-coated tungsten microelectrodes (35 micrometers in 
diameter, 500 micrometers separation between microwires) in an 8x8 array configuration 
(CD Neural Engineering, Durham, NC). Monkey P was implanted in the arm area of primary 
motor cortex (M1) and the arm area of dorsal premotor cortex (PMd), both in the left 
hemisphere, and the arm area of M1 of the right hemisphere, with a total number of 192 
microwires across 3 implants.  Monkey R was implanted bilaterally in the arm area of M1 
and PMd (256 microwires across 4 implants).  Localization of target areas was performed 
using stereotactic coordinates from a neuroanatomical atlas of the rhesus brain l, 2000).  
All procedures were conducted in compliance with the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals and were approved by the University of 
California at Berkeley Institutional Animal Care and Use Committee. 

Electrophysiology.  Unit activity was recorded using the MAP system (Plexon Inc, Dallas, 
TX).  For this study, only units from each primary motor cortex were used.  Only units that 
had a clearly identified waveform with a signal-to-noise ratio of at least 4:1 were used.  
Activity was sorted using an on-line sorting application (Plexon Inc, Dallas, TX) prior to 
recording sessions.  Isolation of units was then verified offline.  Large populations of well 
isolated units were recorded during each daily session in both monkeys. 

Electromyography (EMG).  Surface gold disc electrodes (Grass Technologies, Inc) were 
mounted on medical adhesive tape and placed on the skin overlying muscle groups at the 
beginning of select sessions. Bilateral muscle groups tested included pectoralis major, 
biceps, deltoid, triceps, trapezius, latissimus dorsi, neck muscles and forearm muscles.  
EMG signals were amplified by a 10,000 factor with a multi-channel differential amplifier 
(Grass Technologies, Inc) and stored (Plexon Inc, Dallas, TX).  Signals were then high-pass 
filtered, rectified, and smoothed by convolution with a 25 millisecond triangular kernel, 
and normalized. Directional activation of each EMG signal was estimated by measuring the 
activity in a 300 ms window after the onset of movement to each target.  EMG signals were 
collected over ~10 trials in each direction. The significance of this effect was assessed using 
analysis of variance (ANOVA). 

Experimental Setup and Behavioral Training.  Monkeys were trained to perform a 
center-out delayed reaching task using a Kinarm (BKIN Technologies, Kingston, ON) 
exoskeleton (Figure 13 A).  During training and recording, animals sat in a primate chair 
that permitted limb movements and postural adjustments.  Head restraint consisted of the 
animal’s headpost fixated to the chair.  Kinematic variables (position, velocity and 
acceleration) were continuously monitored and recorded.   
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Figure 13 : Directional modulation of bihemispheric M1 unit activity.  A, Schematic of the experimental setup 
for recoding spike and LFP activity from both the ipsilateral and contralateral M1 during the performance of a 
center-out reaching task with the right upper limb.  B, Hand trajectories during performance of the center-out 
task.  C, Directional modulation of the firing rate of a single neuron.  Panels above respectively show 150 
randomly selected waveform traces and the interspike-interval distribution.  Solid line is the cosine fit for 
directional modulation.  Error bars are the SEM.  D, Fraction of units from each hemisphere that were 
significantly modulated.  Error bars are the SEM. Circles above show the distribution of preferred directions 
from Monkey R.   

The behavioral task consisted of hand movements from a center target to one of eight 
peripheral targets (i.e. ‘center-out’ task) distributed over an ~8cm diameter circle.  The 
workspace was created to minimize any requirement for postural changes during task 
performance.  Target radius was typically 0.75 cm.  Trials were initiated by entering the 
center target and holding for a variable time period of 500-1000ms. The GO cue (center 
changed color) was provided after the hold period.  A liquid reward was provided after a 
successful reach to each target and a peripheral hold period (200-500ms).  Visual feedback 
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of hand position was provided by a cursor precisely co-located with the center of the hand 
(radius 0.5cm).  During the task, the non-task arm was immobilized in a padded splint.   

Decoding motor parameters from neural ensembles. A linear regression model was used 
to predict limb position and velocity (both joint position and endpoint position).  In this 
model (Equation 1), the inputs, X(t), were a matrix with each column corresponding to the 
discharges of individual neurons, and each row representing one time bin.  The output Y(t), 
was a matrix with one column per motor parameter. The linear relationship between 
neuronal discharges in X(t), and behavior  in Y(t) was expressed as  

 

where a and b are constants, calculated to fit the model optimally;    a(u) are the impulse 
response functions required for fitting X(t) to Y(t) as a function of time lag u between 
inputs and the outputs.  Ten time lags were used during these experiments.  Second, b 
represents the Y-intercept in the regression. The final term in the equation, (t), represents 
residual errors.   

