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Abstract

Large Scale Simulations and Stochastic Modeling of Interfacial Transport Processes

by

Pouria Akbari Mistani

Continuum formulation of interfacial transport phenomena views interfaces as sharp

2D surfaces separating contiguous 3D bulk phases. In this view, interfacial processes

are described by phenomenological models for the underlying microscopic processes or

in analogy to conservation/constitutive laws that regulate transport in surrounding bulk

phases. Mathematically, these surfaces act as boundary conditions for the governing

partial differential transport equations in the bulk and determine discontinuities in so-

lution of the bulk phase as well as the solution gradient across the interfaces. From a

computational perspective, accurate numerical solution of these equations poses several

algorithmic and computational challenges that require application of advanced numer-

ical algorithms as well as high performance computing techniques. In the first part of

my dissertation I will present our design and implementation of two parallel simulation

engines based on the level-set method and using finite difference and finite volume dis-

cretization techniques on adaptive Voronoi and Cartesian (Quad-/Oc-tree) grids. These

simulations are capable to realize large enough computational domains at high resolu-

tions that allow for realization of mound formation phenomenon in epitaxial growth of

materials systems, as well as detailed membrane permeabilization statistics emerging in

electroporation of multicellular systems. In the second part of my dissertation, I will de-

rive a general reduced-order state-space mathematical model for dynamics of probability

density of interfacial polarizations in heterogeneous systems and compare its predictions

with that of my direct numerical simulations.
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Chapter 1

Introduction

Transport processes across sharp interfaces occur in many physical systems such as col-

loids and multicellular systems. Interfacial transport phenomena are usually concerned

with transport of momentum, mass, chemical species, energy, or electric current across

interfaces that separate bulk phases. In this dissertation I will focus on numerical simu-

lations of: (i) epitaxial growth as an example of transport of mass across atomic island

boundaries in the growth of thin films; and (ii) electroporation of cell aggregates that is

an example of transport of electric current across cell membranes.

An interesting aspect of these systems is the novel macroscopic properties that arise

when a large enough number of these interfaces are in play. For example, in the electro-

poration experiments of large cell aggregates it has been experimentally observed that

relaxation behavior of the aggregate after switching off an applied electric pulse does

not follow the same exponential profile that is expected from the physics of individual

cells. Another interesting example is in epitaxial growth of atomic systems, in which

during atomic depositions novel morphological modalities such as mounds, step edges

and terraces arise.

Besides their pure scientific attractions, these macroscopic behaviors offer new oppor-
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Introduction Chapter 1

Figure 1.1: Interfaces are modeled as 2D idealizations that separate different bulk
phases. The subgrid physics is captured by multiscale continuum models that act as
boundary conditions for the contiguous bulk phases.

tunities for technological applications and medical treatments. For example, a curious

observation has been made in the experiments with cell aggregate electroporation that

showed the degree of deviation from an exponential relaxation correlates with healthy or

unhealthy state of a tissue, besides its numerous applications in medicine such as elec-

trochemotherapy, gene electro-transfer and DNA vaccination. Or in the case of epitaxial

growth, it is the growth of mounds that degrades electric properties of many transfor-

mative devices such as transistors. On the other hand, these effects could enable new

inventions and treatments, such as making quantum dots with leveraging these mounds,

or the advent of electrochemotherapy as a novel treatment for cancer in sensitive organs

where direct medical interference is prohibitively dangerous.

The common feature among these phenomena is the large spatiotemporal scales of

the system, which incurs severe computational challenges. For example mound forma-

tion is a property of large substrates that only becomes relevant for manufacturing of

optoelectronic devices when considered at lengthscales of a few microns, and timescales

2



Introduction Chapter 1

of several seconds to minutes. Moreover, the anomalous relaxation is observed in large

cell aggregates that are composed of tens of thousands of cells, indicating lengthscales of

a few millimeters and timescales of a few microseconds. The challenge stems from the

fact that underlying physical processes that drive these phenomena at large scales occur

at much smaller spatiotemporal scales. For example, the atomistic random walks happen

at few Angstroms and microseconds, or restructuring of the lipid bilayer also occurs over

a few Angstroms and nano-seconds.

In this dissertation I will propose two computational frameworks for developing large

scale numerical simulations that can realize relevant macroscopic features in interfacial

transport problems. Here two main ingredients are employed to circumvent the com-

putational challenges: (i) using multiscale mathematical models on one hand, and (ii)

efficient numerical methods along with high performance computing algorithms on the

other hand.

Multiscale models are incorporated throughout this thesis that view interfaces as

idealized sharp surfaces across which discontinuities occur, and their role is to impose

boundary conditions for the adjacent bulk phases which are described using continuum

models, see figure 1. These boundary conditions are themselves multi-scale models for

the underlying atomistic processes that in the case of epitaxial growth capture quantum

mechanical effects at the boundary of atomic islands via Ehrlich-Schwoebel boundary

condition whose parameters remain constant irrespective of the solution of the contin-

uum model. However in the case of electroporation, cell membranes undergo internal

restructuring whose effect is considered by a phenomenological model that depends on

the instantaneous solution field at the aggregate level via a nonlinear model.

The numerical algorithms employed in this work are particularly suited for massively

parallel simulations owing to their compact stencils, adaptive mesh refinement, proper

grid partitioning using Z-ordering that ensures contiguous partitions on each processor

3



Introduction Chapter 1

and subsequently keeps inter-processor communications at a minimum. These simulation

frameworks benefit from state-of-the-art algorithms and high performance computing

libraries that ensure scalability of our simulations well beyond thousands of processors

on national supercomputers.

Unfortunately, it has been increasingly evident that developing large scale numerical

simulations alone is not enough for gaining new understanding into complex physical

systems. This is partly because the number of physical parameters and possible config-

urations of large scale complex systems is so vast that makes any attempt at sweeping

the corresponding parameter space futile. Moreover, from a practical standpoint the

computational costs needed for a single run of such a simulation could easily surpass

Terabytes of data and tens of thousands of CPU-hours of computations even using the

most advanced national supercomputers. Computational science poses a third style for

scientific inquiry into complex physical systems with the utmost purpose of drawing new

insights on the nature of complex systems. As such, it is inevitable that the task of a

computational scientist is to carry over the reduction of models based on a reasonably

small number of simulations in a principled fashion. In the author’s opinion, the only

justifiable reasoning behind developing such expensive numerical simulations is discovery

of accurate enough but efficient enough reduced-order models at the level of a system

of ordinary differential equations, or effective constituitve relations, that could describe

macroscopic observables of interest in an extremely efficient fashion. It is in this spirit

that in the last chapter of my dissertation I turn my focus on a general purpose model-

ing framework that is particularly suited for theorizing reduced-order models from large

scale simulation data. I apply this framework to the case of cell aggregate electroporation

and demonstrate its utility and efficiency for future simulation-based modelers who have

access to detailed distributions of state variables of their system of interest.

4
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1.1 Permissions and Attributions

1. The content of chapter 2 is the result of a collaboration with Arthur Guittet, Daniil

Bochkov, Joshua Schneider, Dionisios Margetis, Christian Ratsch, and Frederic

Gibou, and has previously appeared in the Journal of Computational Physics [1]. It

is reproduced here with the permission of Elsevier: https://www.sciencedirect.

com/science/article/pii/S0021999118300767.

2. The content of chapter 3 is the result of a collaboration with Arthur Guittet,

Clair Poignard, and Frederic Gibou, and has previously appeared in the Journal of

Computational Physics [2]. It is reproduced here with the permission of Elsevier:

https://www.sciencedirect.com/science/article/pii/S0021999118308052.

3. The content of chapter 4 is the result of a collaboration with Samira Pakravan and

Frederic Gibou, and has previously appeared on arXiv. It is reproduced here with

the permission of arXiv [3]: https://arxiv.org/abs/2008.11819.
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Chapter 2

Large scale simulations of epitaxial

growth

2.1 abstract

We introduce an approach for simulating epitaxial growth by use of an island dynamics

model on a forest of quadtree grids, and in a parallel environment. To this end, we use

a parallel framework introduced in the context of the level-set method. This framework

utilizes: discretizations that achieve a second-order accurate level-set method on non-

graded adaptive Cartesian grids for solving the associated free boundary value problem

for surface diffusion; and an established library for the partitioning of the grid. We

consider the cases with: irreversible aggregation, which amounts to applying Dirichlet

boundary conditions at the island boundary; and an asymmetric (Ehrlich-Schwoebel)

energy barrier for attachment/detachment of atoms at the island boundary, which entails

the use of a Robin boundary condition. We provide the scaling analyses performed on

the Stampede supercomputer and numerical examples that illustrate the capability of our

methodology to efficiently simulate different aspects of epitaxial growth. The combination

6
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of adaptivity and parallelism in our approach enables simulations that are several orders

of magnitude faster than those reported in the recent literature and, thus, provides a

viable framework for the systematic study of mound formation on crystal surfaces.

2.2 Introduction

Epitaxial growth is a complex, multiscale process in which a material is deposited on

top of another one and takes on the crystalline orientation of the substrate. The growth

process results in the formation and evolution of islands and steps [7, 8], which accompany

the fabrication of many modern opto-electronic devices below the roughening transition.

Hence, epitaxial growth is of fundamental technological importance. Notable examples

of related devices include transistors in microelectronics, quantum dots for photonic-

crystal lasers, quantum dot-based enhancements in the energy sector, and devices for

nonvolatile storage which is sought to replace hard drives, flash and RAM memories.

Other applications of epitaxial growth include catalysts, which are used, e.g., in the

energy sector, food processing, and environmental science.

In this paper, we introduce a computational approach for the simulation of island

evolution in large epitaxial systems. Our main motivation is the need to make accurate

predictions for the formation of crystal surface features, e.g. mounds, at large scales. We

start with the island dynamics model (IDM) by Caflisch et al. [11, 12]. This description

relies on the formulation of a free boundary value problem, in the spirit of the Burton-

Cabrera-Frank (BCF) theory [13]. The model has the following main elements: (i)

a diffusion-type equation for the density of adsorbed atoms (adatoms) in the region

(terrace) between successive steps, which includes nucleation in a mean-field sense; (ii)

Dirichlet or Robin boundary conditions for the adatom density at the island boundaries;

7



Large scale simulations of epitaxial growth Chapter 2
STEP EDGES


Figure 2.1: Single-Tunneling-Microscope (STM) images of epitaxially grown thin films
where macroscopic or mesoscale features may develop, e.g., mounds (left image from
[9]) and step edges (right image from [10]).

and (iii) a kinetic law for the normal velocity of each boundary by mass conservation. We

numerically solve this system on a forest of quadtree grids, and in a parallel environment

by using the framework introduced in the context of the level-set method by Mirzadeh

et al. [14]. This framework utilizes the discretizations of Min and Gibou [15] for the

associated free boundary value problem, and the p4est library of Burstedde et al. [16]

for the partitioning of the grid. We apply our approach to the growth of mounds in

homoepitaxy, where the deposited material is the same as the substrate.

From a physical viewpoint, basic processes that occur during epitaxial growth include

the nucleation, growth, and coalescence of two-dimensional islands. Close to thermody-

namic equilibrium, homoepitaxial growth proceeds atomic layer by atomic layer. How-

ever, growth is far from equilibrium for many homoepitaxial systems, and, therefore, the

observed surface morphology is a result of kinetic limitations. In particular, multilayer

growth may become unstable and, hence, mounds may form. This phenomenon has

been observed experimentally for many epitaxial systems such as surfaces of Cu [17, 18],

Fe [19], Ag [20] or Pt [21].

8
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The microscopic process that usually underlies mound formation is an additional

(Ehrlich-Schwoebel, ES) energy barrier characterizing the attachment/detachment of

atoms at island boundaries or edges of steps [22, 23]. For some applications, these

mounds can seriously degrade the performance of the device being grown; for example,

in the case of metallic films the electric connections between layers can be hampered [24].

In contrast, in some other cases these mounds can be regarded as almost zero-dimensional

defects with novel properties that can be exploited in the laboratory setting [25]. An ex-

ample of such mounds which form for growth of Pt on Pt(111) is shown in Figure 2.1

[left panel]. In the suitable kinetic regime of these systems, step edges with interesting

dynamics are evident (see Figure 2.1 [right panel]).

Hence, the understanding and control of crystal surface instabilities that lead to

mound formation are significant goals in materials science. Accordingly, the development

of computational methods that accurately and efficiently describe the growth of thin

films has been the focus of intensive research [26, 27, 28, 29]. Computational challenges

in this direction are primarily due to the multiscale nature of epitaxial growth: On the

one hand, growth of islands and the flow of steps is determined by the diffusion (and

attachment) of individual adatoms, which sets time and length scales of the order of 10−6

sec and Ångstroms. On the other hand, typical devices can be microns in lateral size

(and hundreds of layers thick), and are grown at timescales that are seconds or minutes.

To develop a computational approach faithful to the multiscale character of epitaxial

growth, we use the IDM and a level-set method for its simulation [11, 30, 31, 32, 33,

34, 12]. The model has the mesoscale features of the BCF theory for steps [13], namely,

coarse-graining of the atomistic dynamics in the lateral (parallel to a fixed reference

plane) directions and retainment of atomistic detail in the growth direction; thus, the

model is particularly well-suited for simulating epitaxial growth. Yet, this model has so

far only used uniform grids on sequential machines.

9
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In the present paper, we overcome this limitation via an approach that uses adaptive

mesh refinement techniques and parallel strategies to significantly increase the size of

systems that can be considered, as well as to offer a significant simulation speedup. To

validate our computational approach, we carry out a series of numerical experiments

associated with mound formation. In these examples, we invoke irreversible aggregation,

which corresponds to a Dirichlet condition in the IDM; and an ES barrier which is

modeled through a Robin condition at the step edge.

Section 2.3 provides an overview of the IDM (Section 2.3.1), and describes the multi-

level-set representation for the motion of island boundaries (Section 2.3.2). Section 3.4

details the parallel strategy and the discretization algorithms for the simulation of multi-

layer growth and dynamics of step edges. In Section 3.5 we present numerical examples

that serve the validation of our computational approach. Section 3.7 concludes our paper

with a summary of our framework and an outline of related, open problems.

2.3 Island dynamics model and multi-level-set rep-

resentation

In this section, we review the basic elements of the IDM, which forms an extension

of the BCF theory [13]; see also [35, 7]. Furthermore, we describe a level-set approach

that simultaneously keeps track of the motion of many island boundaries.

2.3.1 Island dynamics model

The IDM [11, 30, 31, 32, 33, 34, 12] treats the evolution of islands and steps as a free

boundary problem: each boundary moves by mass conservation, in the spirit of the BCF

10
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(d)(b)

(a)(a)

(c)

(e)(f)

(h)

(g)

(i)

Figure 2.2: Schematic of atomistic processes during epitaxial growth. Atoms are de-
posited onto the surface [(a)]; diffuse on the surface with atomistic (hopping) rate D
[(b)]; attach to [(d)], or detach from [(e)] an island boundary or a step edge ; or diffuse
along an island edge [(f)]. In addition to these processes, two atoms may coalesce and
form a dimer [(c), (h)], which might be stable and grow, or break up [(i)].

D D’
DD’’
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Etrans
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Step-edge barrier

Figure 2.3: Schematic of an asymmetric (ES) step-edge barrier. The lower panel shows
the atomistic configuration of a step edge, to which an adatom attaches with rate D′

(D′′) from the upper (lower) terrace. The upper panel depicts the corresponding energy
landscape in one spatial coordinate.

model [13]. Island boundaries and step edges have an atomic height, a, thus retaining the

lattice discreteness in the vertical direction. In contrast, the diffusion of adatoms on each

terrace is considered as a continuous process by coarse-graining of the atom hopping.

Hence, adatom diffusion is studied via the dynamics of the adatom density, ρ(x, t), a

continuous variable.

Specifically, ρ(x, t) evolves through the equation

∂ρ

∂t
= F +∇ · (D∇ρ)− 2

dN

dt
, (2.1)

11
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which accounts for adatom diffusion with diffusivity D = Da2 (where D is the hopping

rate), external material deposition with flux F , and nucleation of islands with rate dN/dt

where N(t) is the island density (see Figure 2.2). In the following analysis, we set the

lattice spacing, a, or step height, equal to unity, a = 1; thus, we replace D by D.

By use of a mean-field approximation, the nucleation rate dN/dt is defined by

dN

dt
= σ1D〈ρ2(x)〉 , (2.2)

where σ1 is a capture number [36, 37] and 〈·〉 denotes the average taken over all lattice

sites. Note that the capture number, σ1, is a phenomenological, effective parameter that

expresses how effectively an island of given size in a given environment (i.e., with a given

capture area) competes for the available monomers on the crystal surface [36]. Stochastic

elements for island nucleation have been added to the IDM, and validated by comparison

to an (atomistic) kinetic Monte Carlo (KMC) model [31].

A few additional comments on (2.2) are in order. This equation dictates when the

adatom density is large enough to seed a new island. The location of nucleation takes

into account the stochasticity inherent to atomistic dynamics, as described in [31]. From

a computational/algorithmic perspective, this description of nucleation can be split into

the following stages:

1. Compute ρ2 at each grid point (label them i = 1, · · · , n), weighted by its surround-

ing computational cell area w(xk).

2. Compute the sum over all these values, keeping partial sums Qk =
∑k

i=1 w(xk) ×

ρ2(xk).

3. Generate a random number, r in [0, Qn].

4. Find the first index k such that r >= Qk.

12
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5. Seed a circular island of size 2 ∆x at xk.

The diffusion equation (2.1) for the adatom density, ρ, must be supplemented with

boundary conditions at island boundaries or step edges. The boundary conditions for ρ

reflect important atomistic processes and, thus, have a crucial impact on the ability of

the IDM to make physical predictions. In general, a Robin condition for ρ at the island

boundary has been extensively invoked in epitaxial systems [35, 38, 7]. In regard to the

upper terrace (see Figure 2.3), this condition assumes the form

∇ρ · n+
D′

D −D′
ρ =

D′

D −D′
ρeq , (2.3)

where ρ and ∇ρ are restricted to the island boundary, the atomistic rate D′ expresses

the energy barrier for adatom diffusion over a step edge or island boundary, ρeq is an

equilibrium adatom density, and n is the outward normal to the island boundary.

Boundary condition (2.3) describes the effect of the ES barrier (for D′ 6= D), and

has been formally derived from atomistic dynamics [39]. Note that an ES barrier causes

any atom located next to the step edge to be more likely to diffuse to the adjacent site

on the same terrace (with rate D) than diffuse downwards (with rate D′). Similarly, an

additional energy barrier, expressed by rate D′′, may be present on the lower terrace (see

Figure 2.2 [right panel]). Physically, this additional step-edge barrier causes an uphill

current and the formation of mounds, as shown both by continuum models [38] and KMC

simulations [40].

As D′ → D, equation (2.3) reduces to the Dirichlet condition ρ(x) = ρeq [13, 8, 39].

Notably, in [41], an expression for ρeq is derived with no step-edge (ES) barrier; while in

[42], the authors derive and implement an expression for ρeq under a step-edge barrier.

In principle, this ρeq depends on the microscopic rates for detachment and edge diffusion

[11].
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Equations (2.1)–(2.3) need to be complemented with a velocity law for the motion

of the free boundary. Specifically, the normal velocity field, v, that characterizes the

motion of the island boundary is computed by adatom mass conservation according to

the equation

v =

(
D−

∂ρ−

∂n
−D+∂ρ

+

∂n

)
n , (2.4)

which accounts for the total mass flux toward the boundary from the upper (+) and

lower (−) terrace. This equation can be enriched with a term that expresses step-edge

diffusion [43]. This extension lies beyond our present scope. Equations (2.1)–(2.4) form

the core of the IDM.

2.3.2 Multi level-set representation of island dynamics

substrate
l = 1

l = 2

l = 3

l = 1

l = 2

⇢2

⇢3

⇢2⇢2

⇢0⇢0⇢0

⇢1⇢1⇢1⇢1

�1

�0

�2

Substrate

Figure 2.4: Level-set representation of the IDM in the present framework. The ze-
ro-level set of φl represents the boundary of islands of height l onto which the adatom
density is described by ρl.
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Next, we describe a multi-level-set representation of the IDM that is best suited to

our main purpose of simulating the evolution of large epitaxial systems in this paper.

The desired representation exploits the free-boundary approach inherent to the IDM

(Section 2.3.1), as explained below.

First, we emphasize that the IDM is numerically resolved by use of the level-set

method, introduced in [44], to keep track of the motion of the island boundaries. The

level-set method represents an arbitrary contour as Γ = {x ∈ Rn |φ(x) = 0}, where

φ(x) is a Lipschitz continuous function. The region enclosed in Γ and the region outside

Γ are defined as {x ∈ Rn |φ(x) < 0} and {x ∈ Rn |φ(x) > 0}, respectively. In the

IDM described in [11, 30, 12], the boundary of islands of height l is described as Γl =

{x : φ(x) = l}. In the present work, the boundary of islands of height l is described

by the zero level-set of a level-set function φl as depicted in Figure 2.4, i.e. we use as

many level-set functions as the number of atomic layers, with each level-set function φl

“recycled” when it represents a complete layer.

