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ABSTRACT OF THE DISSERTATION

Some superconvergence estimates of mixed and nonconforming finite

element methods

by

Yuwen Li

Doctor of Philosophy in Mathematics

University of California San Diego, 2019

Professor Randolph E. Bank, Chair

In this dissertation, we develop new superconvergence estimates of mixed and non-

conforming finite element methods on mildly structured grids, where most pairs of

adjacent triangles form approximate parallelograms. In particular, we consider the

Raviart–Thomas mixed method and Crouzeix–Raviart nonconforming method for sec-

ond order elliptic equations, and the Hellan–Herrmann–Johnson mixed method and

Morley nonconforming method for fourth order elliptic equations. We first prove some

supercloseness estimates, that is, the canonical interpolant and finite element solution

are superclose. We then develop a new family of recovery operators on irregular tri-

angular grids by using the idea of local least-squares fittings. Combining these two

ingredients, we prove that the postprocessed solution superconverges to the exact so-

lution. Compared to existing superconvergence results, our estimates are sharper and

applicable to more flexible grids and partial differential equations with variable coeffi-

cients and lower order terms.
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Chapter 1

Introduction

This chapter concerns with the background of finite element superconvergence

analysis and motivation of the dissertation.

1.1 List of notations

For convenience, we introduce a list of notations that will appear throughout

the dissertation. Let Ω ⊂ R2 be an open polygonal domain. Let Th = {Ti : i ∈ I} be

a triangulation of Ω, which is a collection of triangles such that

1.
⋃
i∈I T̄i = Ω̄;

2. For i, j ∈ I with i 6= j, T̄i ∩ T̄j is an edge or a vertex shared by Ti and Tj.

Here Ū denotes the closure of U . Th is assumed to be shape regular, i.e., there exists

a fixed constant Θ > 0, such that θ ≥ Θ > 0 for the angle θ of any T ∈ Th. The

shape-regularity here based on the minimum angle condition (MAC) is equivalent to

the shape-regularity based on the ratio of the radii of the inscribed and circumscribed

circles of T ∈ Th. Let hT = |T | 12 be the diameter of T and h = maxT∈Th hT be the mesh-

size. We also assume that Th is quasi-uniform, i.e., maxT∈Th hT ≤ C(minT∈Th hT ) for
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some generic constant C, unless we clarify the mesh condition. Given a one-dimensional

or two-dimensional subset U ∈ R2, the polynomial space

Pr(U) = {v : v is a polynomial on U of degree ≤ r}

is useful in defining shape functions of finite elements. Let n denote the outward unit

normal to ∂U and t the counterclockwise unit tangent to ∂U . We do not use nU and

tU unless confusion arises. For example, ∂n can be the outward normal derivative of

the domain Ω or a triangle T .

In our error analysis of finite element methods (FEMs), the set of edges, interior

edges and boundary edges in Th are denoted by Eh, Eoh, E∂h , respectively; the set of nodes,

interior nodes and boundary nodes in Th are denoted by Nh,N o
h ,N ∂

h , respectively.

Several kinds of local patches are useful for finite element superconvergence analysis.

For z ∈ Nh, let ωz be the union of triangles in Th sharing z as a vertex. For e ∈ Eh,

let ωe be the union of triangles in Th sharing e as an edge. For T ∈ Th, let ωT be the

union of T and triangles in Th sharing at least one vertex with T . The local nodes,

edges, and triangles in U are Nh(U) = {z ∈ Nh : z ∈ Ū}, Eh(U) = {e ∈ Eh : e ⊂ Ū},

and Th(U) = {T ∈ Th : T ⊆ Ū}, respectively.

For error estimates, we need several Sobolev semi-norms and norms:

|v|k,p,U =
( ˆ

U

|Dkv|p
) 1
p , ‖v‖k,p,U =

( k∑
m=0

|v|pm,p,U
) 1
p ,

|v|k,U = |v|k,2,U , ‖v‖k,U = ‖v‖k,2,U .

(1.1)

where

|Dkv| :=
∑

α1+α2=k

∣∣∣∣ ∂α1+α2

∂xα1
1 ∂x

α2
2

v

∣∣∣∣ .
The integral in (1.1) is understood as the double integral if U is a two-dimensional sub-
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set or the line integral is U is a one-dimensional subset. Sobolev norms with ∞-index,

norms of vector/matrix-valued functions, and fractional order norms are generalized in

usual ways. The thesis considers Sobolev spaces

W k,p(Ω) = {v ∈ L2(Ω) : ‖v‖k,p,Ω <∞}, H1
0 (Ω) = {v ∈ W 1,2(Ω) : v = 0 on ∂Ω}.

Let |U | denote the measure (length, area etc.) of U and
ffl
U
f =

´
U
f/|U | the average

of f over U . In finite element interpolation theory, the mesh-dependent semi-norm

|v|h,k,Ω =
( ∑
T∈Th

|v|2k,T
) 1

2

is quite useful. It is also convenient to introduce the notation ., i.e., A . B if A ≤ C ·B,

where C is a generic constant that may change from line to line, may depend on the

domain Ω, the minimum angle θ0, datum of PDEs, but is independent of the PDE

solution, the mesh-size h, and other crucial parameters. We say A ≈ B if A . B and

B . A.

1.2 The finite element method and superconver-

gent recovery

Finite element superconvergence theory of Lagrange elements applied to sec-

ond order elliptic equations has been well established (cf. [67] and references therein).

Generally speaking, there are two types of superconvergence phenomena. One is called

natural superconvergence which is local, that is, the finite element solution supercon-

verges to the true solution at some special points (cf. [60]). The other is recovery-type

superconvergence, which is often global (cf. [1] and references therein).
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Due to its simplicity, universality, and efficiency, finite element superconvergent

recovery is quite popular in practice. We illustrate it by Poisson’s equation

−∆u = f in Ω,

u = g on ∂Ω.

(1.2)

Given a mesh Th, let φz be the nodal basis function at z ∈ Nh, that is, φz(z
′) = δzz′

for any z′ ∈ Nh. Here δzz′ is the Kronecker delta. Let gh =
∑

z∈N ∂h
g(z)φz, namely, the

boundary nodal interpolant of g. For positive integer r, define

U rh = {vh ∈ H1
0 (Ω) : vh|T ∈ Pr(T ), ∀T ∈ Th}.

We also need the nodal finite element space without essential boundary condition

Srh = {vh ∈ H1
0 (Ω) : vh|T ∈ Pr(T ), ∀T ∈ Th}.

The linear FEM for solving (1.2) is to find uh ∈ U1
h + gh, such that

(∇uh,∇v) = (f, v), ∀v ∈ U1
h , (1.3)

where (·, ·) denotes the L2-inner product on Ω. To estimate the finite element error,

we introduce the linear interpolant vI =
∑

z∈Nh v(z)φz for any continuous function v.

By finite element interpolation theory, we have

‖v − vI‖p,Ω . h2−p|v|2,Ω, p = 0, 1.

Assume Th is uniformly parallel, i.e., each pair of adjacent triangles in Th forms a
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parallelogram. Then the supercloseness estimate holds

‖∇(uI − uh)‖0,Ω . h
3
2‖u‖3,Ω. (1.4)

In practice, uI is not available. To obtain a more accurate solution from (1.4), one

needs the so called recovery or postprocessing operator Gh acting on ∇uh, which is

often called gradient recovery. Gh∇uh is often H1-conforming, i.e., Gh∇uh ∈ H1(Ω),

and superconverges to ∇u in some situations. In addition, Gh can be used to develop

a posteriori error estimators. The recovery-based a posteriori error estimators are

popular for their simplicity and asymptotic exactness (cf. [72, 73, 74, 1, 9, 71]).

For example, let Gh∇uh be the finite element function in S1
h × S1

h with

(Gh∇uh)(z) =
1

|ωz|
∑
T3z

|T |(∇uh)|T , ∀z ∈ Nh, (1.5)

namely, Gh∇uh =
∑

z∈Nh(Gh∇uh)(z)φz. It is not hard to show that

‖Gh∇uh‖0,Ω . ‖∇uh‖0,Ω, (1.6a)

‖∇u−Gh∇uI‖ . h
3
2‖u‖3,Ω. (1.6b)

(1.6a) is the boundedness of Gh and (1.6b) is the super-approximation property of Gh.

Combining (1.6) with the supercloseness estimate (1.4) and using a triangle inequality,

we obtain the recovery superconvergence

‖∇u−Gh∇uh‖ ≤ ‖∇u−Gh∇uI‖+ ‖Gh(∇uI −∇uh)‖ . h
3
2‖u‖3,Ω. (1.7)

The more accurate Gh∇uh can be used to develop the recovery type a posteriori esti-

mator. For each triangle T ∈ Th, let ηT = ‖∇uh − Gh∇uh‖T be the computable local
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error indicator, and ηh = (
∑

T∈Th η
2
T )

1
2 = ‖∇uh − Gh∇uh‖0,Ω. The triangle inequality

yields

‖∇u−∇uh‖0,Ω − ‖∇u−Gh∇uh‖0,Ω ≤ ηh ≤ ‖∇u−∇uh‖0,Ω + ‖∇u−Gh∇uh‖0,Ω.

Under mild condition, ‖∇(u− uh)‖0,Ω ≈ h. It then follows from (1.7) that

lim
h→0

ηh
‖∇u−∇uh‖0,Ω

= 1,

namely, the error estimator ηh is asymptotically equivalent to the true error ‖∇u −

∇uh‖0,Ω, which is called asymptotic exactness. Hence we have a reliable and efficient

control of the finite element error. Gradient recovery method for Lagrange elements

have been studied extensively by many authors, (cf.[72, 73, 74, 9, 10, 11, 71, 68]). In the

aforementioned superconvergence analysis, we define the linear interpolation I1
hv = vI .

For error analysis of the quadratic FEM, we need the quadratic Lagrange interpolation

I2
h : C(Ω) → S2

h, where I2
hv(z) = v(z) holds for any vertex z and midpoint z of any

edge in Th.

1.3 Motivation and originality

While superconvergence analysis of Lagrange elements reaches its maturity

(cf.[60, 9, 69] and references therein), superconvergence results of many important

types of finite elements are quite limited. The goal of the dissertation is to develop so-

phisticated superconvergence theory for mixed and nonconforming FEMs. Mixed and

nonconforming FEMs are two classes of finite element methods which are seemingly

very different but indeed closely related to each other in theory. They are particularly

useful for dealing with systems of equations and higher order equations. The variational
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formulation of mixed FEMs uses more than one finite element space. Among numer-

ous mixed finite elements, Raviart–Thomas (RT) finite element is the first and one

of most important one for discretizing space pairs H(div; Ω)× L2(Ω) arising from the

first order formulation (2.2) of second order elliptic equations. The Hellan–Herrmann-

Johnson mixed method for the fourth order elliptic equation can be viewed as a gen-

eralization of RT mixed methods. Classical superconvergence results ([12, 13, 30]) for

mixed methods are typically concerned with uniformly structured meshes such as uni-

formly parallel or rectangular meshes. Even in these cases, the error bounds are often

not sharp. In Chapters 2 and 3, we shall address the originality of the part on our

superconvergence analysis of mixed FEMs in detail. On the other hand, the noncon-

forming FEM is a family of FEMs that are seemingly different from mixed FEMs based

on suitably relaxing the inter-element continuity constraint in standard FEMs. Due

to the deviation from conformity, superconvergence analysis of nonconforming FEMs

is very difficult. Arnold and Brezzi [3] have shown that the Crouzeix–Raviart (CR)

nonconforming method and RT mixed method are equivalent for Poisson’s equation.

Similarly, the Morley nonconforming method and HHJ mixed method are equivalent

for the biharmonic equation. Built upon this equivalence, [36] gave a superconvergence

estimate for the CR and Morley element on uniformly parallel grids. However, this

result are limited to uniformly structured meshes and not sharp. In addition, it only

works for Poisson’s equation because of the equivalence only applies to Poisson’s equa-

tion. In Chapters 4, we shall address the originality of our superconvergence analysis of

nonconforming FEMs in detail. Here we briefly list the originality of the dissertation.

1. Our superconvergence estimates hold on meshes satisfying the (α, β)-condition

(see the next section) instead of uniform grids. As pointed out in [9, 69], the

(α, β)-condition is very flexible and satisfied by many mature finite element codes.
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2. The proof of superconvergence estimates are constructive. It shows how the lower

order error cancels in a transparent way and characterizes the rate of supercon-

vergence in terms of two parameters α, β.

3. Our superconvergence estimates deal with variable coefficient problems. The er-

ror analysis of mixed methods with lower order terms is often much more involved

(cf.[27, 7]).

4. For the lowest order RT, HHJ mixed methods and CR, Morley nonconforming

methods, classical superconvergence estimates are suboptimal. Our estimates

improve existing ones by h
1
2 .

5. We construct the recovery operator Rh based on solving local least squares prob-

lems. The super-approximation property of Rh is better than simple averaging

procedures. Rh can be generalized to mixed finite elements of general order.

1.4 Mildly structured meshes

Th is rarely uniformly parallel in practice. In order to generalize the supercon-

vergent recovery framework to a more realistic setting, one needs to deal with more

flexible mesh structures. In the dissertation, we focus on mildly structured grids, which

were introduced in [48, 9, 69, 42, 46] and references therein. Roughly speaking, most

pairs of adjacent triangles in mildly structured grids form approximate parallelograms

except for a region with small measure.

We begin with geometric identities on a local element T . It has three vertices

{zk}3
k=1, oriented counterclockwise, and corresponding barycentric coordinates {λk}3

k=1.

Let ek denote the edge opposite to zk, θk the angle opposite to ek, `k the length of ek,

dk the distance from zk to ek, tk the unit tangent to ek, oriented counterclockwise, nk

8



the unit outward normal to ek, ∂tk the tangential derivative, ∂nk the normal derivative,

and ∂2
tknk

the second mixed derivative, see (1.1). Corresponding quantities on triangles

T ′ and T ′′ have superscripts ′ and ′′ respectively. The subscripts are equivalent mod

3, e.g., `4 = `1, θ0 = θ3.

Definition 1.4.1. For e ∈ Eoh, let T, T ′ ∈ Th be the two adjacent elements sharing

e. Define e1 = e′1 = e. By going along ∂T and ∂T ′ counterclockwise, we obtain

other two pairs of corresponding edges e2, e
′
2 and e3, e

′
3. We say ωe = T ∪ T ′ is an

O(h1+α)-approximate parallelogram if |ei| = |e′i|+O(h1+α), i = 1, 2, 3.

Definition 1.4.2. For z ∈ N ∂
h , let e, e′ ∈ E∂h be the two boundary edges sharing z

as an endpoint. Let t and t′ be the unit tangents to e and e′ respectively, oriented

counterclockwise. Let T, T ′ ∈ Th be the two triangles having e = e1 and e′ = e′1 as edges

respectively. By going along ∂T and ∂T ′ counterclockwise, we have other two pairs of

corresponding edges e2, e
′
2 and e3, e

′
3. We say that {T, T ′} is an O(h1+α)-approximately

parallel pair if |t− t′| = O(hα) and |ei| = |e′i|+O(h1+α), i = 1, 2, 3.

n
3

n
1n

2

d
3

z
3

z
1

z
2

e
1

21

e
2

t
2

t
3

t
1

e
3

Figure 1.1: a local triangle and associated quantities

Figure 1.2 illustrates Definitions 1.4.1 and 1.4.2. For uniformly parallel grids,

α =∞, i.e., any two corresponding edges in both Definitions 1.4.1 and 1.4.2 are parallel

and of equal length. α = 1 in [9], and α > 0 in this dissertation.
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e

1
=e

z

Figure 1.2: (left)approximate parallelogram (right)approximately parallel pair

Built upon approximate parallelograms, we introduce several types of mildly

structured meshes characterized by two parameters α and β.
⊎

stands for the disjoint

union.

Definition 1.4.3. Let Eoh = Eoh,1
⊎
Eoh,2. We say the triangulation Th satisfies the

(α, β)-condition if for each e ∈ Eoh,1, ωe an O(h1+α)-approximate parallelogram, while∑
e∈Eoh,2

|ωe| = O(hβ).

Definition 1.4.4. Assume (α, β)-condition holds and N ∂
h = N ∂

h,1

⊎
N ∂
h,2. We say Th

satisfies the strong (α, β)-condition if the adjacent boundary elements T and T ′ in

Definition 1.4.2 associated with each z ∈ N ∂
h,1 form an O(h1+α)-approximately parallel

pair, while #N ∂
h,2 is uniformly bounded w.r.t. h. We say Th satisfies the piecewise

strong (α, β)-condition if Ω can be decomposed into finitely many subdomains aligned

with Th and Th restricted to each subdomain satisfies the strong (α, β)-condition.

For example, if Ω is a parallelogram with uniformly parallel triangulation Th,

then N ∂
h,2 is the set of corner points, #N ∂

h,2 = 4, N ∂
h,1 = N ∂

h \N ∂
h,2 and Th satisfies

the strong (α, β)-condition with α = β =∞. The piecewise strong (α, β)-condition is

weaker than the strong (α, β)-condition. For more examples, readers are referred to

numerical experiments in the dissertation.
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1.5 Integral inequalities

Inequalities are essential in finite element analysis. We list several important

inequalities that will be used in following chapters. The following error estimate is the

standard error bound for nodal interpoaltion (cf.[14]).

Theorem 1.5.1. For T ∈ Th and v ∈ Hk+1(T ) with k ≥ 1,

‖v − Ikhv‖0,γ,T . hk+ 2
γ |v|k+1,T , 1 ≤ γ ≤ ∞. (1.8)

The next inequality gives an upper bound of boundary norm in terms of volume

norms.

Theorem 1.5.2 (Trace inequalities). For T ∈ Th,

‖v‖0,∂T . h
− 1

2
T ‖v‖0,T + h

1
2
T‖∇v‖0,T , v ∈ H1(T ),ˆ

∂T

|v| . h−1
T

ˆ
T

|v|+
ˆ
T

|∇v|, v ∈ W 1,1(T ).
(1.9)

We also need the well-known inverse inequality for polynomials.

Theorem 1.5.3 (Inverse inequality). For T ∈ Th and v ∈ Pr(T ) with some integer

r > 0,

‖v‖k,p,T . h
−k+min( 2

p
− 2
q
,0)

T ‖v‖0,q,T . (1.10)

It is well known that H1(Ω) 6⊆ C(Ω) in R2 and thus the Sobolev inequality

‖v‖0,∞,Ω . ‖v‖1,Ω fails for general continuous v. However, a discrete Sobolev inequality

holds for v ∈ Srh .

Theorem 1.5.4 (Discrete Sobolev inequality). For vh ∈ Srh with fixed r ≥ 1,

‖vh‖0,∞,Ω . | log h|
1
2‖vh‖1,Ω. (1.11)
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Chapter 2

Superconvergence of

Raviart–Thomas elements

2.1 Mixed methods and Raviart–Thomas finite el-

ements

In this chapter, we consider the second order elliptic equation

− div(a2(x)∇u+ a1(x)u) + a0(x)u = f(x), x ∈ Ω, (2.1a)

u = g(x), x ∈ ∂Ω, (2.1b)

where div = ∇· is the divergence operator, a2 = (aij)1≤i,j≤2 is a symmetric matrix,

a1 is vector-valued, a2,a1 and a0 are sufficiently smooth on Ω. In addition, a2 is

uniformly elliptic in the sense that
∑

i,j aij(x)ξiξj ≥ Λ|ξ|2 for all x ∈ Ω and ξ ∈ R2,

12



where Λ > 0 is a constant. Let

p = a2∇u+ a1u,

a = a−1
2 , b = a−1

2 a1, c = a0.