Brain-Machine Interface. We used the linear filter described in the previous section to 
predict shoulder and elbow joint angles from the recorded neural activity (only M1-ipsi 
activity was included).  The model was trained on 10 minutes of activity and then used to 
predict position from subsequent neural activity (Wessberg and Nicolelis, 2004).  Neural 
activity was streamed over a local intranet via the PLEXNET client-server application 
(Plexon Inc, Dallas, TX) and converted into 100 ms bins of spiking activity.  Each binned 
value was used to generate real-time predictions of the shoulder and elbow joint angles 
that were streamed to the Kinarm interface as control signals.  The cursor position was 
updated on the Kinarm projection screen at 10 Hz. 

Filter parameters were not changed during each daily Brain Control (BC) experiments 
(usually 2-3 hours per day).  For the multiple experiments reported in Figure 17, the need 
for daily retraining of the filter (i.e. at the start of a BC session) was determined by the 
stability of the units.  The stability of a recorded unit was solely determined by visually 
comparing the waveform shape with the previous day’s stored template.  When all units 
were putatively stable, no retraining of the filter was performed.  If there were any changes 
in the waveform (e.g. a single waveform change), then the filter was retrained during a 
manual control session.  The animals were then allowed a period of time to relearn the 
decoder properties (typically ~ 1 hour).  Task performance in BC was determined after this 
period of learning.  After this defined period, all subsequent trials and attempts were 
included in the analysis of task performance (also see below).   

4.2.2 Data analysis 

Tasks Performance Analysis:   A correct trial was defined as successful movement of the 
cursor to the target.  We minimized the number of false-positive self-initiations (i.e. the 
number of trial attempts by adjusting the required hold period).  This threshold was 
determined by measurements of false triggers when the BMI was engaged but the screen 
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was turned off (i.e. in the absence of volitional control of the cursor).   The time-to-target 
measurement reflected the movement time from the center to each peripheral target.  An 
error trial consisted of inability to reach the target in 10s. 

Predictive power of the decoder:  The predictive power of each decoder was determined by 
comparison (i.e. correlation) of neural predictions of shoulder and elbow angular position 
with that of measured values.  Estimation of predictive power was performed using 2 
minutes of movements outside of the 10 minute training window.   

Preferred Direction:  The significance of the directional modulation of a unit’s firing rate 
was determined using an ANOVA test.  Directional tuning was estimated by comparing the 
mean firing rate as a function of target angle during execution of the movement.   The 
tuning curve was estimated by fitting the firing rate with a sine and a cosine as:  
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where θ corresponds to reach angle and f corresponds to the firing rate across the different 
angles (Georgopoulos et al., 1986).  Linear regression was used to estimate the B 
coefficients.  The PD was calculated using the following: PD = tan-1 (B2/B3), resolved to the 
correct quadrant.   

LFP Analysis: Performed similarly to that outlined below for the electrocorticographic 
analysis. 

4.2.3 Human Subjects 

Three subjects (age range 18–35 years) with refractory epilepsy were recruited from a 
pool of patients undergoing intracranial monitoring for the localization of an epileptogenic 
focus. Each patient had undergone a craniotomy for chronic (1-2 weeks) implantation of a 
subdural electrode array and/or depth electrodes. Electrode placement was solely 
determined on clinical grounds and varied between subjects (Figure 17). Subject 1 was 
right handed with a left hemispheric grid, subject 2 was left handed with bilateral strips, 
and subject 3 was left handed with right hemispheric grid.  None of the subjects had overt 
cognitive deficits and antiepileptic drug therapy was discontinued during ECoG recordings.  
Consenting patients participated in the research study during the week of ECoG 
monitoring. The study protocol, approved by the UC San Francisco and UC Berkeley 
Committees on Human Research, did not interfere with the ECoG recording made for 
clinical purposes, and presented minimal risk to the participating subjects.  

Recordings.  The electrode grids used to record ECoG signals for this study were either 64-
channel 8 × 8 (patient 1, 2, 4, 5) or 4 strips of 8x1 (patient 3) platinum–iridium electrodes. 
Electrode diameter was 4 mm (2.3 mm exposed), with 10 mm center-to-center spacing.  
Signals from the ECoG grids were split and sent to both the clinical system and a custom 
recording system.  A broadband (~50 kHz), 256 channels preamplifiers (PZ2-256 256-
Channel PreAmp, Tucker-Davis Technologies, Inc) was used to amplify the ECoG signals 
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with the electrode furthest from the motor cortex used as a reference for all other grid 
electrodes.  The amplified data was then sent to an ultra high performance data acquisition 
processor over a fast fiber optic connection (RZ2 Z-Series Base Station, Tucker-Davis 
Technologies, Inc) that digitized the signal at 3052 Hz with 16-bit resolution.  

Subjects used a stylus to perform arm movements on the touch-screen connected to 
designated laptop. The stylus position was registered as a mouse position and was sampled 
using custom-made MATLAB software.  A PC-based, bus-powered USB device 
(Measurement Computing's USB-1208FS) was used to convert the mouse position to an 
analog voltage (1-4 V) and these voltages were sent to the analog input of the data 
acquisition processor (RZ2 Z-Series Base Station, Tucker-Davis Technologies, Inc) to be 
sampled and stored together with the ECoG signals.  During the performance of the task 
additional event markers (e.g. beginning of a trial, appearance of a target, Acquiring of a 
target, etc.) were sent to other analog inputs of the data acquisition processor from the 
digital ports of the PC-based bus-powered USB analog to digital converter (Measurement 
Computing's USB-1208FS). 

