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Abstract

Deductive Mastermind is a deductive reasoning game that is
implemented in the online educational game system Math Gar-
den. A good understanding of the difficulty of Deductive Mas-
termind game instances is essential for optimizing the learning
experience of players. The available empirical difficulty rat-
ings, based on speed and accuracy, provide robust estimations
but do not explain why certain game instances are easy or hard.
In previous work a logic-based model was proposed that suc-
cessfully predicted these difficulty ratings. We add to this work
by providing a model based on a different logical principle—
that of eliminating hypotheses (dynamic epistemic logic) in-
stead of reasoning by cases (analytical tableaux system)—that
can predict the empirical difficulty ratings equally well. We
show that the informational content of the different feedbacks
given in game instances is a core predictor for cognitive dif-
ficulty ratings and that this is irrespective of the specific logic
used to formalize the game.

Keywords: deductive reasoning; mastermind; educational
game; cognitive difficulty; logical analysis; computational
modeling; dynamic epistemic logic

Introduction

Deductive reasoning is a crucial skill in everyday life as well
as in many professions. Children can train this skill by play-
ing educational games like Deductive Mastermind (DMM),
in which a secret code needs to be deduced from reason-
ing about given clues. This game has been implemented in
an online educational game system in the Netherlands, Math
Garden (Rekentuin),! which has resulted in a large and rich
collection of user data: Over 200,000 Dutch primary school
students have been using this system to practice their math-
ematical and logical thinking skills (van der Maas & Nyam-
suren, 2017). Math Garden records players’ speed and accu-
racy data in solving the game and uses these to compute dif-
ficulty ratings (Klinkenberg, Straatemeier, & van der Maas,
2011). These ratings serve as an empirical indicator of the
cognitive difficulty of DMM game instances. Such ratings
are important for the game experience because for an optimal
training-effect it is essential that players are presented with
reasoning tasks of the right difficulty level (Ericsson, 2006).
These empirical ratings provide robust estimations of the
cognitive difficulty of game instances but do not themselves
explain this difficulty. Theoretical complexity measures of

'More information can be found at mathsgarden.com or reken-
tuin.nl.

game instances can help to better understanding why cer-
tain game instances are easy or hard. Such complexity mea-
sures are a promising supplement to empirical ratings because
they can improve the categorization of the difficuly of game
instances. Computational and logical analysis have proven
themselves as useful tools to study combinatorial properties
of cognitive tasks in order to categorize them into psychologi-
cally plausible difficulty classes (for an overview and exam-
ples, see, e.g., Isaac, Szymanik, & Verbrugge, 2014; Geurts,
2003; Kemp & Regier, 2012; Feldman, 2000; van Rooij &
Wareham, 2008; Verbrugge & Szymanik, 2018). This ap-
proach allows us to formalize a cognitive task and extract pa-
rameters of the formalization as indicators of the cognitive
difficulty of the task.

In this study, we use dynamic epistemic logic (DEL) to
analyze the difficulty of the DMM game. We investigate
which parts of the logical structure of the deductive reason-
ing task can predict the cognitive difficulty of DMM game
instances. We propose a model of the DMM game based on
dynamic epistemic logic, and we derive difficulty measures
using formal aspects of this model. On the basis of results
from Gierasimczuk, van der Maas, and Raijmakers (2013) we
predicted that the different feedback types in the game would
be a core predictor for our model, as it was for their analytical
tableaux model. In DMM, players are presented with clues
that consist of conjectures and corresponding feedbacks. This
feedback can be of different types that give different kinds of
information, like, “right color but wrong position” or “right
color and right position.” Our prediction about the importance
of the different feedback types was confirmed by our results.
The basic features of the DMM game could only explain 27
percent of the variance in difficulty ratings, and adding the
DEL measures that did not parameterize over different feed-
back types only explained up to 43 percent. Including the
DEL measures that did parameterize over different feedback
types increased the explained variance to 67 percent.

We compare our results with those of Gierasimczuk et al.
(2013), who used a model based on a different logical tool:
the analytic tableaux system, a proof-theoretic method that
uses search trees. Their model is based on the principle of
reasoning by cases, and, in addition, it parameterizes over the
different feedback types. Similarly to our model, it success-
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fully predicted 66 percent of the variance in the difficulty rat-
ings.? The tableaux model builds a search tree to generate all
possible cases given the clues and then searches through the
tree to find which unique case leads to a solution and which
cases are inconsistent. To make predictions about human rea-
soning, the tableaux model extends the tableaux method with
an assumption, based on the properties of different feedback
types, about the order of processing the clues in the game.
The complexity measures defined on the basis of this model
depend on its underlying assumptions about the specific rea-
soning process of players: the assumption of processing clues
one by one and in a specific order, and the assumption that
players reason by cases (building up and searching through a
tree, also in a specific order), via the tableaux method.