The rationale for applying this formalism and, thus, for choosing not to represent

all the layers with a single level-set function, can be outlined as follows: (i) Our choice

enables the reinitialization of the level-set functions, which in turn increases mass con-

servation [45, 46, 15]; and (ii) the motion of the boundaries at different islands’ height

can be processed independently, which increases computational efficiency. Specifically,

in this multi-level-set framework, the region occupied by the island of height l is de-

fined as Ωl = {x | φl(x) > 0 and φl−1(x) < 0}. If an island is the top most, then

Ωl = {x | φl−1(x) < 0}. The substrate is defined as Ω0 = {x | φ0(x) > 0}.

In this vein, the variable ρl describes the adatom density on islands of height l (see

Figure 2.4). Accordingly, boundary conditions for ρl in the form of (2.3) are imposed on

the set where φl = 0 and also φl−1 = 0 if l > 0. Once the velocity field vl describing the
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dynamics of the islands of height l is computed, φl evolves according to the equation

∂φl
∂t

+ vl · ∇φl = 0 ; (2.5)

cf. step velocity law (2.4). In order to transform an arbitrary level-set function φ0
l into

a signed distance function φl, we solve the reinitialization equation [45]

∂φl
∂τ

+ sign(φ0
l ) (|∇φl| − 1) = 0 , (2.6)

where τ is a fictitious time and sign refers to the signum function.

2.4 Parallel strategy on adaptive Quadtree grids

The numerical implementation of the IDM has so far only considered uniform grids.

This approach causes limitations in applications to systems with many islands and steps.

Specifically, in the case where one aims to simulate multi-layer growth or examine the

dynamics of step edges, uniform grids are limited in their ability to consider large systems

because of memory constraints and/or slow speed of simulations. In this section, we

introduce a parallel strategy on adaptive grids that enables efficient simulations of the

IDM and resolve island dynamics in large epitaxial systems. This strategy makes use of

recent computational advances in adaptive mesh refinement.

We add a few comments on these advances. In particular, Chen et al. [47] introduced

discretizations for solving the diffusion equation in irregular domains by using Quadtree

grids. Min and Gibou [15] introduced discretizations on Quadtree grids for free boundary

problems using the level-set method. These two approaches were combined to solve the

Stefan problem in [48]. Using this framework and the work of Papac et al. [42] (see also

[49]), Papac et al. [50] derived a scheme to solve the Stefan problem with Robin boundary
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conditions on Quadtree grids and briefly considered the application of this scheme to the

IDM. In [14], Mirzadeh et al. developed the level-set technology on Quadtree/Octree

grids in the context of distributed computations using the discretizations of Min and

Gibou [15] and the p4est library of Burstedde et al. [16].

In the remainder of this section, we will describe the computational framework (sec-

tions 2.4.1 - 2.4.3) and how it can be used for the two cases where we have a Dirichlet

boundary condition (which corresponds to the case without a step-edge barrier); and

when we have a Robin boundary condition, which is needed when a step-edge barrier is

present (sections 2.4.4-2.4.6).

2.4.1 Quadtree data structure and refinement criterion

Level=0

Level=1

Level=2

Level=3

Level=4

Figure 2.5: (Color online) Discretization of a two-dimensional domain (left) and its
quadtree representation (right). The entire domain corresponds to the root of the tree
(level 0). Each cell can then be recursively subdivided further into four children. In
this example, the tree is non-graded, since the difference of level between some adjacent
cells exceeds one.

Quadtrees are standard data structures that have been first introduced in the context

of computer graphics. The interested reader is referred to the excellent books by Samet

for more details [51, 52]. Referring to Figure 2.5, we associate the entire computational

cell with the root of a quadtree structure. Subsequently, cells are recursively split into
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four children of equal size according to a refinement criterion and until the limits set for

the smallest and largest cells are reached. We define the level of the root cell to be 0

and increment it by 1 for its children. In particular, we will call a (lmin, lmax)-grid, an

adaptive grid sampling a computational domain of size L×L for which the smallest cells

have size L× 2−lmax and the largest cells have size L× 2−lmin .

The two main equations of the IDM are parabolic equation (2.1), which describes

the evolution of the adatom density, ρ, and level-set equations (2.5) and (2.6) which are

used to represent the evolution of the island boundaries. In both cases, the information

near the island boundaries is what drives the accuracy of the simulation. Indeed, the

diffusion equation for the adatom density, ρ, is a parabolic equation and therefore pro-

duces smooth solutions in the entire domain, except near the boundary of each island.

Specifically, boundary conditions applied on each side of the island boundary (upper and

lower terraces) produce discontinuous solutions, ρ, and/or its gradient. Likewise, the

evolution of the level-set functions φl is directly linked to the resolution near the island

boundaries or step edges [15].

Hence, we use a refinement criterion that automatically sets the finest resolution near

the zero-level set of each φl, i.e. we split a computational cell C if

min
v∈vertices(C)

|φl(v)| ≤ Lip(φl) · diag-size(C) , (2.7)

where diag-size(C) refers to the length of the diagonal of C and v refers to its vertex.

Likewise, we merge with its parent cell, any cell C for which the following condition

holds:

min
v∈vertices(C)

|φ(v)| > Lip(φ) · diag-size(C) . (2.8)
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The ‘parameter’ Lip(φ) in equations (3.6) and (2.8) controls how drastic the size difference

between adjacent cells can be. In the present work, we take a value of Lip(φ) ≈ 1.1 to

generate the grids depicted in Section 3.5.

2.4.2 Parallel framework

E

S

T0 T1 T0 T1

Figure 2.6: Two trees, T0 and T1, constitute the ‘forest’. The Z-ordering (left) of the
Quadtree’s leaves (center) is used to partition the data among the available processes
(right). In this figure, the different colors correspond to different processor ranks. S
represents the starting cell and E the last cell visited. In the p4est library, only the
one-dimension array (right) is stored among the available processes.

Next, we outline the main idea of the parallelism in our approach. The parallel

framework that we use is the one introduced by Mirzadeh et al. [14]. This framework

employs the p4est library for the partitioning of the grid and an algorithm that constructs

local trees that enable the discretizations detailed in Sections 2.4.4 and 2.4.5. Additional

parallel algorithms are constructed to number the islands on the surface in order to

compute important statistics, as described in Section 2.4.3.

When considering parallel computation, where the communication of data between

processes is orders of magnitude more time consuming than the computation itself, the

main focus of algorithm design is to reduce the number of computations and/or hide the

cost of communication by intertwining them with computation. Reducing communication
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Figure 2.7: Left (global forest refined close to the interface): an example of a compu-
tational grid partitioned among 16 processes (color-coded) and the global forest refined
close to the interface. Right (quadtree local to the cyan processor): the local tree to
one process refined to match local islands. Note the surrounding ghost layer from
neighboring processes with different colors.

is achieved by grouping, or partitioning, the data in the local memory of each process.

The strategy of Burstedde et al. [16] is illustrated in Figure 2.6: (1) a macromesh of

uniform cells is created and replicated on each process; (2) a forest of Quadtrees is

created recursively using all processes and partitioned among them. The partitioning

uses a Z-ordering of the Quadtree leaves, which are recorded in a one-dimensional array

before being split equally among the available processes. The application of the Z-

ordering clusters the data contiguously, as depicted in Figure 2.6, and thus subsequently

minimizes the amount of communication during the discretization phase.

Since the p4est library only stores the one-dimensional array of the forest’s leaves,

an algorithm for constructing the local Quadtree on each process is used in order to apply

the discretizations described below. The procedure introduced by Mirzadeh et al. [14]

is to create a local tree in such a way that the levels of its leaves correspond to that of

the one-dimensional array locally. Globally, the available processes represent the global
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grid but only store their local portion plus data at points surrounding each processor,

i.e. ghost layer, that is necessary to discretize the equations. The result of this process

is illustrated in Figure 2.7. The adaptivity of the Quadtree to the formation of new

islands is illustrated in Figure 2.8; it is refined close to the islands and coarsen elsewhere

according to the refinement criteria.

Figure 2.8: Example of adaptive grids and partitioning at different computational
times. Processors’ rank are in color. Left: initial uniform grid. Middle: first seeding
with adaptive grid. Right: five islands with adaptive grid.

2.4.3 Numbering the islands

We now introduce an algorithm to compute the number of islands for a given level.

This task is non-trivial because the islands can span multiple processes, as depicted in

Figure 2.9.

The first step of our algorithm is for each process to number its local islands, with an

offset. For the purpose of demonstration, we choose an offset equal to 10 (we choose an

offset of 106 in practice), so that the islands of process p can be numbered from 10p to

10(p+1)−1. In practice, any number greater than the maximum number of islands that

a single process can have is suitable. The local island numbering is carried out by going

through the local nodes. Such that for each non-numbered node with φl < 0, assigning
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a number to it and recursively assigning the same number to all the neighboring nodes

that are part of the same island, i.e. that also have a negative φl value.

The next step is to construct a graph where each node represents a local island and

two nodes are connected if the local islands are connected through the ghost layer that

connects two processes. In order to build this graph, we must first communicate the

number of local islands for each process and the island numbers of the points in the

ghost layer. With this information, each process can build a graph containing all the

global nodes and with the edges involving its local islands.

Finally, we gather the graph across all the processes, thus providing each process with

the global graph connecting all the local islands across all the processes. Each process

can then count the number of connected components of the graph and assign a unique

global number to each component, which is the global island number.
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Figure 2.9: Left: Four islands spread across four processes. Each process p has as-
signed a number to its local islands, with an offset equal to 10p. Right: the global graph
connecting the local islands. Each component of this graph is a unique global island.

2.4.4 Solving for the adatom density

The adatom density ρl has to be solved on the corresponding terrace Ωl with ap-

propriate boundary conditions applied on the boundary of the terrace. By (2.1), on an
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island of height l, the adatom density satisfies the equation

∂ρl
∂t

= F +∇ · (D∇ρl)− 2
dN

dt
.

To solve this equation, we use a Crank-Nicholson scheme in time, writing

ρn+1 − ρn

∆t
= F +

1

2
∇ · (D∇ρn+1) +

1

2
∇ · (D∇ρn)− 2

dN

dt
, (2.9)

where we have omitted the subscript l (i.e. ρ = ρl in this section) and
dN

dt
= σ1D〈ρ2(x)〉

is taken at time t = tn; cf. (2.2). The discretizations of the terms of the form ∇ · (D∇ρ)

depend on whether we consider a grid node adjacent to the interface or not, as illustrated

in Figure 2.10.
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Figure 2.10: Stencils used in the discretization of the adatom density. We use a finite
volume approach for nodes that are adjacent to the islands’ boundary Γ (where the
grid is locally uniform) and a finite difference approach for the other nodes.
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Discretization far from the island boundaries

The difficulty in discretizing ∇ · (D∇ρ) at a grid node that is not near the island

boundary comes from the potential presence of a T-junction configuration, i.e. the case

where one grid node is missing in one of the Cartesian directions. In that case, Min et

al. [53] derive a third-order accurate definition of a ghost value, ρG:

ρG =
ρ4s5 + ρ4s4

s4 + s5

− s4s5

s2 + s3

(
ρ2 − ρ0

s2

+
ρ3 − ρ0

s3

)
,

where si is the size of the segments depicted in Figure 2.10. This definition provides a

way to discretize the Poisson operator, at the grid node T , as

∇ · (D∇ρ)T =
2

sG + s1

(
ρG − ρT
sG

− ρT − ρ1

s1

)
.

From this definition, we fill the corresponding row of the linear system for the grid node

T .

Discretization near the island boundaries

For grid nodes that are adjacent to the interface, the discretization must account for

the boundary condition given by equation (2.3). Following Papac et al. [42], we consider

the integration of the time discretization (2.9) in the dual cell C centered at the local

grid node c (see figure 2.10), viz.,∫
C∩Ω

ρn+1 − ∆t

2
∇ · (D∇ρn+1) dΩ =

∫
C∩Ω

ρn +
∆t

2
∇ · (D∇ρn) + ∆tF − 2∆t

dN

dt
dΩ ,
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where Ω is the domain defined by the island of height l. By applying the divergence

theorem on the diffusion terms, we obtain∫
C∩Ω

ρn+1 dΩ− D∆t

2

∫
∂(C∩Ω)

∇ρn+1 · n dΓ =

∫
C∩Ω

ρn + ∆t

(
F − 2

dN

dt

)
dΩ

+
D∆t

2

∫
∂(C∩Ω)

∇ρn · n dΓ ,

where ∂ (C ∩ Ω) refers to the boundary of (C ∩ Ω), i.e. the part of the computational cell

that belongs to the island of height l. The boundary integrals are further split into two

parts: the boundary of the computational cell C that belongs to the island of height l

and the part of the island boundary that is located in C:∫
∂(C∩Ω)

∇ρn+1 · n dΓ =

∫
∂C∩Ω

∇ρn+1 · n dΓ +

∫
C∩∂Ω

(
D′

D −D′
ρeq −

D′

D −D′
ρ

)
dΓ .(2.10)

In the above equation, we invoked Robin boundary condition (2.3) in the last term.

Next, we discuss the computation of the integrals on the right-hand side of (2.10).

The integral of the unknown function ρ over the boundary C ∩ ∂Ω is approximated by

the value of ρ at the point γ on the boundary (see figure 2.10) multiplied by the length

of the boundary C ∩ ∂Ω, i.e. ∫
C∩∂Ω

ρ dΓ ≈ ργ

∫
C∩∂Ω

dΓ .

The point γ is defined as the intersection of the boundary and a straight line orthogonal

to the boundary at γ and passing through the grid point c under consideration. At γ,

the adatom density satisfies the Robin boundary condition (2.3). Moreover, ρc and ργ
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are related through a Taylor expansion for ρ at γ in the normal direction as

ρc = ργ − d
∂ρ

∂n
+O(d2) (2.11)

where d is the signed distance between the grid point c and point γ. Combining (2.3)

and (2.11) we get the following estimation for ργ

ργ = d
ρc + d

D′

D −D′
ρeq

1 + d
D′

D −D′

.

Furthermore, we approximate the first integral on the right-hand side of (2.10) as (see

Figure 2.10)∫
∂C∩Ω

∇ρn+1 · n dΓ =
ρr − ρc
sr

Lrf −
ρc − ρl
sr

Llf +
ρt − ρc
sr

Ltf −
ρc − ρb
sr

Lbf ,

where Lrf (Llf , Ltf and Lbf , respectively) is the length fraction of the right (left, top

and bottom, respectively) face that is in Ω. Finally, we approximate the integral of a

quantity Q over C ∩ Ω as ∫
C∩Ω

QdΩ = Qc

∫
C∩Ω

dΩ ,

where Qc denotes the value of Q at the center of cell C. The integrations are performed

by the algorithms introduced in [54]. These approximations define the coefficients in the

linear system associated with grid node c.
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Figure 2.11: Boundary condition for irreversible aggregation. The grid nodes on each
side of the island boundary, Γ, belong to different islands’ height.

Case with irreversible aggregation

Irreversible aggregation is the regime in which D′ → D, i.e. when the Robin condition

(2.3) reduces to the Dirichlet condition ρ(x) = 0, taking ρeq = 0. This case deserves spe-

cial attention: Numerically, the method described in Section 2.4.4 is prone to numerical

errors in this case. To address this particular situation, we directly impose the condition

ρ(x) = ρeq of Chen et al. [55], which is based on the Ghost-Fluid approach of Gibou

et al. [56] and the Shortley-Wheller technique [57]. The discretization of the operator

∇ · (D∇ρ) in equation (2.1) follows a dimension-by-dimension approach, i.e. one treats

the x-component of ∇ · (D∇ρ) with the Dirichlet condition in the x-direction only: The

discretization in the x-direction at the grid node vi is given by the scheme (see Figure

2.11)

∂

∂x

(
D
∂ρ

∂x

)
(vi) ≈

Di+ 1
2

ρG − ρi
ξ∆x

−Di− 1
2

ρi − ρi−1

∆x

(1 + ξ)∆x
.

In this scheme, the ghost value, ρG, for ρ is provided by a quadratic extrapolation.

Specifically, we construct a quadratic approximation, ρ̃(x) = ax2 + bx + c, of ρ with

ρ̃(−∆x) = ρi−1, ρ̃(0) = ρi, and ρ̃(ξ∆x) = ρΓ. Then, we define ρG = ρ̃(∆x).
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The linear systems resulting from the discretization of the adatom density, ρ, are

solved by use of the combination of the biconjugate gradient stabilized iterative solver

preconditioned with successive over-relaxation provided by the PETSc library. This

computational approach is applied to the case with the Ehrlich-Schwoebel barrier and

the case with irreversible aggregation.

Note that the quantity ρl is solved only for grid nodes that lie in the region Ωl. To

simplify subsequent calculations of the island boundary velocity, the values of ρl are

extrapolated into a narrow band around the region Ωl using the PDE-based approach of

[15], so that valid values of ρl are available in some neighborhood of this region.

2.4.5 Motion of island boundaries

Next, we discuss the discrete scheme for updating the position of each island boundary.

The normal velocity of the boundary of an island with height l is given by

vl = (Dl−1∇ρl−1 · n−Dl∇ρl · n)n .

In this equation Dl stands for diffusion coefficient on terrace height l and n stands for

normal direction to the island boundary pointing outwards.

Since the quantities ρl and ρl−1 are available in some neighborhood of the island

boundary (which is defined as the zero-level-set of φl), the gradients of ρl and ρl−1 on the

island boundary are obtained using standard finite-difference formulas. By the second-
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order accurate formula of Chen et al. [47], we have

∂ρ

∂x
=
ρg − ρT
sg

· s5

sg + s5

+
ρT − ρ5

s5

· sg
sg + s5

− s3s4s5

2sg(s5 + sg)

(
ρ1 − ρT
s1

+
ρ2 − ρT
s2

)
· 2

s2 + s1

, (2.12)

∂ρ

∂y
=
ρ1 − ρT
s1

· s2

s2 + s1

+
ρT − ρ2

s2

· s1

s2 + s1

. (2.13)

Once the velocity, vl, of each island boundary is computed, the level-set function, φl,

is evolved according to equation (2.5). In this work, we use a semi-Lagrangian scheme,

i.e. for any grid point xn+1, we write φn+1
l (xn+1) = φnl (xd) where xd is computed by

x̂ = xn+1 − ∆t

2
· vnl (xn+1) ,

xd = xn+1 −∆t · vn+ 1
2

l (x̂) .

The velocity field v
n+ 1

2
l at the mid-time step, tn+ 1

2 , is defined linearly from the previous

velocity fields by v
n+ 1

2
l = 3

2
vnl − 1

2
vn−1
l . Finally, quantities at the locations xd and x̂ are

approximated using non-oscillatory interpolation procedures; see [15] for details.

2.4.6 Transfer of data between grids

As the island boundaries evolve, the computational grid is automatically adapted so

as to keep the smallest resolution near the boundary. Therefore, one needs to interpolate

the data from the grid at time tn to the grid at time tn+1. Defining the data on a coarser

grid from a finer one is trivial for a node-based approach since the values at the nodes of

the coarser grid are simply those that existed on the finer grid. The reciprocal definition

is carried out by the non-oscillatory quadratic interpolation scheme of [15]: for a unit
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cell C = [0, 1]2, the interpolated value of the adatom density, ρ, at the point (x, y) is

ρ(x, y) = ρ(0, 0)(1− x)(1− y)

+ ρ(0, 1)(1− x)( y)

+ ρ(1, 0)( x)(1− y)

+ ρ(1, 1)( x)( y) −
∂2ρ

∂x2

x(1− x)

2
− ∂2ρ

∂y2

y(1− y)

2
,

(2.14)

where

∂2ρ

∂x2
= minmod

v∈vertices(C)
(D0

xxρ(v)) and
∂2ρ

∂y2
= minmod

v∈vertices(C)
(D0

yyρ(v)) .

In the last two formulas, minmod denotes the standard slope limiter operator [58, 59];

and the second-order derivative, D0
xx, in the x-direction at node vT is approximated with

central differencing, viz.,1

D0
xxρT =

ρG − ρT
sG

· 2

s1 + sG
− ρT − ρ1

s1

· 2

s1 + sG
.

2.5 Numerical Results

In this section we will present numerical results of our implementation of the IDM.

In section 2.5.1 we will discuss how the parallelization and the adaptive mesh refinement

affect the efficiency of our code. In section 2.5.2 we will present results that can be

compared to previously published results obtained with a Dirichlet boundary condition

to demonstrate that we do indeed include the same physical information as in previous

work. Finally, in section 2.5.3 we show some initial results that illustrate how this

approach allows us to efficiently reach growth regimes that were previously difficult or

impossible to reach with existing approaches.

1The second-order derivative in the y-direction is approximated similarly.
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2.5.1 Computational efficiency of the new approach

One of the key components of our revised approach and new implementation of the

IDM is the parallelization of our code. The efficiency of this parallelization is shown in

Fig. 2.12. Clearly, for the system size and parameters chosen for this example, we get

almost perfect linear speedup of our code for using up to 512 processors. We get very

similar results for other simulations with different physical parameters. The speedup

slows down (and eventually is reversed) when we use more than 512 processors. The

reason is that the extra cost associated with communication between processors becomes

dominant compared to the amount of local computations. We have verified that this

turning point in the scaling occurs when fewer (more) processors are used for systems

with fewer (more) grid points in the simulations (data not shown).

The other major component of this approach is the adaptive mesh refinement using

Quadtree grids. The efficiency of using adaptive grids and the speedup that can be

achieved is shown in Fig. 2.13 for two different maximum grid resolutions (lmax = 8 and

lmax = 10). Taking the coarsest grid resolution (i.e. the tree level lmin) to be lower than

the finest grid resolution (i.e. the tree level lmax) leads to a significant reduction in the

number of degrees of freedom, and thus in the computational cost by a factor of about 7

for (5, 8)-tree instead of a uniform (8, 8)-grid.