Behavioral task. During the recording, subjects were seated in a hospital bed with a touch-
screen (KEYTEC INC.) placed in front of them in the horizontal plane. They were asked to 
use a stylus to perform arm movements on the touch screen using their shoulder and 
elbow rather than their wrist.  To evaluate the coupling between the ipsilateral and 
contralateral ECoG activity to arm movements we asked each subject to perform the task 
once with their right hand and one with their left.  A trial began with the appearance of a 
rectangular target (1 cm side) at the center of the reach field. This cue indicated to subjects 
to move their hand while holding a stylus towards the target; once the center target was 
obtained, one of several (6 or 8) randomly chosen peripheral targets (1 cm radius) 
appeared on the touch screen.  After the 400±200 msec delay, the center target 
disappeared.  This was the “GO” signal indicating that the subject should perform a reach 
towards the lit target. Once the target was hit, a new trial began by the appearance of a 
rectangular target at the center of the reach field. Each subject made 30 reaches to each 
target (total of 180 or 240 reaches).  

Movement reconstruction.  The first step in our analysis included filtering, re-referencing, 
and down-sampling of the ECoG and movement signals. Line noise (60Hz and its 
harmonics) was removed using a notch filter and then re-referenced by subtracting the 
common average reference (CAR) from the data of each electrode. CAR was calculated by 
averaging the raw signal of all the electrodes, omitting the ones that visual inspection 
suggested poor signal quality. After the re-referencing, the data was band passed between 
1 and 250 Hz and down-sampled to 500 Hz. 

In order to reconstruct a subject’s movements (X and Y position) from the ECoG data, we 
used the ECoG activity as an input to the Wiener filter. ECoG signals were band-passed into 
9 frequency bands (1-8, 9-15, 16-30, 31-50, 51-70, 71-90, 91-110, 111-131, 131-150), 
followed by calculating the analytic amplitude of each frequency band using the Hilbert 
transform. The resulting 9 time series were appended to the original time series of the 
ECoG signal (i.e. a total of 64x10=640 ECoG ‘channels’ in Subjects 1 and 2). The time series 
were down-sampled to 15Hz, and 1 second of ECoG data (15 bins) preceding a given point 
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in time was used to train the model and generate predictions. First, we tested the 
contribution of each individual new time-series to the prediction of the hand movements 
and then selected the ones that produced the best prediction to be used as the inputs to the 
Wiener filter. Estimation of predictive power was always performed using 60 sec of 
movements outside of the training window and the predictive power of each decoder was 
determined by comparison of neural predictions of X and Y position with that of measured 
values.    

Statistical analysis.  In order to test the statistical significance of our results, we compared 
correlation-coefficient (CC) distributions for actual and a ‘randomly-shifted’ version of the 
same data. To obtain CC distributions for the actual runs, we circularly shifted (MATLAB 
function circshift) both the ECoG and movement data with a random shift (300 times). We 
found the best Wiener filter weights for the first 4 minutes of the shifted data and then 
applied them to the remaining portion. This process resulted in a distribution of CC’s for 
each movement parameter (the means and standard-deviations for the ipsilateral trials are 
depicted in Table 1).  For the ‘random-shift’ method, we created a distribution by picking a 
random lag between the movement and the ECoG data (300 times). This time, however, 
while we shifted the ECoG data, the movement data was held constant. The result of this 
procedure was another distribution of CC’s.   

 

Neural Signal 

 

Elbow 

 

Shoulder 

 

Hand (X) 

 

Hand (Y) 

Spikes (n=10) 0.81 ± 0.03 0.78 ± 0.05 0.61  ± 0.04 0.75 ± 0.04 

LFP (n=8) 0.47 ± 0.02  0.42 ± 0.02  0.29 ± 0.05 0.45 ± 0.02 

ECoG (n=3) - -  0.60 ± 0.03 0.61 ± 0.03 

 

Table 1 : Prediction of Ipsilateral Limb Position.  Values indicate the correlation coefficient R (mean ± sem). 
The value of n is the number of sessions used in the analysis. 

4.3 Results 

4.3.1 Monkeys 

We trained two macaque monkeys to perform a center-out reaching task with the right 
upper limb using the Kinarm Exoskeleton system.   Reaching movements with the proximal 
arm and hand were limited to two-degrees of freedom (flexion/extension of the elbow and 
shoulder) in the horizontal plane.  A cursor (R=0.5 cm) on the horizontal screen was 
collocated with hand movements (Figure 13 A).  Following chronic implantation of 
microelectrode arrays into bilateral M1, we recorded the neural activity (both spike and 
LFP) during the performance of a center-out reaching task (Figure 13 B).  We first 
estimated the percentage of units that were significantly modulated by the direction of arm 
movements.  Figure 13  C illustrates a single unit from ipsilateral M1 (M1-ipsi) whose firing 
rate was directionally modulated.  For both animals, the respective fraction of modulated 
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neurons for M1-ipsi were 43 ± 5% and 54 ± 6 %, while those for contralateral M1 (M1-
contra) were 67 ± 6% and 73 ± 7% (Figure 13 D). These estimates (from our chronic 
recordings) are in-line with past reports using acute recording methods (Donchin et al., 
1998; Cisek et al., 2003). 