We hypothesize, however, that the predictive power of the
tableaux model is independent of these assumptions. We sus-
pect that this model captures something about the underlying
structure of the reasoning task that is essential in determin-
ing the cognitive difficulty and that the core determiner for
this difficulty lies in the different feedback types in the clues
in the game. We test this using a model that is based on a
different logical system, namely dynamic epistemic logic.

Our DEL model works via the principle of starting from
the space of all possible solutions and eliminating answers by
updating with the information given by the clues. We present
both an order-dependent and an order-independent model that
use sequential or simultaneous updates, respectively (see Fig-
ures 2 and 3). We pitch our model at Marr’s computational
level (Marr, 1982), in the sense that it is meant to capture
the structure or nature of the reasoning task and makes no
commitments about the kind of algorithm or process used to
solve it. Since we found that the tableaux and the DEL mod-
els have similar predictive power with respect to the cognitive
difficulty ratings and moreover we found that their complex-
ity measures are highly correlated, our results imply that al-
though these models use a different formalism, they are tap-
ping into the same underlying structure of the deductive rea-
soning task.

The Deductive Mastermind Game

Mastermind is played by two players: a code-maker and a
code-breaker. The code-maker chooses a sequence of ¢ color
pegs (also called pins): the secret code. Each round the code-
breaker makes a conjecture about the code by choosing a se-
quence of ¢ color pegs. The code-maker provides feedback
about this conjecture: a black pin for each peg that is of the
correct color in the correct position and a white pin for each
peg that is of the correct color but in an incorrect position.
Based on this feedback the code-breaker places a new con-
jecture in the next round. Finally, the code-breaker wins the
game if she finds the secret code within m rounds.

2For the dataset from 2012 that Gierasimezuk et al. (2013)
used—containing 100 game instances—the tableaux model pre-
dicted up to 75 percent of the variance in difficulty ratings. For the
dataset from 2017—containing 355 game instances—it predicted up
to 66 percent of the variance.

Figure 1: Screen shot of an example DMM game instance

Deductive Mastermind, or Flowercode, as it is called in
Math Garden, is a one-player game where, instead of coming
up with conjectures, the player is given a sequence of clues.
In Math Garden, instead of color pegs, different types of flow-
ers are used to make the game more attractive for children. A
game instance consists of k possible flower types and a se-
quence of n clues, which consist of conjectures, sequences
of ¢ flower pins, and corresponding feedbacks, sequences of ¢
feedback pins. Each feedback pin in a feedback corresponds
to exactly one of the flower pins in the conjecture. Deducing
which feedback pin corresponds to which flower pin is part
of the game. The order in which the feedback pins are placed
have no meaning. The possible feedback pins that may be
used are green (g), for a correct flower in the correct posi-
tion; orange (o), for a correct flower in the wrong position;
and red (r), for flowers that do not occur in the secret code.
The game instances are designed in such a way that there ex-
ists exactly one answer, one code, that is consistent with the
clues. The goal of the player is to deduce this secret code in
one go. See Figure 1 for an example of a game instance.

Math Garden offers game instances ranging from 2-pin to
5-pin games. We call a game instance with a secret code of
length ¢ an ¢-pin game. In this paper, we focus on modeling
the 2-pin games. The fact that the 2-pin games are the most
played instances and that they cover a wide range of diffi-
culty ratings justifies this restriction. The 2-pin games have
conjectures and corresponding feedbacks of length 2. We call
a sequence of ¢ feedback pins an /-pin feedback. Since the
order of the feedback pins have no meaning, there are six dis-
tinct 2-pin feedback types: oo, rr,gr, or, gg, and go. Feed-
back type gg is ruled out because it would give away the
secret code and feedback type go is ruled out because it is
inconsistent with a secret code of length 2. Therefore, the al-
lowed feedback types for 2-pin game instances are oo, rr, gr,
and or.