2.5.2 Results with the Dirichlet boundary condition for irre-

versible aggregation

We now discuss the validation of our implementation of the IMD, and focus on the

case of irreversible aggregation, i.e. the case where ρ = 0 at the islands’ boundary. For

this case the IDM has been thoroughly validated against KMC simulations in [12]. We

31



Large scale simulations of epitaxial growth Chapter 2

Figure 2.12: Scaling of the computational time as a function of the number of pro-
cessors. This scaling is performed on a lattice of size L = 180 on resolution levels
(11, 15). The boundary condition is of Robin type with a barrier size of 0.2 and the
final coverage is ≈ 0.9% (i.e. 140 iterations in all cases).
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Figure 2.13: Speedup from varying the adaptivity levels of the grid for different D/F
values on a range of grid configurations. For all cases we use Robin boundary condition
with a step edge barrier of size 0.2 and the final coverage is 20% covering only one
layer (submonolayer growth). All simulations are run on a single processor.

consider a lattice of size L = 1802 and adaptive grids with levels (7, 11), on a 2×2 macro

grid and D/F = 105, 106 and 107. In the simulations discussed here the lattice size is

chosen as L = 180 and the final coverage is 20%. Figure 2.14 shows the adatom density

and the island density as a function of coverage for different values of D/F . The results

agree qualitatively and quantitatively with the results presented in [12].

In addition to densities we also check for the proper spatial distribution of the islands

on the surface. The scaled island size distribution for the different values of D/F is

shown in Fig. 2.15. These results also agree with the scaled island size distribution

functions that were published in [12] (and that were validated against KMC simulations).

Thus, we have checked that densities and morphologies that are obtained for irreversible

aggregation (in the absence of a step edge barrier) are the ones that we expect for this

model.

Figure 2.16 depicts the result of a simulation on a large lattice and with a high level
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Figure 2.14: [< ρ > for different D/F .], [N for different D/F .], The adatom density
(left) and island density (right) for different values of D/F in the case of the boundary
condition ρ = 0 (irreversible aggregation).

Figure 2.15: Cluster size distribution in the case of the boundary condition ρ = 0
(irreversible aggregation). Each curve consists of 50 simulations with a lattice size of
L = 180 on a 2× 2 macro grid. Each simulation has a final coverage of 20%.
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of refinement. The zooms illustrate that small islands can be highly resolved, while at

the same time large domains are considered. In particular, Figure 2.5.2 shows that an

island of size 2 is highly resolved.

Figure 2.16: The lattice has size L = 1000. Dirichlet boundary condition. This
simulation uses a 2× 2 macro grid with a (6, 13) Quadtree and 256 processors. The
simulation took 48 hours. Left: islands in the computational domain. Middle: zoom
on an island. Right: double Zoom showing a dimer in the center.

2.5.3 Results with the Robin boundary condition to simulate

the formation of mounds

We now turn our attention to simulations that use the Robin boundary condition

that is needed to simulate the effect of an ES barrier. The results shown in Figure 2.5.3

show the surface morphology and adatom density after the deposition of 7 layers for a

simulation with an ES barrier defined by D′/D = 0.1 (i.e., for the case where an adatom

at the edge of a terrace is 10 times more likely to stay on the terrace than it is to diffuse

downward) and D′′ = 0.95D. Clearly, even after just a few layers are grown we see the

onset of mound formation. We note that these mounds are rather steep, and that in

fact the typical terrace width in the middle of each side facet has a width that is of the

order of one lattice constant (or even less). The reason that we do not see slope selection
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is that we do not include any mechanism for downward transport (such as downward

funneling [60, 61]. Nevertheless, close inspection of Figure 2.5.3 illustrates that even

for such small (narrow) terraces our adaptive scheme is able to resolve a meaningful

adatom concentration on each terrace. For most mounds, the adatom concentration

is rather low for lower layers (as these layers exhibit the most narrow terraces). The

adatom concentration is larger for the topmost layer (or a few layers at the top), as these

layers are not quite as narrow, and allow for a larger buildup of adatoms. This is better

illustrated in Figure 2.18 where a few mounds are formed.

Figure 2.17: Ehrlich-Schwoebel barrier and the formation of mounds in a deterministic
seeding. The colors represent the processors’ rank. This simulation uses a 2×2 macro
grid with a (5, 9) Quadtree and took 24 hours on 192 processors with up to 1M nodes.
The physical parameters are L = 180, D/F = 105 and D′/D = 0.1. 1,429 islands
were nucleated, 7 layers grown with 93.0% coverage at the end, 40,000 time iterations.
Left: a view on mounds in computational domain. Right: adatom density.

Finally, Figure 2.19 shows how the strength of the step edge barrier affects the forma-

tion of mounds. When D′/D = 0.01, we see clearly the formation of well defined mounds

that are shaped like a “wedding cake” with 10 exposed terraces after the deposition of 11

layers. As D′/D increases (and the relative strength of the ES barrier weakens), mounds

are less pronounced, and the morphology is very close to so-called layer-by-layer growth
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Figure 2.18: Ehrlich-Schwoebel barrier and the formation of a single mound in a
stochastic seeding. The lattice has size L = 30 and the D/F = 105. This simulation
uses a 2×2 macro grid with a (5, 7) Quadtree and 256 processors. The left panel shows
different layers (up to 11 layers) deposited and the right panel is a representation of the
density field color coded by processor ranks. A closer look demonstrates the density
is higher at the topmost layer of the island. Left: different layers. Right: adatom
density.

when D′/D = 0.95

2.6 Conclusion

In this paper, we developed a computational method for simulating epitaxial growth

on a forest of Octrees by use of the level set technique for the IDM. In our formulation,

we considered both Dirichlet and Robin boundary conditions for the adatom density at

the island boundaries. These boundary conditions correspond to the cases without a

step edge barrier (Dirichlet condition) and with a step edge barrier (Robin condition).

In addition, we described the implementation of a parallel framework for our code. Our

simulation results are in qualitative and quantitative agreement with previously known
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Figure 2.19: Robin boundary condition and formation of mounds. The lattice has size
L = 180 and the D/F = 106. This simulation uses a 2 × 2 macro grid with a (4,
7) Quadtree and 256 processors. The colors represent the islands heights with levels
illustrated in each figure. All snapshots are at the same level. Top left: D′/D = 0.01.
Top right: D′/D = 0.1. Bottom left: D′/D = 0.3. Bottom right: D′/D = 0.95.

38



Large scale simulations of epitaxial growth Chapter 2

results. This comparison offers a validation of our method in the physical context of the

IDM.

One of the most significant aspects of our work is the fact that the efficiency of the

implementation is orders of magnitude better than previous implementations of the IDM.

Specifically, the parallel implementation of our code yields good scaling of the compu-

tational time versus the number of processors used; we have considered approximately

1000 processors and typical parameter choices. The Octree implementation allows us

to use coarse grids away from islands that are much coarser than the fine grid near the

boundaries. For some cases the coarse grid that we used was 128 coarser than the fine

grid in each spatial direction, resulting in a large speedup without a noticeable decrease

of accuracy.

This fast and efficient implementation allows us to study regimes of epitaxial growth

that could not be reached in the past because of limitations of previous methods. We are

currently working towards implementing the effect of ‘downward funneling’, a mechanism

by which slope selection may occur in epitaxial growth. Our goal is to efficiently study

the formation of mounds, and the selection of slopes as a competition between a step

edge barrier and downward funneling. We also plan to implement the effect of step-step

interactions, which is expected to compete with downward funneling for slope selection.

Our ultimate, practical goal is to model and simulate the formation of quantum dots in

the presence of strain on crystal surfaces.
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Chapter 3

Mesoscale simulations of cell

aggregate electroporation

3.1 Abstract

We introduce an approach for simulating mesoscale electropermeabilization of an

aggregate of cells. We employ a forest of Octree grids along with a Voronoi mesh in a

parallel environment and in the context of the level-set method that exhibits excellent

scalability. We exploit the electric interactions between the cells through a nonlinear

phenomenological model that is generalized to account for the permeability of the cell

membranes. We use the Voronoi Interface Method (VIM) to accurately capture the sharp

jump in the electric potential on the cell boundaries. The case study simulation covers

a volume of (1 mm)3 with more than 27, 000 well-resolved cells with a heterogeneous

mix of morphologies that are randomly distributed throughout a spheroid region with a

volume fraction of 13%. This framework enables unprecedented direct numerical studies

of the electropermeabilization effects at the meso-scale. Our simulations qualitatively

replicate the shadowing effect observed in experiments and reproduce the time evolution
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of the impedance of the cell sample in agreement with the trends observed in experiments.

This approach sets the scene for performing homogenization studies for understanding

the effect of tissue environment on the efficiency of electropermeabilization.

3.2 Introduction

Electropermeabilization (also called electroporation) is a significant increase in the

electrical conductivity and permeability of the cells’ membrane that occur when pulses of

large amplitude (a few hundred volts per centimeter) are applied. The physical basis of

this phenomenon lies in the fact that, since membranes are mainly composed of phospho-

lipids and proteins, they behave like a capacitor in parallel with a resistor. The applied

electric field is then dramatically enhanced in the vicinity of the membrane, leading to

a jump of the electric potential. This locally varying transmembrane potential differ-

ence (TMP) can prevail over the cell membrane barrier in regions where this difference

surpasses the electroporation threshold.

This phenomenon has attracted increasing attention due to its capacity to facili-

tate targeted drug delivery of non-permeant cytotoxic molecules such as bleomycin or

cisplatin [62]. DNA vaccination and gene therapy are other promising applications for

electropermeabilization, which enables non-viral gene transfection [63].

However, despite extensive scrutiny of this phenomenon, no substantial evidence of

the elementary mechanism of electropermealization has been obtained. Nevertheless, the

most accepted theory speculates the creation of pores in the membrane as a consequence

of a large transmembrane voltage. However these pores have not yet been observed. One

important reason behind this inability is that, in the absence of cell imaging techniques in

the nanometer scale, almost all experiments that have studied the electroporation effect

have used tissue scale samples to infer the underlying molecular level processes.
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Such inferences have led to the advent of different theoretical models, with membrane

pore density approaches being among the most popular mechanisms. Developments in

this avenue have been carried out in the work of Debruin and Krassowska [64] and

have been augmented in [65] and [66] to incorporate the spatio-temporal evolution of the

speculated pore radii. Other attempts have been made to model the tissue scale behavior

of electropermeabilization [67].

Recently, Leguebe et al. [68] have proposed a phenomenological approach to model

this effect at single-cell scale in terms of a nonlinear partial differential equation. Their

description determines the local behavior of each cell membrane under the influence of its

surrounding electric potential in a continuous manner. Remarkably, this representation

qualifies for a multi-scale characterization of electropermeabilization. However, we note

that in practice these models embody calibrations of free parameters that are tuned by

experimenting on populations of cells and extending these measurements to single-cell

scale, oversighting the multi-scale nature of electropermeabilization in the experiments.

Such approximations are inevitable in the absence of numerical tools to adjust these

models in accordance with experiments. However, recent attempts have been made in

the work of Voyer et al. [69] to theoretically extend this model to tissue scale.

We emphasize the predictability of any such model at the cell aggregate regime to cor-

roborate these results. However, such comparisons with available experimental results

were prohibitive in the case of electropermeabilization, partially due to the enormous

computational costs of such ventures as well as the complexity of the molecular events

involved in membrane electropermeabilization. To facilitate the accurate modeling of

molecular processes that regulate electropermeabilization, there has been emerging in-

centive to overcome the hindering computational difficulties.

In the wake of the aforementioned arguments, the advent of “direct” tissue scale

simulations seems necessary. Such simulations not only commission better understanding
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of the involved molecular processes, but also will aid developing semi-analytic models of

the overall permeabilization of the tissue under different circumstances. Such endeavors

require a complete characterization of the relevant physical parameters from cell scale

physics to tissue scale configurations.

Quite recently, significant progress has been made in this venue by Guittet et al. [70].

They have proposed a novel Voronoi Interface Method (VIM) to capture the irregular

cell interface and accurately impose the sharp TMP jump. The VIM utilizes a Voronoi

mesh to capture the irregular interface before applying the dimension-by-dimension Ghost

Fluid Method [71, 72, 73]. This is aimed to direct the fluxes normal to the interface where

there is a discontinuity. This reframing the mesh around the interface guarantees the

convergence of the solution’s gradients. Also, only the right hand side is affected by the

TMP jump which simplifies the computational treatment.

We also note that an alternative framework would be using adaptive Chimera grids

as proposed by English et al. [74]. In their proposed method, English et al. used multiple

Cartesian grids in different regions of the domain that are coupled on their boundaries

by generating a Voronoi mesh. In the case of electroporation, one could also use finer

Cartesian grids near the cell membrane that are coupled on the cell boundary with a

Voronoi extension.

Guittet et al. [70] have derived a finite volume discretization for this phenomenon

and implemented it in a serial framework. Their numerical results are in agreement with

experimental expectations. However, the computational costs of solving the involved

discretization prohibited the consideration of tissue scale simulations.

Here, we build on the method proposed by Guittet et al. [70] and generalize their

approach to a parallel environment. This parallelization empowers simulations of the

single-cell model of Leguèbe and Poignard et al. [68] at the tissue scale, hence providing

a framework to validate or improve the understanding of cell electroporation.
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The structure of this paper is as follows. We introduce the mathematical model for

our simulations in section 3.3 and the computational strategy that we develop in section

3.4. Then we present performance of our implementation as well as some preliminary

demonstrations of the numerical results in sections 3.5. In section 3.6 we illustrate the

emergence of macro-level properties in the cell aggregate. We conclude with a summary

of our main results in section 3.7.

3.3 Cell membrane model

3.3.1 Geometric representation

The cell cytoplasm Ωc and the extracellular matrix Ωe are separated by a thin and

resistive membrane denoted by Γ. The outward normal to Ωc is denoted by n. Figure 3.1

illustrates the geometry in the case where a single cell is considered. The entire domain

is denoted by Ω = Ωe ∪ Γ ∪Ωc. We denote the conductivities of the materials by σc and

σe for the cell and the extracellular matrix respectively.
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Figure 3.1: Illustration of a single cell immersed in the extracellular matrix. The
conductivity of the materials is denoted by σ.
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3.3.2 Electrical model

For simulating the electropermeabilization process, we solve the following boundary

value problem defined in equations (4.6a)–(4.6e). The electric potential field u in the

computational domain is governed by the Laplace equation:

∆u = 0, x ∈ (Ωc ∪ Ωe), (3.1a)

with the appropriate boundary conditions:

[σ∂nu]Γ = 0, x ∈ Γ, (3.1b)

Cm∂t [u]Γ + S(t, [u]) [u] = σ∂nu|Γ, x ∈ Γ, (3.1c)

u(t,x) = g(t,x), x ∈ ∂Ω, (3.1d)

and the homogeneous initial condition:

u(0,x) = 0, x ∈ Ω, (3.1e)

where we used the [·] notation for describing the jump operator across Γ.

Equation (4.6b) imposes the continuity of the electric flux across the membrane,

(4.6c) captures the capacitor and resistor effect of the membrane and (4.6d) is the ex-

ternal voltage applied on the boundaries of the domain. In these equations, Cm and S

are the capacitance and conductance of the membrane material respectively. The source

term corresponding to the applied voltage is denoted by g(t,x). The effect of the elec-

troporation current is modeled by the S(t, [u]) [u] term in equation (4.6c). We adopt a

nonlinear description of the conducting membrane [68] in the next subsection.
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3.3.3 Membrane electropermeabilization model

The long-term permeabilization of the membrane is modeled by formulating the sur-

face membrane conductivity. Leguébe, Poignard et al. [68] modeled the surface conduc-

tivity of the membrane as follows:

Sm(t, s) = S0 + Sep(t, s) = S0 +X1(t, s)× S1 +X2(t, s)× S2, ∀t > 0, s ∈ Γ (3.2)

In this equation S0, S1 and S2 are the surface conductance of the membrane in

the resting, porated and permeabilized states, respectively. The level of poration and

permeabilization of the membrane are captured in the functions X1 and X2. These are

computed as a function of the transmembrane potential difference and are valued in the

range [0, 1] by definition. The ordinary differential equations determining X1 and X2

read:

∂X1(t, s)

∂t
=
β0(s)−X1

τep
, X1(t, s) = 0, (3.3a)

∂X2(t,X1)

∂t
= max

(
β1(X1)−X2

τperm
,
β1(X1)−X2

τres

)
, X2(t, s) = 0. (3.3b)

The parameters τep, τperm and τres are the time scales for poration, permeabilization and

resealing, respectively. Furthermore, in the above equations β0 and β1 are regularized

step-functions defined by:

β0(s) = e−
V 2
ep

s2 , ∀s ∈ R, , (3.4a)

β1(X) = e−
X2

ep

X2 , ∀X ∈ R, , (3.4b)

where Vep and Xep are the membrane voltage and the poration thresholds respectively.
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3.4 Computational strategy

3.4.1 Level-set representation

As presented by Guittet et al. [70], we describe the cells in our simulations using the

level-set method as first introduced by [75] (see [76] for a recent review) and in particular

the technology on Octree Cartesian grid by Min and Gibou [15]. To this end, we construct

a spatial signed-distance function φ relative to the irregular interface Γ such that:

φ(x) =


d(x,Γ) > 0, x ∈ Oe

d(x,Γ) = 0, x ∈ Γ

−d(x,Γ) < 0, x ∈ Oc

, x ∈ R3, (3.5)

where d(x,Γ) is the Euclidean distance from a given point in the domain to the 0-th

level-set hyperspace:

d(x,Γ) = inf
y∈Γ

d(x,y),

Figures 3.4.1 and 3.4.1 give an example of such interface representation and a sample

level-set function, respectively.
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Figure 3.2: (left) A Voronoi mesh is fitted to the surface of a membrane in 3D. (right)
The level-set representation of a single cell on the dual adaptive Cartesian grid at
levels (4, 6). The membrane is resolved at the highest resolution while farther regions
are at lower resolution. Also, the level-set function φ is negative inside the cell (cooler
colors) and positive outside the cell (warmer colors).

3.4.2 Octree data structure and refinement criterion

Simulating a large number of biological cells in three spatial dimensions requires

minimizing the total number of degree of freedom without loss of accuracy. As the

physical variations in the solution occur close to the membrane, one needs more nodes

to capture the physics at the vicinity of the biological cells compared to farther regions.

We utilize the adaptive Cartesian grid based on Quad-/Oc-trees [77, 78]. A “Quad-/Oc-

tree” is a recursive tree data structure where each node is either a leaf node or a parent

to 4/8 children nodes. The Octree is constructed by setting the root of the Octree to

the entire computational domain. Then higher resolutions are achieved by recursively

dividing each cell into 8 subcells (or 4 subcells in the case of Quadtrees). We use the

following refinement criteria introduced by [79] and extended by [80] to orchestrate this

partitioning of space:

Refinement/coarsening criterion: Split a cell (C) if the following inequality ap-
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plies (otherwise merge it to its parent cell):

min
v∈vertices(C)

|φ(v)| ≤ Lip(φ) · diag-size(C), (3.6)

where we choose a Lipschitz constant of Lip(φ) ≈ 1.2 for the level-set φ. Further-

more, diag-size(C) stands for the length of the diagonal of C and v refers to its vertices.

Intuitively, the use of the signed-distance function in equation (3.6) translates into a

refinement based on distance from the interface. This process is depicted in figure 3.4.2.

An Octree is then characterized by its minimum/maximum levels of refinement. Figure

3.4.2 illustrates an example of a levels (3,8) tree meaning the minimum and maximum

number of cells in each dimension are 23 = 8 and 28 = 256 respectively.

Figure 3.3: Illustration of an Octree mesh and its data structure. (left) Two levels
of refinement are illustrated. (right) A portrait of 8 levels of refinement in practice.
Note that each dimension is divided into at most 28 = 256 cells.

Note that if larger macromesh is used these numbers will be multiplied by the

macromesh number; e.g. if one sets nx = 2 for levels (3, 8) then the number of cells

in x-direction will be twice as before, i.e., bound between 16 and 512 instead. This is

the case in all of the simulations in this work.
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3.4.3 Parallel framework

We utilize the parallelism scheme introduced by Mirzadeh et al. [81]. This scheme is

built upon the p4est software library [82]. p4est is a suite of scalable algorithms for

parallel adaptive mesh refinement/coarsening (AMR) and partitioning of the computa-

tional domain to a forest of connected Quad-/Oc-trees. The partitioning strategy used

in p4est is illustrated in figure 3.4. This process is [82]:

• A uniform macromesh is created;

• A forest of Octrees is recursively constructed using all processes;

• The produced tree is partitioned among all processes using a Z-ordering; i.e., a

contiguous traversal of all the leaves covering all the octrees.

The Z-ordering is then stored in a one dimensional array and is equally divided be-

tween the processes. This contiguous partitioning optimizes the communication overhead

compared to the computation costs when solving equations in parallel. To perform the

discretizations derived for this problem, we need to construct the local Octrees from

the one dimensional array of leaves. To this end, following the method suggested by

Mirzadeh et al. [81], we construct a local tree on each process such that the levels of its

leaves matches that of the leaves produced by the p4est refinement. This is because

p4est does not provide the vertical structure, and we need to be able to find a cell

containing a point quickly, in O(log(N)). Each process stores only its local grid plus a

surrounding layer of points from other processes, i.e., a ghost layer.