Problem (2.1) is equivalent to the first order system

ap− bu−∇u = 0, x ∈ Ω, (2.2a)

− divp+ cu = f, x ∈ Ω, (2.2b)

u = g, x ∈ ∂Ω. (2.2c)

Let Q = {q ∈ L2(Ω)2 : div q ∈ L2(Ω)} and V = L2(Ω). The mixed formulation for

(2.2) is to find the pair {p, u} ∈ Q × V , such that

(ap, q)− (q, bu) + (div q, u) = 〈q · n, g〉, (2.3a)

−(divp, v) + (cu, v) = (f, v), (2.3b)

for each pair {q, v} ∈ Q×V . Here 〈·, ·〉 denotes the L2-inner product on ∂Ω. For r ≥ 0

and T ∈ Th, define

RT r(T ) :=


v1

v2

+ v3

x1

x2

 : vi ∈ Pr(T ), i = 1, 2, 3

 . (2.4)

The Raviart–Thomas finite element spaces with index r ≥ 0 (denoted by RTr) are

Qrh := {qh ∈ Q : qh|T ∈ RT r(T ), ∀T ∈ Th} ,

Vrh := {vh ∈ V : vh|T ∈ Pr(T ), ∀T ∈ Th}.

13



The mixed finite element approximation to the problem (2.3) is to find {prh, urh} ∈

Qrh × Vrh, such that

(aprh, qh)− (qh, bu
r
h) + (div qh, u

r
h) = 〈qh · n, g〉, qh ∈ Qrh, (2.5a)

−(divprh, vh) + (curh, vh) = (f, vh), vh ∈ Vrh. (2.5b)

Under mild assumptions, Douglas and Roberts [27] has shown the well-posedness and

a priori error estimates for the method (2.5).

In this chapter, we shall prove supercloseness estimate and present supercon-

vergent recovery procedure for the lowest order (r=0) and next lowest order (r=1) RT

finite elements. In particular, we shall prove that

‖Πr
hp− prh‖0,Ω = O(hr+1+ρr), (2.6a)

‖ div(Πr
hp− prh)‖0,Ω = O(hr+2), (2.6b)

where the canonical interpolation Πr
h is defined in (2.10), 0 < ρ0 ≤ 1, 0 < ρ1 ≤ 1/2 are

rates of superconvergence determined by the parameters in Definitions 1.4.3 and 1.4.4.

(2.6b) holds on general shape regular meshes while (2.6a) holds on mildly structured

quasi-uniform Th.

(2.6) is closely related to superconvergence of the finite element solution to the

exact solution. For example, p0
h can be postprocessed by a simple local averaging

operator Kh proposed in [12]. Using the super-approximation property of Kh and (2.6)

with k = 0, we obtain the superconvergence estimate

‖p−Khp
0
h‖0,Ω = O(h1+ρ0). (2.7)

The recovered flux Khp
0
h can be used to develop a posteriori error estimates. Due to

14



the superconvergence (2.7), ‖Khp
0
h − p0

h‖0,Ω is known to be an asymptotically exact a

posteriori estimator for ‖p− p0
h‖0,Ω (cf. [12, 10, 1]), namely,

lim
h→0

‖Khp
0
h − p0

h‖0,Ω

‖p− p0
h‖0,Ω

= 1.

The study of supercloseness between the finite element interpolant and finite

element solution has a long history. For the analogue of (2.6a) for Lagrange elements

on mildly structured grids, see [9, 69, 42] and references therein. For superconvergence

of the scalar variable u in mixed methods, see [3, 15, 65] and references therein. In

practice, it is frequently the case that the vector variable p is more important than the

scalar u. Superconvergence results of rectangular/quadrilateral mixed finite elements

for the vector variable p are well established (cf. [30, 32, 31]). However, corresponding

superconvergence theory of triangular mixed finite elements are much less sophisticated.

To our best knowledge, the only proven superconvergence estimate of triangular mixed

elements for the vector variable are in [28, 12, 13]. In [28], the authors postprocessed ph

and achieved interior superconvergence by convolution with a Bramble–Schatz kernel

[18] which is constructed on uniform grids. For RT0 element on uniformly parallel grids

in the case that b = 0, c = 0, Brandts [12] proved

‖Π0
hp− p0

h‖0,Ω . h
3
2 (‖p‖ 3

2
,Ω + h

1
2 |p|1,Ω + h

1
2 |p|2,Ω), (2.8)

In [13], he also proved an analogue of (2.8) for RT1 elements on uniformly parallel grids

in the case that A = I2×2, b = 0, c = 0.

Our result (2.6) improves existing results in several ways. First, our estimate

holds on general mildly structured grids instead of uniform grids. As pointed out

in [9, 69], the (α, β)-condition is very flexible and satisfied by many mature finite

element codes. Second, for RT0 element and ρ0 = 1, (2.6a) becomes ‖Π0
hp− p0

h‖0,Ω =
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O(h2| log h| 12 ), which shows that the estimate (2.8) is suboptimal. This improvement

results from carefully handling the boundary error, which is usually the trickiest part

in global superconvergence estimates. In addition, due to the cancellation of errors on

boundary elements, (2.6a) holds on not only (α, β)-grids but also piecewise (α, β)-grids.

Third, our superconvergence results allow the convection term b(x) · ∇u and reaction

term c(x)u. The error analysis of mixed methods with lower order terms is often much

more involved than the case b = 0, c = 0 (cf.[27, 7]).

The framework of the proof of (2.6a) is as follows. We consider the orthogonal

decomposition Πr
hp − prh = ∇⊥rh ⊕ gradh vh, where rh ∈ Sr+1

h and vh ∈ Vrh. First,

we develop the variational error expansion for RT0 and RT1 elements on a local tri-

angle in terms of ∂tkrh, the tangential derivative of rh on the ek, k = 1, 2, 3. Due

to the continuity of ∂tkrh on ek and the (α, β)-condition, the lower order global vari-

ational error associated with interior edges is canceled in a transparent way instead

of using soft analysis tools (the Bramble–Hilbert lemma etc., cf. [12, 13]). The afore-

mentioned basic idea is motivated by Bank and Xu [9]. But the technicality here is

quite different because of the apparent difference between Lagrange elements and RT

elements. Then ‖∇⊥rh‖0,Ω can be bounded by the supersmall global variational error

while ‖ gradh vh‖0,Ω is estimated by (2.6b). To obtain optimal order global superconver-

gence, the error associated with another part occurring on triangles near the boundary

is treated carefully by the discrete Sobolev inequalities.

The second major component of this chapter is the recovery operator Rr
h based

on solving local least squares problems. For Raviart–Thomas mixed methods, prh in-

stead of urh is the main quantity of physical interest. As far as we know, the imple-

mentation of existing recovery techniques are restricted to uniformly structured grids

(cf.[28, 30, 29, 13]). In addition, most of the existing results of recovery methods fo-

cus on the lowest order case while the analysis of recovery operators for higher order
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elements is indeed much more involved, especially on unstructured grids. We shall

construct a new family of recovery operators Rr
h for RTr (r ≥ 0) elements by fitting

the numerical solution prh with a vector polynomial of degree r+ 1 in the least-squares

(LS) sense on each local patch ωz. Assuming each LS problem has a unique solution,

we show ‖p−Rr
hΠ

r
hp‖ = O(hr+2). The rate of superconvergence is almost independent

of the mesh structure. In the end, combining Rr
h with the estimate (2.6a), we obtain

the superconvergence

‖p−Rr
hp

r
h‖0,Ω = O(hr+1+ρr)

by recovery.

LS-type recovery is not a new idea, e.g., the famous Zienkiewicz–Zhu(ZZ) su-

perconvergence patch recovery (cf.[73, 74]). Zhang and Naga [71] proposed a different

LS-based patch recovery operator Gr+1
h for Lagrange elements of degree r+ 1 by post-

processing the Lagrange finite element solution uh rather than ∇uh. Rr
h can be viewed

as a Raviart–Thomas version of it. One can also see nice relationship between Gr+1
h

and Rr
h in Lemma 2.4.2 and Theorem 3.3.1. Despite the excellent superconvergence

property of Gr+1
h in practice, it is difficult to prove the uniqueness of local LS solution

related to Gr+1
h on irregular grids. In fact [57] is essentially devoted to the analysis

of the uniqueness of the LS solution for G1
h on irregular grids and there is no proof

for Gr+1
h , r ≥ 1. We give a proof for G2

h on irregular grids, which in turn implies the

boundedness and superconvergence of R1
h, see Theorems 2.4.3, 2.4.4 and 2.4.5.

The rest of this chapter is organized as follows. Section 2.2 contains technical

local error expansions. In Section 2.3, we estimate the global variational error and de-

rive supercloseness estimates. In Section 2.4, we develop the superconvergent recovery

operators. Numerical examples are presented in Section 2.6.
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2.2 Local error expansions

We have the rotational gradient

∇⊥v =

(
− ∂v

∂x2

,
∂v

∂x1

)ᵀ

,

and its adjoint

∇× q =
∂q2

∂x1

− ∂q1

∂x2

.

∇⊥ and ∇× are related by Green’s formula

ˆ
T

∇⊥r · q =

ˆ
∂T

rq · t−
ˆ
T

r∇× q, (2.9)

where t is the unit tangent to ∂T oriented counterclockwise. For v ∈ R2, define

v⊥ = (−v2, v1). Clearly, n⊥k = tk, t
⊥
k = −nk.

Now we introduce basic definitions for Raviart–Thomas elements. On a triangle

T ∈ Th, the degrees of freedom of the RT0 element are

Nk(q) =

 
ek

q · nk, 1 ≤ k ≤ 3.

The degrees of freedom of the RT1 element are

N1,k(q) =

 
ek

λk−1q · nk, 1 ≤ k ≤ 3,

N2,k(q) =

 
ek

λk+1q · nk, 1 ≤ k ≤ 3,

N3,l(q) =

 
T

ql, 1 ≤ l ≤ 2, q = (q1, q2)ᵀ.
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For q ∈ Q, Π0
hq ∈ Q0

h is determined by

Nk(Π0
hq|T ) = Nk(q|T ), 1 ≤ k ≤ 3, ∀T ∈ Th, (2.10)

Π1
hq ∈ Q1

h is determined by

N1,k(Π
1
hq|T ) = N1,k(q|T ),

N2,k(Π
1
hq|T ) = N2,k(q|T ), 1 ≤ k ≤ 3,

N3,l(Π
1
hq|T ) = N3,l(q|T ) l = 1, 2, ∀T ∈ Th.

(2.11)

The existence and uniqueness of Πr
hq is always guaranteed. For v ∈ V , P r

hv is the

L2-projection of v onto Vrh. There is a very nice relation among P k
h , Πr

h and div,

namely

div(Πr
hq) = P r

h(div q), ∀q ∈ Q. (2.12)

(2.12) is crucial to the stability and error analysis of mixed methods (cf. [59, 5]). In

addition, the following approximation properties hold:

‖q − Πr
hq‖0,Ω . hr+1|q|h,r+1,Ω, (2.13a)

‖ div(q − Πr
hq)‖0,Ω . hr+1| div q|h,r+1,Ω, (2.13b)

‖v − P r
hv‖0,Ω . hr+1|v|h,r+1,Ω. (2.13c)

In the rest of this section, we will present technical variational error expansions

for RT0 and RT1 elements. To shed some light on the global picture of this framework,

we first expand the interpolation error of linear functions for RT0 elements. The theory

of RT1 is similar although much more complicated. Let φk = λk−1λk+1 be the quadratic

bump function on ek.
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Lemma 2.2.1 (Lemma 2.2, [46]). For p1 ∈ P1(T )2,

p1 − Π0
hp1 = ∇⊥w,

where

w =
3∑

k=1

`2
k

2
nk · ∂tkp1φk.

Proof. Using (2.12), we have

div(p1 − Π0
hp1) = div p1 − P 0

h divp1 = 0.

Hence there exists a w ∈ P1(T ), such that

p1 − Π0
hp1 = ∇⊥w. (2.14)

Using the definition of Π0
h, we know Nk(p1 − Π0

hp1) = 0 and thus

w(zk−1)− w(zk+1) = `kNk(∇⊥w) = 0.

Subtracting a constant from w, we can assume that w(zk) = 0 for k = 1, 2, 3. Hence

w =
∑3

k=1 αkφk. It remains to verify that

αk =
`2
k

2
nk · ∂tkp1. (2.15)

Applying the operator nk · ∂tk to (2.14) gives

nk ·
(
∂tkp1 − ∂tkΠ0

hp1

)
= −∂2

tk
w. (2.16)
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Π0
hp1 ∈ RT 0(T ) implies ∂tkΠ

0
hp1 is proportional to tk and the left hand side of (2.16)

is merely nk · ∂tkp1. For the right hand side,

∂2
tk
w = 2αk∂tkλk−1∂tkλk+1 = −2αk

`2
k

. (2.17)

Combing (2.16) and (2.17), we obtain (2.15). The proof is complete.

The next lemma is our main technical tool for estimating the global variational

error of the RT0 mixed method. We shall use elementary identities

nk−1 = − sin θk+1tk − cos θk+1nk, tk−1 = − cos θk+1tk + sin θk+1nk,

nk+1 = sin θk−1tk − cos θk−1nk, tk+1 = − cos θk−1tk − sin θk−1nk.

(2.18)

Throughout this chapter, let ā be a constant symmetric matrix and µk = tk−1 · ātk+1.

For each edge ek, we define several associated geometric quantities {µij,k}1≤i,j≤2

µ1
1,k =

µk|T |
6 sin θk

, µ1
2,k = 0, µ2

1,k =
µk

12 sin θk
(`2
k−1 − `2

k+1), µ2
2,k = − µk|T |

6 sin θk
,

and first order derivatives Dji,k

D1
1,k = tk · ∂tk , D2

1,k = tk · ∂nk , D1
2,k = nk · ∂tk , D2

2,k = nk · ∂nk .

Finally, Ak = µij,kD
j
i,k := µ1

1,kD1
1,k + µ1

2,kD2
1,k + µ2

1,kD1
2,k + µ2

2,kD2
2,k. In this notation, w

in Lemma 2.2.1 is w =
∑3

k=1

`2k
2
D1

2,k(p1)φk.

Lemma 2.2.2 (Lemma 3.1, [46]). For p1 ∈ P1(T )2 and w1 ∈ P1(T ),

ˆ
T

(p1 − Π0
hp1) · ā∇⊥w1 =

3∑
k=1

ˆ
ek

Ak(p1)∂tkw1. (2.19)
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Proof. Using Lemma 2.2.1, formula (2.9), and Simpson’s quadrature rule,

ˆ
T

(p1 − Π0
hp1) · ā∇⊥w1 =

ˆ
T

∇⊥w · ā∇⊥w1

=
3∑

k=1

ˆ
ek

w(ā∇⊥w1) · tk =
1

12

3∑
k=1

`3
kD1

2,k(p1)∇⊥w1 · ātk.

It then follows from

ātk =
µk−1

sin θk
nk−1 −

µk+1

sin θk
nk+1 (2.20)

that

ˆ
T

(p1 − Π0
hp1) · ā∇⊥w1

=
1

12

3∑
k=1

`3
kD1

2,k(p1)

(
µk+1

sin θk
∂tk+1

w1 −
µk−1

sin θk
∂tk−1

w1

)

=
3∑

k=1

µk
12

(
`3
k−1D1

2,k−1(p1)
1

sin θk−1

− `3
k+1D1

2,k+1(p1)
1

sin θk+1

)
∂tkw1

=
3∑

k=1

1

12

µk`k
sin θk

(
`2
k−1D1

2,k−1(p1)− `2
k+1D1

2,k+1(p1)
)
∂tkw1.

(2.21)

In the last equation, we use

`k+1

sin θk+1

=
`k−1

sin θk−1

=
`k

sin θk
.

Using (2.21), (2.18), and following identities

`k−1 sin θk+1 = `k+1 sin θk−1 = dk,

`2
k−1 cos2 θk+1 − `2

k+1 cos2 θk−1 = `2
k−1 − `2

k+1,

`k+1 cos θk−1 + `k−1 cos θk+1 = `k,

we obtain (2.19).
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By replacing p with its linear interpolant and vice versa, we obtain the local

variational error expansion for general vector-valued function p.

Theorem 2.2.3. For w1 ∈ P1(T ),

ˆ
T

(p− Π0
hp) · ā∇⊥w1 =

3∑
k=1

ˆ
ek

Ak(p)∂tkw1 +O(h2
T )|p|2,T‖∇⊥w1‖0,T .

Proof. By Lemma 2.2.2, we have

ˆ
T

(p− Π0
hp) · ā∇⊥w1

=

ˆ
T

(p− I1
hp) · ā∇⊥w1 +

ˆ
T

(I1
hp− Π0

hI
1
hp) · ā∇⊥w1

+

ˆ
T

(Π0
hI

1
hp− Π0

hp) · ā∇⊥w1

=

ˆ
T

(p− I1
hp) · ā∇⊥w1 +

ˆ
T

(Π0
hI

1
hp− Π0

hp) · ā∇⊥w1

+
3∑

k=1

ˆ
ek

Ak(I1
hp− p)∂tkw1 +

3∑
k=1

ˆ
ek

Ak(p)∂tkw1

= I + II + III + IV.

(2.22)

(1.8) theory gives the upper bound

|I|+ |II| . ‖(id− Π0
h)(p− I1

hp)‖0,T‖∇⊥w1‖0,T

. hT‖(id− Π0
h)(p− I1

hp)‖∞,T‖∇⊥w1‖0,T

. hT‖p− I1
hp‖∞,T‖∇⊥w1‖0,T

. h2
T |p|2,T‖∇⊥w1‖0,T .

(2.23)
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Using the trace inequality (1.9) and inverse inequality (1.10),

|III| .
3∑

k=1

‖Ak(I1
hp− p)‖0,ek‖∂tkw1‖0,ek

.
3∑

k=1

(h
− 1

2
T ‖Ak(I

1
hp− p)‖0,T + h

1
2
T |Ak(I

1
hp− p)|1,T )

× h−
1
2

T ‖∇
⊥w1‖0,T

.
3∑

k=1

(h−1
T |h

2
T (I1

hp− p)|1,T + |h2
T (I1

hp− p)|2,T )‖∇⊥w1‖0,T

. h2
K |p|2,T‖∇⊥w1‖0,T .

(2.24)

Combining (2.22)–(2.24) with Lemma 2.2.2 completes the proof.

We finish deriving local variational error expansion for the RT0 element. In

general, the principle of the local expansion of RT1 is similar to RT0. Unfortunately, it

is much more technical and the final expression is not as elegant as the RT0 case. For

this reason, we assume a in (2.2) is a scalar-valued function when dealing with RT1

finite element. We present Lemma 2.2.5 and leave the proof in Section 2.5.

Let d be the diameter of the circumscribed circle of T . For each edge ek, there

are several associated geometric quantities

µ1
11,k =

1

5760

(
3`4
k − 3(`2

k−1 − `2
k+1)2 − 4`2

k(`
2
k−1 + `2

k+1)
)
,

µ1
12,k = µ1

21,k =
1

1440d
`1`2`3(`2

k−1 − `2
k+1), µ1

22,k = − 1

1440d2
`2

1`
2
2`

2
3,

µ2
11,k =

1

2880`1`2`3

d(`2
k−1 − `2

k+1)
(
4`2
k − (`2

k−1 − `2
k+1)2 − 3`2

k(`
2
k−1 + `2

k+1)
)
,

µ2
12,k = µ2

21,k = −µ1
11,k, µ2

22,k = −µ1
12,k,
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and second order derivatives {Djli,k}1≤i,j,l≤2

D11
1,k = tk · ∂2

tk
, D12

1,k = D21
1,k = tk · ∂2

tknk
, D22

1,k = tk · ∂2
nk
,

D11
2,k = nk · ∂2

tk
, D12

2,k = D21
2,k = nk · ∂2

tknk
, D22

2,k = nk · ∂2
nk
.

Then we define the second order derivative Bk(q) = µijl,kD
jl
i,k(q), where we use Einstein

summation notation.

Lemma 2.2.4. For p2 ∈ P2(T )2 and w2 ∈ P2(T ),

ˆ
T

(p2 − Π1
hp2) · ∇⊥w2 =

3∑
k=1

ˆ
ek

Bk(p2)∂2
tk
w2.