We next used linear regression techniques to characterize the bihemispheric ensemble 
representation of movement parameters (Humphrey et al., 1970; Ashe and Georgopoulos, 
1994; Wessberg et al., 2000; Carmena et al., 2003).  In general, while regression techniques 
have found that multiple parameters (e.g. target direction, position and velocity) are 
correlated with activity at the level of single neurons, correlations with velocity appear to 
be the most prominent (Ashe and Georgopoulos, 1994; Reina et al., 2001; Paninski et al., 
2004a; Paninski et al., 2004b). This analysis used neural activity that was closely 
temporally linked to external movements (i.e. temporal lag of < 100 ms).   

 

We first performed a similar analyses for units recorded from both M1-ipsi and M1-contra.  
Consistent with past results, we found that individual unit activity in M1-contra was more 
closely associated with velocity than position (data not shown).  For M1-ispi, we also found 
that individual unit activity was significantly more correlated with velocity than position 
(position: 0.05 ± 0.03; velocity: 0.16 ± 0.02 mean ± sem; p < 0.001 t-test).  However, when 
the same analysis was performed with neural ensembles from each hemisphere (i.e. single 
bin of 100ms with at least 50 units per hemisphere), both parameters could be decoded 
equally well (M1-ipsi: 0.50 ± 0.05 and 0.49 ± 0.06 for position and velocity respectively, p > 
0.3 t-test).  Identical results were obtained regardless of whether angular joint or hand-
based coordinates were used for comparison of position and velocity predictions.  Taken 
together, this further indicates that information not readily apparent at the single neuron 
resolution (i.e. velocity more represented than position) can be reliably decoded from 
neural ensembles (i.e. velocity and position are equally represented). 

We next performed an additional set of analysis to directly compare with methods typically 
used for real-time continuous prediction of movement parameters (Wessberg et al., 2000; 
Serruya et al., 2002; Carmena et al., 2003). One key difference is the simultaneous inclusion 
of multiple temporally lagged bins into the regression model (e.g. 10 lags are typically 
used).  While the animals performed center-out reaching movements with the right upper 
limb, the recorded M1 spike activity (the respective ipsilateral and contralateral spike 
activity were grouped separately) was correlated with limb kinematics to generate 
decoders for each variable (Figure 14A).  Hence, we will use the term ‘decoder’ to refer to 
the combined transforms.  Figure 14 B illustrates the predictive ability of either the 
ipsilateral or the contralateral neural ensemble activity during a single session.  For 
multiple sessions in both monkeys (n=5 sessions each, 10 lags with at least 50 
units/hemisphere), ipsilateral ensemble activity could reliably and continuously predict 
angular joint positions (Table 1).  We subsequently generated a “neuron-dropping curve” 
(Wessberg et al., 2000; Carmena et al., 2003) for each movement parameter to estimate the 
relationship between ensemble size and the representation of a given parameter.  For both 
subjects, the fidelity of the representation improved as a function of the size of the neural 
ensemble (Figure 14C).  
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Figure 14: Real- time decoding of ipsilateral upper limb parameters from M1 spike activity.  A, Continuous 
illustration of shoulder (upper) and elbow (lower) angular position and spiking data from each hemisphere.  
Each dot represents a single spike.   B, Predictions of elbow and shoulder position from ensembles of 
ipsilateral and contralateral spike activity.  Dark traces show the movements across time.  While the red trace 
shows the prediction from contralateral M1, the green trace shows that for ipsilateral M1.  R is the correlation 
between the predicted and the actual traces.  C, Neuron-dropping curves to illustrate the relationship 
between ensemble size and predictive ability for both angular position and velocity for Monkey P and R.  
Dotted line (shoulder), solid line (elbow). 

With the simultaneous inclusion of temporally lagged bins from M1-ipsi, limb position 
could be better decoded than velocity (with 10 lags, R=0.8 ± 0.02 and 0.69 ± 0.04 mean ± 
sem for position and velocity respectively, p<0.0001 t-test).  Consistent with this notion 
was the observation of a relatively sharper decline in velocity-related information for 
increasing temporally lagged bins (Supplementary figure 4).  It is possible that the inherent 
autocorrelation of changes in limb position or velocity during this task underlies this result 
(Paninski et al., 2004b).  We also assessed the relation between M1-ipsi activity and the 
coordinate system for estimating limb position (i.e. joint vs hand position).  In our 
experimental system, the robotic exoskeleton allows accurate monitoring of joint angles as 
well as hand position.   In both animals, we consistently found that both the contralateral 
and ipsilateral ensemble activity were more correlated with angular joint kinematics than 
end-point hand coordinates (p < 0.001, ANOVA, Table 1).   