3.4.4 Quasi-random cell distribution

To computationally capture the effects of a large aggregate of cells under the influence

of an external electric stimulant, first we need to efficiently mimic the randomness in the
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Figure 3.4: A “forest” composed of two Quadtrees T0 and T1 (left) partitioning
the whole geometric domain following a Z-ordering of all the octants in the domain
(center). The partitioning is performed such that each process receives equal (±1)
number of contiguous octants traversing the leaves from left to right (right). Here
there are four different processes depicted by four different colors.

distribution of the cells while simultaneously constraining the minimum distance among

the cells. In fact, for the purposes of this work we need to simulate tens to hundreds of

thousands of cells in a relatively small computational domain if we are to observe the

relevant aspects of electropermeabilization at the tissue scale.

To this end, we distribute the cells using the quasi-random numbers generated by the

Halton Quasi Monte Carlo (HQMC) sequence [83, 84, 85, 86]. Quasi-random sequences

are more uniformly distributed than the well-known pseudo-random sequences as illus-

trated in figure 3.5. As seen in this figure, while uniform pseudo-random numbers suffer

from local clustering and voids, the HQMC sequence spans the space more uniformly.

Mathematically, the uniformity of a sequence is measured by its “discrepancy” which is

measured by comparing the number of points in a given region of space with the number

of points expected from an ideal uniform distribution [83]. The quasi-random sequences

are also called low discrepancy sequences as they exhibit a more uniform spatial cov-

erage. Remarkably, the low discrepancy characteristic is inherently built in the HQMC

algorithm, as opposed to a pseudo-random number generator that would require further

processing.

In our approach, we locate each cell at the next element in a three dimensional HQMC

sequence while skipping the elements that violate the minimum distance criterion to the
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previously located cells. In contrast to a pseudo-random based technique, such rejections

are very rare due to the intrinsic low discrepancy of the HQMC sequence, and hence

the efficiency of our technique. As the number of cells increases in our simulations, it

becomes computationally prohibitive to generate such a non-overlapping pseudo-random

distribution of cells at high densities. Our experiments with HQMC demonstrate that a

moderately dense non-overlapping cluster of cells can be generated at least hundreds of

times faster than a pseudo-random number based technique. Notably, initializing higher

cluster volume fractions (a volume fraction of n =
volume of the cells

volume of the spheroid
≈ O(10−1) )

seems completely impossible using pseudo-random number generators.

Figure 3.5: (left) Quasi-random number distribution versus (right) pseudo-random
number distribution. The quasi-random sequence immediately exhibits a much more
uniform distribution of points.
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3.4.5 Discretization of the equations - the Voronoi Interface

Method

Figure 3.6: (left to middle) An Octree is converted into an adaptive Voronoi mesh such
that Voronoi faces are fitted to the interface. In our framework the computational
domain is partitioned among different processors as demonstrated by different cell
colors. (right) In our discretization, up corresponds to the normal projection of nodes
i and j on the interface (Γ). This point is equidistant to nodes i and j. s is the
common length (or area in 3D) of the interface between cells i and j. d is the distance
between i and j.

The main difficulty in solving the equations of section 3.3.2 is related to the non-trivial

boundary conditions and discontinuities across the cells’ surface. Guittet et al. [87] intro-

duced the Voronoi Interface Method (VIM) to solve elliptic problems with discontinuities

on irregular interfaces. Their proposed method exhibits second order accuracy by solving

the problem on a Voronoi mesh instead of the given Cartesian grid. Also, Guittet et al.

[70] extended the VIM to the case of the electropermeabilization problem including the

aforementioned non-trivial boundary condition in the discretization. In this work, we

implement their modified approach in parallel. In this section we briefly highlight this

technique.

The solver presented by Guittet et al. [87] is based on building a Voronoi mesh using
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the freely available library Voro++ [88]. The Poisson equation is then solved on a Voronoi

mesh that coincides with the irregular interface. This introduces additional degrees of

freedom close to the interface and on either side that are equidistant to the interface

by design. Briefly, the procedure for converting an initial adaptive Cartesian mesh to

a conforming Voronoi mesh starts by adopting the Cartesian nodes as cell centers, i.e.

known as Voronoi seeds, for a Voronoi mesh covering the computational domain. Next, if

a Voronoi cell crosses the interface we replace the corresponding degree of freedom with

a pair of equidistant points on either sides of the interface. This procedure provides a

conforming Voronoi tessellation of the domain such that interfaces are tiled with collec-

tions of faces from adjacent Voronoi cells. For more details on generating the Voronoi

mesh we refer the interested reader to [87]. Here, we present the numerical scheme of

Guittet et al. [70] for completeness using the nomenclature given in Figure 3.6.

First we discretize the boundary condition (4.6c) using a standard Backward Euler

scheme:

Cm
[u]n+1 − [u]n

∆t
+ Sn [u]n+1 = (σ∂nu

n+1)Γ, (3.7)

which can be rearranged to get the membrane voltage jump:

[u]n+1 =
Cm [u]n + ∆t(σ∂nu

n+1)Γ

Cm + ∆tSn
, (3.8)

In the second step, we discretize the continuity in the electric flux boundary condition

(4.6b):

σe
uep − uei
d/2

= σc
ucj − ucp
d/2

, (3.9)

Replacing ucp by its definition uep−[u]n+1 in the above expression, coupling it with equation
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(3.8) and rearranging the terms, the final expression of uep reads:

uep =

(
σeuei + σcucj +

σcCm [u]n

Cm + ∆tSn
+

σcσe∆t

(Cm + ∆tSn)d/2
uei

)
/

(
σc + σe +

σcσe∆t

Cm + ∆tSn)d/2

)
,

(3.10)

This equation for uep is then included in the discretization of the Laplace equation on

the Voronoi cells. Finally, we get the following expression for the potential around the

interface:

∑
k∈{∂C\Γ}

skσ
eu

e
k − uei
dk

+ sσ̂
uj − ui
d/2

= sign(φi)sσ̂
Cm [u]n

(Cm + ∆tSn)d/2
, (3.11)

where

σ̂ =
σcσe

σe + σc + σeσc∆t
(Cm+∆tSn)d/2

, (3.12)

and “sign” refers to the signum function. This discretization leads to a positive definite

linear system as all coefficients are positive and the jump appears only on the right-hand

side of this system. We emphasize that the points far from the interface are discretized

according to a standard finite volume discretization on the Voronoi grid. Integrations are

performed with the geometric approach of Min and Gibou [?]. Note that finite volume

discretizations are flexible with respect to spatial variations of the Voronoi mesh topology

as they only utilize values on adjacent Voronoi cell centers, as well as values of the jump

on the faces midway between pairs of Voronoi cells around the interface. Despite finite

difference discretizations, this aspect circumvents challenges that arise when treating the

faces between coarser and finer grids.
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3.5 Numerical Results

3.5.1 Qualitative results

First, we present numerical results illustrating the capabilities of our approach in cap-

turing the interaction between the cell membrane and the applied electric field. Electric

fields provide a feedback channel for the cell membranes to interact over long distances

and leads to environmental dependence of electropermeabilization within the aggregate

environment.

Second, to demonstrate this effect on a biologically relevant construct and to show-

case the computational capabilities of our approach, we consider the case of a spherical

aggregate of cells confined in the center of a computational box of size 1mm on each side.

The volume fraction of cells is set to n = 0.13 corresponding to 27, 440 well-resolved cells.

The minimum distance between each pair of cells is set to 3×R0 where R0 is the average

radius of a cell. At present, we only intend to randomly distribute the spheroids with

varying eccentricities and orientations. Therefore, this minimum threshold was adopted

conservatively to avoid overlap between cells. A denser configuration would require to

account for the orientation of each neighboring cell to be able to fill the free space more

compactly.

The different parameters defining the geometry and properties of the cells are tab-

ulated in table 3.1. The computational configuration used to run this simulation is

tabulated in table 3.2. The resulting cell aggregate is illustrated in figure 3.7, with figure

3.5.1 depicting the electric potential (the aforementioned u field) across the domain and

figure 3.5.1 showing the partitioning between the 2048 processors (identified with dif-

ferent colors - for visualization purposes, every adjacent 8 processors are displayed with

same color). Figure 3.8 provides a cross section of the domain as well as a zoom that

demonstrates that the cells are well-resolved.
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Property Symbol Value Units

Average cell radius R0 7 µm

Cell geometric parameters range

Cell radii r0 0.57-1.43 ×R0 µm

semi-axes a, b, c 0.8-1.2 ×R0 µm

Membrane electric parameters

Capacitance C 9.5× 10−3 F/m2

Extracellular conductivity σe 15 S/m

Intracellular conductivity σc 1 S/m

Voltage threshold for poration Vep 258× 10−3 V

Membrane surface conductivity S0 1.9 S/m

Porated membrane conductance S1 1.1× 106 S/m2

Permeabilized membrane conductance S2 104 S/m2

Poration timescale τep 10−6 s

Permeabilization timescale τperm 80× 10−6 s

Resealing timescale τres 60 s

Threshold for poration Xep 0.5 -

Imposed electric pulse

Electric field magnitude |E| 40 kV/m

Table 3.1: Parameters of our simulation.
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Property Value

Macromesh in x,y & z directions nx × ny × nz 2× 2× 2

Minimum/Maximum levels of refinement (lmin, lmax) 2× 9

Total number of voronoi cells 224, 218, 754

Total number of nodes 194, 666, 253

Number of processors 2048

Total time of simulation ≈ 9 hours

Number of timesteps 44

Total physical time of the simulation 2.25 (µs)

Table 3.2: Computational aspects of our simulation.

Figure 3.7: Illustration of a cell aggregate immersed in an external electric field. (left)
colors represent the electric potential of the membranes with red being higher inten-
sities and blue lower intensities. We note that we have set the absolute value of the
bottom potential to “0” (ground state) while the top electrode is at our desired potential
difference. (right) partitions used in this simulation. Each color represents a group of
8 processors used in this simulation.

59



Mesoscale simulations of cell aggregate electroporation Chapter 3

Figure 3.8: Zoom into the simulation results. (left) A cross section of the simulation
box. The cells are distributed uniformly throughout the cell aggregate. The color
corresponds to the leaf-levels in the Octree data structure. (right) A zoom into the
simulation box, cells are colored by their transmembrane potential difference.

3.5.2 Convergence test and mesh independence

Figure 3.9: The configuration used for convergence tests. (a) A circular cross sec-
tion of the cell demonstrates how the electric potential field experiences a jump when
passing through the interface. (b) The jump is measured on the Octree mesh by first
extrapolating solutions on each side to the opposite side and then subtracting the ex-
trapolated values on the nodes around the interface.
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To validate the numerical reliability of our implementation, we investigate the spatio-

temporal convergence of the transmembrane potential jump, which is the key variable

that couples the electropermeabilization equations. For this purpose, we consider a single

spherical cell and track the evolution of the transmembrane potential jump [u] at a π/4

radian distance from the cell’s equator over time. Figure 3.9 illustrates the setup used

for this purpose, as well as the refined mesh used. We use the dynamic linear case with

S = SL, for which the transmembrane jump, [u], satisfies:

C
∂[u]

∂t
+ SL[u] = σc

∂u

∂n
. (3.13)

In this case, the exact solution is available for our validations and reads:

[u](t, θ) =
A

SL −B
g

(
1− e−

SL−B

C
t

)
cos(θ), (3.14)

where g = ER2 and θ is the polar angle measured from the north pole. Also, A and B

are given by:

K−1 = R3
1(σe − σc) +R3

2(2σe + σc), (3.15a)

A = 3σcσeR
2
2K, (3.15b)

B = −σcσe(R2
1 +

2R3
2

R1

K). (3.15c)

In our tests, we use R1 = 50µm and R2 = 600µm.

We perform the spatial and temporal refinements separately. First, we compare the

results from simulations with different timesteps at a fixed resolution level of (lmin, lmax) =

(3, 7). In figure 3.5.3 we show how the jump converges as we decrease the time step

by a factor of 2 each time. We performed our simulations with time steps of ∆t =
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1 × 10−8 (s), 2 × 10−8 (s), 4 × 10−8, 8 × 10−8 (s) and only for the linear case also with

1.6 × 10−7 (s). This is because in the nonlinear case the latter time step is too big to

capture the width of the peak in the jump profile. Also, in figure 3.5.3 we increase the

maximum refinement level while keeping the minimum refinement level fixed at lmin = 3

and the time step constant at ∆t = 2 × 10−8 (s); these are plotted with solid lines.

Additionally, we perform identical simulations while simultaneously increasing both the

minimum and maximum levels of refinements; these are shown with dashed lines. This is

motivated by the observation that the solid lines in figure 3.5.3, corresponding to a fixed

lmin = 3, converge to the exact solution at slower rate than the dashed lines. Maintaining

low lmin while enhancing resolutions at the interface does not improve accuracy because

errors produced at coarser grids far from interface become dominant in the simulation

box, making further refinements useless when considering the error in the maximum

norm. Even though both cases demonstrate convergence, increasing both the minimum

and maximum refinement levels naturally exhibits a better convergence behavior.

We also demonstrate that for the full nonlinear dynamic case, the convergence of our

numerical results is achieved both in time and space in figures 3.5.3 and 3.5.3 respectively.

In the nonlinear case, we choose a constant electric field intensity of E = 40kV/m across

the domain in the z-direction. The size of the domain is 400µm in each spatial dimension.

For the temporal convergence, we performed our simulations at fixed resolution levels of

(3, 7) and for the spatial convergence we picked a fixed timestep of ∆t = 2 × 10−8(s)

while varying the maximum refinement level.

In the nonlinear case, convergence in time seems more problematic. As noted in [70],

this is expected due to the highly nonlinear temporal nature of the equations, while the

equations are spatially well-behaved. This implies that smaller timesteps are preferable

over finer spatial resolutions for decreasing the numerical errors. Hence, we observe the

system’s response converges both in linear and nonlinear cases. We also note that in real
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case simulations that we perform the timestep is determined after setting the mesh at

the desired resolution levels. Then in each simulation, the time-step is determined from

∆t = ∆xmin/dtscaling.

3.5.3 Performance and scalability of the approach

We show a simple test of the performance of the parallel approach for real applications

of interest. We solve the same cell aggregate problem introduced in section 3.5 on different

numbers of processors while keeping all other parameters fixed. This test captures the

full problem complexity and hence enables a reasonable assessment of the computational

efficiency and scalability of the approach. Constructing the Voronoi mesh at each time

step and solving the linear system arising from the discretization introduced in section

3.4.5 constitute the bulk of the computational expense of our approach. Figure 3.11

demonstrates that our approach tackles these tasks excellently up to 4096 processors,

which is the upper limit to our current account on the “Stampede2” supercomputer.

In figure 3.11, we also show the scaling test for a smaller cell density in order to

demonstrate the capabilities of our implementation at lower problem sizes, where com-

munication overhead easily exceeds that of computational time. Interestingly, we find

that our approach exhibits excellent scalability even for quite small problems.

We should emphasize that parallelization is only one avenue to simulating larger

problems in our methodology. Another significant aspect is the use of adaptive mesh

refinement using Octree grids. This introduces a significant reduction in the size of the

grid from ≈ 230 nodes to 194, 666, 253 nodes in this example. We refer the interested

reader to [1] for a quantitative study of this enhancement. This consequently advances

the limits of the possible simulation scales with the current state-of-the-art available

resources.
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Figure 3.10: Convergence analysis of section 3.5.2. Figure (a) illustrates the temporal
convergence of the TMP for five different time steps at a fixed grid size. Figure (b)
demonstrate convergence in space consistent with the exact solution. Figures (c,d) are
the temporal and spatial convergence for the full nonlinear case, respectively. Zoom-in
figures are included in each plot for clarity.
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Figure 3.11: Scaling of the wall-clock time when increasing the number of processing
cores. In both cases, the size of the problem is fixed and only the number of processors
varies. The ideal scaling is shown with the dashed blue line. Our algorithms scale
well for both small and large simulations. (left) A small simulation with 2, 837, 427
nodes at levels (2,9) containing 313 biological cells. (right) Large aggregate with over
228, 000, 000 nodes containing 31, 320 biological cells. In this case it is not possible to
simulate large aggregates on small number of processors due to memory limitations,
which we refer to as “Not Possible”.

3.6 Mesoscale Phenomenology

Cell aggregates are complex systems composed of many cells that each follow a set

of principles and collectively reach an equilibrium state with their environment. Cell

aggregates exhibit emergent phenomena [89], i.e. “novel and robust behaviors of a system

that appear at the limit of some parameter in the system” [90, 91]. In our case, a weak

form of emergence appears at some finite limit of system size. These novel features are

robust against certain details at the smaller scales of the aggregate; viz. in the sense

that via the process of coarse-graining the renormalized parameters describing theories

at different scales always converge to certain fixed values in natural systems (cf. [92]).

This generic feature of complex systems is recognized as a fundamental principle of nature
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[93]. Recently the descriptive framework that arises by relying on this aspect of complex

systems has been discussed by [5, 6].

In the study of complex systems, computational strategies provide powerful or in some

specific cases the only method to exploit the so called “weak emergent” phenomena, first

described by Bedau 2002 [94]. Weak emergence is attributed to those physical aspects

of complex systems that, in practice, only appear through computer simulations. This is

due to the nonlinearity of the micro-level equations and the complex interactions between

its constituent parts. For a comprehensive review of this topic we refer the interested

reader to Fulmer et al. [95].

As in most large-scale numerical simulations, our main purpose is to study the non-

local effects that are not already encoded locally in the governing partial differential

equations, but are encrypted in the spatial domain as a whole and influence the overall

behavior via feedback processes among elements. In the case of electroporation, such

influences are in part due to the heterogeneous cell topologies, long range electrostatic

interactions, and the overall shape of the aggregate among other factors. In this section,

we aim to show that macro-level features of cell aggregates are recovered in our method-

ology. We first demonstrate the influence of cell shape on the macro-level properties of

the aggregate, and will present first results for a tumor-like aggregate.

3.6.1 Effect of biological cell shape

Biological cells come in different shapes. We place three simple types of cells in the

same experimental setup and compare their bioelectric behavior. To this end, we choose

to place oblate, spherical and prolate cells with identical volume on a 7 × 7 × 7 regular

lattice. Figure 3.12 shows the configurations used in our experiments, and the effect of

cell shape is compared in figure 3.13. One can observe that cells with prolate topology
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exhibit higher levels of permeabilization, spheres fall in between and oblate spheroids are

the least electroporated. This is consistent with previous reports of [70], and may be due

to higher effective cross section area exposed to the influx of the electric field.

Figure 3.12: Arrays of cells used in section 3.6.1. (left) oblates, (middle) spheres, and
(right) prolates with equal volumes.

Figure 3.13: Effect of cell shape on the parameters of the electroporation model.
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3.6.2 Shadowing effect

Shadowing refers to the adverse effect of upstream cells to the permeabilization levels

exhibited by their downstream counterparts. We performed experiments on a controlled

sample of 125 spherical cells in a cubic lattice centered in a bounding box with twice the

size of the lattice. We place cells symmetrically in a 5× 5× 5 array as depicted in figure

3.6.2. We compare the surface average of X2 parameter over the surface of all cells in

the top, center, and bottom rows. The results are given in figure 3.6.2.

As expected the middle row is less permeabilized, and cells closer to the electrodes

(in this specific configuration) exhibit higher levels of permeabilization. In particular,

this observation is in accordance with the experimental data of spheroid electroporation

of Rols et al. [96]. Note that owing to the reflection symmetry, top and bottom slices

are in identical environments, this is also reflected by the overlapping measurements for

their permeabilization curves as in figure 3.6.2.

Figure 3.14: Shadowing effect.

So far we have only considered regular lattice configurations, in the remaining of this
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work, we focus on the tumor-like demonstration case that is depicted in figure 3.7. To

date, studying computationally this relevant biological structure is only possible with the

computational approach introduced in this manuscript.

3.6.3 Electroporation fraction

In experiments, one can measure the fraction of cells that are electropermeabilized

more than a detectable threshold. In order to compare our numerical results with exper-

iments, we set the minimum detectable threshold for electropermeabilization to different

values:

Sm ≥ (100 or 1, 000 or 10, 000 or 100, 000)SL.

Then, we measure the fraction of total electropermeabilized surface area of all cells nor-

malized by the total surface area of the cells.

Figure 3.15 depicts the permeabilization pattern throughout a dense suspension (vol-

ume fraction of 13%), and figure 3.16 quantifies the evolution of the membrane elec-

tropermeabilization fraction. Remarkably, we observe that the maximum value of this

fraction under a short 40kV/m electric pulse reaches ≈ 70%, 65%, 50% and 5% for the

given thresholds respectively. This is in qualitative agreement with the experimental

results of Pucihar et al. [97].
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Figure 3.15: Permeabilization pattern in a heterogenous aggregate. (a) Cells are mostly
permeabilized along their vertical (z-) axis, (b) is a side view of the aggregate, and
(c) is a top-view of the cell aggregate. Hotter colors represent higher values of cell
membrane conductance.

Figure 3.16: Electropermeabilization fraction over time for a 1µs square pulse of
40kV/m. Figures on the right panel are color coded by conductance, with hotter colors
encoding higher conductance levels.

The evolution of the relevant electropermeabilization parameters including membrane

conductance (Sm), level of membrane poration (X1), level of membrane permeabilization

(X2) and absolute value of the transmembrane potential (TMP) are shown in figure

3.17 for reference. One observation is that the transmembrane voltage does not vanish
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spontaneously after the external pulse is turned off; this is due to the capacitive nature

of the cell membranes that maintain a slowly vanishing electric field in the environment.