Built upon Lemma 2.2.4, we derive the local error expansion for general p.

Theorem 2.2.5. For w2 ∈ P2(T ),

ˆ
T

(p− Π1
hp) · ∇⊥w2 =

3∑
k=1

ˆ
ek

Bk(p)∂2
tk
w2 +O(h3

T )|p|3,T‖∇⊥w2‖0,T .

We skip the proof of Theorem 2.2.5 because it is the same as Theorem 2.2.3.

Remark. The operator Ak is simple but the expression of Bk is a bit complicated.

However, for superconvergence analysis, it suffices to keep the following features in

mind.

1. {Ak}3
k=1 are first order derivatives of magnitude h2

T and {Bk}3
k=1 are second order

derivatives of magnitude h4
T , namely,

Ak(q) = O(h2
T )

2∑
i,j=1

∂xiqj, Bk(q) = O(h4
T )

2∑
i,j,l=1

∂xi∂xjql.

2. For e ∈ Eoh or E∂h , we have ωe = T ∪ T ′ or ωe = T respectively. Let te denote the
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unit tangent and and ne the unit normal to e whose directions are induced by T .

Let ā =
ffl
T
a and ā′ =

ffl
T ′
a. Let Ae,Be be the operators based on T and A′e,B′e

based on T ′. If ωe is an O(h1+α)-approximate parallelogram, on the edge e, we

have the cancellation

āAe(q)− ā′A′e(q) = O(h2+min(1,α)
e )

2∑
i,j=1

∂xiqj, (2.25a)

āBe(q)− ā′B′e(q) = O(h4+min(1,α)
e )

2∑
i,j,l=1

∂xi∂xjql. (2.25b)

Indeed, ωe is a approximate parallelogram implies that `k = `′k + O(h1+α), tk = t′k +

O(hα), sin θk = sin θ′k +O(hα), µk = µ′k +O(hα), and |T | = |T ′|+O(h2+α). Combining

these estimates with ā = ā′ + O(h), (2.25a) then comes from the telescoping type

inequality ∣∣∣∣∣
n∏
i=1

ai −
n∏
i=1

bi

∣∣∣∣∣ ≤
n∑
i=1

|ai − bi|
∏
j 6=i

max(aj, bj). (2.26)

(2.25b) can be derived in the same way.

2.3 Supercloseness

Lemma 2.3.1 (Lemma 3.7, [46]). Assume that Th satisfy the strong (α, β)-condition.

For wh ∈ S1
h,

(ā(p− Π0
hp),∇⊥wh) . h1+min(1,α,β/2)| log h|

1
2‖p‖2,∞,Ω‖∇⊥wh‖0,Ω. (2.27)
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Proof. By Theorem 2.2.3, the left hand side is

(ā(p− Π0
hp),∇⊥wh) =

∑
T∈Th

3∑
k=1

ˆ
ek

Ak(p)∂tkwh +O(h2)|p|2,T‖∇⊥wh‖T

=
( ∑
e∈Eoh,1

+
∑
e∈Eoh,2

+
∑
e∈E∂h

) ˆ
e

(
Ae(p)−A′e(p)

)
∂tewh

+
∑
T∈Th

O(h2)|p|2,T‖∇⊥wh‖T = I + II + III +O(h2)|p|2,Ω‖∇⊥wh‖0,Ω.

(2.28)

Here the notations in Remark 2.2 are adopted. A′e(p) = 0 if e ∈ E∂h . By the cancellation

(2.25) and the trace inequality (1.9),

|I| .
∑
e∈Eoh,1

h2+α
e

ˆ
e

|Dp| · |∇⊥wh|

.
∑
e∈Eoh,1

h2+α
e

( ˆ
T

h−1
T |D

2p|+ |Dp|
)
|∇⊥wh|

.
∑
e∈Eoh,1

h1+α
e ‖Dp‖1,T‖∇⊥wh‖0,T

. h1+α‖Dp‖1,Ω‖∇⊥wh‖0,Ω.

(2.29)

For e ∈ Eoh,2, there is no cancellation. Let Ωβ = ∪e∈Eoh,2ωe. The sum over Eoh,2 is simply

estimated by

|II| .
∑
e∈Eoh,2

h3
e‖Dp‖0,∞,T‖∇⊥wh‖0,∞,T

. h‖Dp‖0,∞,Ω
∑
e∈Eoh,2

ˆ
T

|∇⊥wh|

= h|p|1,∞,Ω
ˆ

Ωβ

|∇⊥wh| . h1+β
2 |p|1,∞,Ω‖∇⊥wh‖0,Ω.

(2.30)

The trickiest part of this proof is to bound III. We can assume that
´

Ω
wh = 0 by
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subtracting a constant from wh. Then Poincaré inequality gives

‖wh‖1,Ω . ‖∇⊥wh‖0,Ω. (2.31)

Define Āe(p) =
ffl
e
Ae(p). III can be split as

III =
∑
e∈E∂h

ˆ
e

(
Ae(p)− Āe(p)

)
∂tewh +

∑
e∈E∂h

ˆ
e

Āe(p)∂tewh

= III1 + III2.

The first term can be estimated by (2.31):

|III1| .
∑
e∈E∂h

h3
e|p|2,∞,e

ˆ
e

|∇⊥wh|

. h2|p|2,∞,Ω
∑
e∈E∂h

ˆ
T

|∇⊥wh|

. h2|p|2,∞,Ω‖∇⊥wh‖0,Ω.

(2.32)

For z ∈ N ∂
h , let e, e′ be the two edges on ∂Ω sharing z as an ending point. Then the

second term becomes

III2 =
∑
z∈N ∂h

(
Āe(p)− Āe′(p)

)
wh(z).

For z ∈ N ∂
h,1, Definition 1.4.4 near the boundary implies cancellation and thus

∣∣Āe(p)− Āe′(p)
∣∣ . h2+α‖Dp‖1,∞,Ω. (2.33)
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For z ∈ N ∂
h,2,

∣∣Āe(p)− Āe′(p)
∣∣ ≤ ∣∣Āe(p)

∣∣+
∣∣Āe′(p)

∣∣ . h2‖Dp‖0,∞,Ω. (2.34)

It follows from (1.11), #N ∂
h,1 . h−1, #N ∂

h,2 . 1, (2.31), (2.33), and (2.34) that

|III2| .

 ∑
z∈N ∂h,1

h2+α‖Dp‖1,∞,Ω +
∑
z∈N ∂h,2

h2‖Dp‖0,∞,Ω

 ‖wh‖0,∞,∂Ω

. h1+α| log h|
1
2 |p|2,∞,Ω‖∇⊥wh‖1,Ω.

(2.35)

Now, combining (2.28), (2.29), (2.30), (2.32), and (2.35), we obtain (2.3.1).

The next lemma is about the variational error expansion of RT1 elements. The

proof is the same Lemma 2.3.1.

Lemma 2.3.2. Let Th satisfy the (α, β)-condition. For wh ∈ S2
h,

(ā(p− Π1
hp),∇⊥wh) . h2+min(1/2,α,β/2)

(
‖p‖3,Ω + |p|2,∞,Ω

)
‖∇⊥wh‖0,Ω.

Proof. By Theorem 2.2.5, the left hand side is

(ā(p− Π1
hp),∇⊥rh) =

∑
T∈Th

3∑
k=1

ˆ
ek

āBk(p)∂2
tk
rh +O(h3

T )|p|3,T‖∇⊥wh‖0,T

=
( ∑
e∈Eoh,1

+
∑
e∈Eoh,2

+
∑
e∈E∂h

) ˆ
e

(
āBe(p)− ā′B′e(p)

)
∂2
tewh

+
∑
T∈Th

O(h3
T )|p|3,T‖∇⊥wh‖0,T = I + II + III +O(h3)|p|3,Ω‖∇⊥wh‖0,Ω.

(2.36)

It then follows from the inverse estimate |rh|2,T . h−1
T ‖∇⊥rh‖0,T , the proof of (2.29)
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and (2.30) that

|I| . h2+α‖D2p‖1,Ω‖∇⊥rh‖0,Ω,

|II| . h2+β
2 |p|2,∞,Ω‖∇⊥rh‖0,Ω.

(2.37)

Let Ω∂ = ∪e∈E∂hωe. The area of Ω∂ is |Ω∂| = O(h). Then III is estimated in the same

way as (2.30).

|III| . h3|p|2,∞,∂Ω

∑
e∈E∂h

ˆ
ωe

|D2rh|

. h2|p|2,∞,Ω
ˆ

Ω∂

|∇⊥rh| . h2+ 1
2 |p|2,∞,Ω‖∇⊥rh‖0,Ω.

(2.38)

Combining (2.36), (2.37), and (2.38), we prove the theorem.

Built upon Lemmas 2.3.1 and 2.3.2, we are able to prove supercloseness results,

namely, to show that ‖Πr
hp− prh‖0,Ω is supersmall. From (2.3) and (2.5), we have the

error equation

(a(p− prh), qh)− (qh, b(u− urh)) + (div qh, u− urh) = 0, qh ∈ Qrh, (2.39a)

−(div(p− prh), vh) + (c(u− urh), vh) = 0, vh ∈ Vrh. (2.39b)

From now on, we introduce several error quantities

ξh = Πr
hp− prh, τh = P r

hu− urh, η = p− prh.

Douglas and Roberts [27] have shown the standard a priori error estimates:

‖p− prh‖0,Ω . hr+1‖u‖r+2,Ω,

‖ div(p− prh)‖0,Ω . hr+1‖u‖r+3,Ω,

‖u− urh‖0,Ω . hr+1‖u‖r+1+δr0,Ω.

(2.40)
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In addition, [27] gives the well-known supercloseness result for the scalar unknown u

‖τh‖0,Ω . hr+2‖u‖r+2+δr0,Ω, (2.41)

(2.41) holds on shape regular unstructured meshes. Built upon (2.41), we are able to

prove that ‖ div(Πr
hp− prh)‖0,Ω is supersmall.

Theorem 2.3.3. For general shape regular Th and r ≥ 0,

‖ div(Πr
hp− prh)‖0,Ω . hr+2‖u‖2+r+δr0,Ω.

Proof. Let

vh =
div ξh

‖ div ξh‖0,Ω

∈ Vrh.

By (2.12) and (2.39), we have

‖ div ξh‖0,Ω = (div ξh, vh) = (P r
h divp− divprh, vh)

= (div(p− prh), vh) = (u− P r
hu, cvh) + (P r

hu− urh, cvh).

It then follows from (2.13), (2.40) and (2.41) that

‖ div ξh‖0,Ω = (u− P r
hu, cvh − P r

h(cvh)) +O(hr+2)‖u‖2+r+δr0,Ω‖vh‖0,Ω

= O(h2r+2)‖u‖r+1,Ω‖cvh‖r+1,Ω +O(hr+2)‖u‖2+r+δr0,Ω‖vh‖0,Ω

= O(hr+2)‖u‖2+r+δr0,Ω‖vh‖0,Ω.

The proof is complete.

Before proving the superconvergence result for ‖Πr
hp−prh‖0,Ω, it is necessary to
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discuss the L2 de Rham complex in R2:

L2(Ω)
∇⊥−−→ L2(Ω)2 div−→ L2(Ω)→ 0. (2.42)

Here L2(Ω) = V is equipped with the standard inner product (·, ·). Since we are dealing

with variable coefficients, L2(Ω)2 is equipped with the weighted L2 inner product (·, ·)a:

(q1, q2)a := (aq1, q2), q1, q2 ∈ L2(Ω)2.

The weighted L2-norm is ‖q‖a = (aq, q)
1
2 . Since a is uniformly elliptic, ‖q‖0,Ω ≈ ‖q‖a

for all q ∈ L2(Ω)2. By the theory finite element exterior calculus (cf. [5, 6]), the discrete

complex

Sr+1
h

∇⊥−−→ Qrh
div−→ Vrh → 0

inherits the aforementioned nice properties of (2.42). In particular, we have the discrete

Helmholtz decomposition

Qrh = ∇⊥Sr+1
h ⊕ gradh Vrh, (2.43)

where gradh : Vrh → Qrh is the adjoint of − div : Qrh → Vrh w.r.t. the weighted inner

product (·, ·)a, namely, (a gradh vh, qh) = −(vh, div qh) for all qh ∈ Qrh.

The last ingredient for our supercloseness analysis is a discrete Poincaré inequal-

ity.

Lemma 2.3.4. For v ∈ Vrh,

‖vh‖0,Ω . ‖ gradh vh‖a.

Proof. div : Qrh → Vrh is surjective and there exists qh ∈ Qrh, such that div qh = vh. In
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addition, Raviart and Thomas [59] have shown that

‖qh‖a ≈ ‖qh‖0,Ω . ‖vh‖0,Ω.

It then follows

‖vh‖2
0,Ω = −(a gradh vh, qh) . ‖ gradh vh‖a‖vh‖0,Ω,

which completes the proof.

With the above preparations, we are able to prove supercloseness estimates for

the RT0 and RT1 mixed methods.

Theorem 2.3.5. Assume that Th satisfies the (α, β)-condition. Then

‖Πr
hp− prh‖a . hr+1+min( 1

2
,α,β

2
)
(
|p|r+1,∞,Ω + ‖p‖r+2,Ω

)
, r = 0, 1.

Assume that Th satisfies the piecewise strong (α, β)-condition. Then for the RT0 finite

element,

‖Π0
hp− p0

h‖0,Ω . h1+min(1,α,β
2

)| log h|
1
2‖u‖3,∞,Ω.

Proof. Consider the discrete Helmholtz decomposition

ξh = ∇⊥wh ⊕ gradh vh, (2.44)

with {vh, wh} ∈ Vrh × Sr+1
h . Let q̃h = gradh vh/‖ gradh vh‖a. By Lemma 2.3.4 and
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Lemma 2.3.3,

‖ gradh vh‖a = (gradh vh, q̃h)a = −(vh, div q̃h)

= −
(
vh,

div ξh
‖ gradh vh‖a

)
. ‖ div ξh‖0,Ω . hr+2‖u‖r+2+δr0 .

(2.45)

It remains to bound ∇⊥wh. Let qh = ∇⊥wh/‖∇⊥wh‖a. The orthogonality implies

‖∇⊥wh‖a = (aξh, qh)

= −(a(p− Πr
hp), qh) + (a(p− prh), qh)

= I + II.

(2.46)

I is split as

I = ((ā− a)(p− Πr
hp), qh)− (ā(p− Πr

hp), qh) = I1 + I2.

By Lemma 2.13 and ‖ā− a‖0,∞,Ω = O(h),

I1 = O(hr+2)|p|r+1. (2.47)

I2 can be estimated by Lemmas 2.3.1 or 2.3.2.

|I2| . h1+min(1,α,β
2

)| log h|
1
2‖u‖3,∞,Ω or hr+1+min( 1

2
,α,β

2
)
(
|p|r+1,∞,Ω + ‖p‖r+2,Ω

)
. (2.48)
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Since div qh = 0, (2.39)–(2.41) imply

II = (qh, b(u− uh))

= (b · qh, u− P r
hu+ P r

hu− urh)

= (b · qh − P r
h(b · qh), u− P r

hu) +O(hr+2)‖u‖r+2+δr0,Ω‖qh‖0,Ω

= O(h2r+2)|b · qh|h,r+1,Ω|u|r+1,Ω +O(hr+2)‖u‖r+2+δr0,Ω‖qh‖0,Ω.

(2.49)

Since qh|T ∈ Pr(T )2, inverse estimate (1.10) implies

|b · qh|r+1,T .
r∑
l=0

‖Dlqh‖0,T . h−rT ‖qh‖0,T .

(2.49) then reduces to

II = O(hr+2)‖u‖r+2+δr0,Ω‖qh‖0,Ω. (2.50)

Then the theorem follows from (2.45)–(2.48), and (2.50).

2.4 Superconvergent recovery

In this section, we consider RTr finite elements with general r ≥ 0. For e ∈ Eh,

let {(wj, gj)}r+1
j=1 denote the Gaussian quadrature on e that are exact for P2r+1(e), where

{gj}r+1
j=1 are quadrature points and {wj}r+1

j=1 the corresponding weights. Let vj ∈ Pr(e)

the polynomial that is w−1
j at gj and 0 at the rest of quadrature points. For T ∈ Th,

let {λl}r(r+1)/2
l=1 be the nodal basis function of Lagrange elements of degree r − 1 on T

({λl} = ∅ if r = 0, {λl} = {1} if r = 1). We can specify degrees of freedom of RTr

elements as

N j
e (q) :=

 
e

q · nevj, N lm
T (q) :=

 
T

qmλl,

35



where e ∈ Eh, T ∈ Th, and ne is a unit normal to e,

Now we introduce a new recovery operator Rr
h : Qrh → Sr+1

h ×Sr+1
h . For qh ∈ Qrh,

it suffices to specify nodal values of Rr
hqh. Here a node is the location of the degree

of freedom of Lagrange elements, which can be a vertex of a triangle or an interior

point of an edge/ triangle. For vertices z1, z2, z3 ∈ Nh, let z1z2 denote the edge with

endpoints z1, z2 and z1z2z3 the triangle with vertices z1, z2, z3. Rr
h is defined in three

steps.

Step 1. For each vertex z ∈ Nh, let Rr
hqh(z) := qz(z), where qz ∈ Pr+1(ωz)

2

minimizes the quadratic functional

F(q) =
∑

e∈Eh(ωz)

r+1∑
j=1

(
N j
e (q)−N j

e (qh)
)2

+
∑

T∈Th(ωz)

r(r+1)/2∑
l=1

2∑
m=1

(
N lm
T (q)−N lm

T (qh)
)2

subject to q ∈ Pr+1(ωz)
2.

Step 2. For each node z in the interior of an edge e = z1z2 ∈ Eh, let

Rr
hqh(z) = (1− α)qz1(z) + αqz2(z), α = |z − z1|/|e|.

Step 3. For each node z in the interior of the triangle T = z1z2z3 ∈ Th, define

Rr
hqh(z) = α1qz1(z) + α2qz2(z) + α3qz3(z),

where α1, α2, α3 are barycentric coordinates of z w.r.t. z1, z2, and z3.

In some cases, ωz needs be enlarged to ensure that the above LS problem has a

unique solution. Since Rr
h depends only on the degrees of freedom of the RTr element,

Rr
hq is well-defined for all q ∈ Q and Rr

hΠ
r
hq = Rr

hq. In addtion, N j
e (q) = q(gj) · ne
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for q ∈ Pr+1(T )2 and e ∈ Eh(T ).

To clarify the recovery procedure, we give details to the two important cases:

RT0 and RT1 elements.

Example 1. RT0 elements on triangular meshes. In this case, R0
hqh is a

continuous piecewise linear function. At step 1, let {ej}Jj=1 = Eh(ωz). Let mj =

(mj1,mj2)ᵀ be the midpoint of ej and nj = (nj1, nj2)ᵀ be a unit normal to ej. Then

qz = (c1 + c2x1 + c3x2, c4 + c5x1 + c6x2)ᵀ ∈ P1(ωz)
2 is the minimizer of

F(q) =
J∑
j=1

(q(mj) · nj − qh(mj) · nj)2,

subject to q ∈ P1(ωz)
2.

Equivalently, cz = (c1, . . . , c6)ᵀ satisfies the normal equation AT
zAzcz = AT

z dz, where

dz = (qh(m1) · n1, . . . , qh(mJ) · nJ)ᵀ, Az = (aᵀ
1, . . . ,a

ᵀ
J)ᵀ is an J × 6 matrix, aj =

(nj1,mj1nj1,mj2nj1, nj2,mj1nj2,mj2nj2). Then Rhqh(z) = qz(z) for z ∈ Nh.