What is the temporal evolution of the predictions from each hemisphere relative to limb 
movements?  We performed high resolution (time bins of 10 ms) analysis of the predictive 
ability of neural ensembles from each hemisphere.  Consistent with past reports, we 
observed a delayed peak in the relationship between M1-contra activity and limb position 
(~50ms, Figure 15).  In contrast, the value of this relationship was delayed for M1-ipsi 
(~110 ms).  Thus, it appeared that at least a portion of the M1-ipsi neural representation is 
delayed relative to that from M1-contra. 
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Figure 15: Temporal evolution of upper limb movement parameters.  Each curve shows the temporal 
evolution of the predictive ability of ensemble of neurons from either the contralateral or ipsilateral M1 (mean 
± sem).  Ensemble predictions of limb position were performed using a single bins of data (10 ms bin size) 
lagged from the onset of movement (step size=10 ms, non-overlapping).  The peak of each curve was 
normalized to 1 prior to generation of the mean curves shown. 

To exclude the possibility that M1-Ipsi activity simply reflected spurious activation of the 
opposite limb (e.g. postural adjustments or mirror movements with the left hemibody 
during reaches with the right arm), we measured bilateral EMG activity during select 
sessions (Cisek et al., 2003).  Figure 16 illustrates the directional modulation of the EMG 
activity for the right biceps and left pectoralis during reaches with the right arm.  For 
Monkey P, there was no evidence of significant activation of the left hemibody during 
reaching movements.  For Monkey R, only one left hemibody muscle (left trapezius) 
demonstrated significant activation during the task.  Together, these results confirmed that 
M1-Ipsi activity largely did not reflect spurious activation of the opposite hemibody. 

We next quantified the ability of cortical field potentials to continuously represent 
ipsilateral kinematic parameters.  We used spectral decomposition of the LFP signal as an 
input to the Wiener filter (Schalk et al., 2007).  The M1-ipsi LFP was also found to be 
significantly correlated with ipsilateral limb kinematics (Table 1).   
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Figure 16 : EMG activity during performance of the center-out task.  Representative examples of the 
directional modulation of the right (R) biceps and the left (L) pectoralis EMG.  Each dot represents the mean 
activity in a 300 ms window after movement onset.  Traces on the right show the mean (dark line) ± SEM (thin 
line) EMG activity to two targets.  * (p < 0.001, ANOVA).   

4.3.2 Human Subjects 

We assessed the generality of our results to primate motor systems by testing this 
relationship in three human subjects.  Electrocorticographic (ECoG) recordings from 
patients with epilepsy offer a means to evaluate the ability of cortical field potentials to 
predict ipsilateral motor parameters (Schalk et al., 2007; Schalk et al., 2008).  ECoG signals 
(from either the left or right hemisphere) were recorded from three subjects during the 
performance of center-out reaches with each hand.  Traces of hand movements are 
depicted in Figure 17 B.  Shown in Figure 17 C are representative velocity profiles of the 
movement from the center to each of the targets.  

 

Figure 17 : Experimental setup and task characteristics.  A, Electrode placement overlaid on the brain MRI of 
subject 1.  B, Actual hand trajectories during performance of the center-out reaching task.  The dimensions 
of the workspace were 20 x 20 cm.  C,  Multiple examples of the velocity profiles for movements from the 
center (i.e. during period marked as ‘Hold’) to the target.  Profiles for all targets are shown in an overlapping 
manner. 

We next evaluated whether linear regression methods could continuously decode 
ipsilateral upper arm position.  A reconstruction of hand trajectories from the recorded 
neural signals is illustrated in Figure 18A.   For three such subjects, cortical field potentials 
were found to be significantly correlated with ipsilateral limb kinematics (Table 1).   In 
addition, bilateral surface EMG measurements during the performance of this task did not 
reveal evidence of the opposite hemibody activation.   

We also assessed the anatomical distribution of such predictive information.  While this 
was observed to be relatively distributed, activation appeared to be most prominent in 
sensorimotor regions (Figure 18B and Supplementary figure 5).   Shown in Figure 18C are 
the bands which contributed the most to the prediction of ipsilateral limb movements (also 
see Supplementary figure 6 for mean of all subjects).  Moreover, we attempted to compare 
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the temporal evolution of predictions for both hemispheres.  For cortical field potentials at 
the level of ECoG, no significant differences could be detected between the two 
hemispheres.  

 

Figure 18: Reconstruction of hand position from ECoG data.   A, Prediction of hand position from either the 
ipsilateral or the contralateral ECoG activity.  Dark traces show the actual movements.  Red trace shows the 
prediction of the contralateral hand position; green trace shows that for the ipsilateral hand.  R is the 
correlation between the predicted and the actual traces.  B, Colormap illustrating the relationship between 
the anatomical locations of electrodes and its predictive ability.  Superimposed on the brain image is the 
predictive ability of individual electrodes. CS = central sulcus, SF = Sylvian Fissure.  C, Quantification of the 
relationship between the timeseries or the frequency band and the ability to predict movement parameters.  
In this analysis, only the information from a single band was included in the model. 