Figure 3.17: Time evolution of relevant parameters averaged over the membranes of
the 27, 440 cells in our simulations. The applied pulse is turned off at 1µs.

The signature of the nonlinear model underlying the evolution of the transmembrane

voltage is also evident in these figures. We present three snapshots of the transmembrane

potential in the aggregate in figure 3.18. These snapshots capture the initial overshoot in

the transmembrane voltage (cf. figure 3.17) and then the saturation phase that follows.

These snapshots are color coded according to the transmembrane potential.
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Figure 3.18: Time evolution of the transmembrane potential in a cell aggregate. Hotter
colors correspond to higher values of transmembrane voltage.

3.6.4 Impedance of the aggregate

In these simulations we apply a constant and uniform potential difference between the

electrodes. The electric field will adapt to the geometrical configuration of the domain

as well as the cells, while the cell membranes also distort the field. The distortions in the

observed electric field close to the boundaries, where the electrodes are located, produce

a different profile for the “needle potential” that the cell aggregate experiences. Needle

intensity is defined as:

I(t) =

∫
E1
σe∂nV (t, x) · nds, (3.16)

where E is one of the electrodes where the voltage is imposed. The evolution of the needle

intensity for the tumor-like aggregate is shown in figure 3.6.4.

Furthermore, one can measure the overall permeability within the environment by

measuring the impedance of the sample detected at the electrodes. We define the

impedance of the cell aggregate as:

Z(t) =

∫
E1−2

V (t, x)ds/
∫
E1 ds∫

E1 σ∂nV (t, x) · n ds
, (3.17)
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where E1 and E2 are either the top or the bottom electrode, and E1−2 is the difference of

the integral between E1 and E2 electrodes. Note that the exact choice of labels does not

change the result due to continuity of current through the medium.

The time evolution of the impedance of the aggregate is shown in figure 3.6.4. Com-

parison with figure 3.17 suggests a strong negative correlation between impedance and

the overall degree of permeability. We find that even though permeabilized cells have

a huge increase of their membrane conductance (from 1 to 104 S/m2), as illustrated in

figure 3.17, the relative impedance of the aggregate drops about ≈ 0.15% after 1µs of a

constant external electric pulse.

Figure 3.19: (left) time evolution of the needle intensity, as well as (right) the re-
sulting aggregate impedance under a constant external potential difference. Vertical
dashed lines mark the times t = 0.1 [µs], t = 0.2 [µs] and t = 1 [µs] for which the
corresponding transmembrane voltages are visualized in figure 3.18.

3.7 Conclusion

We have presented a computational framework for parallel simulations of cell ag-

gregate electropermeabilization at the mesoscale. We used an adaptive Octree/Voronoi
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mesh along with a numerical treatment that preserves the jump in the electric potential

across each cell’s membrane. The core aspects of our methodology are its efficiency and

excellent scalability, making it possible to consider meaningful simulations of tumor-like

spheroids, as opposed to previous serial approaches that were not able to go beyond

micro-scale simulations. We have presented preliminary numerical results on cell aggre-

gate electropermeabilization that are in qualitative agreement with experimental obser-

vations. This work thus paves the way for a wide range of comparisons with biological

experiments, as it makes possible the multiscale understanding of electroporation from

the cell to the tissue.
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Chapter 4

On the interfacial polarization of

heterogeneous systems

4.1 abstract

We present a theoretical framework to model the electric response of cell aggregates.

We establish a coarse representation for each cell as a combination of membrane and

cytoplasm dipole moments. Then we compute the effective conductivity of the resulting

system, and thereafter derive a Fokker-Planck partial differential equation that captures

the time-dependent evolution of the distribution of induced cellular polarizations in an

ensemble of cells. Our model predicts that the polarization density parallel to an applied

pulse follows a skewed t-distribution, while the transverse polarization density follows a

symmetric t-distribution, which are in accordance with our direct numerical simulations.

Furthermore, we report a reduced order model described by a coupled pair of ordinary

differential equations that reproduces the average and the variance of induced dipole

moments in the aggregate. We extend our proposed formulation by considering fractional

order time derivatives that we find necessary to explain anomalous relaxation phenomena

75



On the interfacial polarization of heterogeneous systems Chapter 4

observed in experiments as well as our direct numerical simulations. Owing to its time-

domain formulation, our framework can be easily used to consider nonlinear membrane

effects or intercellular couplings that arise in several scientific, medical and technological

applications.

4.2 Introduction

Effects of external electric fields on heterogeneous systems have been of great scien-

tific and technological importance throughout the past century. These systems include

composite materials, colloidal suspensions, and biological cells. In the case of biological

cells, electric fields have found several applications for cell fusion [98, 99], electrorota-

tion [100, 101], dielectrophoresis [102, 103] and cancer cell separation [104, 105], elec-

troporation [106], levitation [107] and cell deformation [108]. For an early review of its

applications in biotechnology and medicine we refer to Markx and Davey (1999) [109].

More recently, transmembrane potential (TMP) patterns that emerge in multicellular

living organisms have gained extra attention due to discovery of their regulatory role

in development and regeneration; we refer to the review of Levin et al. (2017) for a

comprehensive overview on developmental bioelectricity [110]. Even though modern re-

search on TMP manipulations are focused on molecular based treatments, it has been

long known that TMP patterns altered by external electric fields could influence devel-

opment [111], embryogenesis [112, 113] or wound healing [114]. Therefore, developing a

predictive and generalizable mathematical model to understand the effects of different

cellular mechanisms on the tissue level bioelectric patterns poses promising opportunities

in bioengineering.

In all of these applications, it is essential to have a precise knowledge of the TMP

induced over cell membranes, especially in cell aggregates that are composed of tens
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of thousands of cells with a heterogeneous mix of morphologies and electrical proper-

ties. Even though much is known about single cell electric interactions, a theory that

predicts a detailed distribution of transmembrane potentials within cell aggregates has

been missing. In this work, we present a novel theoretical framework based on a Fokker-

Planck description, for tracing the time evolution of the probability density of multicel-

lular polarizations in response to arbitrary electric stimulations. We further introduce

a moment-based analytic reduced-order model of the proposed Fokker-Planck equation

that provides statistics of transmembrane potentials with minimal computational ex-

pense. Importantly, besides multicellular systems, our theory is applicable to a broad

range of systems such as shelled colloidal particles, emulsions and composite materials

[115]. Moreover, it can be extended to include the effects of membrane nonlinearities [3]

or intercellular couplings [116], counterion polarizations, and eventually real-time pulse

optimization, which is of great benefit to emerging biomedical treatments using electric

fields such as electrochemotherapy.

4.2.1 Physical bioelectric processes

Electrical properties of biological tissues have been extensively investigated for the

last two centuries since the discovery of Ohm’s law. A comprehensive historical overview

of different aspects of biological dielectric response (including basic concepts, tabulated

data, underlying molecular processes and effective cellular interactions) is covered in the

surveys of Schwan (1957) [117], Stuchly and Stuchly (1980) [118], Pethig (1984) [119],

Pethig and Kell (1987) [120], Foster and Schwan (1989) [121], McAdams and Jossinet

(1995) [122], Gabriel (1996) [123], Kuang and Nelson (1998) [124], with more recent

reviews on its different applications such as electroporation provided by Kotnik et al.

(2019) [125].
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Early research on the electric response of bulk biological materials revealed that tis-

sues exhibit resistive and capacitive behaviors. Experiments showed an early peak in

current in response to a step voltage, which could be attributed to an increasing tis-

sue resistance, or from an induced counter-potential polarization. Furthermore, with

the advent of high frequency apparatus it was possible to examine the high frequency

response of tissues, which led to the recognition that tissues exhibit low resistance at

higher frequencies and the dielectric response of tissues was determined by different phys-

ical processes at each frequency regime. Bulk electric properties are mainly determined

by cell membranes and cellular structures. At the cellular level, three main physical

processes, namely interfacial polarization, ionic diffusion and dipolar orientation of polar

molecules, are identified to play key roles in dielectric dispersions at different frequency

regimes [117]. While the origin of α- and γ-dispersions are relaxation processes in the

bulk phases of the material, β-dispersions originate from internal boundary conditions

imposed by interfaces separating different phases; this is the focus of the current work.

Below, we briefly review these mechanisms.

• α-dispersion: The main factor that contributes to the α-dispersion (at audio or

sub-KHz frequencies) is the ionic diffusion in the electric double layer in the immediate

vicinity of charged surfaces as well as in the bulk. α-dispersion is characterized with high

dielectric constants at low frequencies. Schwan first observed this mode of polarization

at low frequencies in biological tissues [117] and later, Schwan and co-workers showed

that this effect is also observed in non-biological colloids [126]. Schwarz (1962) [127] was

the first to develop a theory that took into account the counterion polarization around

colloidal particles suspended within electrolytes. Schwarz showed these displacements

could be modeled by an additional “apparent” dielectric constant that reach high values

at low frequencies. Schwarz’s method did not consider diffusion in the double layer itself,

and was later extended by Einolf and Carstensen (1971) [128, 129] to include diffusion
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on both sides of the membranes. Dukhin and Shilov (1974) [130] proposed a more accu-

rate treatment by considering ionic diffusion in the bulk, rather than just the thin layers

around charged particles (see also the review by Mandel and Odijk [131]). A simpli-

fied formulation of Dukhin’s model that admits analytical solution was given by Grosse

and Foster [132], which helped to show that the corresponding Cole-Cole plot is broader

than the Debye’s model, indicating that counter-ion polarization is partly responsible for

the observed anomalous relaxation of biological matter. In short, counter-ion polariza-

tion theories explain α-dispersion and predict high permittivities at low frequencies that

exhibit broad relaxation behaviors.

• β-dispersion: Interfacial polarization dominates the dielectric properties of tissues

at β-dispersion (radio frequencies from tens of KHz to tens of MHz range, timescales

determined by membrane resistance and capacitance) as well as the dielectric properties

of colloids and emulsions. Biological mixtures of interest to us have a triphasic dielec-

tric structure with conductive parts composed of a cytoplasm covered by a membrane

immersed in a continuous medium. Historically, dielectric theories of interfacial polar-

ization began by considering diphasic suspensions in the seminal treatise of Maxwell

(1873) [133] and later Wagner (1914) [134]. In 1925, Fricke [135] developed a dielectric

theory for spherical particles surrounded by nonconductive membranes and extended it

to membrane-covered ellipsoidal particles in 1953 [136]. Maxwell-Wagner theory has the

following limitations: (i) it is only valid at very low concentrations and assumed that the

local electric field was equal to the external electric field, (ii) the interior of particles were

assumed to be at constant potential, and (iii) the external field was modeled as if the

particle was a perfect insulator. Hanai (1960) [137] developed an interfacial polarization

theory that was valid at high concentrations, by assuming Wagner’s relation holds dur-

ing successive additions of infinitesimally small quantities of the disperse phase. Hanai

and co-workers (1979) [138] later generalized their approach to the case of suspensions
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of shelled spheres and Zhang et al. (1983-1984) [139, 140] showed that the theory could

explain experiments with polystyrene microcapsules. This strategy was applied to three-

phase structures in 1993 [141]. We shall emphasize that even though Hanai’s approach

is advantageous over Wagner’s theory as it holds its validity to high concentrations, it is

still based on the non-conductive assumption for membranes and, more importantly, it is

not clear how to consider nonlinear variations in the membrane conductance during the

application of electric pulses similar to the case of electroporation. Our theory builds on

this line of work and aims to address these shortcomings by constructing a time-domain

model for interfacial polarization in cell aggregates. Unlike the aforementioned works

that are limited to modeling average properties at the aggregate level, our approach cap-

tures detailed information about the distribution of induced polarizations as well as their

time-dependent evolution.

• γ-dispersion: The third mechanism that is responsible for the γ-dispersion (mi-

crowave frequencies from MHz to GHz range) is the dipolar orientations of permanent

polar molecules, e.g. water molecules and other macromolecules. Under an applied

electric torque and opposed by thermal agitations in the medium, polar molecules un-

dergo rapid reorientations towards thermal equilibrium and exhibit dielectric relaxation.

This phenomenon is described by Debye’s theory (1929) [142], which is inherently a

Fokker-Planck equation that describes the evolution of the probability density of dipo-

lar orientations under an applied pulse. Our theory presented here is inspired by this

strategy.
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4.2.2 Equations of interfacial polarization

In its general form, Maxwell’s equations in matter read

∇ ·D = ρf (4.1)

∇ ·B = 0 (4.2)

∇× E = −∂tB (4.3)

∇×H = Jf + ∂tD (4.4)

where E and B are the electric and magnetic fields, respectively, D = εE, H = µB and

the total current is defined by J = Jf + ∂tD. However, electric interactions within a

multicellular system can be modeled under the quasi-electrostatic assumption, i.e. when

the wavelength of the stimulating electric pulse is larger than the cell size. Under the

quasi-electrostatic assumption, the induced magnetic fields are negligible and therefore

the electric field is curl free and we may define the electric potential u by the relation

E = −∇u. Also, computing the divergence of (4.4) and using (4.1), we have that

∇ · (σ∇u) =
∂ρf

∂t
, where in the absence of a net free charge density ρf , when only

interfacial polarization is present, the electric field is given by the solution of the Laplace

equation ∇· (σ∇u) = 0, and we can neglect the permittivity of the cytoplasm and of the

extra-cellular medium.

As for cells, we consider a shelled particle model with two concentric surfaces Γ±

forming a membrane with thickness h (see figure 4.1). The boundary conditions impose

that the electric potential must be continuous across the interfaces

uc(x
−) = um(x−), um(x+) = ue(x

+),
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Figure 4.1: Cell membranes are modeled with an array of parallel resistors and capac-
itors in a thin layer surrounding the cytoplasm. Here we consider a sharp interface.

with x± ∈ Γ± and that the normal component of the total current Jk = (σk+jωε0εk)Ek =

Λ∗kEk (with k = e,m and c referring to the extra-cellular medium, the membrane and the

cytoplasm, respectively) must be continuous across the boundaries:

Λ∗c∂nuc(x) = Λ∗m∂num(x), x ∈ Γ−,

Λ∗m∂num(x) = Λ∗e∂nue(x), x ∈ Γ+.

Note that Em · n = −[u]/h. This set of equations have been considered by Miles and

Robertson (1932) [143] for a single sphere. We further assume a thin membrane by setting

h/R1 → 0. The exact response of the TMP to a step pulse for an isolated sphere with

constant membrane conductance has been studied by many authors [144, 145, 146, 147,

148]. Even though these equations are not solved for arbitrary cell geometries, Kotnik

& Miklavćić [149] provide analytical solutions for the TMP over oblate and prolate cells
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Figure 4.2: A snapshot of the 3D spherical tumour composed of ∼ 30, 000 random cells
considered in this work. Cells are colored according to their TMP values, with redder
colors indicating higher positive TMP while bluer colors indicate lower negative TMP.
The Octree data structure is shown on an equatorial slice to emphasize the enhanced
resolutions close to cell membranes.

in the special case where the cell’s axes of symmetry is parallel to the applied field.

Qualitatively, they have shown that the maximum TMP increases with the equatorial

radius of spheroids, i.e. the radius perpendicular to the applied field. The authors

considered an insulating membrane to simplify the analysis; however it was shown in

experiments that this is not a valid assumption [150] and one has to consider changes

in membrane poration and permeabilization under an applied pulse. This re-structuring

of cells membrane under an electric field can be considered, for example, by adopting a

nonlinear phenomenological model for the membrane conductance [68]:

Sm(t, [u]) = SL + S1X1(t, [u]) + S2X2(t, [u]), (4.5)

where S0, S1 and S2 are the conductance values of the membrane in the resting, po-
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rated and permeabilized states, respectively. In this model, the level of poration and

permeabilization of the membrane are captured in the functions X1 and X2, which are

calculated as a function of the TMP by solving a set of nonlinear ordinary differential

equations. Overall, we therefore adopt the following boundary value problem to model

electric interactions in charge-free mixtures,

∇ · (σ(x)∇u) = 0, x ∈ (Ωc ∪ Ωe) (4.6a)

with boundary conditions,

[σ(x)∂nu] = 0 x ∈ Γ, (4.6b)

Cm∂t [u] + S(t, [u]) [u] = σ(x)∂nu x ∈ Γ, (4.6c)

u(t,x) = g(t,x) x ∈ ∂Ω, (4.6d)

and homogeneous initial condition,

u(0,x) = 0 x ∈ Ω (4.6e)

where we used [o] = oe − oc to describe the jump operator across the interface Γ in the

normal direction, σc, σe and σm are the conductivities of the cytoplasm, the extra-cellular

medium and the cell membrane, respectively. Note that σm ≡ Smh and ε0εm ≡ Cmh are

membrane conductivity and permittivity, respectively.

4.2.3 Direct numerical simulations

Numerical simulations can be used to directly investigate tissue-level properties of cell

aggregates emerging from the set of equations 4.6a–4.6e along with (4.5), when considered
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in a large heterogeneous environment. However, several computational challenges need

to be addressed in order to obtain guaranteed accuracy and convergence of the numeri-

cal results, while simultaneously considering large enough number of cells. Particularly,

imposing jump conditions on numerous irregular sharp interfaces requires efficient numer-

ical discretization methods along with scalable parallel computing algorithms for mesh

generation and storage as well as advanced linear system solvers and preconditioners.

In this vein, Guittet et al. (2016) [87] introduced the Voronoi Interface Method

(VIM) to solve Elliptic problems with discontinuities across the interface of irregular

domains. Basically, VIM utilizes an interface-fitted Voronoi mesh before applying the

dimension-by-dimension Ghost Fluid Method [151]. Importantly, VIM produces a linear

system that is symmetric positive definite with only its right-hand-side affected by the

jump conditions. The solution and the solution’s gradients are second-order accurate and

first-order accurate, respectively, in the L∞-norm. Later, Guittet et al. (2017) applied

VIM to the case of cell electroporation [70] in a serial computing environment. Recently,

Mistani et al. (2019) [2] extended these results to parallel computing environments and

considered a large tumour spheroid composed of ∼ 30, 000 ellipsoidal cells. Figure 4.2

illustrates a snapshot of this simulation with the transmembrane potentials depicted

over cell membranes. This simulation leveraged the suite of data structures and routines

provided by the Portable, Extensible Toolkit for Scientific Computation (PETSc) [152,

153, 154] using the Bi-CGSTAB solver [155] over the linear system preconditioned by

hypre [156] library. Creation and management of adaptive octree grids was handled by

p4est software library [157] along with voro++ [158] library for building an adaptive

Voronoi tessellation from the underlying Octree grid.

To our knowledge, the direct numerical simulations employed in this work present

the current state-of-the-art for large scale simulations of electric interactions at the level

of cell aggregates. We believe the simulation results provide precise information about
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electric response of cell aggregates. In this manuscript we leverage the insights drawn

from this direct numerical simulation data to develop and corroborate a theory for the

time-dependent evolution of the TMP in cell aggregates under arbitrary applied electric

pulse.

4.2.4 Multiscale modeling strategy

Given the microscopic model of the electric interactions (4.6a)-(4.6e), we aim to infer

effective theories at the multicellular level where tens of thousands of cells are present. In

our work we focus on the effective properties of the aggregate using the effective medium

theory, for example see [159], accompanied with a dynamical model for the transient

response of the system to an external pulse using the Fokker-Planck formalism [160, 161].

Below, we briefly describe and justify each component of our modeling strategy.

• Effective medium theory: Maxwell (1873) [133] was the first to study effective

transport properties of a stationary, random and homogeneous suspension of spherical

particles dispersed in a background medium of uniform conductivity. Maxwell’s assess-

ment of effective conductivity was accurate to order O(φ) (φ is the volume fraction of

particles) and relied on his observation that changes in effective conductivity of a suspen-

sion of particles was due to the average dipole moment of particles. Exactly a century

later, Jeffrey (1973) [162] expanded Maxwell’s estimation to order O(φ2) using the gen-

eral method of Batchelor (1972) [163, 164] by considering pairwise interactions between

spherical particles. Batchelor’s work was focused on studying the effects of hydrodynamic

interactions between particles moving at low velocity through a fluid on the effective vis-

cosity of a suspension of particles. A remarkable result of his work was finding the second

order correction term to Einstein’s result for the effective viscosity of a suspension of di-

lute particles by systematically considering pairwise hydrodynamic interactions between
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freely-moving spheres in a linear flow field.

As part of the work presented here, we apply Batchelor’s approach to the problem

of conductive shelled spheres instead of the “homogenization” method that emerged in

the 80’s and is more commonly used in similar application domains, e.g. in cardiac elec-

trophysiology [165, 166]. Our choice is motivated by several reasons: (i) as was pointed

out by Hinch (2010) [167], homogenization techniques are limited to periodic microstruc-

tures, which makes them less applicable for modeling finite size multicellular systems

like tumor spheroids, (ii) presenting this problem in Batchelor’s formalism allows for

application of several existing results such as the influence of the particles’ shape and

arrangement on the effective conductivity of cell aggregates (even at maximum packing

fractions with touching spheres), the consideration of both near- and far-field interactions

between particles, as well as the effects due to higher-order multipole moment interac-

tions of particle polarizations on the overall conductivity; we refer the interested reader

to Batchelor (1974) [168], Bonnecaze & Brady (1990) [169] and the references therein for

more details. Lastly, (iii) Batchelor’s method is based on ensemble averages of interac-

tions among dispersed particles, that implicitly assumes indistinguishability of particles,

which is in line with the Fokker-Planck formalism that we present next.