To avoid ill-conditioned Az on graded meshes, we calculate qz by scaling it

properly. Let hz = |ωz|
1
2 and q̂z(x̂) = qz(z + hzx̂) = (ĉ1 + ĉ2x̂1 + ĉ3x̂2, ĉ4 + ĉ5x̂1 +

ĉ6x̂2)ᵀ. ĉz = (ĉ1, . . . , ĉ6)ᵀ solves Âᵀ
zÂzĉz = Âᵀ

zdz, where Âz = (âᵀ
1, . . . , â

ᵀ
J)ᵀ, âj =

(nj1, m̂j1nj1, m̂j2nj1, nj2, m̂j1nj2, m̂j2nj2), m̂j = (mj − z)/hz = (m̂j1, m̂j2). Finally

R0
hqh(z) = (ĉ1, ĉ4)ᵀ.

Example 2. RT1 elements on triangular meshes. In this case, R1
hqh is a

continuous piecewise quadratic function. At step 1, let {ej}Jj=1 = Eh(ωz) and {Tj}Lj=1 =

Th(ωz). Let

qz =

 c1 + c2x+ c3x2 + c4x
2 + c5x1x2 + c6x

2
2

c7 + c8x+ c9x2 + c10x
2
1 + c11x1x2 + c12x

2
2

 ∈ P2(ωz)
2
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minimize

F(q) =
J∑
j=1

(q(xj) · nj − qh(xj) · nj)2 + (q(yj) · nj − qh(yj) · nj)2

+
L∑
l=1

2∑
m=1

( 
Tl

qm −
 
Tl

qh,m

)2

, q ∈ P2(ωz)
2,

where q = (q1, q2)ᵀ, qh = (qh,1, qh,2)ᵀ, xj = 3+
√

3
6
aj + 3−

√
3

6
bj,yj = 3−

√
3

6
aj + 3+

√
3

6
bj,

and ej = ajbj. Equivalently, cz = (c1, . . . , c12)ᵀ solves the normal equation Aᵀ
zAzcz =

Aᵀ
zdz, where

dz = (qh(x1) · n1, qh(y1) · n1, qh(x2) · n2, qh(y2) · n2, . . . ,

qh(yJ) · nJ ,
 
T1

qh,1,

 
T1

qh,2,

 
T2

qh,1,

 
T2

qh,2, . . . ,

 
TL

qh,2

)ᵀ

,

Az = (aᵀ
1, . . . ,a

ᵀ
2J+2L)ᵀ is an (2J + 2L)× 12 matrix,

a2j−1 = (nj1ξj, nj2ξj), a2j = (nj1ηj, nj2ηj),

ξj = (1, xj1, xj2, x
2
j1, xj1xj2, x

2
j2),

ηj = (1, yj1, yj2, y
2
j1, yj1yj2, y

2
j2), 1 ≤ j ≤ J,

a2J+2l−1 =

 
Tl

(1, x1, x2, x
2
1, x1x2, x

2
2, 0, 0, 0, 0, 0, 0),

a2J+2l =

 
Tl

(0, 0, 0, 0, 0, 0, 1, x1, x2, x
2, x1x2, x

2
2), 1 ≤ l ≤ L.

Then R1
hqh(z) = qz(z) for z ∈ Nh. At step 2, for the midpoint z of the edge e = z1z2,

R1
hqh(z) = (qz1(z)+qz2(z))/2. one can again introduce the scaled polynomial q̂z(x̂) =

qz(z + hzx̂) in practice.

Assume that the solution of each local LS problem at each vertex z is unique.

By definition Rr
h preserves (r + 1)-degree polynomials, namely, Rr

hq = q on T for
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q ∈ Pr+1(ωT )2. Then the polynomial preserving property (cf.[71]) leads to the super-

approximation property

‖q −Rr
hq‖0,Ω = O(hr+2). (2.51)

However, it’s not obvious that these local LS problems are uniquely solvable. The next

obvious lemma gives several statements equivalent to uniqueness.

Lemma 2.4.1. The following statements are equivalent:

1. There exists a unique qz at z.

2. Azc = 0 implies c = 0.

3. Πr
hqz = 0 on ωz implies qz ≡ 0.

Hence it suffices to study the unisolvence of Πr
h on Pr+1(ωz)

2. Πr
h is moment-

based interpolation while nodal interpolation is often preferred. The next lemma relates

statement 3 to nodal interpolation.

Lemma 2.4.2. Assume Πr
hqz = 0 on ωz. Then qz = ∇⊥w for some w ∈ Pr+2(ωz). In

addition, for any e ∈ E(ωz), w(l) = 0 for any Lobatto quadrature point l on e.

Proof. Πr
hqz = 0 and (2.12) imply

div qz = div(qz − Πr
hqz) = div qz − Πr

h div qz = 0.

Hence qz = ∇⊥w for some w ∈ Pr+2(ωz). Given e = ab ∈ Eh(ωz),

w(b)− w(a) =

ˆ
e

∂tew =

ˆ
e

qz · ne =

ˆ
e

Πr
hqz · ne = 0.

Hence w(z) ≡ c at all vertices z in ωz. By subtracting c from w, we can assume that
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w vanishes at all vertices. For v ∈ Pr(e), it then follows

ˆ
e

r∂tev = −
ˆ
e

v∂ter = −
ˆ
e

qz · nev = −
ˆ
e

Πr
hqz · nev = 0,

and thus ˆ
e

rw = 0 for all w ∈ Pr−1(e). (2.52)

Notice that on e, the Lobatto quadrature
´
e
f =

∑r+2
j=1 µjf(lj) is exact for f ∈ P2r+1(e),

where lj = a + (b − a)l̂j, {l̂j}r+2
j=1 are zeros of dr

dsr
(sr+1(1− s)r+1), and {µj}r+2

j=1 are

corresponding weights. Let w be the polynomial which is µ−1
j at lj and 0 at rest of the

(r − 1) interior quadrature points {li}r+1
i=2,i 6=j in (2.52). Then r(lj) =

´
e
rw = 0. The

proof is complete.

(0,1)

(0,0)

( , )

( , )

(1,0)

Figure 2.1: a local patch containing the reference triangle

The next theorem gives practical criteria for checking the well-posedness of R0
h

and R1
h.

Theorem 2.4.3. Let z be a vertex in Th. If #Th(ωz) ≥ 5 and the sum of each pair of

adjacent angles in ωz is ≤ π, then there exists a unique qz at z for R0
h. If #Th(ωz) ≥ 4,

then there exists a unique qz at z for R1
h.
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Proof. Assume Πr
hqz = 0 on ωz. By Lemma 2.4.2, qz = ∇⊥w for some w ∈ Pr+2(ωz).

If r = 0, then w vanishes on all vertices in ωz and thus qz = 0 by Theorem 2.3 in [57].

If r = 1, w ∈ P3(ωz) vanishes at all vertices and midpoints of edges in ωz.

Without loss of generality, we can assume that z = (0, 0) and the reference triangle T̂

spanned by (0, 0), (0, 1), (1, 0) is in T (ωz).

If w is reducible, then the zero set w−1(0) is the union of three straight lines

(counting multiplicity) or the union of a straight line and a conic. Clearly three lines

cannot pass all vertices and midpoints in ωz provided #Th(ωz) ≥ 4. If w−1(0) contains

a conic branch C, clearly C must contain at least two vertices a, b in ωz. However, C

cannot pass through a+b
2

by elementary geometry.

Hence a reducible w cannot vanish at all nodes in ωz and we can assume

w(x1, x2) = c1x
3
1 + c2x

2
1x2 + c3x1x

2
2 + c4x

3
2 + c5x

2
2 + c6x1x2 + c7x

2
2 + c8x1 + c9x2

is irreducible. Furthermore, we can assume one of the coefficients of highest order

terms is 1, say c1 = 1(similar argument for c2, c3 or c4 = 1). Let (α, β) be the vertex

outside T̂ next to (0, 1), see Figure 2.1. Solving the linear system of equations

w(1, 0) = w(0, 1) = w(1/2, 0) = w(0, 1/2) = w(1/2, 1/2)

= w(α, β) = w

(
α

2
,
β + 1

2

)
= w

(
α

2
,
β

2

)
= 0,

we have

c1 =
3− 3α

1 + β
, c2 =

3α(α− 1)

β(1 + β)
. (2.53)

Note that β 6= 0, β 6= −1 in (2.53), otherwise the irreducible cubic curve w−1(0)

intersects with a line at five distinct points, which is impossible by Bézout’s theorem

(cf.[61]). Also α 6= 1 otherwise it violates the topology of the patch ωi. Hence α/β =
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−c2/c1. Let (α′, β′) be the vertex outside T̂ next to (1, 0). Similarly we have α′/β′ =

−c2/c1. Then it forces that (α, β) = (α′, β′), which contradicts #Th(ωz) ≥ 4. Hence

w ≡ 0 and qz ≡ 0.

Therefore by Lemma 2.4.1, there exists a unique qz for r = 0, 1.

We say a vertex z is good if the condition in Theorem 2.4.3 holds at z, otherwise

it is a bad vertex. In practice, Th typically has a few bad vertices, e.g., boundary

vertices. There are several ways of dealing with a bad vertex z. If z is directly connected

to a good vertex z′, one can define ωz := ωz′ and thus Az is of full column rank. More

conveniently, one can empirically add some extra elements to the patch ωz in practice,

e.g., enlarge ωz by one layer. Alternatively, one can solve a rank-deficient local least

squares problem, which might reduce the super-approximation property of Rh:

In the rest of this chapter, we assume that

At each vertex z, there exists a unique qz.

Using the uniqueness of the local LS solution, we can obtain boundedness of Rr
h.

Theorem 2.4.4. For qh ∈ Qrh and T ∈ Th,

‖Rr
hq‖0,T . ‖q‖0,ωT , r = 0, 1.

Proof. For z ∈ Nh, Let σmin and σmax be the minimum and maximum singular values of

Âz respectively. The goal is to show that σmin is uniformly bounded away from 0. MAC

implies #Th(ωz) ≤ Nmax = 2π/Θ. Hence it suffices to consider the case #Th(ωz) = N

for some fixed N ≤ Nmax. In this case, #Eh(ωz) = 2N . Let N1 = 2N,N2 = 6 provided

k = 0 and N1 = 6N,N2 = 12 provided k = 1. Let MN1×N2 and SN1×N2 be the set of

N1 × N2 matrices and N1 × N2 rank-deficient matrices, respectively. It is well known
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that σmin = dist(Âz, SN1×N2), the distance (measured by matrix 2-norm) from Âz to

rank-deficient matrices. dist(·, SN1×N2) is continuous on MN1×N2 . Recall that Âz is the

scaled LS coefficient matrix determined by ωz. Consider all possible ωz and define

Az = {Âz ∈MN1×N2 : #Th(ωz) = N,ωz satisfies MAC}.

ClearlyAz is a compact set inMN1×N2 and any Âz ∈ Az is of full rank by the uniqueness

assumption, which imply that σmin = dist(Âz, SN1×N2) ≥ C1 > 0, where C1 depends

only on the minimum angle Θ. The maximum singular value σmax ≤ C2, where C2

only depends on Ω. For qh ∈ Qkh,

|ĉz| ≤ ‖(Âᵀ
zÂz)

−1‖2|Âᵀ
zdz| ≤ σ−2

minσmax|dz|

≤ C−2
1 C2‖qh‖0,∞,ωz . h−1

z ‖qh‖0,ωz ,

(2.54)

where | · | is the Euclidean norm. Finally by (2.54), we have

‖Rr
hqh‖0,T . h‖Rr

hqh‖0,∞,T . h|ĉz| . ‖qh‖0,ωT ,

which completes the proof.

The super-approximation property ofRh follows from the uniqueness and bound-

edness results.

Theorem 2.4.5. For q ∈ Hr+2(Ω),

‖q −Rr
hq‖0,Ω . hr+2|q|r+2,Ω, r = 0, 1.

Proof. Let T = z1z2z3 ∈ Th and T1 ⊂ Ω be a smallest local triangle containing ωT .

Let qr+1 ∈ Pr+1(T1)2 be the degree-(r+ 1) local Lagrange interpolant of q using based
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on T1. By the uniqueness assumption, Rr
hqr+1 = qr+1 on T . It then follows from

Rr
hΠ

r
h = Rr

h that

‖q −Rr
hq‖0,T ≤ ‖q − qr+1‖0,T + ‖Rr

hΠ
r
h(qk+1 − q)‖0,T . (2.55)

Using the boundedness from Theorem 2.4.4 and (1.8),

‖Rr
hΠ

r
h(qr+1 − q)‖0,T . ‖Πr

h(qr+1 − q)‖0,ωT

. h‖Πr
h(qr+1 − q)‖0,∞,ωT . h‖qr+1 − q‖0,∞,ωT . hr+2|q|r+2,T1 .

(2.56)

Combining (2.55), (2.56) and the shape regularity Th completes the proof.

Combining Theorems 2.3.5 and 2.4.5, we obtain the superconvergent recovery

estimate.

Theorem 2.4.6. Assume that Th satisfies the (α, β)-condition. Then

‖p−Rr
hp

r
h‖a . hr+1+min( 1

2
,α,β

2
)
(
|p|r+1,∞,Ω + ‖p‖r+2,Ω

)
, r = 0, 1.

Assume that Th satisfies the piecewise strong (α, β)-condition. Then for the RT0 finite

element,

‖p−R0
hp

0
h‖0,Ω . h1+min(1,α,β

2
)| log h|

1
2‖u‖3,∞,Ω.

Proof. The theorem follows from

‖p−Rr
hp

r
h‖0,Ω ≤ ‖p−Rr

hp‖0,Ω + ‖Rr
h(Π

r
hp− prh)‖0,Ω,

and Theorems 2.3.5 and 2.4.5.
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2.5 Proofs of Lemma 2.2.4

To prove Lemma 2.2.4, we introduce cubic bubble functions

ψ0 = λ1λ2λ3, ψk = λk−1λk+1(λk−1 − λk+1), 1 ≤ k ≤ 3.

By counting the dimension, it is clear that {ψk}3
k=0 can span polynomials in P3(T )

that vanish at {zk}3
k=1 and midpoints of {ek}3

k=1. In fact, {ψk}3
k=0 has been used to

derive superconvergence of quadratic Lagrange elements (cf. [42]) and a posteriori error

estimators (cf. [11]). In addition, we have the several elementary identities:

cos θk = (`2
k−1 + `2

k+1 − `2
k)/(2`k−1`k+1), sin θk = `k/d, dk = `k−1`k+1/d,

nk−1 = − sin θk+1tk − cos θk+1nk, nk+1 = sin θk−1tk − cos θk−1nk,

∂2
tk−1

= cos2 θk+1∂
2
tk
− 2 cos θk+1 sin θk+1∂

2
tknk

+ sin2 θk+1∂
2
nk
,

∂2
tk+1

= cos2 θk−1∂
2
tk

+ 2 cos θk−1 sin θk−1∂
2
tknk

+ sin2 θk−1∂
2
nk
.

(2.57)

For each edge ek, we define several associated geometric quantities {αijl,k}1≤i,j,l≤2

α1
11,k =

1

24d`2
k

`k−1`k+1

(
3`4
k − (`2

k−1 − `2
k+1)2

)
,

α1
12,k = α1

21,k =
1

12d2`k
`2
k−1`

2
k+1(`2

k−1 − `2
k+1), α1

22,k = − 1

6d3
`3
k+1`

3
k−1,

α2
11,k =

1

48`3
k

(`2
k−1 − `2

k+1)
(
9`4
k − (`2

k−1 − `2
k+1)2

)
,

α2
12,k = α2

21,k = −α1
11,k, α2

22,k = −α1
12,k.

With this preparation, we present an analogue of Lemma 2.2.1.

Lemma 2.5.1. For p2 ∈ P2(T )2,

p2 − Π1
hp2 = ∇⊥w,
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where

w = αijl,kD
jl
i,k(p2)ψ0 +

3∑
k=1

`3
k

12
D11

2,k(p2)ψk.

Proof. Notice that N1,k(p2 − Π1
hp2) = N2,k(p2 − Π1

hp2) = N3,l(p2 − Π1
hp2) = 0 for

k = 1, 2, 3 and l = 1, 2. Then Lemma 2.4.2 leads to

p2 − Π1
hp2 = ∇⊥

( 3∑
k=0

ckψk
)
. (2.58)

For a unit vector d and the directional derivative ∂d, the definition of RT 1(T ) implies

that ∂2
dΠ

1
hp2 is proportional to d. Then applying d⊥ · ∂2

d to (2.58) gives

d⊥ · ∂2
dp2 =

3∑
k=0

ck∂
3
dψk. (2.59)

By direct calculation,

∂3
dψ0 = 6∂dλ1∂dλ2∂dλ3, (2.60a)

∂3
dψk = 6∂dλk−1∂dλk+1(∂dλk−1 − ∂dλk+1), 1 ≤ k ≤ 3. (2.60b)

In particular, ∂3
tk
ψ0 = 0 and ∂3

tk
ψj = −12δjk/`

3
k. By (2.60) and (2.59) with d = tk, we

have

ck =
`3
k

12
nk · ∂2

tk
p2 =

`3
k

12
D11

2,k(p2), 1 ≤ k ≤ 3. (2.61)

It remains to determine c0. It follows from (2.59) with d = nk that

D22
1,k(p2) = c0∂

3
nk
ψ0 + ck∂

3
nk
ψk + ck−1∂

3
nk
ψk−1 + ck+1∂

3
nk
ψk+1, (2.62)

Using ∂nkλk = −1/dk, ∂nkλk+1 = cos θk−1/dk+1, ∂nkλk−1 = cos θk+1/dk−1, (2.60) with
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d = nk, (2.61), and (2.62), we obtain

c0 = − dk−1dkdk+1

6 cos θk−1 cos θk+1

D22
1,k(p2)

+
`3
k

12
dk

(
cos θk+1

dk−1

− cos θk−1

dk+1

)
D11

2,k(p2)

−
`3
k−1

12

dk−1

cos θk+1

(
1

dk
+

cos θk−1

dk+1

)
D11

2,k−1(p2)

+
`3
k+1

12

dk+1

cos θk−1

(
1

dk
+

cos θk+1

dk−1

)
D11

2,k+1(p2).

(2.63)

Plugging in (2.57), we obtain c0 = αijl,kD
jl
i,k(p2), 1 ≤ k ≤ 3.

Now we can prove Lemma 2.2.4. In the proof, we use the integral formulas

ˆ
T

λm1
1 λm2

2 λm3
3 =

2|T |m1!m2!m3!

(m1 +m2 +m3 + 2)!
,

ˆ
e

λm1
1 λm2

2 =
|e|m1!m2!

(m1 +m2 + 1)!
,

(2.64)

where {mi}3
i=1 are non-negative integers and λ1, λ2 are barycentric coordinates w.r.t. the

edge e.

Proof of Lemma 2.2.4. Using (2.9) and Lemma 2.5.1, we have

ˆ
T

(p2 − Π1
hp2) · ∇⊥w2 =

3∑
k=1

ˆ
ek

w∇⊥r2 · tk −
ˆ
T

r∆w2

= I + II.

(2.65)

Recall that φk = λk−1λk+1. Then using the hierarchical representation

w2 − I1
hw2 = −1

2

3∑
k=1

`2
kφk∂

2
tk
w2, (2.66)
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and ∆φk = 2∇λk−1 · ∇λk+1 = −2 cos θk/(dk−1dk+1), we obtain

∆w2 =
1

4|T |2
3∑

k=1

`2
k`k−1`k+1 cos θk∂

2
tk
w2. (2.67)

It then follows from Lemma 2.2.4, (2.67), and
´
T
ψ0 = |T |/60,

´
T
ψk = 0, 1 ≤

k ≤ 3, that

II = −|T |
60
c0∆w2

= − 1

240|T |

3∑
k=1

c0`
2
k`k−1`k+1 cos θk∂

2
tk
w2

= − 1

120

3∑
k=1

ˆ
ek

αijl,kD
jl
i,k(p2)`k cot θk∂

2
tk
w2.