4.3.3 Ipsilateral Neural Representation for closed-Loop BMI in Monkeys  

The results above indicate that ipsilateral movement parameters can be reliably 
represented in both M1 spike activity as well as cortical field potentials in both monkey and 
man.  We subsequently asked whether a decoder trained under such conditions can be 
successfully used in a closed loop BMI in monkeys (Figure 19A).  Figure 19B illustrates the 
typical cursor trajectories under control ‘brain-control’ (BC, where the neural activity 
exclusively controlled the position of the computer cursor).  After a period of training, each 
monkey could perform the center-out task in BC.  For multiple sessions, both animals could 
accurately perform the center-out task in BC  (Monkey P:  83 ± 6% accuracy with a mean 
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time to reach the target of 2.4 ± 0.5 s;  Monkey R: 76 ± 9 % accuracy with a mean time to 
reach the target of 2.9 ± 0.3s; all reported as mean ± sem). 

 

Figure 19: Closed-loop BMI using the ipsilateral neural representation of arm movements.  A, Schematic 
illustrating cursor control by M1-ipsi.   B, Representative traces of the cursor movement from the center to 
each of the eight targets and back.    

4.4 Discussion 

Our results demonstrate that the distributed activity in primate motor areas can reliably 
and continuously represent ipsilateral upper limb kinematics.  We found that such 
information could be decoded by applying linear methods to neural signals at a variety of 
temporal and spatial scales (ensemble spike activity as well as the aggregate cortical field 
potential at two different resolutions). We further demonstrate that the spike activity from 
M1 can be used in a biomimetic closed-loop BMI designed to control ipsilateral limb 
kinematics.   

Role of Motor Cortex in Ipsilateral Movements  

Several studies have demonstrated that the activity of single M1 neurons can be modulated 
by ipsilateral arm, hand and finger movements (Tanji et al., 1988; Donchin et al., 1998; 
Cisek et al., 2003).  Studies in monkeys have further shown that while subsets of M1 
neurons are exclusively tuned to the direction of ipsilateral arm movements, another 
fraction of neurons are active during bimanual movements (Donchin et al., 1998).  Lesion 
and stimulation studies in both monkey and man provide additional support for a role of 
motor regions in ipsilateral limb control (Brinkman and Kuypers, 1973; Rao et al., 1993; 
Verstynen et al., 2005; Dancause, 2006; Brus-Ramer et al., 2009).  

We demonstrate that ipsilateral limb kinematics can be reliably decoded, in real-time, from 
the population activity at multiple scales in motor areas.  However, the exact role of motor 
cortex in the control of ipsilateral proximal and distal limb movements remains unclear.  
The anatomical substrate for the control of ipsilateral movements has been hypothesized 
to be mediated through either descending uncrossed fibers or trancallosal pathways 
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(Dancause, 2006).  Our finding that the peak of ipsilateral movement prediction is delayed 
relative to that for contralateral movements lends some support to the notion of 
interhemispheric transfer of this representation.   

One focus of this study was to characterize the representation of arm and hand movement 
parameters in ipsilateral neural ensembles.  Our finding that both the ensemble spiking 
activity and the population cortical field potentials obtained at two temporal and spatial 
resolutions can continuously predict ipsilateral limb kinematics further demonstrates that 
distributed neural ensembles can reliably encode information.  Coordinated and dexterous 
bimanual movements likely require a high-fidelity representation of ipsilateral kinematics.  
One possibility is that it is an efference copy of contralateral motor commands.  Another 
possibility is that it mediates bimanual coupling (Donchin et al., 1998).  Thus, it could 
provide a neural substrate for the observed phenomenon of spatial coupling during 
bimanual tasks (Oliveri et al., 2001).   

An interesting observation was that M1 activity was more indicative of joint position than 
hand kinematics (Table 1).  Past analysis of the contralateral representation of limb 
movements have shown that it is correlated with multiple movement parameters (Ashe 
and Georgopoulos, 1994; Reina et al., 2001; Paninski et al., 2004a; Paninski et al., 2004b).   
However, because hand position covaries with joint angles and other aspects of arm 
movement it remains difficult to conclude what is truly encoded in these neurons (Reina et 
al., 2001).  Moreover, it remains possible that a generative model could provide a more 
parsimonious explanation for the apparent encoding of multiple parameters (Todorov, 
2000).  It is less clear how to formulate such a model (e.g. direct control of musculature) for 
the ipsilateral neural representation.   

It is also important to note that an alternate explanation for the apparent modulation of 
neural activity by ipsilateral movements is that the opposite non-task arm and the axial 
musculature may be active (Cisek et al., 2003).  There are at least two lines of evidence 
suggesting that this does not exclusively account for all neural activity putatively related to 
ipsilateral limb movements.  Classical studies demonstrated that proximal arm movements 
can be exclusively controlled by ipsilateral motor cortex (Brinkman and Kuypers, 1973).  
Moreover, distal limb movements made in the absence of proximal movements resulted in 
ipsilateral neural activity (Tanji et al., 1988). In this study, we minimized the need for 
postural adjustments.  The workspace was optimized such that reciprocal postural 
movements were not obviously required.  While one monkey was found to have limited 
spurious non-task arm EMG activity, the other did not.  Moreover, the task performed by 
the human subjects did not appear to result in such spurious activity.  While it remains 
difficult to completely exclude that a component of neural activity was related to non-task 
arm activity, it seems unlikely to account for our observations.   