• Fokker-Planck formalism: Cells in an aggregate are heterogeneous in shapes and

electrical properties. Therefore, under an applied electric field, the evolutionary path

of a cell’s polarization is different from that of other cells, necessitating a probabilistic

description of the induced polarizations. To this end, we describe the state of the mul-

ticellular system with the probability density of induced dipole moments on membranes

and cytoplasms. We then derive a Fokker-Planck equation (FPE) that describes the time

evolution of the state-space probability density in response to an electric pulse, as well

as the many non-thermal small disturbances that influence the states. Therefore, the

Fokker-Planck equation not only provides the stationary state of the system, but also
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predicts its dynamics far from equilibrium. The Fokker-Planck equation was first used

by Fokker (1914) [160] and Planck (1917) [161] and have been used to describe numerous

systems such as the statistics of laser lights, or the rotations of dipole moments under

various potentials. The latter was carried out by Debye who derived a Fokker-Planck

equation for the rotational dynamics of polarized molecules and is used to describe the

γ-dispersion discussed in section 4.2.1. We refer to Risken (1984) [170] for a standard

exposition of this topic, and to [171] for an overview of applications in sciences and

engineering.

The basic idea of our treatment is to modify the boundary conditions on the cell

membranes in order to add appropriate disturbances to the system parameters, which in

turn provides a Langevin equation for the induced dipole moment. Then, we transform

the Langevin equation to its corresponding Fokker-Planck partial differential equation.

Finally, we reduce the governing FPE by using a moment-based approach and derive a

simple set of ordinary differential equations (ODEs) that captures the evolution of the

average and of the variance of induced polarizations. Importantly, the set of ODEs is

simple enough that it can be used for real-time predictions and control of transmembrane

potentials under arbitrary external electric stimulations and system parameters.

The plan of this manuscript follows: in section 4.3 we use Green’s theorem to decom-

pose cellular polarization into its different components and compute effective conductivity

of the medium. In section 4.4 we use the continuity of flux across cell membranes to de-

velop a Langevin equation for the evolution of membrane polarization, thereafter we

perturb the physical parameters in this model and after standard averaging procedure

we obtain the corresponding Fokker-Planck equation. We provide an analytic treatment

of the governing FPE and leverage a moment based approach to compute the reduced

order ODE system for the statistical moments of the induced polarization density. Also,

we argue in favor of a fractional order for time derivative in the FPE. Finally, in section
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4.5 we present numerical results of our model both in the time domain and frequency

domain. We conclude our work in section 4.6.

4.3 Coarse-grained representation

Our strategy is to use a multipole generator scheme to represent the surface current

density on individual cell membranes in terms of an equivalent set of dipole moments

that reproduce an identical potential in a homogenized medium.

4.3.1 Cells as arrays of layer potentials

We denote by u(r), the electric potential at any point r within the aggregate; u(r)

satisfies Laplace’s equation. We treat this problem by viewing a membrane as a dipole

layer (cf. see chapter 1 of [172] for more details) that is formed by two infinitesimally

close surfaces with opposite charge densities, as depicted in figure 4.1. In this work we

only consider a passive environment, i.e. that is free from current source or sink terms

on cell membranes, and denote the passive current by Jm. In this case, we can relate the

normal current density passing through the membrane by J±m · n (where ± refers to the

external and internal side of the membrane) to the potential jump across membrane by

writing

−J±m · n = σc∂nuc = σe∂nue, (4.7)

Similar to Geselowitz [173], we use Green’s theorem to treat this problem in terms

of source current densities and applied electric fields surrounding the domain. Consider

two well-behaved functions ψ and φ defined inside and outside of cells and define the

vector field F = σψ∇φ such that it is a continuous function of position in enclosed
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volumes between boundaries. Substituting F in Gauss’s theorem and wrapping thin

membranes with discontinuity in between two close surfaces, one obtains Green’s theorem

for non-homogeneous mixtures with discontinuity across internal boundaries (see page

53 of [174]),

q∑
j=1

∫
Aj

[σc(ψc∇φc − φc∇ψc)− σe(ψe∇φe − φe∇ψe)] · dAj

+

p∑
j=1

∫
Aj

σ(ψ∇φ− φ∇ψ) · dAj

=

∫
V

[ψ∇ · (σ∇φ)− φ∇ · (σ∇ψ)]dv

where q is the number of surfaces across which σ is discontinuous, p is the number of

additional boundaries including macroscopic boundaries where electrodes are located,

and V is the volume enclosed between Γ and all inner surfaces Aj excluding surfaces of

discontinuity. Here we adopt a convention that dAj is the measure of an area element of

the surface Aj that always points into the extra-cellular matrix.

Geselowitz, in his case I, considers ψ = 1/r and φ = u with r being the distance

between surface or volume elements to any arbitrary point in the domain. Then it is

straightforward to show that for any observation point x in the aggregate, we have

4πu(x) =
∑
m

∫
Am

(σeue − σcuc)∇′(
1

r
) · dA

+

∫
Γ

(
Jb
σer

+ ub∇′
1

r

)
· dA,

where Γ is the surface of the electrodes, ub is the electric potential applied at the elec-

trodes, Jb = −σe∇u, and Am is the surface of membranes that points into the extra-

cellular matrix. Moreover, as in case II of Geselowitz, we could let ψ = 1/r and σφ = u
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to show that for infinitesimally thin membranes the electric potential is given by:

4πu(x) =
∑
m

∫
Am

[(
1

σe
− 1

σc

)
J±m
r

+ [u]∇′(1

r
)

]
· dA

+

∫
Γ

(
Jb
σer

+ ub∇′
1

r

)
· dA, (4.8)

Hence, using the divergence theorem one can obtain the alternative formulation:

4πu(x) =
∑
m

∫
Am

[u]∇′(1

r
) · dAm

+
∑
c

∫
Vc

(
1

σe
− 1

σc

)
J · ∇′(1

r
)dV

+

∫
Γ

(
Jb
σer

+ ub∇′
1

r

)
· dA, (4.9)

where r = |x−x′|, ∇′ = ∂/∂x′ and the summation is over the membranes of the enclosed

cells within Γ. The first term on the right-hand side describes the influence of the

polarized membranes, the second term captures the contribution from the cytoplasms,

and the last term represents the influence of electrodes. We also emphasize that if the

electrodes are not in direct contact with the extra-cellular matrix (e.g. there is a gap

with low conductivity between Γ and the outer surface of the aggregate), one has to also

include the extra contribution from the outer surface (Ao),

uo(x) =
1

4π

∫
Ao

2Eo

r
· dA.

In addition to the contribution from the electrodes, equation (4.8) decomposes the electric

potential at any point in the volume as a superposition of a monopole/single layer and a

dipole layer on each membrane. Remarkably, the membrane integral over transmembrane
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jump is analogous to the contribution from a surface current dipole density:

up(x) =
∑
m

1

4πσe

∫
Am

D(x′)∇′
(

1

r

)
· dAm

where the current dipole surface density (i.e. current times distance between sources) is

defined by:

D(x) = σe[u]

Then, a point dipole on the membrane is expressed as δP = σe[u]dAm and one may model

the induced transmembrane potential as a resultant current dipole on each cell.Thus, we

approximate each membrane with surface Ai by a resultant dipole of strength

Pi =

∫
Ai

σe[u]dA, (4.10)

and we call P the dipolar polarization.

Furthermore, we observe that the membrane integral over the transmembrane current

density resembles the contribution from a monopole current layer,

us(x) =
∑
m

1

4π

∫
Am

(
1

σe
− 1

σc

)
J±m
r
· dAm

=
∑
m

1

4πσe

∫
Am

(σc − σe)
Ec

r
· dAm

where Ec refers to the electric field at the inner surface of the membrane. Here, we

identify an induced polarization density of (σc − σe)Ec · n/(4πσe) over cell membranes.
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Alternatively, this term in its volume integral form reads

us(x) =
∑
c

1

4πσe

∫
Vc

(σc − σe)E · ∇′
(1

r

)
dV,

which can be interpreted as an ‘extra flux density’, denoted by τ and is zero everywhere

in the extra-cellular matrix while in the cells is given by

τ (x) = (σc − σe)E

= J(x) + σe∇u(x).

Hence

us(x) =
∑
c

1

4πσe

∫
Vc

τ (x′) · ∇′
(1

r

)
dV,

which again resembles the electric potential of a volume dipole density τ . Therefore, we

define the instantaneous polarization (S) to model the polarization of cell cytoplasms:

Si =

∫
Vi

τdV,

or, equivalently, in terms of the potential in the cytoplasmic side of the membrane as

Si = (σe − σc)
∫
Ai

uc dA.

Then the net polarization can be defined by Mi

Mi = Pi + Si =

∫
Ai

(σeue − σcuc) dA

We also note that this result could be directly inferred using Green’s theorem by letting
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φ = u and ψ = 1/r, e.g. see equation 29 of Geselowitz 1967. Furthermore one can relate

the values of P and S through the equation:

P

σe
=

∫
A

uedA +
S

σc − σe
(4.11)

We observe that in general the dipolar and instantaneous polarizations may have differ-

ent orientations depending on the symmetries of the exterior potential. To assess this

relation, we use Gauss’ theorem for a closed surface Γ enclosing N internal closed surfaces

(cf. see chapter III of Smythe, note the minus sign is due to our convention that the

normal direction points into the extra-cellular matrix),

N∑
j=1

∫
Aj

u dA +

∫
Γ

u dA = −
∫
Ve

∇u dV, (4.12)

where Ve is the volume of the extra-cellular matrix excluding cells. Therefore, for the cell

aggregate

n < P >

σe
=

∑N
j=1

∫
Aj
u dA

V
+
n < S >

σc − σe
, (4.13)

where,

n < P >=

∑N
j=1 Pj

V
and n < S >=

∑N
j=1 Sj

V
,

with n the number density of cells in the mixture. Note that the volume fraction φ is

related to the number density n via φ = nVc. Using Gauss law (4.12) with equation 4.13
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we obtain

n < P >

σe
=
n < S >

σc − σe
− 1

V

∫
Ve

∇u dV − 1

V

∫
Γ

udA.

Furthermore, we define the applied electric pulse on the boundary, Eext, as:

Eext ≡
1

V

∫
Γ

udA.

We also recall that S is related to the volume averaged electric field in cell cytoplasms

by:

φĒc ≡ −
1

V

cells∑
j

∫
Vj

∇u dV =
n < S >

σc − σe
,

while the volume averaged external field is simply

(1− φ)Ēe ≡ −
1

V

∫
Ve

∇u dV

= Eext +
n < P >

σe
+
n < S >

σe − σc

and the volume average electric field inside the membranes is related to the dipolar

polarization by

1

V

cells∑
j

∫
V ′j

∇udV =
1

V

cells∑
j

∫
Γj

[u]dA =
n < P >

σe
.

Because the volume V is partitioned into three parts V = Ve ∪ Vc ∪ V ′c , where V ′c is the
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volume occupied by cell membranes, we conclude that

− < ∇u > = Eext

= φĒc + (1− φ)Ēe −
n < P >

σe
.

In particular, we note that φV =
∑

j Vj, and we define the dipolar polarization per cell

volume as pj =
Pj

Vj
to obtain the effective dipole moment per cell volume,

p̄ =

∑
j Vjpj∑
j Vj

,

and we can write

n < P >= φp̄.

4.3.2 Frequency domain model for cell dipoles

We consider the analytical solution of a spherical cell of radius R1 centered within

a spherical domain of radius R2 under a Dirichlet potential E(t)R2 cos θ at the outer

boundary (a local electric field E = −Ek is considered at the surface of a sphere of

radius r = R2 from center of the cell). In this case the membrane voltage satisfies

Cm
∂[u]

∂t
+ (SL −B)[u] = AE(t)R2 cos θ,

where

A = 3σcσeR
2
2K and B = −σcσe(R2

1 + 2
R3

2

R1

)K,
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with K−1 = R3
1(σe − σc) +R3

2(2σe + σc) so the coefficients are:

A =
3σcσe/R2

2σe + σc + φ(σe − σc)
,

and

B = − (2 + φ)σcσe/R1

2σe + σc + φ(σe − σc)
,

where the volume fraction of cells is given by φ = R3
1/R

3
2. Furthermore, we define three

independent parameters that characterize the solution:

σ̃ = 2σe + σc + φ(σe − σc),

η = 1 +
SLR1σ̃

(2 + φ)σcσe
,

τ =
σ̃R1Cm

(2 + φ)σcσe
.

In the frequency domain the solutions are given by,

[ũ] =
3R1

2 + φ
· 1

η + jωτ
· Ẽ(ω) · cos θ

ũc = α̃cẼ(ω) · r · cos θ

ũe = (α̃er +
β̃e
r2

) · Ẽ(ω) · cos θ

with

α̃c =
3σe
σ̃
·
(
η − 1 + jωτ

η + jωτ

)
α̃e =

(
σc + 2σe

σ̃
− 3σc

σ̃
· φ

2 + φ
· 1

η + jωτ

)
β̃e =

(
σe − σc
σ̃

+
3σc
σ̃
· 1

2 + φ
· 1

η + jωτ

)
·R3

1
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The external and internal electric fields are computed given the electric potential (r = rr̂)

Ẽe(ω) = α̃eẼ(ω)− 3(β̃eẼ(ω) · r̂)r̂ − β̃eẼ(ω)

r3
, (4.14)

and

Ẽc(ω) = α̃cẼ(ω), (4.15)

which corresponds to a uniform external field superimposed by the electric field of a net

dipole moment

M̃(ω) = −4πσeβ̃eẼ(ω). (4.16)

It can be easily verified that indeed ue(R2) = ER2 cos θ as expected. We emphasize that

we only impose the tangential component of electric field at r = R2 and not its radial

component, as evident by equation (4.14).

As we discussed before, we represent this solution by defining dipole moments over

membranes and cytoplasms. It is straightforward to compute the dipole moments from

the basic definitions of the previous section, which lead to

P̃(ω)

Vc
= − 3σe

2 + φ
· 1

η + jωτ
· Ẽ(ω) (4.17)

and

S̃(ω)

Vc
= −3σe(σe − σc)

σ̃
· η − 1 + jωτ

η + jωτ
· Ẽ(ω), (4.18)

where Vc is the volume of a cell. One can verify that indeed we have P̃ + S̃ ≡ M̃ from

equation (4.16). Moreover, it is straightforward to verify that P̃ and S̃ are related through

equation (4.11). We note the minus sign in dipole moments stems from our mathematical

definition for jump in solution across membrane, that is the value of solution in the
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exterior minus that of the cytoplasm, which is opposite the usual convention in biology.

Therefore, in making the connection with other works, care must be taken in using

consistent signs at this step. Note also that the influence of the membrane conductivity

is captured in the parameter η. For example, for an insulating membrane where σm � σc,

we have η ≈ 1 and therefore the cell cytoplasm is effectively shielded from polarization

in agreement with experiments, i.e. S = 0.

Equations (4.17)–(4.18) enable the definition of the cellular polarizability coefficients

P = σeαpE, S = σeαsE, and M = σeαE with

αp = − 3

2 + φ
· 1

η + jωτ
,

αs = −3(σe − σc)
σ̃

· η − 1 + jωτ

η + jωτ
,

and

α = αp + αs.

Also note that α̃e is related to the electric polarizability αp via

α̃e =
2σe + (1 + φαp)σc

σ̃
.

The average polarization of the whole aggregate is given by:

n < P̃ > = φ · αp · σeẼ (4.19)

n < S̃ > = φ · αs · σeẼ (4.20)

Importantly, Ẽ can be related to the applied pulse Ẽext by averaging equation (4.14)

within a spherical shell volume between the membrane and R2. By integration, the

dipolar contribution is zero, and we establish a relationship with the average external
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electric field, Ēe, α̃eẼ = (1− φ)Ēe. We already showed that

(1− φ)Ēe = Ẽext +
n < P̃ >

σe
+
n < S̃ >

σe − σc
,

therefore the local electric field is given by

Ẽ = κ−1Ẽext, (4.21)

with

κ = αe − φαp − φ
σeαs
σe − σc

, (4.22)

which simplifies to

κ =
(2 + 3φ)σe + σc

σ̃
− 3φ2σc

(2 + φ)σ̃(η + jωτ)
. (4.23)

For example figure 4.3 illustrates the magnitude of E for two different membrane con-

ductivities.

At the aggregate level, we can define the membrane susceptibility, n < P >=

σeχpEext, the cytoplasm susceptibility, n < S >= σeχsEext, as well as the overall cell

susceptibility, n < M >= σeχEext, that relate the applied electric pulse to the induced

polarization densities. Equation (4.21) allows us to relate the applied pulse to the induced

polarizations, therefore we obtain the susceptibility coefficients

χp =
φαp
κ

and χs =
φαs
κ
,
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Figure 4.3: The magnitude of the local electric field at different frequencies and
volume fractions for (σe, σc) = (1.3, 0.6) [S/m] and SL = 1.9 [S/m2] (left) and
SL = 1.9× 105 [S/m2] (right).

which also imply that

(1− φ)Ēe
Eext

=
αe
κ

and
φĒc
Eext

=
σeχs
σc − σe

.

The time-domain version of E can be found by expressing the complex factor η+ jωτ

in equation (4.23) in terms of < P >. By noting that

η + jωτ =
−3φσeẼ

(2 + φ)n < P >
,

we obtain that

κ =
(2 + 3φ)σe + σc

σ̃
+ φ

σc
σ̃

n < P̃ >

σeẼ
,
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which, substituted into equation (4.21) leads to

E(t) =
σ̃Eext(t)− νφn < P(t) >

(2 + 3φ)σe + σc

where ν = σc/σe. For the purpose of developing time-domain equations it is also useful

to write the cytoplasm polarization in terms of the membrane polarization:

n < S >= −3φ
σe − σc
σ̃

(
σeE +

2 + φ

3φ
n < P >

)
.

4.3.3 Effective conductivity

Maxwell (1873) [133] first considered the problem of calculating effective conductivity

coefficients for dilute spherical inclusions. A century later, Jeffrey (1973) [162] included

pairwise interactions into Maxwell’s theory, for increasing the validity of the estimated

effective conductivity for higher concentrations. Chiew and Glandt (1983) [175] consid-

ered a more realistic pair-correlation function to improve on the accuracy of Jeffrey’s

result. In parallel, Hasselman and Johnson 1987 [176] included the effect of interfacial

resistance to Maxwell’s theory, which was subsequently integrated with Jeffrey’s the-

ory by Chiew and Glandt [177]. In this section, we derive the effective conductivity

based on the work of Batchelor for transport phenomena in two-phase media composed

of an statistically homogeneous suspension of particles with random configurations (see

e.g. [168, 178, 169]). We emphasize that for improved accuracy one has to modify

this approach to include divergences of all higher order multipole moments; we refer the

interested reader to [179, 180].
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First, we define the average flux in a volume large enough to include many cells,

< J >=
1

V

∫
V

J dV,

and we seek a linear relationship between the average flux and the potential gradient

< J >= −σ̄ < ∇u >, (4.24)

where the proportionality coefficient defines the effective conductivity. We decompose

< J > into three different regions,

< J > =
1

V

∫
V−

∑
i Vi

JdV +
1

V

∑
i

∫
Vi∪V ′i

JdV

=
1

V

∫
V

−σe∇u dV +
1

V

∑
i

∫
Vi∪V ′i

τdV

where
∑

i Vi is the volume occupied by cells. Last expression is obtained by replacing Jk =

−σk∇u ≡ −σe∇u + τ k such that τk = (σe − σk)∇u. In the membrane we approximate

∇u = [u]n/h, therefore,

< J > = −σe < ∇u > +n < S > +
(
1− σm

σe

)
n < P > (4.25)

which in terms of the dipolar polarization and the external electric field is given by

<J >= σeEext

(
2 + ν + 3φν

2 + ν + 3φ

)
+

n < P >

(
1− σm

σe
− σe − σc

σ̃
[2 + φ− 3νφ2

2 + 3φ+ ν
]

)
.

Moreover, using the definition of the effective conductivity (4.24) and the fact that − <
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∇u >= Eext, we deduce that the parallel (‖) and the transverse (⊥) components of the

effective conductivity are given by

σ̄‖
σe

=
< J‖ >

σeEext
and

σ̄⊥
σe

=
< J⊥ >

σeEext
.

Particularly, in the frequency domain, the parallel component satisfies

σ̄

σe
= 1 + χs + (1− σm

σe
)χp. (4.26)

For infinitely conductive membranes, where η →∞, equation (4.26) can be simplified by

noting that

σm
σe

=
h

R1

· (2 + φ)σc
σ̃

· (η − 1) (4.27)

and that the membrane polarization vanishes. In this case, equation (4.26) reduces to

Maxwell’s equation for the effective conductivity of a dilute suspension [181]:

σ̄

σe
→ 1− 3φ

1− ν + νh/R1

2 + ν + 3φ
(4.28)

and h/R1 → 0. Note that Maxwell’s result is only a O(φ) estimate of the effective

conductivity, and that, to its limit of validity, equation (4.28) coincides with Maxwell’s

approximation (see e.g. [162]).