(2.68)

By Lemma 2.2.4, (2.20), and ψk = −`k∂tkφ2
k/2, we have

I = −
3∑

k=1

1

12

ˆ
ek

`3
kD11

2,k(p2)ψk∇⊥w2 ·
(

cos θk−1

sin θk
nk−1 −

cos θk+1

sin θk
nk+1

)

=
3∑

k=1

1

24

ˆ
ek

`4
kD11

2,k(p2)φ2
k

(
cos θk−1

sin θk
∂2
tktk−1

w2 −
cos θk+1

sin θk
∂2
tktk+1

w2

)
.

(2.69)

Then using the quadrature rule (2.64),

I =
1

720

3∑
k=1

`5
kD11

2,k(p2)

(
cos θk−1

sin θk
∂2
tktk−1

w2 −
cos θk+1

sin θk
∂2
tktk+1

w2

)
.

In addition, (2.66) gives

∂2
tktk−1

w2 = − `k
2`k−1

∂2
tk
w2 +

`2
k+1

2`k−1`k
∂2
tk+1

w2 −
`k−1

2`k
∂2
tk−1

w2,

∂2
tktk+1

w2 = − `k
2`k+1

∂2
tk
w2 −

`k+1

2`k
∂2
tk+1

w2 +
`2
k−1

2`k`k+1

∂2
tk−1

w2.
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Therefore,

I =
1

1440

3∑
k=1

ˆ
ek

{
`5
k

sin θk
D11

2,k(p2)

(
cos θk+1

`k+1

− cos θk−1

`k−1

)
+

`4
k−1

sin θk−1

D11
2,k−1(p2)

(
cos θk +

`k
`k+1

cos θk+1

)
−

`4
k+1

sin θk+1

D11
2,k+1(p2)

(
`k
`k−1

cos θk−1 + cos θk

)}
∂2
tk
w2

(2.70)

Combining (2.68), (2.70) and using (2.57), we obtain Lemma 2.2.4.

2.6 Numerical experiments
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Figure 2.2: initial Delaunay triangulation

Problem1: We first test our recovery operators R0
h and R1

h on

−∆u+ u = f, x ∈ Ω,

where Ω is the triangle spanned by (0, 1), (−1,−1) and (1,−1). Let u = exp(x1 + x2),

g = u|∂Ω and f be the corresponding source term. In tables, ‘nt’ denotes the number of

triangles. For RT0 elements, we also test the postprocessing operator Kh in [12]. The

experiments are performed using the PDE toolbox in Matlab 2016b. In this section,
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Figure 2.3: (left)regular refinement (right)longest edge bisection

the norm ‖ ·‖ is short for ‖ ·‖0,Ω. The order of convergence is p such that error≈ dof−
p
2 ,

where dof is the number of degrees of freedom. p is calculated by least squares fitting

using data in tables. The first row is dropped in Tables 2.1–2.4 because of abnormal

error reduction in coarse grids.

We start with the Delaunay triangulation in Figure 2.2, and computed a se-

quence of meshes by regular refinement, i.e., dividing an element into four similar

subelements by connecting the midpoints of each edge, see Tables 2.1 and 2.2. We also

computed a sequence of meshes by longest edge bisection, see Figure 2.3, Tables 2.3

and 2.4.

For regular refinement, the grids satisfy (α, β)-condition with (α, β) = (∞, 1) as

well as piecewise strong (α, σ)-condition with (α, β) = (∞,∞) (i.e., piecewise uniformly

parallel grids). For RT0 elements, ‖Π0
hp − p0

h‖ = O(h2) and ‖p − R0
hp

0
h‖ = O(h2) by

Theorem 2.4.6, which are verified by Table 2.1. For RT1 elements, Theorem 2.3.5

predicts that ‖Π1
hp− p1

h‖ = O(h2.5), which is confirmed by Table 2.2. However, ‖p−

R1
hp

1
h‖ = O(h3) according to Table 2.2. It shows that the estimate ‖p−R1

hp
1
h‖ = O(h2.5)

for RT1 elements by Theorem 2.4.6 may be suboptimal.

For longest edge bisection, the resulting sequence of grids is completely unstruc-

tured, i.e., almost no pair of adjacent triangles forms an O(h1+α) approximate paral-
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lelogram. Hence there is no supercloseness and superconvergence of Kh, see Tables 2.3

and 2.4. Surprisingly, there is still apparent superconvergence for ‖p−Rk
hp

k
h‖, k = 0, 1.

Problem2: In the second experiment, we report a negative result for the low-

est order Brezzi–Douglas–Marini (BDM1) elements. We test the BDM1 element for

Poisson’s equation −∆u = f with exact solution u = exp(x1 + x2). Let p̃h denote

the numerical solution, p̃I the canonical interpolant and R̃h the LS-based recovery op-

erator fitting degrees of freedom of BDM1 elements, respectively. We start with the

uniformly parallel mesh, see Figure 2.4(left), and regularly refine it. Even though R̃hp̃I

has excellent superapproximation property, there is no supercloseness and supercon-

vergence of postprocessed solution to exact solution for BDM1 elements, see Table 2.5.

Problem3: In the end, we test R0
h and R1

h by Poisson’s equation −∆u = f on

the square [−1, 1]× [−1, 1] with a notch whose angle is ω = π/24. We choose

u(r, θ) = r
π

2π−ω sin

(
π

2π − ω
θ

)
− r2

4
,

where (r, θ) is the polar coordinate. The corresponding f = 1. We use ηT = ‖Rk
hp

k
h −

pkh‖0,T as a posteriori error estimator and start from the initial grid in Figure 2.4(right).

The adaptive feedback loop is the classical “Solve→ Estimate→ Mark→ Refine” loop

(cf. [26, 55]). The simple recovery-based error indicator ηT generates correct girds for

the solution with a point singularity, see Figure 2.7. In addition, there is apparent

superconvergence under adaptively refined meshes, see Figure 2.5 and 2.6.

Chapter 2, in part, contains the original results in SIAM J. Numer. Anal. 56

(2018), 792–815, Li, Yu-Wen, 2018 Society for Industrial and Applied Mathematics.

The dissertation author was the author of this paper.
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Chapter 2, in part, has been submitted for publication of the material as it

may appear in Journal of Scientific Computing, 2019, Bank, Randolph E.; Li, Yuwen,

Springer, 2019. The dissertation author was the coauthor of this paper.

Table 2.1: RT0 with regular refinement

nt ‖p− p0
h‖ ‖Π0

hp− p0
h‖ ‖p−R0

hp
0
h‖ ‖p−Khp

0
h‖

150 1.011e-1 2.118e-02 3.542e-02 2.948e-2
600 5.124e-2 6.060e-03 8.251e-03 9.782e-3
2400 2.574e-2 1.684e-03 2.114e-03 2.296e-3
9600 1.289e-2 4.595e-04 5.492e-04 1.121e-3
38400 6.447e-3 1.237e-04 1.434e-04 3.856e-4
order 1.002 1.880 1.957 1.562

Table 2.2: RT1 with regular refinement

nt ‖p− p1
h‖ ‖Π1

hp− p1
h‖ ‖p−R1

hp
1
h‖

150 2.161e-3 4.740e-4 9.774e-4
600 5.471e-4 8.444e-5 9.061e-5
2400 1.376e-4 1.493e-5 1.058e-5
9600 3.451e-5 2.640e-6 1.460e-6
38400 8.641e-6 4.660e-7 2.271e-7
order 2.001 2.510 3.023

Table 2.3: RT0 with bisection refinement

nt ‖p− p0
h‖ ‖Π0

hp− p0
h‖ ‖p−R0

hp
0
h‖ ‖p−Khp

0
h‖

150 1.011e-1 2.118e-2 3.542e-2 2.948e-2
378 7.812e-2 2.440e-2 2.110e-2 5.388e-2
865 5.099e-1 1.357e-2 9.894-3 3.392e-2
1889 3.567e-2 9.904e-3 5.728e-3 2.252e-2
4031 2.457e-2 6.179e-3 2.677e-3 1.533e-2
8476 1.682e-2 4.460e-3 1.647e-3 9.946e-3
order 0.986 1.087 1.663 1.083
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Table 2.4: RT1 with bisection refinement

nt ‖p− p1
h‖ ‖Π1

hp− p1
h‖ ‖p−R1

hp
1
h‖

150 2.161e-3 4.740e-4 9.774e-4
378 1.252e-3 4.881e-4 5.140e-4
865 5.440e-4 2.347e-4 1.688e-4
1889 2.694e-4 9.748e-5 6.048e-5
4031 1.252e-4 4.857e-5 1.889e-5
8476 6.123e-5 2.110e-5 7.793e-6
order 1.942 2.033 2.735

Table 2.5: BDM1 on uniformly parallel grids with regular refinement

nt ‖p− p̃h‖ ‖p̃I − p̃h‖ ‖p− R̃hp̃I‖ ‖p− R̃hp̃h‖
64 8.541e-03 1.195e-02 2.492e-03 1.042e-02
256 2.171e-03 2.958e-03 2.422e-04 2.779e-03
1024 5.465e-04 7.350e-04 2.240e-05 7.140e-04
4096 1.370e-04 1.832e-04 2.053e-06 1.807e-04
16384 3.430e-05 4.570e-05 1.910e-07 4.540e-05
order 2.020 2.037 3.474 1.992
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Figure 2.4: (left)uniformly parallel triangulation (right)adaptive initial grid
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Chapter 3

Superconvergence of the

Hellan–Herrmann-Johnson mixed

method

3.1 Introduction

Since there is no simple finite element subspace of H2
0 (Ω) in the primal formu-

lation (3.2), the fourth order elliptic equation (3.1) is often discretized by the non-

conforming Morley element method, or the mixed Hellan–Herrmann–Johnson(HHJ)

method. In the HHJ method, the stress tensor σ = A∇2u and the displacement u in

(3.4) are approximated by the finite element solutions σh and uh, respectively. It can

be shown using a duality argument that Ihu and uh are superclose in the H1-norm

on unstructured grids and thus a postprocessing technique can be applied to achieve

superconvergence for the displacement variable, cf. [3, 23]. It is often the case that

the stress tensor σ, or simply the Hessian of u, is of more practical interest than u

itself. For example, the adaptive version of Morley and HHJ methods are based on a
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posteriori error estimation of σ instead of the H1- or L2-norm of u − uh, cf. [41, 39].

However, superconvergence analysis of the tensor variable is mesh-dependent and more

involved. Up to now, there has been little work for superconvergence of stress tensors

in mixed methods, except for [36], which presents recovery superconvergence results

on σ = ∇2u for the lowest order HHJ mixed method on uniformly parallel grids.

In this chapter, we shall prove Theorem 3.2.5, a supercloseness estimate for σ

in the lowest order HHJ mixed method under mildly structured grids. The proof is

constructive and different from the proof in [36]. Our supercloseness result shows that

the rate of superconvergence proved in [36] on uniform grids is suboptimal (an extra h
1
2

is obtained in Theorem 3.2.5). The main tool for superconvergence analysis is Lemma

3.2.1 about the local interpolation error expansion. Global supercloseness then follows

from the framework for superconvergence analysis of RT mixed methods in Chapter

2. The additional difficulties arise from the symmetry of the stress tensor in the HHJ

method and the double divergence operator div Div.

The second major component of this chapter is the new recovery operator Rh

based on superconvergent patch recovery technique, compared with Rr
h for the RTr

element in Chapter 2. We shall show that Rh has a nice super-approximation property

and thus achieves recovery superconvergence using the aforementioned supercloseness

result. The analysis is still based on Lemma 3.2.1. Meanwhile, ‖σh − Rhσh‖0,T can

serve as a posteriori error estimators. In numerical experiments, it is shown to be

asymptotically exact. The asymptotic exactness of recovery-based error estimators is

often attributed to superconvergence.

Preliminaries are introduced in the rest of this section. Throughout this chapter,

variables in boldface stand for vectors or matrices. A vector is viewed as a column by

default unless confusion arises. For a scalar-valued function v and vector/matrix-valued
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functions

φ =

φ1

φ2

 , τ =

τ1

τ2

 ,

several differential operators are defined as

Curlφ = (∇⊥φ1,∇⊥φ2)ᵀ, Rotτ = (∇× τ1,∇× τ2)ᵀ,

Gradφ = (∇φ1,∇φ2)ᵀ, Divτ = (div τ1, div τ2)ᵀ.

Symmetrized gradient and curl are defined as

Grads(φ) =
1

2
(Gradφ+ (Gradφ)ᵀ), Curlsφ =

1

2
(Curlφ+ (Curlφ)ᵀ),

respectively. The linear operator A is defined to be

Aτ :=
E

12(1− ν2)
((1− ν)τ + ν tr(τ )I),

where τ a symmetric 2× 2 matrix, I is the 2× 2 identity matrix, tr(τ ) is the trace of

τ , E is the Young’s modulus and 0 ≤ ν < 1 is a constant. Without loss of generality,

we set E/12 = 1. Let ∇2 denote Hessian. We consider the boundary value problem

div DivA∇2u = f in Ω, (3.1a)

u = ∂nu = 0 on ∂Ω. (3.1b)

Let : denote the component wise product for matrices, namely,A : B =
∑m

i=1

∑n
j=1 aijbij,

where A = (aij)1≤i≤m,1≤j≤n,B = (bij)1≤i≤m,1≤j≤n. Let (·, ·) denote the L2(Ω)-inner

product: (A,B) =
´

Ω
A : B. The primal formulation for (3.1) is to find u ∈ H2

0 (Ω),

such that

(A∇2u,∇2v) = (f, v), for all v ∈ H2
0 (Ω). (3.2)

57



Here H2
0 (Ω) = {v ∈ H2(Ω) : v = ∂nv = 0 on ∂Ω}. (3.2) is the model variational

formulation for Kirchhoff plate theory, cf. [16, 41, 39].

For a symmetric 2 × 2 matrix τ , two scalars τnn := nᵀτn, τnt := nᵀτt are

defined on ∂T , where n and t are unit normal and tangent to ∂T , respectively. For a

space V ,

[V ]4s :=

v =

v11 v12

v21 v22

 : v12 = v21, vij ∈ V, i, j = 1, 2

 ,

[V ]n := {v = (v1, . . . , vn)ᵀ : vi ∈ V, 1 ≤ i ≤ n}.

(3.3)

Recall that Uh = S1
h ∩H1

0 (Ω) and define

Σh = {τh ∈ [L2(Ω)]4s : τh|T ∈ [P0(T )]4s, ∀ T ∈ Th,

(τh)nn is single-valued on each e ∈ Eoh}.

Equation (3.1) is equivalent to the second order system

σ = A∇2u, (3.4a)

div Divσ = f. (3.4b)

It follows from direct calculation that

Cτ := A−1τ = (1 + ν)τ − ν tr(τ )I.

By (3.4) and integrating by parts element by element, we have

(Cσ, τh) + bh(τh, u) = 0,

bh(σ, vh) = −(f, vh),

(3.5)
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for all (τh, vh) ∈ Σh × Uh, where

bh(τ , v) : =
∑
T∈Th

ˆ
T

Div τ · ∇v −
ˆ
∂T

τnt∂tv

=
∑
T∈Th

ˆ
T

−τ : ∇2v +

ˆ
∂T

τnn∂nv.

(3.6)

Here we use the tensor version integration by parts

ˆ
T

Div τ · ∇v =

ˆ
∂T

(τn) · ∇v −
ˆ
T

τ : ∇2v, (3.7)

where v ∈ H2(T ) and each component of τ is in H1(T ). Another useful formula is

ˆ
T

Curlϕ : τ =

ˆ
∂T

ϕ · τt−
ˆ
T

ϕ · Rot τ , (3.8)

for the same τ and ϕ ∈ [H1(T )]2. The HHJ mixed method for solving (3.4) is to find

(σh, uh) ∈ Σh × Uh, such that

(Cσh, τh) + bh(τh, uh) = 0, (3.9a)

bh(σh, vh) = −(f, vh), (3.9b)

for all (τh, vh) ∈ Σh×Uh. For τ ∈ [H1(Ω)]4s, πhτ is the unique element in Σh satisfying

ˆ
∂T

(πhτ )nn =

ˆ
∂T

τnn for all T ∈ Th. (3.10)

We also need the linear Lagrange interpolation Ih. It is readily checked that πh, Ih and
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bh satisfy

bh(πhτ , vh) = bh(τ , vh), for all vh ∈ Uh, (3.11a)

bh(τh, Ihv) = bh(τh, v), for all τh ∈ Σh. (3.11b)

The rest of this chapter is organized as follows. Section 3.2 is devoted to es-

timating the global variational error and developing a supercloseness estimate, i.e.,

Theorem 3.2.5. In Section 3.3, we construct the recovery operator and prove Theorem

3.3.3, a recovery-type superconvergence estimate. Numerical experiments including

both smooth problems under quasi-uniform grids and singular problems under graded

meshes are reported in Section 3.4.

3.2 Supercloseness

First we expand the local interpolation error for linear tensor-valued functions.

Let Q be the matrix representing rotation by π
2

counterclockwise and d⊥ = Qd for

d ∈ R2.

Lemma 3.2.1. For σ1 ∈ [P1(T )]4s,

σ1 − πhσ1 = Curls rσ1 ,

where

rσ1 =
3∑

k=1

φkγ
σ1
k ,
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with

γσ1
k · nk =

`2
k

2
nᵀ
k∂tkσ1nk, (3.12a)

γσ1
k · tk =

`2
k

2
nᵀ
k∂nkσ1nk + `2

kt
ᵀ
k∂tkσ1nk. (3.12b)

Proof. First note that

ˆ
ek

nᵀ
k

Curls

φk
0


nk

=

ˆ
ek

nᵀ
k

Curls

 0

φk


nk = 0, 1 ≤ k ≤ 3.

(3.13)

Now assume that Curls

φi
0




3

i=1

⋃Curls

 0

φi




3

i=1

(3.14)

are linearly independent. The reason is given at the end of the proof. Since
´
ek

(σ1 −

πhσ1)nn = 0 for 1 ≤ k ≤ 3, by counting the dimension, we have

σ1 − πhσ1 =
3∑
i=1

αi Curls

φi
0

+
3∑
i=1

βi Curls

 0

φi

 = Curls rσ1 , (3.15)

where rσ1 =
∑3

i=1 φiγ
σ1
i with γσ1

i := (αi, βi)
ᵀ, and αi, βi are some undetermined

constants. Given two unit vectors d1 and d2, it follows from (3.15) that

dᵀ
1(σ1 − πhσ1)d2 = −1

2

3∑
i=1

(
dᵀ

1γ
σ1
i

∂φi
∂d⊥2

+
∂φi
∂d⊥1

γσ1ᵀ
i d2

)
. (3.16)
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First, applying ∂tk to (3.16) with d1 = d2 = nk, and using

∂2
tk
φi = −2δki/`

2
k, (3.17)

where δki is the Kronecker delta, we obtain (3.12a), the normal component of γσ1
i .

Second, by applying ∂tk to (3.16) with d1 = tk,d2 = nk and using (3.17), we have

tᵀk∂tkσ1nk =
1

`2
k

tᵀkγ
σ1
k +

1

2

3∑
i=1

∂2
tknk

φiγ
σ1ᵀ
i nk. (3.18)

Third, applying ∂nk to (3.16) with d1 = d2 = nk leads to

nᵀ
k∂nkσ1nk = −

3∑
i=1

γσ1ᵀ
i nk∂

2
tknk

φi. (3.19)

Comparing (3.19) with (3.18), we obtain (3.12b), the tangential component of γσ1
i . As

for the linear independence of (3.14), let

3∑
i=1

α′i Curls

φi
0

+
3∑
i=1

β′i Curls

 0

φi

 = 0.

Then by using the same argument below (3.15), we obtain that both the normal and

tangential components of (α′i, β
′
i) are zero, i.e., α′i = β′i = 0.