By means of a computerized adaptive practice system,
Math Garden calculates an empirical estimation of how dif-
ficult a DMM game instance is to solve, based on players’
speed and accuracy data (Klinkenberg et al., 2011; Maris &
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van der Maas, 2012). This system uses the following rating
principle: The more players that can solve a game instance
correctly in a shorter period of time, the easier this game in-
stance is, and vice versa. The calculation of these ratings are
based on the Elo rating system, which is widely used for cal-
culating capability rankings, such as for chess players (Elo,
1978). Math Garden extends the Elo rating system by, in ad-
dition to outcomes, also taking into account reaction time.

Dynamic Epistemic Logic Model

We present a model of the Deductive Mastermind game, us-
ing dynamic epistemic logic (DEL). This model is based on
the principle of eliminating informational states by updating
an initial epistemic model with new information. These in-
formational states are represented by a collection of nodes,
called possible worlds. In each possible world certain propo-
sitions are set to true or false. The truth values of propo-
sitional sentences are evaluated relative to the propositional
information that is distributed over the possible worlds.
Dynamic epistemic logic is a particular kind of modal logic
(see, e.g., van Ditmarsch, van der Hoek, & Kooi, 2008).3
Given a set of propositions P, an epistemic model S = (S, ]| |)
is a tuple consisting of a set S of possible worlds and a val-
uation function || - || : P — P(S) that defines the truth values
of the propositions in the possible worlds. A change in the
information represented by an epistemic model can be repre-
sented by an event model. An event model E = (E,pre) is a
tuple consisting of a set of events E and a function pre that
assigns a precondition pre;, some propositional sentence, to
each event ¢; € E. An epistemic model can be updated by an
event model by using the update operator ®, which selects
those worlds that satisfy the preconditions of an events (i.e.,
those worlds that are consistent with the event). The updated
model SQE = (S®E, || -||) is an epistemic model with a set
of worlds SQ E = {(s,e) € SX E | s =pre,} and a valuation
function such that ||p||sek := {(s,¢) ESQE | s € ||p||s}-
Given a game instance with n clues, we model the DMM
game as follows. We start from the space of all possible an-
swers, which are all flower sequences of the correct length
with flowers of the allowed flower types. This space is de-
termined by the number of available flower types k, and the
length of the secret code ¢ (as mentioned earlier, here we
model the case that £ = 2). We model this space by an epis-
temic model Sg = (S, |- ||) in which each possible world rep-
resents exactly one possible flower sequence and all of the
flower sequences are represented by a possible world. See S
in Figure 2 for an illustration. We represent the flower types
and their position in the flower sequence by means of indexed
propositions.* We will refer to some flower sequence a-b by

3For readers that are familiar with the details of DEL it suffices
to know that we use the basic propositional language, the product
update rule, and sphere semantics. This semantics differs from the
standard Kripke semantics for epistemic models, by not having a
relation over the set of worlds. Furthermore, we use a simplified
version of epistemic models and event models, by only using non-
pointed models and event models with one event.

4Technically, this works as follows. Let #{,...,# be the allowed

sentence aj A by (read: flower a at position 1 and flower b
at position 2). Consider the following example with a sun-
flower and a daisy. Let s stand for sunflower and d for daisy.
The flower sequence sunflower-daisy is represented in some
world w by setting propositions s; and d, to true in world w
and setting all other propositions to false. Then the sen-
tence s1 A dp is true in w.

Next, we continue with the clues in the game instance. The
feedback given on the flower sequence in a clue limits the
number of possible answers; a clue shrinks the space of pos-
sible answers to those that are consistent with the clue. The
game instances of DMM are designed in such a way that after
taking into account all the clues, there is exactly one possible
answer left. We translate the informational content (i.e., the
eliminative power), of the different feedback types oo, rr, gr,
and or into preconditions of events in event models. When
updating the initial epistemic model with an event model that
corresponds to some clue C;, these preconditions will select
only those worlds that represent flower sequences that are
consistent with clue C;.

We represent each clue C; in the game instance by an event
model E; = (E,pre). Each event model consists of a single
event e¢; € E with a corresponding precondition pre;. We de-
fine the preconditions of these events as follows. Consider
a clue C; consisting of flower sequence a; A by and feedback
type 6. We let

pre; = by Nay, for 6 = oo;
pre; = —a; A—ay A—by A—bj, foroc=rr;
pre; = (a1 A—by) V (—ay Aby), for 6 = gr;
pre; = (ﬂal A by /\az) \Y (b1 N —ap /\—|b2), foroc =or.