On the other hand, one could identify relative complex permittivity ε∗ = ε′ − jε′′

through its definition, i.e. the current J is related to an alternating applied field E via
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Figure 4.4: Equation (4.30) for ν = 0.46 with σe = 1.3 [S/m], σc = 0.6 [S/m], and
the cell radius set to 7 [µm]. (a,b) Low membrane conductance SL = 1.9 [S/m2], (c,d)
high membrane conductance SL = 1.9× 105 [S/m2].
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J = σeE + jωε0ε
∗E. Comparing with equation (4.25), we can write

jωε0ε
∗Eext = (1− σm

σe
)n < P > +n < S >,

with

ε∗ =
σe
jωε0

· ((1− σm
σe

)χp + χs) = ε′ − jε′′,

where ε′ is the dielectric constant, ε′′ is the loss factor of the material and ε0 = 8.854 ×

10−12 [F/m] is the dielectric permittivity of free space. Furthermore, the complex ad-

mittance is given by Y ∗ = (σe + jωε0ε
∗)Ael/H. The admittance being the inverse of the

impedance, Z, we have:

Z =
H

Ael
· 1

σe + jωε0ε∗

=
H

Ael
· Eext · k

(σeEext + (1− σm
σe

)n < P > +n < S >) · k
(4.29)

where H is the distance between the electrodes and Ael is the surface area of one electrode.

We designate Ze = H/(σeAel) to define the dimensionless impedance as

Z

Ze
=

σeEext · k
(σeEext + (1− σm

σe
)n < P > +n < S >) · k

.

=
1

1 + (1− σm
σe

)χp + χs

Lastly, the complex conductivity σ∗ of the material is related to the admittance according

to Y ∗ = σ∗Ael/H = 1/Z which implies that:

σ∗ = σe · (1 + (1− σm
σe

)χp + χs).

Therefore, the values for admittance and the effective conductivity coincide.
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Effects of cellular pairwise interactions. Cell-cell interactions influence the effec-

tive conductivity of the aggregate, for example in the case of spherical particles Jeffrey

(1973) [162] showed that pairwise interactions produce a correction term of order O(φ2)

to the effective conductivity of a random dispersion of spherical particles. Importantly,

Jeffrey used the twin spherical harmonics invented by Ross (1968) [182] to account for

two-particle interactions. This method was later applied to coated spheres by Lu and

Song (1996) [183]. [183] derived the general expression for the effective conductivity of a

random suspension of coated spheres, that is accurate up to order O(φ2):

σ̄

σe
= 1 + 3φθ1 +

3φ2θ2
1

1− φθ1

+
K∗2φ

2

1− φθ1

, (4.30)

where 3φθ1 ≡ χs + (1− σm
σe

)χp is the polarizability factor. K∗2 accounts for higher order

interactions due to detailed pair distribution of particles; here we neglect this last term

as we are not considering detailed information about the microstructure of the aggregate

(see Hasselman and Johnson (1987) [176] for a similar result). As shown by [183], this

estimate stays within Hashin-Shtrikman bounds [184] up to high volume fractions of

about φ ≈ 0.6. Figure 4.4 illustrates the dependence of the effective conductivity on the

volume fraction and on the frequency predicted by equation (4.30) after setting K∗2 = 0.

4.4 Coarse-grained dynamics

In the present modeling approach, cell-level dipole moments are the resolved observ-

ables that relate cellular properties to multicellular features. In this section, we introduce

time-domain governing equations for the dipole moments.
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We consider a spherical cell of radius R immersed in a mean electric flux < J >,

Cm
∂[u]

∂t
+

(
Sm +

(2 + φ)σeσc
Rσ̃

)
[u] =

3σcσe
σ̃

E cos θ, (4.31)

and we seek a governing equation for the membrane dipole by integrating equation (4.31)

over cell membranes and multiplying by σe,

Cm
d

dt
P +

(
Sm +

(2 + φ)σeσc
Rσ̃

)
P = −σ

2
eσc
σ̃

AE.

Here we assumed a uniform conductance over the cell membranes. We divide both sides

with the cell volume and obtain:

Cm
d

dt
p +

(
Sm +

(2 + φ)σeσc
Rσ̃

)
p = −3σ2

eσc
Rσ̃

E

Due to this mean-field approximation, each cell evolves ostensibly independently from

each other. Therefore, we define the coarse grained electrodynamics of an individual cell

with

ṗ = −γp− αu(t), (4.32)

where we represent the time-dependent model for the electric flux with u(t) and define

α =
3σeσc
CmRσ̃

γ =
Sm
Cm

+
σeσc
RCmσ̃

(2 + φ)

and the stimulating field is that of the mean electric field in the matrix at any given time
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t,

u(t) ≡ σeE(t) = σeκ
−1Eext(t).

Note that u(t) is the mean field approximation for the external electric current that each

cell feels.

Starting from the microscopic equation (4.32) we shall derive a mesoscopic model for

an ensemble of cells. The basic idea is to view an ensemble of dipoles as random vari-

ables, and subsequently treat equation (4.32) as a Langevin equation for the dynamical

evolution of the random variables. In 1908, Langevin introduced the concept of equation

of motion of a random variable [185] and through his formulation of the dynamical theory

of Brownian motion, he initiated the subject of stochastic differential equations [186].

To bridge the microscale to the mesoscale, we are interested to know the probability

distribution of dipole moments in an aggregate. In stochastic systems (e.g. in many

condensed matter systems that are in contact with a heat bath) a successful strategy is

to start from a Langevin equation describing the evolution of a single particle. Then,

through appropriate averaging procedures, one arrives at a Fokker-Planck equation de-

scribing the evolution of the probability distribution of that particle. Eventually, the

independence assumption implied in the mean field approximation allows to define the

total probability distribution W ({pk}, t) as the product of that of individual particles

W ({pk}, t) = ΠiWi(pi, t).

Unfortunately, this procedure fails in the system of cell aggregates due to the deter-

ministic nature of the electrodynamics of cells. Through direct numerical simulations we

know that the evolutionary trajectory of cell dipoles is not a stochastic process; in fact

equation (4.32) already suggests that polarizations are given by a deterministic equa-

tion. In the next subsection, we solve this problem by considering the randomness in cell
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parameters (see figure 4.5) and devise a stochastic interpretation. We also mention the

interesting work of Takayasu et al. (1997) [187] who took a similar strategy to analyze

the conditions for the emergence of power-law distributions in specific discrete Langevin

models of the form x(t + 1) = b(t)x(t) + f(t) where both b(t) and f(t), are random

variables.

4.4.1 The indistinguishable stochastic replica

The main source of randomness in the dielectric response of multicellular systems is

the diversity of cell parameters, i.e. namely α and γ. Here we exercise an alternative

viewpoint to replace a diverse ensemble of deterministic cells with an indistinguishable

ensemble of stochastic elements. In particular we consider a fiducial random-walk process

in cell parameters such that the empirical probability density of cells matches that of

actual ones at any timestep. This is achieved by defining two random processes A(t) and

B(t) for each cell such that

αi = ᾱ + Ai(t),

γi = γ̄ +Bi(t),

and

γ̄ =< γ >, ᾱ =< α > .

Figure 4.5 illustrates the distribution of these parameters. It is evident that around their

mean values the distributions follow an exponential profile (note that the central part

of this figure is linear and the y-axis is in logarithmic scale), however as a first step we
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Figure 4.5: Distribution of α and γ parameters used in numerical simulation. The
densities follow exponential profile in the middle range.
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approximate these random processes with Gaussian white noise

< Bi(t) > = 0

< Ai(t) > = 0

< Ai(t)Aj(t
′) > = α′2δijδ(t− t′)

< Bi(t)Bj(t
′) > = γ′2δijδ(t− t′)

< Ai(t)Bj(t
′) > = εα′γ′δijδ(t− t′)

where |ε| ≤ 1 models the degree of cross-correlation between the two noise terms. Sub-

stituting in equation 4.32 yields

ṗi = −γ̄pi − ᾱu(t)− piBi(t)− u(t)Ai(t). (4.33)

Equation (4.33) is a Langevin model with both additive and multiplicative noise terms.

In analogy, the additive noise term models a heat bath acting on the dipole and the

multiplicative noise term models effects of a fluctuating barrier. Interestingly, such hybrid

models of arithmetic and geometric Brownian motions have many applications in Physics

[188, 189], Biology [190] and finance [191].

We take equation (4.33) along each spatial dimension as an independent stochastic

differential equation in the random variable Xt ≡ pk, then we combine the two Brownian

motions into a single Brownian motion to arrive at the stochastic differential equation

dXt =(−ᾱu− γ̄Xt)dt

+
√
α′2u2 + 2εγ′α′uXt + γ′2X2

t dWt (4.34)

where Wt is a Wiener process. This is in fact a member of Pearson diffusions that were
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extensively considered by Forman and Sørenson [192].

Here we emphasize that the replica stochastic aggregate must render a similar distri-

bution of polarizations as in the actual system, therefore in general the processes A(t)

and B(t) are not Markov processes with Delta autocorrelation in time. In fact the speci-

ficities of these random processes must be tuned to match the actual distribution. In the

next section we simply consider white noise as a first approximation in this direction.

4.4.2 The Fokker-Planck equation

Equation (4.34) constitutes the Stratonovich vector stochastic differential equations

of a Langevin equation with a multiplicative noise term. The generic form of the coupled

stochastic differential equation in terms of stochastic variables ξi’s reads

d{ξ}i
dt

= hi(ξ1, ξ2, ξ3, t) + gij(ξ1, ξ2, ξ3, t)λj(t)

with gijλj are multiplicative noise terms that produce the noise-induced drift and diffusion

components. λ has the following property,

< λi(t) >= 0, < λi(t)λj(t+ τ) >= δijδ(τ)

Then these equations can be treated as the starting point for deriving the correspond-

ing Fokker-Planck equation. To this end, let ξ1 = px, ξ2 = py, and ξ3 = pz and

W (ξ1, ξ2, ξ3, t)dξ1dξ2dξ3 be the probability of finding a dipole in dξ1dξ2dξ3 at time t,

then the Fokker-Planck equation reads

∂W

∂t
= − ∂

∂ξi
(DiW ) +

1

2

∂2

∂ξi∂ξj
(DijW )
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where the Einstein’s summation rule is implied. By use of the Langevin equations, one

can evaluate the statistical averages < · > in order to get the following set of equations

for the drift and the diffusion coefficients [193]:

Di = hi({ξ}, t) +
1

2
gkj({ξ}, t)

∂

∂ξk
gij({ξ}, t),

Dij = gik({ξ}, t)gjk({ξ}, t).

Hasegawa (2008) [194, 195] considered solutions to the Fokker-Planck equations asso-

ciated with Langevin equation (4.33) in the Stratonovich stochastic calculus; furthermore,

Mortensen (1979) [196] derived the Fokker-Planck equation associated to SDE 4.34 ac-

cording to Ito stochastic calculus. Fortunately this system is separable and we can treat it

one dimension at a time for our analysis, i.e. the other two dimensions can be identically

treated. The governing FPE for the variable x ≡ pk with the Stratonovich interpretation

reads:

∂

∂t
W (x, t) =

∂

∂x

[
γ̄x+ ᾱu(t)− χ

2
(γ′2x+ εγ′α′u(t))

]
W (x, t)

+
1

2

∂2

∂x2

[
γ′2x2 + 2εγ′α′u(t)x+ α′2u2(t)

]
W (x, t) (4.35)

where χ = 0, 1 corresponds to the Ito or the Stratonovich interpretations of the stochastic

calculus respectively.
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4.4.3 Analytical Treatment

The invariant probability distribution has a density that satisfies:

d

dx
W (x) = −

(γ̄ + χ
2
γ′2)x+ (ᾱ + χ

2
εα′γ′)u

1
2
γ′2x2 + εα′γ′ux+ 1

2
α′2u2

W (x) (4.36)

Equation (4.36) resembles the invariant density of Pearson diffusion processes that are

characterized with a linear drift and quadratic diffusion coefficients. Therefore, we find

that the Fokker-Planck equation (4.35) falls in the category of Pearson diffusion processes

[197], whose stationary probability density is invariant under translation and scale trans-

formations. Statistical properties of this class of models have been analyzed by Forman

and Sørenson [192] (for a brief summary see section 1.13.12 of [198]). Fundamentally,

Pearson diffusions are viewed as the solutions to the following stochastic differential

equation in the canonical parameterization:

dXt = −θ(Xt − µ̂)dt+
√

2θ(aX2
t + bXt + c)dWt,

with θ > 0 being a scaling of time that determines how fast the distribution evolves,

a, b, c are shape parameters such that the diffusion coefficient is well defined, and Wt is

a Wiener process.

Pearson processes can lead to a variety of distributions depending on the parameters

of the drift and the diffusion coefficients such as heavy or light tailed and symmetric or

skewed profiles [192]. We briefly report six basic subfamilies from [192, 198] that are

determined using criteria on the degree of the diffusion polynomial in the denominator

of equation (4.36) denoted here by deg, the sign of the leading coefficient (that in our

case is strictly positive), and the discriminant ∆ = b2 − 4ac:

1. if deg = 0: A Ornstein-Uhlenbeck process with a normal invariant density.
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2. if deg = 1: If 0 < µ̂ ≤ 1 we obtain a Cox-Ingersoll-Ross process while for µ̂ > 1,

we obtain a gamma invariant density.

3. if deg = 2 and ∆ > 0 and a < 0: A Jacobi diffusion with a Beta invariant density.

4. if deg = 2 and ∆ > 0 and a > 0: A Fisher-Snedecor process with a Fisher-Snedecor

invariant density.

5. if deg = 2 and ∆ = 0: A Reciprocal gamma process with an inverse gamma

invariant density.

6. if deg = 2 and ∆ < 0: for µ̂ 6= 0 we obtain a Student diffusion with a skewed t

invariant density, while for µ̂ = 0 we obtain a scaled t-distribution.

In the current case, and under a non-zero applied pulse, we can establish that the dis-

criminant is always negative

∆ = −4
(
α′γ′u

)2
(1− ε2) < 0.

Therefore, we expect that the probability density of the dipole moments along the z-

axis (parallel to the applied pulse) is best described by a skewed Student distribution

(also known as Pearson type IV distribution). Even though in the transverse direction

the mean electric pulse is negligible based on our mean field model, we can not totally

neglect the influence of the electric fluctuations. To first order approximation we treat

the transverse direction by setting µ̂ = 0 while preserving the same diffusion term as in

the parallel direction. This also ensures a symmetric probability density for positive or

negative values. Therefore, we conclude that the distribution in the transverse direction

must follow a scaled t-distribution (also known as Pearson type VII distribution).
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Stationary Probability Density

In the direction parallel to the applied pulse. We can directly integrate equation

(4.36) to identify the invariant distribution

Ws(x; ν, c, a, λ) = K
exp

{
2c tan−1

(
x−λ
a

)}(
1 +

(
x−λ
a

)2)ν , (4.37)

where

a =
α′u

γ′

√
1− ε2, λ = −εα

′u

γ′
,

ν =
χ

2
+

γ̄

γ′2
, c =

εα′γ̄ − ᾱγ′

α′γ′2
√

1− ε2
,

and

K =

∣∣Γ(ν + ic)
∣∣2

a
√
πΓ(ν)Γ(ν − 1/2)

.

Equation (4.37) provides the average and the variance of the polarizations in the station-

ary state (cf. original work of [199], and [200] for a useful guide):

µ ≡ E(Xt) =
ac

ν − 1
+ λ =

εα′γ′u− ᾱu
γ̄ − γ′2

, (4.38)

σ2 ≡ E(X2
t )− E(Xt)

2 =
a2[(ν − 1)2 + c2]

(ν − 1)2(2ν − 3)

=
γ′2µ2 + 2εγ′α′uµ+ α′2u2

2(γ̄ − γ′2)
, (4.39)

where we have let χ = 1 to obtain the last equalities. Equation (4.37) can be indepen-

dently verified by comparing it to model B of Hasegawa [195] via the change of notations

λH ≡ γ̄, IH ≡ −ᾱu, αH ≡ γ′, cH ≡ c, bH ≡ ν, fH ≡ −λ and βH ≡ α′u (the H sub-

script indicates Hasegawa’s notation). Moreover, Hasegawa [195] derived approximate

equations for the evolution of the average and the variance in this model that we report
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here for completeness:

dµ

dt
= −γ̄µ(t)− ᾱu+ γ′2µ(t) + εγ′α′u, (4.40)

dσ2

dt
= −2(γ̄ − γ′2)σ(t)2 + γ′2µ(t)2 + 2εγ′α′uµ(t) + α′2u2, (4.41)

which provide the analytical formula for the evolution of the probability density through-

out the polarization process when replacing the static values ν and c in equation (4.37)

by their dynamic counterparts:

ν(t) =
a2 + (µ(t)− λ)2 + 3σ(t)2

2σ(t)2
,

c(t) =

(
a2 + (µ(t)− λ)2 + σ(t)2

2aσ(t)2

)
(µ(t)− λ).

Figure 4.9 gives a comparison between the results obtained with model (4.41) and the

direct numerical simulation of Mistani et al. [2]. A few remarks follow: (i) Hasegawa’s

moment equations are valid approximations up to order O((δx)2) about the mean value

of dipolar polarization per cell volume, and (ii) in the current model, the dynamics for

µ(t) appears to be decoupled from σ2, which is merely the result of assuming a linear

dependence for the conductance term F (x) ≡ −γ̄x, as well as a linear assumption for the

multiplicative noise factor G(x) ≡ x. Breaking either of these assumptions introduces

extra contributions from the variance to the mean dynamics. However, such modifications

would alter the stationary distribution of polarizations, which the current model captures

well. Therefore we expect that the observed discrepancies in the temporal evolution

between the model prediction and the direct numerical simulation most likely stem from

the nature of the noise term. This could be alleviated by introducing fractional-order

temporal derivatives. Indeed, figure 4.9 actually proves that the transient dynamics of

dipolar moments does not simply follow an exponential function.
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In the direction perpendicular to the applied pulse. In the transverse direction,

the stationary density follows a symmetric t-distribution, which is obtained by setting

the skewness parameter to zero in the skewed t-distribution (4.37), i.e. set c = 0 and

all previous equations are valid. This indicates that the following identity regulates the

transverse diffusion,

ε⊥
α′⊥
ᾱ

=
γ′⊥
γ̄

Statistical moments

In the type IV Pearson diffusions considered in this work, for n ≥ 2 the nth statistical

moment can be computed using the recurrence formula [200]:

µn =
a(n− 1)

(ν − 1)2[2(ν − 1)− (n− 1)]

×
{
c(ν − 1)µn−1 + a((ν − 1)2 + c2)µn−2

}
(4.42)

where by definition µ0 = 1 and µ1 = 0. It is straightforward to check the consistency

between equations (4.42) and (4.39).

An important notion is the regime of existence for each of the moments. The first

moment exists for ν > 1, otherwise < x >= ±∞. The variance exists for ν > 3/2,

otherwise it increases arbitrarily fast. The third moment exists if ν > 2 and the fourth

moment exists for ν > 5/2.

Fitting statistical moments

We use the simple moment fitting approach introduced by Karl Pearson [199] (also

see Heinrich’s excellent guide [200]) to infer the four model parameters (ν, c, a, λ), which
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Figure 4.6: Left: the maximum values of the statistical moments diverge for larger k.
Right: the evolution of the second to the sixth statistical moments of pz [A/mm2] in
direct numerical simulations, i.e. mk =< (pz− < pz >)k >.

characterize the stationary probability density (4.37). Given simulation data, we can di-

rectly measure the first four statistical moments using the recurrence relation in equation

(4.42), i.e. we directly calculate < x >, µ2, µ3 and µ4. Afterwards, we can infer the

unknown parameters using mean, variance and some intermediate quantities defined via

the third and fourth moments:

√
β1 ≡

µ3

µ
3/2
2

=
2c

ν − 2

√
2ν − 3

(ν − 1)2 + c2

β2 ≡
µ4

µ2
2

=
3(2ν − 3)[(ν + 2)((ν − 1)2 + c2)− 4(ν − 1)2]

(ν − 2)(2ν − 5)
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Figure 4.7: Evolution of dipole moments using direct numerical simulation.
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Figure 4.8: The distribution of dipole moments in direct numerical simulation in com-
parison to model predictions. Measurements are made after 1 [µs] of a step electric
pulse (when stationarity is almost achieved). Distributions follow (left) a symmet-
ric t-distribution in the transverse direction (along the y-axis) with model parameters
(ν, c, a, λ) ≈ (5.054, 0.000, 0.108 [A/mm2], 0.000 [A/mm2]), while (right) in the direc-
tion parallel to the applied pulse (along the z-axis), we observe a skewed t-distribution
with model parameters (ν, c, a, λ) ≈ (7.246, 0.888, 0.164 [A/mm2],−0.864 [A/mm2]).
Note that the x-axes is the absolute value of the polarization.

Thereafter, we compute the missing parameters according to

ν =
5β2 − 6β1 − 9

2β2 − 3β1 − 6
,

c =
(ν − 1)(ν − 2)

√
β1√

4(2ν − 3)− β1(ν − 2)2
,

a =

√
µ2[(2ν − 3)− β1

4
(ν − 2)2],

λ =< x > −
√
µ2β1(ν − 2)

2
.

Figure 4.8 illustrates the fitted model and its parameters. We observe that the model

given in (4.37) perfectly describes the results provided by our direct numerical simulation.