Any vector ξk ∈ R2 is a linear combination of tk−1 and tk+1. Similar to (2.20),

ξk = −ξk · nk+1

sin θk
tk−1 +

ξk · nk−1

sin θk
tk+1, 1 ≤ k ≤ 3.
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Combining it with `1/ sin θ1 = `2/ sin θ2 = `3/ sin θ3, we obtain

3∑
k=1

`k∇v · ξk =
3∑

k=1

`k
sin θk

ξk · nk−1∂tk+1
v −

3∑
k=1

`k
sin θk

ξk · nk+1∂tk−1
v

=
3∑

k=1

`k
sin θk

(
ξk−1 · nk+1 − ξk+1 · nk−1

)
∂tkv.

(3.20)

The identity (3.20) is essentially first proved in [9] but the proof here is simplified,

compared also with the proof of Lemma 2.2.2. Setting ξk = δknk for 1 ≤ k ≤ 3 in

(3.20) and using nk−1 · nk+1 = − cos θk, we have

3∑
k=1

`kδk∇⊥v · tk =
3∑

k=1

`k cot θk (δk+1 − δk−1) ∂tkv.

Let ϕ = (ϕ1, ϕ2)ᵀ be a R2-valued function and δk = (δk,1, δk,2)ᵀ ∈ R2. Setting v = ϕ1,

δk = δk,1 or v = ϕ2, δk = δk,2 for 1 ≤ k ≤ 3 in the above identity, we obtain

3∑
k=1

`kδ
ᵀ
k(Curlϕ)tk =

3∑
k=1

`k cot θk(δk+1 − δk−1)ᵀ∂tkϕ. (3.21)

The next lemma is our main technical tool for estimating the global variational error

in the HHJ method.

Lemma 3.2.2. For σ1 ∈ [P1(T )]4s and ϕ ∈ [P1(T )]2,

ˆ
T

C(σ1 − πhσ1) : Curlsϕ =
3∑

k=1

ˆ
ek

gσ1
k ∂tkϕ, (3.22)

where

gσ1
k = − 1

12
(1 + ν){(γσ1

k−1 − γ
σ1
k+1)ᵀ cot θk + γσ1ᵀ

k nkt
ᵀ
k

+ (γσ1ᵀ
k−1tk−1t

ᵀ
k−1 − γ

σ1ᵀ
k+1tk+1t

ᵀ
k+1) cot θk}

+
ν

6

1

sin θk
(γσ1ᵀ

k−1tk−1n
ᵀ
k+1 − γ

σ1ᵀ
k+1tk+1n

ᵀ
k−1)Q,

(3.23)
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and {γσ1
k }3

k=1 are defined in (3.12).

Proof. Let τ = Curlsϕ. By the self-adjointness of C, the symmetry of Cτ , the

integration-by-parts formula (3.8) and Lemma 3.2.1, we have

ˆ
T

C(σ1 − πhσ1) : τ =

ˆ
T

(σ1 − πhσ1) : Cτ =

ˆ
T

Curls rσ1 : Cτ

=

ˆ
T

Curl rσ1 : Cτ =
3∑

k=1

ˆ
ek

φkγ
σ1ᵀ
k (Cτ )tk =

1

6

3∑
k=1

`kγ
σ1ᵀ
k (Cτ )tk.

In the last step, we use Simpson’s quadrature rule. It follows that

ˆ
T

C(σ1 − πhσ1) : τ =
1

6
(1 + ν)I − 1

6
νII, (3.24)

where

I =
3∑

k=1

`kγ
σ1ᵀ
k τtk, II =

3∑
k=1

`kγ
σ1ᵀ
k tk tr(τ ).

By τ = {Curlϕ+ (Curlϕ)ᵀ}/2 and the identity (3.21),

I =
1

2

3∑
k=1

`k cot θk(γ
σ1
k+1 − γ

σ1
k−1)ᵀ∂tkϕ

+
1

2

3∑
k=1

`kγ
σ1ᵀ
k (Curlϕ)ᵀtk = I1 + I2.

(3.25)

By writing γσ1ᵀ
k = γσ1ᵀ

k tkt
ᵀ
k + γσ1ᵀ

k nkn
ᵀ
k and using (3.21),

I2 =
1

2

3∑
k=1

`kγ
σ1ᵀ
k tkt

ᵀ
k(Curlϕ)tk +

1

2

3∑
k=1

`kγ
σ1ᵀ
k nkt

ᵀ
k(Curlϕ)nk

=
1

2

3∑
k=1

`k cot θk(γ
σ1ᵀ
k+1tk+1t

ᵀ
k+1 − γ

σ1ᵀ
k−1tk−1t

ᵀ
k−1)∂tkϕ

− 1

2

3∑
k=1

`kγ
σ1ᵀ
k nkt

ᵀ
k∂tkϕ.

(3.26)
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Let ϕ = (ϕ1, ϕ2)ᵀ. By the identity (3.20) with ξk = (0,−1)ᵀ(γσ1ᵀ
k tk), v = ϕ1 and

ξk = (1, 0)ᵀ(γσ1ᵀ
k tk), v = ϕ2, respectively, we have

II =
3∑

k=1

`kγ
σ1ᵀ
k tk(−∂x2ϕ1 + ∂x1ϕ2)

=
3∑

k=1

`k(p
σ1
k ∂tkϕ1 + qσ1

k ∂tkϕ2),

(3.27)

where

pσ1
k =

1

sin θk
{nᵀ

k+1(0,−1)ᵀ(γσ1ᵀ
k−1tk−1)− nᵀ

k−1(0,−1)ᵀ(γσ1ᵀ
k+1tk+1)},

qσ1
k =

1

sin θk
{nᵀ

k+1(1, 0)ᵀ(γσ1ᵀ
k−1tk−1)− nᵀ

k−1(1, 0)ᵀ(γσ1ᵀ
k+1tk+1)}.

Combining (3.24)–(3.27), we obtain (3.21).

We expand the left hand side of (3.22) in terms of the tangential derivative ∂tkϕ

which is single-valued over the inter-element boundary provided ϕh ∈ [S1
h]2. This fact

is crucial for error cancellation, see the proof of Theorem 3.2.5. Note that gσ1
k is linear

in σ1. By passing σ to Ihσ and vice versa, we obtain a corollary for general σ. The

proof is skipped because it is the same as Lemma 2.2.3.

Lemma 3.2.3. For ϕ ∈ [P1(T )]2,

ˆ
T

C(σ − πTσ) : Curlsϕ =
3∑

k=1

ˆ
ek

gσk ∂tkϕ+O(h2)|σ|2,T |ϕ|1,T .

Although gσk in Corollary 3.2.3 is complicated, gσk is clearly of magnitude O(h2).

In addition, |gσk − gσ′k | . h2+α|Dσ| on ek, where ek is shared by T and T ′ which form

an O(h1+α)-approximate parallelogram, and gσ′k is defined by the quantities on T ′, see

the proof of Lemma 3.2.4. Now we present our main lemma.

Lemma 3.2.4. For any ϕh ∈ [Sh]2, let τh = Curlsϕh. If Th satisfies the (α, β)-
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condition, then

(C(σ − πhσ), τh) . h1+min( 1
2
,α,β

2
)(|σ|1,∞,Ω + ‖σ‖2,Ω)‖τh‖0,Ω. (3.28)

If Th satisfies the piecewise strong (α, β)-condition, then

(C(σ − πhσ), τh) . h1+min(1,α,β
2

)| log h|
1
2‖σ‖2,∞,Ω‖τh‖0,Ω. (3.29)

Proof. First assume that Th satisfies the strong (α, β)-condition. By a Korn’s inequality

in quotient space (cf. Theorems 2.3 and 2.2 in [20]),

‖ϕ⊥h + r1‖1,Ω . ‖Grads(ϕ⊥h )‖0,Ω (3.30)

for some r1 = ax⊥ + b ∈ ker Grads, where a ∈ R, b ∈ R2. Then using (3.30),

Grads(ϕ⊥h ) = Q(Curlsϕh)Q
ᵀ, and setting ϕ̂h = ϕh − r⊥1 , we obtain Curls ϕ̂h =

Curlsϕh and

‖ϕ̂h‖1,Ω . ‖Curls ϕ̂h‖0,Ω = ‖τh‖0,Ω. (3.31)

Let gσek = gσk in Corollary 3.2.3. Note that ϕ̂h ∈ [Sh]2 and thus ∂tkϕ̂h is single-valued

on ek. Hence by Corollary 3.2.3 and rearranging the sum, we have

(C(σ − πhσ), τh) = (C(σ − πhσ),Curls ϕ̂h)

=
∑
T∈Th

{
3∑

k=1

ˆ
ek

gσek∂tkϕ̂h +O(h2)|σ|2,T |ϕ̂h|1,T

}

=
4∑
i=1

Ii,

(3.32)
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where

Ij =
∑
e∈Eoh,j

ˆ
e

Jgσe K∂teϕ̂h, j = 1, 2, I3 =
∑
e∈E∂h

ˆ
e

gσe ∂teϕ̂h,

I4 =
∑
T∈Th

O(h2)|σ|2,T |ϕ̂h|1,T ,

and Jgσe K := gσe − gσ′e if e ∈ Eoh,j is shared by T and T ′. In this case, te is the unit

tangent induced by T . The quantities associated with T ′ have a superscript ′ and gσ′e

is computed based on the quantities in T ′. In the rest of the proof, the telescoping

inequality (2.26) for products is frequently used. For e ∈ Eoh,1, we claim that

|Jgσe K| . h2+α|Dσ| on e. (3.33)

We can view e as e1 and e′1 in T and T ′, respectively. Then t1 = −t′1, n1 = −n′1 etc.

(3.33) can be seen by three steps. First since T and T ′ form an O(h1+α)-approximate

parallelogram,
3∑

k=1

|tk + t′k|+ |nk + n′k| = O(hα). (3.34)

Second, by the definition (3.12) and using (2.26) and (3.34),

|γσk − γσ′k | . h2+α|Dσ| on e, 1 ≤ k ≤ 3. (3.35)

Finally, (3.33) follows from (2.26), (3.34), (3.35), and the definition of gσe in (3.23).

Hence by (3.33), the trace inequality (1.9) and the Cauchy–Schwarz inequality, we

have

|I1| .
∑
e∈Eoh,1

h2+α|σ|1,e|ϕ̂h|1,e

.
∑
e∈Eoh,1

h2+α
(
h−

1
2 |σ|1,T + h

1
2 |σ|2,T

)
· h−

1
2 |ϕ̂h|1,T

. h1+α‖σ‖2,Ω|ϕ̂h|1,Ω.

(3.36)
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Following the same argument in the proof of (2.30), (2.32), and (2.35), we obtain

|I2| . h1+β
2 |σ|1,∞,Ω|ϕ̂h|1,Ω, (3.37)

and

|I3| . h1+α| log h|
1
2‖σ‖2,∞,Ω‖ϕ̂h‖1,Ω. (3.38)

In the end, the Cauchy–Schwarz inequality implies

|I4| . h2|σ|2,Ω|ϕ̂h|1,Ω. (3.39)

Combining (3.32), (3.36)–(3.39) and using (3.31) we obtain the estimate (3.29). Since

the above argument is completely local, the estimate (3.29) also holds on Th satisfying

the piecewise strong (α, β)-condition. If I3 is trivially estimated by

|I3| . h1+ 1
2 |σ|1,∞,Ω|ϕ̂h|1,Ω

as I2, we obtain the estimate (3.28) on Th satisfying the (α, β)-condition.

Subtracting (3.9) from (3.5) gives the error equation

(C(σ − σh), τh) + bh(τh, u− uh) = 0, (3.40a)

bh(σ − σh, vh) = 0. (3.40b)

With the help of Lemma 3.2.4 and (3.40), we can derive supercloseness estimates.

Theorem 3.2.5. If Th satisfies the (α, β)-condition, then

‖πhσ − σh‖0,Ω . (1− ν)−1h1+min( 1
2
,α,β

2
)(|σ|1,∞,Ω + ‖σ‖2,Ω).
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If Th satisfies the piecewise strong (α, β)-condition, then

‖πhσ − σh‖0,Ω . (1− ν)−1h1+min(1,α,β
2

)| log h|
1
2‖σ‖2,∞,Ω.

Proof. Let τh = πhσ−σh. (div Div)hτh is defined to be the function in Uh determined

by

(vh, (div Div)hτh) = bh(τh, vh) for all vh ∈ Uh.

By (3.11a) and (3.40b),

bh(τh, vh) = bh(σ − σh, vh) = 0, (3.41)

i.e., (div Div)hτh = 0. From [21], we have the exact sequence

[Sh]2
Curls−−−→ Σh

(div Div)h−−−−−→ Uh → 0.

Hence τh = Curlsϕh for some ϕh ∈ [S1
h]2. By (3.40a), (3.11b) and (3.41),

(1− ν)‖τh‖2
0,Ω ≤ 〈Cτh, τh〉

= (C(πhσ − σ), τh)− bh(τh, u− uh)

= (C(πhσ − σ), τh)− bh(τh, Ihu− uh)

= (C(πhσ − σ), τh).

Then Theorem 3.2.5 follows from Lemma 3.2.4 and the above inequality.

On uniformly parallel grids, Theorem 3.2.5 gives ‖πhσ−σh‖0,Ω = O(h2| log h| 12 ).

If C = A is the identity operator, Theorem 5.3 in [36] says that ‖πhσ−σh‖0,Ω = O(h1.5)

which is suboptimal according to Theorem 3.2.5.
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3.3 Superconvergent recovery

In this section, we introduce the recovery operator Rh based on the local least

squares fitting similar to Rr
h in Chapter 2.

Definition 3.3.1. The operator Rh : Σh → [S1
h]4s is defined as follows. For z ∈ Nh,

let τz ∈ [P1(ωz)]
4
s minimize the functional

F(τ ) =
∑

e∈Eh(ωz)

([τ (me)]nn − [τh(me)]nn)2

subject to τ ∈ [P1(ωz)]
4
s, where me is the midpoint of e and n is a unit normal to e.

Then Rhτh(z) := τz(z).

Clearly, Rh can also be applied to σ and Rhσ = Rhπhσ. To clarify the post-

processing procedure, we rewrite Rh in linear algebra language. For an internal vertex

z, let {ej}Nj=1 be the set of edges in the local patch ωz. Assume

τz =

c1 + c2x1 + c3x2, c4 + c5x1 + c6x2

c4 + c5x1 + c6x2, c7 + c8x1 + c9x2

 .

Let mj = (mj1,mj2)ᵀ and nj = (nj1, nj2)ᵀ be the midpoint and unit normal to ej

respectively. Let dz = (nᵀ
1τh(m1)n1, . . . ,n

ᵀ
Nτh(mN)nN)ᵀ, and Az = (aᵀ

1, . . . ,a
ᵀ
N)ᵀ be

an N × 9 matrix with

aj = (n2
j1, n

2
j1mj1, n

2
j1mj2, 2nj1nj2, 2nj1nj2mj1, 2nj1nj2mj2, n

2
j2, n

2
j2mj1, n

2
j2mj2).

Then c = (c1, . . . , c9)ᵀ solves minĉ∈R9 |Azĉ−dz|2. In other words, the normal equation

Aᵀ
zAzc = Aᵀ

zdz holds.

In some cases, the local least squares problem may not have a unique solution.
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One can add some extra elements to the local patch ωz, e.g. enlarge ωz by one layer.

The following theorem shows that there is almost no need to enlarge the local patch

under a good mesh Th.

Lemma 3.3.1. Let z be an internal vertex. Assume #Th(ωz) ≥ 5 and the sum of each

pair of adjacent angles in ωz is ≤ π. Then there exists a unique τz at z.

Proof. Assume πhτz = O2×2 on ωz. Then by Lemma 3.2.1,

τz|T = τz|T − πT (τz|T ) = Curls rT (3.42)

for each T ∈ Th(ωz) with rT =
∑3

k=1 φkγ
τz |T ∈ [P2(K)]2, where rT vanishes on three

vertices of T . Let rz be the piecewise quadratic polynomial on ωz whose restriction to

K is rT . We claim that rz is indeed a quadratic polynomial on ωz. Consider an edge

e ∈ Eh(ωz) shared by T, T ′ ∈ Th(ωz) with unit tangent te and normal ne = Qte. It

suffices to show that ∂α1
te ∂

α2
nerT = ∂α1

te ∂
α2
nerT ′ on e for α1 + α2 ≤ 2. By the formula for

γτz |T and γτz |T ′ in Lemma 3.2.1, rT = rT ′ on e. Hence

∂terT = ∂terT ′ , ∂2
terT = ∂2

terT ′ on e. (3.43)

By (3.42), we have

tᵀe∂nerK = tᵀeτzte on T, tᵀe∂nerT ′ = tᵀeτzte on T ′,

1

2
(nᵀ

e∂nerT − tᵀe∂terT ) = tᵀeτzne on T,

1

2
(nᵀ

e∂nerT ′ − tᵀe∂terT ′) = tᵀeτzne on T ′.

(3.44)

(3.44) with (3.43) imply

∂nerT = ∂nerT ′ , ∂te∂nerT = ∂te∂nerT ′ on e. (3.45)
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Applying ∂ne to (3.44) and using (3.45), we obtain ∂2
nerT = ∂2

nerT ′ on e. Therefore

the claim is confirmed and τz = Curls rz, where rz ∈ [P2(ωz)]
2 vanishing at all vertices

in ωz. By Theorem 2.3 in [57], rz = 0 and thus τz = O2×2. Hence πhτz = O2×2 on

ωz implies τz = O2×2. In other words, Azc = 0 implies c = 0, which implies the

uniqueness of the least squares solution τz at z.

If the condition in Lemma 3.3.1 is violated, one can add extra elements to ωz,

see the remark below Lemma 2.4.3. In the rest of this chapter, we assume that there

exists a unique τz at each z ∈ Nh.

The uniqueness of the least squares solution implies Rhτ = τ on T for τ ∈

[P1(ωT )]4s, which is called the polynomial preserving property, see Chapter 2. The

super-approximation property then follows from a homogeneity or compactness argu-

ment.

Theorem 3.3.2. Rh is locally stable, namely, |(Rhτh)(z)| . ‖τh‖0,∞,ωz , ‖Rhτh‖0,T .

‖τh‖0,ωT for all τh ∈ Σh. In addition,

‖σ −Rhσ‖0,Ω . h2|σ|2,Ω.

Combining Theorems 3.2.5, and 3.3.2 and splitting σ − Rhσh = σ − Rhσ +

Rh(πhσ − σh), we obtain the following superconvergent recovery theorem.

Theorem 3.3.3. If Th satisfies the (α, β)-condition, then

‖σ −Rhσh‖0,Ω . (1− ν)−1h1+min( 1
2
,α,β

2
)
(
|σ|1,∞,Ω + ‖σ‖2,Ω

)
.

If Th satisfies the piecewise strong (α, β)-condition, then

‖σ −Rhσh‖0,Ω . (1− ν)−1h1+min(1,α,β
2

)| log h|
1
2‖σ‖2,∞,Ω.
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Remark. The piecewise strong (α, β)-condition with (α, β) = (∞,∞) holds on any

sequence of grids obtained from uniformly refining an arbitrary initial grid. Hence

‖σ −Rhσh‖0,Ω = O(h2| log h| 12 ) provided σ is smooth enough.

Since σh is piecewise constant, the gradient recovery operator Gh defined by

(1.5) can be applied to it. As mentioned before, Gh has boundedness and super-

approximation property. Hence ‖σ −Ghσh‖0,Ω = O(h1+min( 1
2
,α,β

2
)).