The corresponding precondition pre; for feedback type oo in
clue C; ensures that pre; is true in worlds corresponding to
flower sequences in which the positions of the two flowers
are switched in comparison to the flower sequence in C;. The
precondition pre; for rr ensures that pre; is true in worlds
corresponding to flower sequences in which neither of the
flower types in C; occur. The precondition pre; for gr en-
sures that pre; is true in worlds corresponding to flower se-
quences in which one of the flowers in C; is at the right po-
sition and the other flower in C; does not occur. Finally, the
precondition pre; for or ensures that pre; is true in worlds
corresponding to flower sequences in which one of the flow-
ers in C; occurs at a different position, and the other flower
does not occur.

By updating the initial model Sp with event model E;, we
get epistemic model S| = So ® E;. Epistemic model S; rep-
resents the space of solutions that are consistent with clue C.
Then in turn, we can update model S; with clue C, to get
epistemic model S, = Sy ® E; ® E;, which represents the

flower types. Then for each i € {1,...,k} and each j € {1,2} we
define proposition p; ;. Proposition p; ; represents that flower ¢; is
at position j of the flower sequence. The valuation function || - ||
is defined in such a way that for each flower sequence (p;,,1,pi,2),
with i1,i € {1,...,k}, there is exactly one world w in the epistemic

model such that propositions p;, | and p;, > are true in this world,
and every other proposition is false in this world.
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space of solutions that are consistent with clue C and clue C,.
Then S, =Sy RE| ®---QE, represents the space of solutions
that are consistent with all clues Cy,...,C,. By construction
of the game instance, model S,, consists of exactly one world,
which represents the secret flower code. For an illustration,
see the example in Figure 2.

We can now represent a game instance with n clues by epis-
temic model Sy and event models E;,...,E,. Solving the
game then means answering the question of which flower se-
quence remains in the final updated model S)QE| ®---QE,.
This means asking which sentence @; A --- A @, represent-
ing a possible flower sequence, is true in the final updated
model S,,.

Sequential and Parallel update series We use two differ-
ent update series for the model, namely an order-dependent
sequential update and an order-independent parallel update.
The sequential update series updates the initial epistemic
model with the event models for the clues sequentially, in
the top-to-bottom order of the given clues. For i € {1,...,n}
each updated model S; is defined as S; = S;_| ® E;. An ex-
ample is shown in Figure 2. For the parallel update series,
each updated model S; is defined as S; = Sg ® E;. This gives
a series of updated models Sy, ..., S,, of which the intersection
is equal to sequential-update model S,,. An example is shown
in Figure 3.

So

S1=So®E;
(00) (09) (wo)
(0e) (0] (ve)

S =S)RE| RE;
clue 1 . clue 2
QOICD

Figure 2: The linear update series for the example in Fig. 1
So

COICDICD
COICOICD

clue 1 / \clue 2

ICD (00](e9)
CDICD (V) (ve)

S =Sy RE; S, =Sog RE,

Figure 3: The parallel update series for the example in Fig. 1

Complexity Measures

We now define several complexity measures over the update
series generated by the DEL model for DMM game instances.

Size of epistemic models A natural parameter of epistemic
models is their size, i.e., the number of worlds in these mod-
els. We define the size |S| of an epistemic model S as the

number of worlds in S, i.e., when S = (S,]|-||), we have
that [S| = |S|. The size of an epistemic model reflects the
number of possible answers and therefore the amount of un-
certainty that remains.

Average size of epistemic models We define the sum of
the epistemic models in a sequential update series Sy, ...,S,
by SUM(Sy,...,Ss) := Y7 (|Si|- Then we define the av-
erage size of the epistemic models by SV(Sy,...,S,) :=
SUM(Sy,...,S,)/n. The higher the value of this measure,
the longer it is the case that many worlds remain in the epis-
temic model after updating with the clues—the number of
clues being equal.

Convergence rate We define the complexity measure
CR of a sequential update series So,...,S, by the aver-
age ratio |S;|/|Si—1| for i € {1,...,n}: CR(So,...,Sp) :=

* 1 (Sil/|Si=1])/n. The higher the value of this measure,
the more difference in informational value between the clues.

Size of epistemic models per feedback type We de-
fine the complexity measure FB-s of a parallel update se-
ries So,...,S,. This complexity measure is parameterized
over the different feedback types and in fact consists of four
measures—one for each feedback type ¢ € {oo, rr, gr,or}.
For each feedback type ¢ and for each clue C; that contains G,
we consider the size |S;| of the updated model S; = Sy R E;.
The value of the measure for G is then defined as the average
of |S;| for all clues containing c. If there is no clue contain-
ing ¢, we give the measure for ¢ the value 0.