We compare the predictions of our model with the dynamics of the average and of the
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Figure 4.9: The evolution of average and variance of dipole moments in direct numer-
ical simulations. We chose R = 7 [µm] and φ = 0.13 × 0.00563 to account for the
free space surrounding the spherical tumor, i.e. a box of 4 [mm] on each side. The
dotted magenta line in the left figure illustrates the analytical solution (4.45). Letter
N denotes numerical solution of FPE model while A indicates analytical solution of
the FPE model.

variance of dipole moments from our direct numerical simulations in figures 4.9–4.10. A

few observations regarding the results of the direct numerical simulation can be drawn:

(i) first, the decay of the average polarization does not follow an exponential decay; in

fact it decays slightly slower than an exponential function, (ii) second, under a constant

applied pulse, the variance increases initially but then decreases to reach a plateau, and

after switching off the pulse, variance exhibits an uptick before decaying to zero. The

observed uptick in the variance is a unique feature that is captured in our proposed

model.

We also solve for the model parameters in terms of the observed distribution param-
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Figure 4.10: Other time-domain properties based on our model for the case considered
in figure 4.9. Immediately after switching off the applied pulse a reverse current is
observed.
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eters,

γ′ =

√
γ̄

ν − χ
2

, ε =
1√

1 + a2

λ2

,

α′ =
ᾱγ′

εγ̄ − cγ′2
√

1− ε2
, u = −λγ

′

εα′
.

The fitted values in figure 4.8 yield

(α′, γ′, ε, u) = (2242.08 [
√

S/F], 1446.9 [
√

S/F], 0.983, 0.568 [A/mm2])

while γ̄ = 1.41× 107 [S/F ] and ᾱ = 2.10× 107 [S/F ]. Figure 4.9 depicts the comparison

between our Fokker-Planck model and direct numerical simulations. We find that our

model perfectly captures the qualitative trends observed in the distribution of the po-

larizations, while it is in good quantitative agreement. Also, it is important to develop

numerical methods for the FPE in three spatial dimensions in order to faithfully com-

pare these results, however the current one dimensional analytic treatment provides very

encouraging results for the polarization component parallel to the applied pulse. We will

investigate numerical solutions to the full FPE in future works.

Fractional order evolution

In the case of Pearson diffusion, the statistical moments up to order n < a−1 +1 exist.

In particular, for n ≥ 2, the autocorrelation decays exponentially [201]:

corr(Xs, Xs+t) = e−θt.
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In the current case, statistical moments exist up to order

n < 1 + 2
γ̄

γ′2
.

Therefore, this analysis suggests that the autocorrelation of dipole moments is given by

an exponential decay when

γ′2 < 2γ̄.

This result provides a critical threshold for the diversity measure γ′c =
√

2γ̄ that regulates

the autocorrelation function, i.e. for γ′ < γ′c, we predict anomalous relaxation. Therefore,

in our model, the observed anomalous relaxation in cell aggregate electroporation is

associated with the diversity in the cellular structural parameters that is modeled through

the parameter γ. In this case, the time derivative should be replaced with a fractional

order derivative through
d

dt
= τα−1

1

dα

dtα
, i.e. τ1 is an arbitrary factor that has dimension

of time. Here we assume τ1 = 1 and the governing equations read:

dαµ

dtα
= −γ̄µ(t)− ᾱu+ γ′2µ(t) + εγ′α′u, (4.43)

dασ2

dtα
= −2(γ̄ − γ′2)σ(t)2 + γ′2µ(t)2 + 2εγ′α′uµ(t) + α′2u2. (4.44)

In order to preserve the type of initial conditions appropriate in classical phenomena, i.e.

so that no extra initial conditions be needed, we adopt Caputo fractional derivative with

m− 1 < α ≤ m (m is an integer number) [202, 203], which is defined by

C
aD

α
t f(t) =

1

Γ(m− α)

∫ t

a

f (m)(s)

(t− s)α−m+1
ds.
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Furthermore, defining fractional derivatives in the Caputo sense permits the application

of the Laplace transform as a simple method of solution, see [204] for more details. In

this case, the Laplace transform of Caputo derivatives reads:

L[C0 D
α
t f(t)] = sαf(s)−

m−1∑
k=0

f (k)(0+)sα−k−1.

Applying the Laplace transform to the set of equations (4.44) and assuming µ(0+) = 0

and µ′(0+) = 0 yields the transfer function H(s) (or impulse response) for the average

polarization:

µ(s) = H(s) u(s), with H(s) =
εα′γ′ − ᾱ
sα + γ̄ − γ′2

.

Then the impulse response function is given by:

H(t) = (εα′γ′ − ᾱ)tα−1Eα,α[−(γ̄ − γ′2)tα],

where Eα,α is the Mittag-Leffler function that is generally defined as:

Eα,β[x] =
∞∑
k=0

xk

Γ(kα + β)
, α, β > 0.

Note that for α = β = 1, it is equivalent to the exponential function. Therefore the

general solution to the average polarization is given by:

µ(t)

εα′γ′ − ᾱ
=

∫ t

0

Eα,α[−(γ̄ − γ′2)(t− τ)α]

(t− τ)1−α u(τ)dτ.
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Particularly, the step response waveform (in response to u(t) = u(0+)
∑∞

k=0(−1)kH(t −

tk), where H(t) is the Heaviside function) reads:

µ(t) = u(0+)
εα′γ′ − ᾱ
γ̄ − γ′2

×
∞∑
k=0

(−1)k
(

1− Eα,1[−(γ̄ − γ′2)(t− tk)α]

)
. (4.45)

We found that a fractional order of α = 1.01 successfully describes the results obtained via

direct numerical simulations, see figure 4.9. Alternatively, we could numerically evaluate

equation (4.44) using a finite difference numerical scheme [205, 204] which is basically to

discretize Caputo derivative of order 0 < α < 1 using,

C
0 D

α
t f(tn+1) ≈ (∆t)−α

Γ(2− α)

n∑
j=0

aj
(
fn+1−j − fn−j

)
,

where aj = (j+ 1)1−α− j1−α and fj = f(tj). Also, for 1 < α < 2 the discretization reads

(c.f. see equation 1.5 of Sun and Wu (2006) [206]):

C
0 D

α
t f(tn+1) ≈ (∆t)−α

Γ(3− α)

[
fn+1 − fn − bn−1f

′(0)∆t

−
n−1∑
j=1

(bn−j−1 − bn−j)(fj − fj−1)

]
,

where bj = (j + 1)2−α − j2−α (see figure 4.9 for comparison).

4.5 Predictions & Discussions

In this section we perform eight experiments based on the proposed model with the

specifications given in tables 4.1–4.2. In each experiment, we apply a Gaussian electric
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pulse given by:

Eext(t) = E0 exp

(
− 6

(t− tf/3)2

t2f

)
,

where E0 = 40 [kV/m] for a duration of tf = 20 [µs] to resolve electric response at smaller

frequencies; note that the biggest frequency is determined by the maximum time-step

size of integration, which we limit to 1 [ns], while the smallest frequency is inversely

proportional to duration of integration. Then impedance can be computed by equation

4.29.

We performed numerical integrations of the integer order system of ordinary dif-

ferential equations 4.41 with the publicly available package Scipy [207] with adaptive

time stepping. In particular, we used LSODA algorithm, which automatically detects

stiffness and switches between the non-stiff Adam and stiff BDF integration methods

[208]. The fractional order ODEs 4.44 are solved by implementing the discretization

schemes discussed in subsection 4.4.3. The source code to solve the set of equations

proposed in this manuscript and to reproduce the results of this section can be found at

https://github.com/pourion/CAEP.

4.5.1 Time-domain response

Figure 4.11 illustrates the evolution of the instantaneous effective conductivity, cur-

rent, resistance, and average value of the membrane and the cytoplasm polarizations

during the application of the external Gaussian pulse. To make these predictions, we

considered an integer order time derivative, i.e. α = 1.

At low membrane conductance (configurations I and II), we find that even though

the magnitude of the cytoplasm polarization is negligible with respect to the membrane
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Table 4.1: List of theoretical experiments based on the proposed framework. We
consider a cell aggregate confined in a cubic box with side length 1 [mm].

# σc [S/m] σe [S/m] SL [S/m2] φ α
I 1.3 0.6 1.9 0.3 1
II 0.6 1.3 1.9 0.3 1
III 1.3 0.6 1.9× 105 0.3 1
IV 1.3 0.6 1.9× 105 0.6 1

Figure 4.11: Top left: configuration I. Top right: configuration II. Bottom left: con-
figuration III. Bottom right: configuration IV. Experiments in the time domain.
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Table 4.2: List of theoretical experiments based on the proposed framework. We
consider a cell aggregate confined in a cubic box with side length 1 [mm]. In each case
we chose 10 different values for the varying parameter.

# σc [S/m] σe [S/m] SL [S/m2] φ α
V 0.6 1.3 1.9 [0.01, 0.8] 1
VI 1.0 [0.5, 1.5] 1.9 0.3 1
VII 0.6 1.3 [1.9, 1.9× 105] 0.3 1
VIII 0.6 1.3 1.9 0.3 [0.9, 1.1]

polarization, over time the cytoplasm dipole moment changes direction from anti-parallel

to parallel with respect to the external field, which leads to a slowly increasing resistance

felt at the electrodes. However, increasing the membrane conductance (configurations

III and IV) has the effect of increasing the cytoplasm polarization at the expense of

reducing the membrane polarization while both dipole moments remain anti-parallel to

the external field. Increasing the membrane conductance enhances the overall current

density and reduces the overall electric resistance of the aggregate.

We have shown how to compute the impedance directly from the time-domain FPE,

which paves the way for more detailed studies of cell aggregates with nonlinear membrane

processes such as the case of electroporation.

4.5.2 Impedance spectroscopy

The purpose of this section is to understand the impedance as a function of frequency

within cell aggregates. This analysis is important because it enables the resolution of

the polarization processes and to relate them to their relaxation timescales, cf. see the

review by Asami (2002) [115]. For example impedance spectroscopy is widely used as a

technique to characterize ionic conductors, electroceramics, solid electrolytes, dielectric
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Figure 4.12: Top panel: configuration V - varying the volume fraction. Bottom panel:
configuration VI - varying the extra-cellular matrix conductivity. Experiments in the
frequency domain, in all figures warmer colors indicate higher values. Figure (a,b)
show the effect of increasing volume fraction from φ = 0.01 to φ = 0.8. Figures
(c,d) illustrate effects of increasing matrix conductivity in the range σe = 0.5 [S/m]
to σe = 1.5 [S/m] while cytoplasm conductivity is fixed at σc = 1 [S/m]. Red colors
correspond to the case of σe > σc while blue colors correspond to σe < σc.
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Figure 4.13: Top panel: configuration VII - varying the membrane conductance. Bot-
tom panel: configuration VIII - varying the fractional order. Experiments in the time
domain, in all figures warmer colors correspond to higher values. Figures (a,b) cap-
ture the effect of increasing the membrane conductance from SL = 1.9 [S/m2] (bluer
colors) to SL = 1.9 × 105 [S/m2] (redder colors). Figures (c,d) illustrate the effects
of increasing the fractional order from α = 0.9 to α = 1.1. Note that the curves for
α < 1 are shown in blue, while for α > 1 red colors are used.

133



On the interfacial polarization of heterogeneous systems Chapter 4

materials such as polymers and glasses as well as fuel cells and batteries [209, 210, 211].

Figures 4.12–4.13 show the Bode and Cole diagrams calculated by equation (4.29) for

4 different configurations and illustrate the effects caused by varying the volume frac-

tion, the matrix conductivity, the membrane conductance and the order of the fractional

derivative.

In top panel of figure 4.12, we gradually increase the volume fraction from φ =

1% to 80% that increases the impedance at lower frequencies and reduces it at higher

frequencies. More importantly, increasing the volume fraction appears to amplify a low-

frequency semi-circle in the Cole diagram originating from cell membranes.

In bottom panel of figure 4.12, we change the matrix conductivity while keeping the

other parameters fixed. We find that when the matrix is more conductive than the

cytoplasm, the dielectric response of the cytoplasm lags behind that of the applied pulse.

However for a cytoplasm more conductive than the matrix, we find that the cytoplam

dielectric response leads the applied pulse. The latter behavior resembles the dielectric

response of an inductive element that appears at high frequencies.

In top panel of figure 4.13, we gradually increase the membrane conductance and find

that the semi-circle arc at low frequency gradually shrinks. The characteristic behavior

of the present model is that the membrane determines the low frequency arc while the

cytoplasm determines the high frequency arc.

In bottom panel of figure 4.13, we vary the order of the fractional derivative. For

0 < α < 1, we observe a low frequency hook effect, where an apparently inductive

loop appears at low frequencies, i.e. where the imaginary part of impedance becomes

positive. In particular, we observe that our model predicts that, by increasing α towards

1, the low frequency hook gradually shrinks, and the low frequency semi-circle becomes

depressed. Interestingly, Cole and Baker (1941) [212] reported an inductive response

in their experiments with squid axons. Cole and Baker argued that inductive effects
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originated from the membrane of axons, which they modeled by an equivalent circuit

composed of a resistor in series with an inductor that are connected in parallel with a

capacitor. For a detailed discussion on the possible origins of inductive hooks we refer to

Klotz (2019) [213]. In fact, low frequency inductive impedance is ubiquitously found in

impedance spectroscopy experiments with various systems such as Lithium ion batteries

[214], proton exchange membrane fuel cells [215], organic light emitting diodes (LEDs)

[216], Perovskite solar cells [217], thin films on conductive substrates [218], and corrosion

of Chromium [219]. It is well known that tissue impedance follows a depressed Cole

(1940) equation,

Z(ω) = R +
R0 −R∞

1 + (jω/ω0)α
,

where ω0 is the angular turnover frequency and α is a dimensionless number between

zero and one [220, 122, 221]. It is generally established that it is the diversity of relax-

ation timescales that is responsible for the observed anomalous electric response of tissue

environments [222], which is the source of fractional order evolution in our model as well.

4.6 Conclusion

We have developed a theoretical framework based on a dipole decomposition of cell

polarization into two parts: the membrane polarization, and the cytoplasm polariza-

tion. Based on this decomposition, we were able to evaluate effective properties of the

aggregate environment such as effective conductivity and impedance. We also derived

a time-domain governing Fokker-Planck equation that explains distributions of cellu-

lar polarizations in different volume fractions and at different frequencies. We showed

that the effects of cell interactions can be easily included in the model. Our theory is
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generally applicable to triphasic structures that are ubiquitously found in nature, for ex-

ample in modeling suspensions of biological cells and subcellular organella such as yeasts

[223, 224], E. coli [225], synaptosomes [226], and mitochondria [227]. The current work

can be extended in several ways:

• In plants and micro-organisms, cells are covered by a cell wall that adds another

layer to the dielectric structure; for details see Carstensen (1960) [228]. Hanai

et al. [229, 230] showed the number of interfaces corresponds to the number of

relaxations in the dielectric response of a heterogeneous system, which could explain

how diversity in the dielectric properties of cells leads to anomalous relaxation.

Therefore an extension of the current theory for multishell structures would be to

develop N -phase interfacial polarization theories.

• Coupling the bulk relaxation processes in tissue environments, such as counterion

polarization effects, with the interfacial polarization. In particular it was argued

[132] that counterion polarization effects contribute to the observed anomalous

relaxation; thus it will be useful to examine such influences on the distribution of

induced transmembrane potentials.

• Under strong electric fields, nonlinear cellular phenomena occur. A well known

example is the membrane breakdown that occurs under transmembrane potentials

of about Vep = 0.2 [V], in a process referred to as electroporation [106, 125]. Other

phenomena include mechanical effects such as the alignment of non-spherical cells

with an applied field, or the swelling effects due to water uptake caused by an

increase in the membrane permeability.

• Another interesting extension would be to consider the effects of gap junctions on

the induced transmembrane potentials. Gap junctions are electrical connections
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between neighboring cells that provide direct pathways for ion transport in multi-

cellular systems. Gap junctions are key regulators for embryonic development due

to their ability to regulate transmembrane voltages; therefore understanding their

interplay with an external electric stimulation poses new opportunities to control

embryonic development and a new pathway to understand and control patterning

in biological organisms.
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dense cell suspensions, European Biophysics Journal 36 (2007), no. 3 173–185.

[98] U. Zimmermann, Electric field-mediated fusion and related electrical phenomena,
Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 694 (1982),
no. 3 227–277.

[99] C. A. Jordan, E. Neumann, and A. E. Sowers, Electroporation and electrofusion in
cell biology. Springer Science & Business Media, 2013.

[100] W. Arnold and U. Zimmermann, Electric field-induced fusion and rotation of
cells, Biological membranes 5 (1984) 389–454.

[101] G. Fuhr, R. Glaser, and R. Hagedorn, Rotation of dielectrics in a rotating electric
high-frequency field. model experiments and theoretical explanation of the rotation
effect of living cells, Biophysical journal 49 (1986), no. 2 395–402.

[102] H. A. Pohl and J. S. Crane, Dielectrophoresis of cells, Biophysical journal 11
(1971), no. 9 711–727.

[103] F. A. Sauer, Forces on suspended particles in the electromagnetic field, in
Coherent excitations in biological systems, pp. 134–144. Springer, 1983.

[104] F. F. Becker, X.-B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P. Gascoyne,
Separation of human breast cancer cells from blood by differential dielectric
affinity, Proceedings of the National Academy of Sciences 92 (1995), no. 3
860–864.

[105] P. R. Gascoyne and J. Vykoukal, Particle separation by dielectrophoresis,
Electrophoresis 23 (2002), no. 13 1973.

145



[106] E. Neumann and K. Rosenheck, Permeability changes induced by electric impulses
in vesicular membranes, The Journal of membrane biology 10 (1972), no. 1
279–290.

[107] K. Kaler and T. Jones, Dielectrophoretic spectra of single cells determined by
feedback-controlled levitation., Biophysical journal 57 (1990), no. 2 173.

[108] G. Bryant and J. Wolfe, Electromechanical stresses produced in the plasma
membranes of suspended cells by applied electric fields, The Journal of membrane
biology 96 (1987), no. 2 129–139.

[109] G. H. Markx and C. L. Davey, The dielectric properties of biological cells at
radiofrequencies: applications in biotechnology, Enzyme and Microbial Technology
25 (1999), no. 3-5 161–171.

[110] M. Levin, G. Pezzulo, and J. M. Finkelstein, Endogenous bioelectric signaling
networks: exploiting voltage gradients for control of growth and form, Annual
review of biomedical engineering 19 (2017) 353–387.

[111] W. Roux, Uber die* morphologische˜ polarisation yon eiern und embryonen durch
den elektrischen strom, scwie fiber die wirkung des elektrischen stromes auf die
richtung der ersten teilung des eies, Sitzungsber. der kk Akad. d. Wiss. Wien
math. nat. K 1 27.

[112] K. B. Hotary and K. R. Robinson, Evidence of a role for endogenous electrical
fields in chick embryo development, Development 114 (1992), no. 4 985–996.

[113] C. E. Pullar, The physiology of bioelectricity in development, tissue regeneration
and cancer. CRC Press, 2016.

[114] B. Reid and M. Zhao, The electrical response to injury: molecular mechanisms
and wound healing, Advances in wound care 3 (2014), no. 2 184–201.

[115] K. Asami, Characterization of heterogeneous systems by dielectric spectroscopy,
Progress in polymer science 27 (2002), no. 8 1617–1659.

[116] J. Cervera, M. Levin, and S. Mafe, Bioelectrical coupling of single-cell states in
multicellular systems, The Journal of Physical Chemistry Letters 11 (2020), no. 9
3234–3241.

[117] H. P. Schwan, Electrical properties of tissue and cell suspensions, in Advances in
biological and medical physics, vol. 5, pp. 147–209. Elsevier, 1957.

[118] M. Stuchly and S. Stuchly, Dielectric properties of biological substances?tabulated,
Journal of Microwave power 15 (1980), no. 1 19–25.

146



[119] R. Pethig, Dielectric properties of biological materials: Biophysical and medical
applications, IEEE Transactions on Electrical Insulation (1984), no. 5 453–474.

[120] R. Pethig and D. B. Kell, The passive electrical properties of biological systems:
their significance in physiology, biophysics and biotechnology, Physics in Medicine
& Biology 32 (1987), no. 8 933.

[121] K. R. Foster, H. P. Schwan, et. al., Dielectric properties of tissues, CRC handbook
of biological effects of electromagnetic fields 27–96.

[122] E. McAdams and J. Jossinet, Tissue impedance: a historical overview,
Physiological measurement 16 (1995), no. 3A A1.

[123] C. Gabriel, S. Gabriel, and y. E. Corthout, The dielectric properties of biological
tissues: I. literature survey, Physics in medicine & biology 41 (1996), no. 11 2231.

[124] W. Kuang and S. Nelson, Low-frequency dielectric properties of biological tissues:
a review with some new insights, .

[125] T. Kotnik, L. Rems, M. Tarek, and D. Miklavčič, Membrane electroporation and
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induced by applied electric fields – a theoretical analysis, Bioelectrochemistry and
bioenergetics 43 (1997), no. 2 285–291.

148



[145] D. Gross, Electromobile surface charge alters membrane potential changes induced
by applied electric fields, Biophysical journal 54 (1988), no. 5 879–884.

[146] E. Neumann, The Relaxation Hysteresis of Membrane Electroporation, pp. 61–82.
Springer US, Boston, MA, 1989.

[147] S. Ho and G. Mittal, Electroporation of cell membranes: a review, Critical reviews
in biotechnology 16 (1996), no. 4 349–362.

[148] T. Geng and C. Lu, Microfluidic electroporation for cellular analysis and delivery,
Lab on a Chip 13 (2013), no. 19 3803–3821.
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