Possible role of the ipsilateral representation in neurorehabilitation  

The exact role of ipsilateral motor regions in the recovery of arm function after brain injury 
remains unclear.   There is a significant fraction of patients who do not recover function 
after a stroke (Dancause, 2006; Hummel and Cohen, 2006).  Large subcortical strokes (i.e. 
with loss of descending contralateral corticospinal pathways) are associated with such a 



Cortical Representation of Ipsilateral Arm Movements in Monkey and Man 

51 
 

lack of functional recovery (Shelton and Reding, 2001).  This further suggests that 
ipsilateral motor areas and its associated descending connections are not sufficient by 
themselves to support recovery.  In contrast, in patients who experience spontaneous 
recovery of limb function, the ipsilateral hemisphere may play a greater role (Gerloff et al., 
2006; Lotze et al., 2006).   Trancallosal pathways have been implicated in this process 
(Dancause, 2006; Gerloff et al., 2006).  Thus, a likely possibility is that in the presence of the 
appropriate anatomical substrate, ipsilateral motor areas may assist the process of 
functional recovery. 

Importantly, there is also evidence that the contralesional hemisphere (i.e. ipsilateral to the 
affected limb) can play a maladaptive role in stroke patients (Dancause, 2006; Hummel and 
Cohen, 2006).  For instance, inhibition of the contralesional hemisphere through non-
invasive methods can transiently improve motor function (Hummel and Cohen, 2006).  
Thus, the ipsilateral hemisphere appears to dampen the excitability of the damaged 
hemisphere and impede the process of recovery.   These studies indicate that the balance of 
interhemispheric inhibition is important.   In this context, another interpretation of our 
findings is that it represents the transcallosal shaping of ipsilateral motor areas.  In the 
damaged brain, this may impede recovery.  Future research may help to uncover how the 
ipsilateral hemisphere can either facilitate or impede recovery. 

A BMI using the Neural Representation of the Ipsilateral Arm 

Our results demonstrate that the ensemble representation of ipsilateral arm movements 
can be used in a closed-loop biomimetic BMI.  Past work has not shown that such a 
representation can be exclusively used to create a closed-loop biomimetic BMI.  The 
decoder used in these experiments predicted the natural relationship between M1 spike 
activity and ipsilateral movements.  It is likely that neurons more sensitive to ipsilateral 
arm movements than to contralateral arm movements needed to be actively modulated 
during BC.  As in past studies, feedback and learning during closed-loop control were 
important for improvements in task performance over the course of a session (Taylor et al., 
2002; Carmena et al., 2003; Hochberg et al., 2006; Mulliken et al., 2008).   

Past work has suggested that the accuracy of movement parameter decoding (Wessberg et 
al., 2000) is important for BMI function (Taylor et al., 2002; Carmena et al., 2003; Schalk et 
al., 2007).  Linear algorithms have been demonstrated to be reliable in extracting 
parameters from simultaneously recorded neural activity (Wessberg et al., 2000; Carmena 
et al., 2003; Mulliken et al., 2008).  There is mixed evidence regarding the magnitude of 
improvements with more sophisticated decoding techniques (Kim et al., 2006; Wu et al., 
2006; Mulliken et al., 2008).   Most importantly, however, our results indicate that even 
while the ipsilateral predictions are not as good as the contralateral predications, they can 
be successfully incorporated in a BMI.  

An important question for future research is to fully understand the role of biomimetic 
decoders (Radhakrishnan et al., 2008).  Recent work has suggested that a combination of 
volitional control of neural activity, visual feedback and plasticity mechanisms can allow 
direct neural control of neuroprosthetic devices independent of any relationship to natural 
movements (Moritz et al., 2008; Ganguly et al., 2009). However, given that cortical 
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networks in M1 are likely optimized for dexterous bimanual limb control, a seemingly 
likely possibility is that biomimetic decoders can best capitalize upon existing cortical 
architecture.  For instance, comparison of both unimanual and bimanual movements has 
revealed that both overlapping and non-overlapping patterns of activity are present 
(Donchin et al., 1998; Wisneski et al., 2008).  Accordingly, it remains possible that 
integration of a biomimetic decoder for ipsilateral movements will not interfere with 
existing cortical networks for contralateral movements.  Such interference could occur if 
neurons were incorporated into a BMI without regard for their actual relationship to 
natural movements. 

A BMI for patients with chronic stroke 

A recent study demonstrated that volitional control of non-invasively recorded neural 
signals (with MEG) is possible even in chronic stroke patients with limb paralysis (Buch et 
al., 2008).  While arm function did not improve outside of training sessions, subjects could 
control a prosthetic device through modulation of the µ-rhythm.  Interestingly, they could 
utilize µ-rhythms from either ipsilateral or contralateral brain regions.  