3.4 Numerical experiments
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Figure 3.1: (left)uniform grid (middle)Delaunay grid (right)adaptive initial grid

Table 3.1: uniform initial grid with regular refinement

nt ‖σ − σh‖ ‖σ −Ghσh‖ ‖σ −Rhσh‖ ‖πhσ − σh‖
128 1.642e+00 5.792e-01 8.585e-01 4.889e-01
512 8.506e-01 1.924e-01 2.501e-01 1.391e-01
2048 4.294e-01 6.071e-02 6.490e-02 3.619e-02
8192 2.152e-01 1.951e-02 1.624e-02 9.145e-03
32768 1.077e-01 6.484e-03 4.037e-03 2.29e-03
order 0.994 1.631 1.986 1.976

In this section, we test the recovery operators Gh and Rh. The experiments are

performed using the PDE toolbox in Matlab 2016b. In tables, ‘nt’ denotes the number

of triangles. The norm ‖ · ‖ is short for ‖ · ‖0,Ω. The order of convergence is p such that
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Table 3.2: Delaunay initial grid with regular refinement

nt ||σ − σh|| ||σ −Ghσh|| ||σ −Rhσh|| ||πhσ − σh||
148 1.412e+00 5.452e-01 8.009e-01 3.714e-01
592 7.238e-01 1.881e-01 2.113e-01 1.079e-01
2368 3.646e-01 6.325e-02 5.519e-02 2.929e-02
9472 1.827e-01 2.144e-02 1.416e-02 7.757e-03
37888 9.141e-02 7.371e-03 3.602e-03 2.04e-03
order 0.996 1.558 1.959 1.911
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Figure 3.4: (left)graded grid from Rh (right)grade grid from Gh

error/dof
p
2 is approximately constant, where dof is the number of degrees of freedom.

p is calculated by least squares using data in tables.

Problem1: We first test Gh and Rh with

u = exp(x1 + x2)x2
1(x1 − 1)2 sin2(πx2), Ω = [0, 1]× [0, 1]

with ν = 0.3 in (3.4). We start with the uniform and Delaunay triangulations in Figure

3.1 respectively, and then computed a sequence of meshes by regular refinement, i.e.,

dividing an element into four similar subelements by connecting the midpoints of each

edge. Numerical results are presented in Tables 3.1 and 3.2. The first row in tables are

not used in least squares fitting for evaluating order of convergence.

Grids starting from the uniform initial grid satisfy the strong (α, β)-condition

with (α, β) = (∞,∞). Grids starting from the Delaunay initial grid satisfy the strong

(α, β)-condition with (α, β) = (∞, 1/2) as well as the piecewise strong (α, β)-condition

with (α, β) = (∞,∞). Numerical results confirm Theorem 3.2.5 and 3.3.3. It should

be noted that Rh has better superconvergent property than Gh, since ‖σ−Rhσh‖0,Ω =

O(h2), while ‖σ −Ghσh‖0,Ω = O(h1.5) in both cases.

Problem2: In the second experiment, we test the performance of the a pos-
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teriori error estimator ηT = ‖σh − Ahσh‖0,T with Ah = Rh or Gh on (3.4), where

ν = 0.3,

u(r, θ) = (r2 cos2 θ − 1)2(r2 sin2 θ − 1)2r1+γg(θ), γ = 0.544483736782464,

g(θ) =

(
1

γ − 1
sin((γ − 1)ω)− 1

γ + 1
sin((γ + 1)ω)

)
(cos((γ − 1)θ)− cos((γ + 1)θ))

− (
1

γ − 1
sin((γ − 1)θ)− 1

γ + 1
sin((γ + 1)θ))(cos((γ − 1)ω)− cos((γ + 1)ω)),

Ω = ([−1, 1]× [−1, 1])\([0, 1]× [−1, 0]), ω =
3π

2
,

where (r, θ) is the polar coordinate, see [34] for the construction of u. We start from

the initial grid in Figure 3.1. The adaptive feedback loop is the classical

Solve→ Estimate→ Mark→ Refine

loop (cf.[26]). In each marking step, we mark triangles in a setM such that
∑

T∈M η2
T ≥

0.49
∑

T∈Th η
2
T . Marked triangles are refined by longest edge bisection. The efficiency

index

eff =
‖σh − Ahσh‖
‖σ − σh‖

is computed. We also compute the interior error measured by ‖ · ‖0 := ‖ · ‖0,Ω0 , where

Ω0 = Ω\{x2
1 + x2

2 ≤ 0.22}.

The simple recovery-based error indicator ηT generates correct girds for the

solution with a point singularity, see Figure 3.4. It is not hard to see that bisection tends

to destroy the approximate parallelogram structure and thus there is no supercloseness

as shown in Figure 3.2. Although the supercloseness estimate in section 3.2 fails in

this case, there is still apparent global and interior superconvergence under adaptive
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meshes, see Figure 3.2. Use triangle

‖σ − σh‖ − h.o.t. ≤ ‖σh − Ahσh‖ ≤ ‖σ − σh‖+ h.o.t.,

where h.o.t.= ‖σ − Ahσh‖. Hence ‖σh − Ahσh‖ is asymptotically exact, i.e., eff goes

to 1, see Figure 3.3. We conjecture that this type of superconvergence is due to a large

number of locally symmetric patches with respect to a point in grids, cf. [60] regarding

second order elliptic equations.

Chapter 3, in full, has been submitted for publication of the material as it may

appear in Numerische Mathematik, 2019, Li, Yu-Wen, Springer, 2019. The dissertation

author was the author of this paper.
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Chapter 4

Superconvergence of nonconforming

methods

In this chapter, we develop superconvergence estimates of nonconforming FEMs

for second and fourth order elliptic equations. As mentioned before, nonconforming

FEMs are particularly suitable for discretizing systems of PDEs and higher order PDEs

by relaxing the interelement continuity constraint in their finite element spaces. Due

to this deviation from conformity in standard FEMs, it is very difficult to prove super-

convergence of nonconforming methods directly (cf. [36] and references therein).

4.1 Superconvergence of Crouzeix–Raviart

and Rannacher–Turek elements

For example, the standard lowest order triangular nonconforming element is

the Crouzeix–Raviart(CR) element (cf.[25]). It can be observed in numerical experi-

ments that the canonical interpolant uI and the finite element solution uh of the CR

method for Poisson’s equation are not superclose in the energy norm and thus the
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aforementioned recovery framework does not work. In [19], Chen proved a superclose-

ness estimate by using a corrected interpolation instead of the canonical interpolation

for CR elements. In [70], Ye develop superconvergence estimates of CR elements based

on the framework of least-squares surface fitting. Based on an equivalence between the

CR method and the lowest order Raviart–Thomas (RT) method for Poisson’s equation

(cf. [53, 3]), the authors in [36] first prove a superconvergent gradient recovery estimate

for CR elements by using superconvergence estimates of RT elements in [12]. Readers

are also referred to [24, 52, 51, 38] and references therein for superconvergence of other

nonconforming elements.

The nonconforming Rannacher–Turek (NCRT) element (cf.[58]) is a general-

ization of CR elements on quadrilateral meshes which is very popular for numerically

solving the Stokes problem. We mention that there is a superconvergence estimate

of NCRT at some special points under some mildly distorted square meshes, see [54].

Considering Poisson’s equation, the authors in [49] show that various rectangular non-

conforming methods fail to have natural supercloseness estimates. In particular for

NCRT elements, uI and uh are superclose in the energy norm only under square meshes.

To overcome this barrier, they enrich the NCRT element by one degree of freedom at

the centroid of each element and achieve superconvergent gradient recovery for the

modified nonconforming element.

We shall consider the standard NCRT method (4.3) for solving the elliptic

equation (4.1) with variable coefficients and lower order terms. First we compute a

new numerical flux ph from the NCRT finite element solution, see Theorem 4.1.3 for

details. We shall show that ph is superclose to Πh(a∇u) by comparing it with an

auxiliary H(div)-conforming flux p̄h and using well-established superconvergence tools

and techniques for RT elements in [30, 46], compared also with Chapter 2. Here Πh

is the canonical interpolation of the lowest order rectangular RT element. We then
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construct a local edge-based weighted averaging operator Ah, which makes ‖a∇u −

AhΠh(a∇u)‖0,Ω supersmall on any rectangular mesh. Hence Ahph superconverges to

a∇u on any rectangular mesh by a triangle-inequality argument. As far as we know,

even for Poisson’s equation, this is the first global superconvergent recovery method for

the NCRT element on any rectangular mesh. Our supercloseness estimate also directly

extends to Rd with d ≥ 3.

For elliptic equations with variable coefficients and lower order terms, Arbo-

gast and Chen in [2] can reformulate various mixed methods into modified noncon-

forming methods to obtain multigrid algorithms for mixed methods. However, the

general equivalence expression is complicated and it is unclear how far the standard

nonconforming finite element solution is from the modified one. On the other hand,

superconvergence analysis of H(div)-conforming mixed finite elements is often more

tractable than nonconforming methods and many sophisticated superconvergence es-

timates of mixed methods are available (cf.[30, 46]). Hence in this paper, we aim to

push nonconforming methods to their mixed side just as in [36]. But we will not try

to write the NCRT method (4.3) for general elliptic equations as an equivalent mixed

method. All we need is the equivalence Lemma 3.2.4 for Poisson’s equation. Moreover,

our recovery scheme can be directly generalized to the Courzeix–Raviart method on

triangular meshes. To our best knowledge, it is the first superconvergence estimate

of nonconforming methods for elliptic equations with variable coefficients, lower order

terms. It is surprising that everything matches so well.

Let Ω = [a, b] × [c, d] ⊂ R2 be a rectangle. Consider the second order elliptic

equation

−∇ · (a∇u) + b · ∇u+ cu = f in Ω, (4.1a)

u = g on ∂Ω, (4.1b)
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where a(x) ≥ a0 > 0 for all x ∈ Ω, a, b, c, and f are smooth functions on Ω̄.

Let Th denote a partition of Ω by rectangles. Given a rectangle T ∈ Th, let `T,1

and `T,2 denote the width and height of T , respectively and h = maxT∈Th max(`T,1, `T,2)

the mesh size. We assume that h < 1 and Th is nondegenerate, i.e.

max
T∈Th

max

{
`T,1
`T,2

,
`T,2
`T,1

}
≤ C <∞,

where C is a constant independent of h. Let Eh, Eoh, and E∂h denote the set of edges,

interior edges, and boundary edges, respectively. Let

Vg,h :={vh ∈ L2(Ω) : vh|T ∈ span{1, x1, x2, x
2
1 − x2

2} for all T ∈ Th, 
e

vh is single-valued for all e ∈ Eoh,
 
e

vh =

 
e

g for all e ∈ E∂h}.
(4.2)

The Rannacher–Turek nonconforming method for (4.1) is to find uh ∈ Vg,h, such that

(a∇huh,∇hv) + (b · ∇huh, v) + (cuh, v) = (f, v), ∀v ∈ V0,h, (4.3)

where ∇h denotes the piecewise gradient w.r.t. Th. We assume that the standard a

priori error estimate for the NCRT method holds:

‖u− uh‖0,Ω + h‖∇h(u− uh)‖0,Ω . h2‖u‖2,Ω. (4.4)

Readers are referred to [14] for the analogue of (4.4) for the CR method.

The NCRT space Ṽh using pointwise function evaluation will be used to define

the averaging operator Ah.

Ṽh :={vh ∈ L2(Ω) : vh|T ∈ span{1, x1, x2, x
2
1 − x2

2} for all T ∈ Th,

vh is continuous at the midpoint of each E ∈ Eoh}.
(4.5)
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Let Qk,l(T ) denote the set of polynomials of degree ≤ k in x1 and of degree ≤ l in x2

on the element T . Let H(div,Ω) := {q ∈ [L2(Ω)]2 : div q ∈ L2(Ω)}. The lowest order

rectangular Raviart–Thomas finite element space is

RT h := {qh ∈ H(div,Ω) : qh|T ∈ Q1,0(T )×Q0,1(T ), ∀T ∈ Th}.

The broken Raviart–Thomas space is

RT −1
h := {qh ∈ [L2(Ω)]2 : qh|T ∈ Q1,0(T )×Q0,1(T ), ∀T ∈ Th}.

Given q ∈ H(div,Ω), Πhq is the unique element inRT h satisfying
´
e
(Πhq)·n =

´
e
q ·n,

for all e ∈ Eh, where n is a unit normal to e. Let Ph be the L2(Ω)-projection onto the

space of piecewise constant functions. The commutativity (2.12) still holds.

Let e ∈ Eoh and T, T ′ be the two rectangles sharing e. Let n and n′ denote

the outward unit normal induced by T and T ′ respectively. In the analysis of noncon-

forming methods, it is convenient to introduce notations for jumps and averages on

e:

JqK := q|T · n+ q|T ′ · n′,

{q} := (q|T + q|T ′)/2,

JvK := (v|Tn+ v|T ′n′)/2,

{v} := (v|T + v|T ′)/2,

where q is a vector and v is a scalar. For e ∈ E∂h , JqK := q · n, {v} := v, JvK := 0. It is

readily to check that

JqvK = JqK{v}+ JvK · {q}. (4.6)
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With these notations, a useful fact is that

qh ∈ RT h if and only if qh ∈ RT −1
h and JqhK = 0,∀e ∈ Eoh. (4.7)

4.1.1 Supercloseness

In this section, we derive a supercloseness estimate for NCRT elements, which is

essential to develop superconvergent flux recovery. First we need a lemma in the spirit

of Marini (cf. [53]). Let divh denote the piecewise divergence and define the piecewise

function rh as

rh|T :=

(
`2
T,2

`2
T,1 + `2

T,2

(x1 − xT,1),
`2
T,1

`2
T,1 + `2

T,2

(x2 − xT,2)

)ᵀ

, T ∈ Th,

where T = [x1,i, x1,i+1] × [x2,j, x2,j+1], `T,1 = x1,i+1 − x1,i, `T,2 = x2,j+1 − x2,j, and

(xT,1, xT,2)ᵀ is the centroid of T .

Lemma 4.1.1. Let f̄ be a piecewise constant, qh|T ∈ Q1,0(T )×Q0,1(T ) and divh qh = 0.

Assume that

(qh,∇hv) = (f̄ , v) (4.8)

for all v ∈ V0,h. Then qh − f̄rh ∈ RT h.

Proof. Consider the vertical edge e ∈ Eoh and the two rectangles

T = [x1,i, x1,i+1]× [x2,j, x2,j+1], T ′ = [x1,i+1, x1,i+2]× [x2,j, x2,j+1]

sharing it. Let ve ∈ V0,h be the basis function such that
ffl
e
ve = 1 and

ffl
e′
ve = 0 for

e′ 6= e in Eh. Note that (qh ·n)|e′ is constant for all e′ ∈ Eh. It then follows from (4.8),
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div qh|T = div qh|T ′ = 0 and integration by parts that

ˆ
e

JqhK =

ˆ
T ′∪T

f̄ve. (4.9)

By direct calculation, the right hand side of (4.9) is

ˆ
T

ve =
|T |`2

T,2

2(`2
T,1 + `2

T,2)
,

ˆ
T ′
ve =

|T ′|`2
T ′,2

2(`2
T ′,1 + `2

T ′,2)
,

and thus

Jqh − f̄rhK = 0 on e. (4.10)

Similarly, (4.10) also holds for horizontal edges. Combining (4.10) with the fact (qh −

f̄rh)|T ∈ Q1,0(T )×Q0,1(T ), we conclude that qh − f̄rh ∈ RT h.

Remark. It seems that the NCRT method using degrees of freedom based on pointwise

function evaluation does not have a similar equivalence.

To apply Lemma 4.1.1, we then introduce the auxiliary nonconforming method:

Find ūh ∈ Vg,h, such that

(a∇hūh,∇hv) = (Ph(f − cu− b · ∇u), v), ∀v ∈ V0,h. (4.11)

The following lemma shows that uh and ūh are superclose in the H1-norm.

Lemma 4.1.2. Let uh and ūh solve (4.3) and (4.11), respectively. Then

‖∇h(uh − ūh)‖0,Ω . h2‖u‖2,Ω.
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Proof. Subtracting (4.11) from (4.3) yields

(a∇h(uh − ūh),∇hv) = (f − cuh − b · ∇huh − Ph(f − cu− b · ∇u), v).

It then follows from (4.4), and the discrete Poincaré inequality for nonconforming finite

elements (cf. Theorem 10.6.12. in [14])

‖v‖h,1,Ω . ‖∇hv‖0,Ω, ∀v ∈ V0,h, (4.12)

that

(a∇h(uh − ūh),∇hv)

= (f − cu− b · ∇u− Ph(f − cu− b · ∇u), v − Phv)

+ (c(u− uh), v) + (b · ∇h(u− uh), v)

= O(h2)(|f |1,Ω + ‖u‖2,Ω)‖∇hv‖0,Ω + (b · ∇h(u− uh), v).

(4.13)

It remains to show that (b · ∇h(u − uh), v) is supersmall. Using integrating by parts,

(4.6), and that
ffl
e
Ju− uhK = 0, we have

(b · ∇h(u− uh), v)

=
∑
T∈Th

ˆ
∂T

(u− uh)vb · n−
ˆ
T

(u− uh)∇ · (bv)

=
∑
e∈Eh

ˆ
e

{u− uh}Jvb− ceK + Ju− uhK · {vb− ce} −
ˆ

Ω

(u− uh)∇h · (bv)

(4.14)

for any constants ce ∈ R2. In particular, we choose ce = b(me)
ffl
e
v. By the trace

inequality (1.9), we have

‖{u− uh}‖0,e + ‖Ju− uhK‖0,e

. h−
1
2‖u− uh‖0,ωe + h

1
2‖∇h(u− uh)‖0,ωe

(4.15)
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and

‖Jvb− ceK‖0,e + ‖{vb− ce}‖0,e . h
1
2‖v‖h,1,ωe . (4.16)

Combining (4.14) with Hölder’s inequality, (4.12), (4.15), (4.16) and (4.4), we have

|(b · ∇h(u− uh), v)|

.
∑
e∈Eh

‖{u− uh}‖0,e‖Jvb− ceK‖0,e

+ ‖Ju− uhK‖0,e‖{vb− de}‖0,e + ‖u− uh‖‖v‖h,1,Ω

.
∑
e∈Eh

(‖u− uh‖0,ωe + h‖∇h(u− uh)‖0,ωe)‖v‖h,1,ωe

+ ‖u− uh‖0,Ω‖v‖h,1,Ω

. h2‖u‖2,Ω‖∇hv‖0,Ω.

(4.17)

Combining (4.17) with (4.13), we obtain Lemma 4.1.2.

Now we are in a position to present supercloseness results.

Theorem 4.1.3. Let p = a∇u. Let Qh be the L2-projection onto ∇hV0,h and ph :=

Qh(a∇huh)− rhPh(f − cuh − b · ∇huh), where rh is defined in Lemma 4.1.1. Then

‖Πhp− ph‖0,Ω . h2‖u‖3,Ω.

Proof. It follows from Lemma 4.1.1 and divh ◦Qh = 0 that p̄h := Qh(a∇hūh)−rhPh(f−

cu− b · ∇u) ∈ RT h ⊂ H(div,Ω). Let qh = Πhp− p̄h. Using (2.12) and divh rh = 1,

div qh = Ph div(a∇u)− Ph(f − cu− b · ∇u) = 0.

and thus qh|T = (c1x1 + c2,−c1x2 + c3)ᵀ for some ci ∈ R on an element T ∈ Th.
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Simpson’s quadrature rule then yields

ˆ
T

rh · qh =

ˆ
T

rh · (qh − (c2 + c1xT,1, c3 − c1xT,2)ᵀ)

=
c1

`2
T,1 + `2

T,2

ˆ
T

`2
T,2(x1 − xT,1)2 − `2

T,1(x2 − xT,2)2 = 0.

Hence

‖Πhp− p̄h‖2 = (Πhp− p, qh) + (p− p̄h, qh)

= (Πhp− p, qh) + (a∇h(u− uh), qh)

:= I + II.

(4.18)

By Lemma 3.1 with k = 0 in [30] and the Bramble–Hilbert lemma,

|I| . |p|2,Ω‖qh‖0,Ω. (4.19)

For part II, since div(qh|T ) = 0, we have

II =
∑
T∈Th

ˆ
T

a∇(u− ūh) · qh

=
∑
T∈Th

ˆ
T

(∇(a(u− ūh))− (u− ūh)∇a) · qh

=
∑
T∈Th

ˆ
∂T

a(u− ūh)qh · n− ((u− ūh)∇a, qh)

:= II1 + II2.