Convergence rate per feedback type Furthermore, we de-
fine the complexity measure FB-r of a parallel update se-
ries So, .. .,S,. For each feedback type o, and for each clue C;
that contains ¢, we compute the ratio |S;|/|So|. The value of
the measure for ¢ is then defined as the average of |S;|/|So|
for all clues containing ¢. If there is no clue containing G, we
give the measure for ¢ the value 0.

The higher the value of these measures per feedback type,
the more worlds remain in the epistemic model after updating
with the clues.

Results

For the statistical analysis we used the ratings based on Math
Garden user data between November 2010 and April 2017.
These data contain 355 DMM game instances with 2 pins.
From these 355 instances, 11 instances involved 2 flower
types, 82 instances involved 3 flower types, 127 instances in-
volved 4 flower types and 135 instances involved 5 flower
types. We tested our complexity measures on this dataset.
We computed the value of the complexity measures based on
our model for all 355 game instances and used multiple lin-
ear regression to see how well our dynamic epistemic logic
(DEL) model predicts the variance in the empirical difficulty
ratings for these items.

We consider six different regression models.  First,
Model 0, is a simple model that only includes basic charac-
teristics of the game: the number of flower types, the num-
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ber of clues, and whether all flower types are used in the
clues. Model 0 explained 27 percent of the variance in dif-
ficulty ratings. Model DELgy extends Model 0 with com-
plexity measure SV, and it slightly improved on Model 0 by
explaining 36 percent of the variance. Model DELcg ex-
tends Model O with complexity measure CR, and it slightly
improved the predictions by explaining 43 percent of the vari-
ance. Model DELgp_; extends model 0 with complexity mea-
sure FB-s, and with 63 percent it explained much more of
the variance. Model DEL gp., extends model 0 with complex-
ity measure FB-r, and with 67 percent it explained the most
variance. So only the measures that parameterize over the dif-
ferent feedback types provided a nice fit. See Table 1 for an
overview of the parameter estimates.

Comparison with the tableaux model Furthermore we in-
cluded Model TABL, which is the regression model used by
Gierasimczuk et al. (2013). Model TABL extends Model 0
with complexity measures per feedback type, based on the
tableaux model. These measures count the number of nodes
in the minimal search tree that is generates from processing
the feedbacks in the order oo, rr,gr,or. For more details
see Gierasimczuk et al. (2013). Run on the data from 2017
their model explained 66 percent of the variance.

Additionally, we ran a regression for the combined model
including the measures from both DELpp, and TABL.
With R? = .68 this combined model did not explain any addi-
tional variance (see Table 1). Furthermore, we compared the
feedback measures of the Tableaux and the DELgp; model
and we found high correlations (see Table 2).

Discussion

We investigated the difficulty of Deductive Mastermind
(DMM) game instances with tools from dynamic epistemic
logic (DEL). We proposed a formalization of DMM, in which
we used epistemic models to represent possible answers and
event models to encode the information in the clues. Based
on parameters of this model we formulated several complex-
ity measures to capture the difficulty of game instances. Our
model was able to successfully predict 67 percent of the vari-
ance in the empirical difficulty ratings. Including our com-
plexity measures in the regression model greatly increased
the fit in comparison to the simple model that uses only basic
characteristics. These findings show that the dynamic epis-
temic logic modeling method has merit.

When comparing the different complexity measures that
we used it is noteworthy that only the complexity measures
that parameterize over the four different feedback types gave
a good fit. The complexity measures that did not parameter-
ize over feedback types were not even able to explain half of
the variance, while the complexity measures that did param-
eterize over feedback types explained two third of the vari-
ance. This confirms our prediction, based on the results by
Gierasimczuk et al. (2013), that the informational content of
the different feedback types is a core determiner of the cog-
nitive difficulty of solving a DMM game instance.

We compared our DEL model with the tableaux model
by Gierasimczuk et al. (2013), which also parameterizes
over the different feedback types. The DEL model and the
tableaux model measure different aspects of the DMM game.
The tableaux model builds a search tree, generating all pos-
sible cases, and searches through this tree to find the unique
case that leads to a consistent answer. It measures the length
of the search path in the minimal search tree, per applied feed-
back type. The DEL model, on the other hand, focuses on the
space of possible solutions and it measures how the size of
this space shrinks by the information in the clues.