In general, the resolution of recorded neural signals (e.g. non-invasive versus invasive 
intracortical recordings) required for a long-term, reliable BMI remains unclear.  Thus, 
continued basic and translational research using a variety of neural signals is important.  
Our study explores the eventual creation of an invasive biomimetic BMI based on the 
ipsilateral neural representation of arm movements.  We characterized the ipsilateral 
ensemble representation of continuous limb movements in non-paralyzed subjects.  
Methodological limitations (i.e. recording technique and size of cortical area monitored) 
prevent detailed comparison of the ipsilateral representation in non-human and human 
subjects.   However, it is reassuring that qualitatively similar results were obtained in both 
healthy non-human primates as well as in patients with chronic focal epilepsy with unclear 
long-term effects on cortical organization.  It will be important to demonstrate that this 
representation is intact after damage to the opposite brain hemisphere.  In support of this 
concept are imaging studies demonstrating that even after extensive damage to 
contralateral motor areas, contralesional motor areas are active in a similar manner 
(Dancause, 2006; Buch et al., 2008).   

4.4.1 Conclusion 

In summary, our results provide evidence that motor areas encode ipsilateral limb 
kinematics with high precision.  Moreover, this representation can be used in a closed-loop 
BMI.  These findings suggest the possibility of eventually creating fully functional BMIs for 
patients suffering from extensive unilateral hemisphere brain injury. 
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5 Appendix I : Supplementary Figures 
 

 

 

Supplementary figure 1: Event-related time–frequency plots in response to non direction specific movement 
onset (subject 1).  The location of the electrodes with the electrode number is depicted in the MR scan. X axis 
of each ERSP is time (0.5sec till 0.2 after prior to movement onset, vertical lines at t=0 indicate movement 
onset), Y axis are the frequency bands (see methods), color code represent z-score values based on 
permutation analysis (see methods). Electrodes with activations below significance threshold (t-test 
alpha=0.001, p=0.0001 multi-comparison corrected) are omitted 
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Supplementary figure 2: Comparison of observed and reconstructed hand velocity based on a model derived 
from ECoG data (A.U. means arbitrary units). Upper row: Model with externally-cued condition as training set 
used to reconstruct hand velocity for same condition (A) or internally-generated condition (B). Middle row: 
Model with internally-generated condition as training set used to reconstruct hand velocity for same 
condition (C) or externally-cued condition (D).  The traces and r values are as described in Figure 11.  (E-F) 
Grand average of similarity coefficients between the reconstructed and actual traces. Blue bars: 
reconstructed externally-cued velocity; Red bars: reconstructed internally-generated velocity. G) Similarity 
coefficients for the two movement conditions from individual blocks. Solid and empty marks are data points 
derived by training the model on externally-cued and internally-generated condition respectively. The X value 
is the rSC for reconstructing externally-cued movement and the Y value is the rSC for reconstructing 
internally-generated movement. Colors indicate different subjects.   
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Supplementary figure 3 : Simulated ECoG data using movement data.  
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Supplementary figure 4: Comparison of the predictive ability with temporally lagged bins.  A, Normalized 
predictions of limb position using neural activity from a non-overlapping single bin (bin size=50ms, lagged 
from 0 to 500ms in 50ms steps).  Each curve is shown with the mean (thick) ± standard deviation (thin).  M1-
ipsi (green); M1-contra (red).  B, Normalized predictions of limb velocity performed similarly as in A.  Note the 
more rapid decay of predictions of velocity than that for predictions of position. 
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Supplementary figure 5: Anatomical distribution of predictive information.  Color map illustrating the 
relationship between the anatomical locations of electrodes and its predictive ability.  Superimposed on the 
brain image is the predictive ability of individual electrodes. CS = central sulcus, SF = Sylvian Fissure. 
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Supplementary figure 6: Quantification of the relationship between the time series or the frequency band and 
the ability to predict movement parameters.  This plot represents the mean from all three subjects. 
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6 Appendix II: MATLAB codes 

 

6.1 ERP - The full algorithm 

 

fftbrainData=fft(brainData); 

ffteventData=fft(fliplr(eventData)); 

newERP=fftshift(ifft(fftbrainData.*ffteventData)); 

meanSurr=mean(newERP(ceil(length(newERP/2)*rand(1,10000)))); 

stdSurr =std (newERP(ceil(length(newERP/2)*rand(1,10000)))); 

 outputERP =(newERP(Tbefore:Tafter)-meanSurr)./stdSurr;  

 

6.2 ERSP - The full algorithm 

 

for f=1:length(freqs) 

fftbrainData=fft(brainData); 

fftanamp=fft(abs(ifft(fftbrainData*filter(freqs(f))))) 

ffteventData=fft(fliplr(eventData)); 

newERP=fftshift(ifft(fftanamp.*ffteventData)); 

meanSurr=mean(newERP(ceil(length(newERP/2)*rand(1,10000)))); 

stdSurr =std (newERP(ceil(length(newERP/2)*rand(1,10000)))); 

 outputERSP(f,:) =(newERP(Tbefore:Tafter)-meanSurr)./stdSurr; 

end
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