(4.20)

II2 is estimated by Lemma 4.1.2 and the apriori error estimate (4.4):

|II2| . h2‖u‖2,Ω‖qh‖0,Ω. (4.21)

Note that the normal component of {qh} is constant on e and JqhK = 0 by (4.7). It

then follows from
ffl
e
JūhK = 0, (4.6) , the trace inequality (1.9), an inverse inequality,
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(4.4), and Lemma 4.1.2, that

II1 =
∑
e∈Eh

ˆ
e

Ja(u− ūh)qhK

=
∑
e∈Eh

ˆ
e

J(a−
 
e

a)(u− ūh)K · {qh}

. h
∑
e∈Eh

‖Ju− ūhK‖0,e‖{qh}‖0,e

. h
1
2

∑
e∈Eh

(
h−

1
2‖u− ūh‖2,ωe + h

1
2‖∇h(u− ūh)‖0,ωe

)
‖qh‖0,ωe

. (‖u− ūh‖0,Ω + h‖∇h(u− ūh)‖0,Ω)‖qh‖0,Ω . h2‖u‖2,Ω‖qh‖0,Ω.

(4.22)

Combining (4.18)–(4.22), we obtain

‖Πhp− p̄h‖0,Ω . h2‖u‖3,Ω. (4.23)

Lemma 4.1.2 implies

‖ph − p̄h‖0,Ω . h2‖u‖2,Ω. (4.24)

The theorem follows from (4.23) and (4.24).

Note that Qh is in fact an element-by-element projection and Qh(a∇huh) =

a∇huh if a is a piecewise constant.

4.1.2 Superconvergent recovery

Considering rectangular Raviart–Thomas elements, Durán in [30] proposed a

postprocessing operator KD
h satisfying:

‖KD
h qh‖0,Ω . ‖qh‖0,Ω, ∀qh ∈ RT h, (4.25a)

‖p−KD
h Πhp‖0,Ω . h2|p|2,Ω. (4.25b)
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Here the input for KD
h needs to be H(div)-conforming. Assume ph ∈ RT h, e.g.,

f is piecewise constant, b = 0, and c = 0. Using (4.25), Theorem 4.1.3, and the

triangle inequality ‖a∇u − KD
h ph‖0,Ω ≤ ‖a∇u − KD

h Πhp‖0,Ω + ‖KD
h (Πhp − ph)‖0,Ω,

we obtain ‖a∇u − KD
h ph‖0,Ω . h2‖u‖3,Ω. However, ph /∈ RT h in general and thus

KD
h cannot be directly applied to ph. In addition, the implementation of KD

h requires

exactly rectangular mesh structure. In this section, we introduce a simple recovery

operator Ah by local weighted averaging. It also applies to quadrilateral meshes and

any piecewise polynomial function.

Definition 4.1.1. The operator Ah : RT −1
h → Ṽh is defined as follows.

1. For each e ∈ Eoh, let m be the midpoint of e. Let T and T ′ be the two rectangles

sharing e as an edge. Define

(Ahqh)(m) :=
|T |

|T |+ |T ′|
qh|T ′(m) +

|T ′|
|T |+ |T ′|

qh|T (m).

2. For each e ∈ E∂h , let m denote the midpoint of e and T the element having e

as an edge. Let e′ be the edge of T opposite to e with midpoint m′. Let T ′ be

the other element having e′ as an edge and m′′ the midpoint of the edge of T ′

opposite to e′. Define

(Ahqh)(m) := ((Ahqh)(m
′)− w′(Ahqh)(m′′))/w,

where

w =
|T ′|

|T |+ |T ′|
, w′ =

|T |
|T |+ |T ′|

.

Then Ahqh is the unique element in Ṽh with midpoint values are given in the above

two steps.
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Note that the weight constants in Definition 4.1.1 are not chosen in a standard

way. We show that Ah has a super-approximation property on any nondegenerate

rectangular meshes.

Theorem 4.1.4. For qh ∈ RT −1
h and q ∈ H(div; Ω),

‖Ahqh‖0,Ω . ‖qh‖0,Ω, (4.26a)

‖q − AhΠhq‖0,Ω . h2|q|2,Ω. (4.26b)

Proof. Consider T ∈ Th and T̃ :=
⋃
e⊂∂T ωe. Using the stability of Ah in the L∞-norm

and the inverse inequality, we prove the stability of Ah in the L2-norm:

‖Ahqh‖0,T . h‖Ahqh‖0,∞,T . h‖qh‖0,∞,T̃ . ‖qh‖0,T̃ .

(4.26a) then follows from the above estimate and sum of squares.

Let e ∈ Eoh with midpoint m and two adjacent elements T, T ′ sharing e. For

q1 ∈ Q1,1(ωe) × Q1,1(ωe), we first want to show (q1 − AhΠhq1)(m) = 0. Since Πh

preserves functions in Q1,0(ωe) × Q0,1(ωe), it suffices to check when q1 = (x2, 0)ᵀ or

(0, x1)ᵀ. By linearity we can assumem = 0 without loss of generality. If e is a horizontal

interior edge, let T = [−`1/2, `1/2]× [0, `2], T ′ = [−`1/2, `1/2]× [−`′2, 0]. Then,

Πh

x2

0

 =


(`2/2, 0)ᵀ if x2 > 0

(−`′2/2, 0)ᵀ if x2 < 0

, Πh

 0

x1

 =

0

0

 .

In either case, (q1 − AhΠhq1)(m) = 0. The same argument works for vertical interior

edges.

Let e ∈ E∂h and T the element having e as an edge. Let e′ be the edge of T

opposite to e and T ′ be the element sharing the edge e′ with T . Let e′′ be the edge of
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T ′ opposite to e′ and T ′′ be the element sharing e′′ with T ′. Let ωe = T ∪ T ′ ∪ T ′′. By

similar argument, we have (q1 − AhΠhq1)(m) = 0 when q1 ∈ Q1,1(ωe)×Q1,1(ωe).

By the property derived in the above three paragraphs, for q1 ∈ Q1,1(T̃ ) ×

Q1,1(T̃ ),

‖q − AhΠhq‖0,T . h‖q − AhΠhq‖0,∞,T

. h‖(id− AhΠh)(q − q1)‖0,∞,T . h‖q − q1‖0,∞,T̃ .

Then by standard finite element approximation theory,

inf
q1∈Q1,1(T̃ )×Q1,1(T̃ )

‖q − q1‖0,∞,T̃ . h|q|2,T̃ , (4.27)

and thus

‖q − AhΠhq‖0,T . h2|q|2,T̃ . (4.28)

Then (4.26b) follows from (4.28) and sum of squares.

Combining Theorems 4.1.3 and 4.1.4, we obtain the superconvergent flux recov-

ery estimate.

Theorem 4.1.5.

‖a∇u− Ahph‖0,Ω . h2‖u‖3,Ω,

where ph is defined in Theorem 4.1.3.

Proof. This theorem readily follows from Theorems 4.1.3, 4.1.4 and the triangle in-

equality ‖a∇u− Ahph‖ ≤ ‖a∇u− AhΠhp‖+ ‖Ah(Πhp− ph)‖.

Consider p̃h ∈ RT −1
h , where

p̃h|K = Qh(a∇huh)− rh(f − b · ∇huh − cuh)(xT ).
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Since rh = O(h), we have ‖p̃h − ph‖0,Ω . h2‖u‖2,Ω. and thus

‖a∇u− Ahp̃h‖0,Ω . h2‖u‖3,Ω.

p̃h is favorable because of lower computational cost than ph.

4.1.3 Extension to the Crouzeix–Raviart element

In this subsection, we extend superconvergence analysis to triangular CR el-

ements. Based on the equivalence between mixed and nonconforming methods for

Poisson’s equation, a superconvergent recovery for CR elements applied to Poisson’s

equation has been developed in [36]. Our technique here can be directly extended to

CR elements for elliptic equations with lower order terms and variable coefficients. The

CR finite element space is

VCRg,h :={vh ∈ L2(Ω) : vh|T ∈ span{1, x1, x2} for all T ∈ Th,

vh is continuous at the midpoint of each e ∈ Eoh, 
e

vh =

 
e

g for all e ∈ E∂h}.

The CR method for (4.1) is to find uCRh ∈ VCRg,h , such that

(a∇hu
CR
h ,∇hv) + (b · ∇hu

CR
h , v) + (cuCRh , v) = (f, v), ∀v ∈ VCR0,h .

Recall that Q0
h is the lowest order triangular RT finite element space. The paper

[53] (essentially) shows that CR and RT finite element spaces are closely related by the

following lemma.

Lemma 4.1.6. Let f̄ and qh be piecewise constant functions with respect to Th. Assume
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that(qh,∇hv) = (f̄ , v) for all v ∈ VCR0,h . Then τh − f̄rCRh ∈ Q0
h, with

rCRh |T :=
1

2
(x1 − xT,1, x2 − xT,2)ᵀ , T ∈ Th,

where (xT,1, xT,2) is the centroid of T .

The next theorem follows from the supercloseness estimate in Chapter 2, and

the same procedure in section 2.3.

Theorem 4.1.7. Let Th be a uniformly parallel mesh. Let pCRh := ā∇hu
CR
h −rCRh Ph(f−

cuCRh − b · ∇hu
CR
h ), where rCRh is defined in Lemma 4.1.6 and ā|T =

ffl
T
a. Then

‖Π0
hp− pCRh ‖0,Ω . h2| log h|

1
2‖u‖3,∞,Ω.

Proof. We use the same notation in Theorem 4.1.3. Let qh = Π0
hp − pCRh and thus

div qh = 0. Hence qh = ∇⊥wh for some continuous piecewsie linear function wh. The

bound (4.19) for part I is replaced by

|(p− Π0
hp,∇⊥wh)| . h2| log h|

1
2‖p‖2,∞,Ω‖∇⊥wh‖0,Ω,

which is proved in Theorem 2.3.1. The rest of the proof is the same as Theorem

4.1.3.

For the purpose of recovery, let

VCRh :={vh ∈ L2(Ω) : vh|T ∈ span{1, x1, x2} for all T ∈ Th,

vh is continuous at the midpoint of each e ∈ Eoh}.

Then we consider the postprocessing operator Kh defined in [12], see also [30].

Definition 4.1.2. Let τh be a piecewise constant function.
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1. For each e ∈ Eoh, let m be the midpoint of e. Let T and T ′ be the two rectangles

sharing e as an edge. Define

(Khqh)(m) :=
1

2
qh|T (m) +

1

2
qh|T ′(m).

2. For each e ∈ E∂h , let m denote the midpoint of e and T the element having e as an

edge. Let e′ be another edge of T with midpoint m′. Let T ′ be the other element

having e′ as an edge and m′′ the midpoint of the edge of T ′ that is parallel to e.

Define

(Khqh)(m) := 2(Khqh)(m
′)− (Khqh)(m

′′).

Then Khτh is the unique element in VCRh with midpoint values given in the above two

steps.

Based on Theorem 4.1.7, we obtain the superconvergent recovery for CR ele-

ments. For simplicity of the proof, we only consider uniformly parallel grids here.

Theorem 4.1.8. Assume that Th is uniformly parallel. Then

‖a∇u−Kh(ā∇hu
CR
h )‖0,Ω . h2| log h|

1
2‖u‖3,∞,Ω.

Proof. The operator Kh is known to satisfy Theorem 4.1.4 with Kh replacing Ah,

see [12]. It then follows from Theorem 4.1.7 and the same argument in the proof of

Theorem 4.1.5 that

‖a∇u−Khp
CR
h ‖0,Ω . h2| log h|

1
2‖u‖3,∞,Ω. (4.29)
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Let p = f − cu− b · ∇u and p̄CRh := ā∇hu
CR
h − rCRh Php. Clearly,

‖pCRh − p̄CRh ‖0,Ω . h2‖u‖2,Ω. (4.30)

Let e ∈ Eoh with midpoint m. By (Khr
CR
h )(m) = 0, we have

(Khr
CR
h Php)(m)

= (Khr
CR
h p)(m) + (Khr

CR
h (Php− p))(m)

= (Khr
CR
h )(m)p(m) +O(h2)‖u‖2,∞,Ω = O(h2)‖u‖2,∞,Ω.

A similar argument works for e ∈ E∂h . Hence

‖Khr
CR
h Php‖0,Ω . ‖Khr

CR
h Php‖0,∞,Ω . h2‖u‖2,∞,Ω. (4.31)

The theorem then follows from (4.29)–(4.31) and the triangle inequality

‖a∇u−Kh(ā∇uCRh )‖0,Ω ≤ ‖a∇u−Khp
CR
h ‖0,Ω

+ ‖Kh(p
CR
h − p̄CRh )‖0,Ω + ‖Khr

CR
h Php‖0,Ω.

4.2 Superconvergence of Morley elements

For the popular nonconforming method using the primal formulation (3.2) and

Morley elements, superconvergence estimates are limited due to the very weak inter-

element continuity. In fact, one purpose of superconvergence analysis of nonconforming

or mixed methods for second order elliptic equations is to shed some light on supercon-

vergence of nonconforming or mixed methods for fourth order elliptic problems, e.g.,
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see [24, 62, 36] for superconvergence results of Wilson and Courzeix–Raviart noncon-

forming methods for second order elliptic equations. See also [12, 30, 46] for supercon-

vergence results of Raviat–Thomas mixed methods for second order elliptic equations.

Up to now, there have been several superconvergence results for the H2-error of the

displacement variable u using rectangular Morley elements and the formulation

(∇2u,∇2v) = (f, v), for all v ∈ H2
0 (Ω), (4.32)

i.e., ν = 0 in (3.2), cf. [47, 52, 40].

The HHJ mixed method is important partly because it is closely related to the

popular Morley element, see the equivalence between the HHJ and Morley element

methods in [3]. Using this equivalence, [36] then gives a superconvergent recovery

estimate for the Morley element method using the formulation (4.32) under uniformly

parallel grids.

To apply our superconvergence estimates of the HHJ mixed method in Chapter

3 to the Morley element for (3.2), we need to generalize the equivalence between Morley

and HHJ methods based on (4.32) in [3] to the more general formulation (3.2). This

interesting equivalence was originally proved in [3] for (4.32) by relaxing the inter-

element continuity constraint in the HHJ method and introducing Lagrange multipliers

for compensation. We extend it to (3.2) by giving a direct proof, see Theorem 4.2.1.

Using the generalized equivalence, superconvergence of the Morley element method

for the primal formulation (3.2) are direct corollaries of our results for the lowest

order HHJ mixed method (3.9). Similar to the mixed case, our superconvergence

estimate for Morley elements improves the results in [36] even under uniform grids.

Theorem 4.2.1 is of independent interest. For example, [41] and [39] give convergence

and optimality proofs for the adaptive HHJ and Morley element methods for (3.2),
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respectively. By Theorem 4.2.1, it is possible to derive the proof for one method from

the other. Combining the equivalence Theorem 4.2.1 and the multigrid algorithm for

the HHJ method in [21], one can also obtain a multigrid algorithm for the Morley

element method.

Let

Mh := {v : v|T ∈ P2(T ), v is continuous at z ∈ N o
h

and vanishes at z ∈ N ∂
h , ∂nv is continuous at the

midpoint of e ∈ Eoh, and vanishes at the midpoint of e ∈ E∂h}.

The Morley element method for solving (3.2) is to find uMh ∈Mh such that

(A∇2
hu

M
h ,∇2

hvh) = (f, vh), ∀vh ∈Mh, (4.33)

where ∇2
h is the piecewise Hessian w.r.t. Th. Arnold and Brezzi [3] proved that the

lowest order HHJ method is equivalent to a modified Morley element method for the

formulation (∇2u,∇2v) = (f, v). In this section, we extend it to the general formulation

(3.2). Recall that Ih is the nodal interpolation for linear elements.

Theorem 4.2.1. Let ūMh ∈Mh solve

(A∇2
hū

M
h ,∇2

hvh) = (f, Ihvh), ∀vh ∈Mh. (4.34)

Then (A∇2
hū

M
h , Ihū

M
h ) is the solution of the HHJ method (3.9).

Proof. Let σ̄h = A∇2
hū

M
h . Integrating by parts element by element in (4.34), we have

∑
T∈Th

ˆ
∂T

{(σ̄h)nn∂nvh + (σ̄h)nt∂tvh} = (f, Ihvh), ∀vh ∈Mh. (4.35)

97



For e ∈ Eoh, let ve ∈ Mh be the test function such that ∂nve = 1 at the midpoint of e,

∂nve = 0 at the midpoint of e′ 6= e, and ve(z) = 0 for all z ∈ Nh. Then

∑
T∈Th

ˆ
∂T

(σ̄h)nt∂tve =
∑
K∈Th

(σ̄h)nt

ˆ
∂T

∂tve = 0,

Ihve = 0, and thus (4.35) with vh = ve gives

ˆ
e

{(σ̄h)nn|T − (σ̄h)nn|T ′} = 0, e ∈ ∂T ∩ ∂T ′,

for all e ∈ Eoh, i.e., σ̄h ∈ Σh. Hence by the continuity of ∂nvh and (σ̄h)nn at the

midpoint of each edge and the midpoint quadrature rule, (4.35) implies

bh(σ̄h, vh) := −
∑
T∈Th

ˆ
∂T

(σ̄h)nt∂tvh = −(f, Ihvh), ∀vh ∈Mh. (4.36)

By IhMh = Uh, (4.36) and (3.11b), we have

bh(σ̄h, vh) = −(f, vh), ∀vh ∈ Uh.

Using the formula (3.7) and the continuity of ∂nū
M
h at the midpoint of e ∈ Eh,

(Cσ̄h, τh) =
∑
K∈Th

ˆ
T

∇2ūMh : τh =
∑
T∈Th

ˆ
∂T

grad ūMh · τhn

=
∑
T∈Th

ˆ
∂T

∂tū
M
h (τh)nt = −bh(τh, IhūMh ), for all τh ∈ Σh,

which completes the proof.

Now we need a recovery operator to achieve superconvergence. Notice that

A∇2
hu

M
h /∈ Σh. Hence we cannot postprocess A∇2

hu
M
h directly by Rh in Chapter 3.

However, we can simply apply the gradient recovery operator Gh defined by (1.5)
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in Chapter 1 to it. The analysis of super-approximation property of postprocessing

operators is local and independent of PDEs. Then following the analysis in [69], we

obtain superconvergent recovery for Morley elements.

Consider the difference between (4.33) and (4.34), it’s readily to check that

‖∇2
h(ū

M
h − uMh )‖0,Ω . h2‖f‖0,Ω.

Combining it with the triangle inequality

‖σ −GhA∇2
hu

M
h ‖0,Ω ≤ ‖σ −GhA∇2

hū
M
h ‖0,Ω + ‖GhA∇2

h(ū
M
h − uMh )‖0,Ω,

and using Theorems 3.3.3 and 4.2.1, we obtain superconvergent recovery of the Morley

element method (4.33).

Corollary 4.2.1.1. Assume that Th satisfies the (α, β)-condition. Then

‖A∇2u−GhA∇2
hu

M
h ‖0,Ω . (1− ν)−1ρ1(h, α, β)(‖u‖3,∞,Ω + ‖u‖4,Ω).

The operator Kh proposed in [36] can also be used to postprocess A∇2
hu

M
h .

Replacing Qh with Kh in Corollary 4.2.1.1, one obtain ‖A∇2u − KhA∇2
hu

M
h ‖L2(Ω) =

O(h2| log h| 12 ) under uniformly parallel grids. If C = A is the identity operator, The-

orem 5.6 in [36] says that ‖∇2u−Kh∇2
hu

M
h ‖2,Ω = O(h1.5) on uniformly parallel grids,

which is suboptimal according to the aforementioned discussion.

Chapter 4, in part, has been submitted for publication of the material as it may

appear in Numerische Mathematik, 2019, Li, Yu-Wen, Springer, 2019. The dissertation

author was the author of this paper.
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