Despite the differences in the construction of the two mod-
els, their results were very similar. Combining the tableaux
model with the DEL model did not explain any additional
variance, and we found high correlations between their com-
plexity measures. These results imply that the tableaux and
the DEL models capture an essential part of the structure of
the DMM reasoning task and that their predictive power is in-
dependent of the specific formalization, i.e., the specific type
of logic, that is used. These results also show that the pre-
dictive power of the tableaux model is not dependent on its
assumptions about processing the game in terms of reasoning
by cases, or the fact that the model is order dependent—since
our DEL model is order independent, using a parallel update,
and does not use reasoning by cases.

An aspect that both the DEL and tableaux model can im-
prove on is their restriction to 2-pin games. Future research
may include extending these models to games with codes of
lengths 3, 4, and 5, to predict the variance in difficulty ratings
for all instances of the DMM game in Math Garden. To gain
further insight in the kind of reasoning used in DMM, it is
interesting to look at error patterns in responses. Therefore,
future research may also include investigating and explaining
these patterns in terms of formal aspects of the logical struc-
ture of game instances. In addition to this, future research
could look at the learning patterns of successful answers.
For certain game instances (like game instances with only gr
feedbacks, such as shown in the example in Figure 1) players
seem to be learning shortcuts. The DEL model could be used
to investigate whether logical shortcuts based on cross-clue
reasoning can explain such learning patterns.

In this paper, we showed that logic-based modeling
methods can be used successfully to predict the cognitive dif-
ficulty of deductive reasoning tasks. We believe that similar
techniques to the one developed in this paper can be used to
better understand factors contributing to the cognitive diffi-
culty of a variety of other cognitive tasks. With this study we
hope to contribute to a growing body of work that shows that
computational models based on logical principles can be of
psychological relevance for investigating human reasoning,
such as applied in deductive reasoning games.
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Table 1: Parameter estimates of the DEL and tableaux regression models

Model 0 DELgy DELcg DELfp. DELfg., TABL DELyp.,+TABL
(Intercept) —17.8894%%  _27.7001%%%  —42.2720%%*  —10.28256%F% —26.8712%*%  —14.432994%*% —](.]257***
#flower types  —0.3354 20.7143%%%  _57883%** 2.47430%%%  34.6568%%%  4.562682%%% —235]***
#clues 4.5300%%%  —4.595]%** 58.0237#%%  —2.16959%*%%  _7.6840%%*  —1.016774% 1.7511%
allflowersinitem —8.8332%%%  _6.3370%%%  _4818%%  _502605%%* —6.9753%%  _(.089445%k* _5.4334%%%
SV —3.3568%**

Ccv —75.8919%*x

00D —8.98402%*%  _55200%** —8.3863%*
rrD —0.04604 —46.610%** 0.2147%
grD 0.70094%#%  —4].0523 %% 0.8798 %
orD 1.83475%%%  —2].302]%%* 0.7604%*
o0oT —11.455507+*  0.5752
T —2.983262%%% —(.9595
orT 0.003135 0.4168*
orT 2.518258%%%  2.48]14%*
R? 0.2679 0.3581 0.425 0.6322 0.672 0.6614 0.6847
Num. obs. 355 355 355 355 355 355 355

The measures for ooD,rrD,grD, and orD are defined by FB-s and FB-s, for DELpp; and DELfgp_,, respectively; the measures
for 0oT,rrT,grT, and orT are defined by the tableaux model (corresponding to Model 1 in Gierasimczuk et al., 2013).

% p <0.001, ** p <0.01, * p<0.05

Table 2: Correlations between the feedback measures of the
Tableau Model (T) and the DEL model (D)

ooD D grD orD
ooT 0.9642 —0.0763 —0.2312 —0.2843
rrT —-0.0720  0.7475 —-0.0012 —-0.2177
grT —0.3165 —0.0580  0.6448 —0.1270
orT —0.2674 —0.1293 —-0.2096  0.7632
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of BZ (Zhao, 2017). IvdP was supported by Gravitation Grant
024.001.006 of the Language in Interaction Consortium from
the Netherlands Organization for Scientific Research (NWO).
JS was supported by the ERC under the European Union’s
Seventh Framework Programme (FP/2007-2013)/ERC Grant
Agreement n. STG 716230 CoSaQ.
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