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Abstract

This paper develops joint inferential methods for the cause specific hazard function
and the cumulative incidence function of a specific type of failure to assess the effects
of a variable on the time to the type of failure of interest in the presence of competing
risks. Joint inference for the two functions are needed in practice because 1) they
describe different characteristics of a given type of failure, 2) they do not uniquely
determine each other, and 3) the effects of a variable on the two functions can be
different and one often does not know which effects are to be expected. We study
both the group comparison problem and the regression problem. We also discuss
joint inference for other related functions. Our simulation shows that our joint tests
can be considerably more powerful than the Bonferroni method, which has important
practical implications to the analysis and design of clinical studies with competing
risks data. We illustrate our method using a Hodgkin disease data and a lymphoma
data. Supplementary materials for this article are available online.
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1 Introduction

Competing risks failure time data arise commonly in clinical trials, reliability testing, and

other fields. For instance, in a clinical trial, one may be interested in time to death due

to a particular disease, but a patient can also die from other competing diseases that are

potentially positively correlated with the disease of interest. Competing risks can also be

negatively correlated with the event time of interest. For example, in a kidney transplanta-

tion program, patients who are ineligible for transplantation due to reasons, such as being

overweight, are put on a waiting list until they become eligible (see, e.g., Sancho et al.

(2007)). An important outcome variable is the waiting time to become eligible for trans-

plantation. In this case, death before becoming eligible for transplantation is a competing

risk event that is potentially negatively correlated with the waiting time. More examples

of competing risks failure time data can be found in Prentice et al. (1978); Pintilie (2006);

Gichangi and Vach (2005); Putter et al. (2007), and the references therein. There is a broad

literature on statistical methods for competing risks failure time data. Group comparison

of a specific type of failure has been studied using either the cause specific hazard (Prentice

et al., 1978; Lindkvist and Belyaev, 1998; Kulathinal and Gasbarra, 2002) or the cumulative

incidence (Gray, 1988; Pepe and Mori, 1993; Bajorunaite and Klein, 2007). Methods to

compare failures across failure types have been developed with respect to either the cause

specific hazard, or the cumulative incidence, or both (Aly et al., 1994; Sun and Tiwari,

1995; Lam, 1998; Luo and Turnbull, 1999). Tiwari et al. (2006) proposed a test to check

equality of cause specific hazards across all failure types and groups. For regression analysis

of competing risks failure time data, Prentice et al. (1978), Lagakos (1978), Holt (1978),

Cox and Oakes (1984, chap.9), Larson (1984), and Lunn and McNeil (1995) studied pro-

portional cause-specific hazards models. Fine and Gray (1999) introduced a proportional
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subdistribution hazards model for the cumulative incidence function. Fine (1999), Fine

(2001), Klein and Andersen (2005), and Gerds et al. (2012) used transformation models to

directly model the cumulative incidence function. Klein (2006) discussed additive models

for both the cause specific hazard and the cumulative incidence function. Comprehensive

survey of statistical methods for competing risks survival data and further references can

be found in Beyersmann et al. (2007); Latouche et al. (2007); Haller et al. (2012).

In this paper we focus on the problem of assessing the effects of a variable (treatment

or covariate) on the time to a particular type of failure. For convenience, we assume

hereafter that there are only two types of failure, where type 1 represents the failure type

of interest and type 2 includes all other competing risks. As discussed earlier, there are

mainly two approaches to this problem based on either the cause-specific hazard function

or the cumulative incidence function. The cause-specific hazard function for type 1 failure

is defined as

λ1(t) = lim
dt↓0

P (t ≤ T < t+ dt,D = 1|T ≥ t)/dt, t > 0

the instantaneous risk for type 1 failure at time t given that the subject is at risk just

prior to t, where T is the continuous failure time with multiple failure types and D is

the failure type. For example, Prentice et al. (1978) showed that the standard Cox (1972,

1975) regression method can be used to study the effects of a variable on the cause-specific

hazard λ1(t) by treating other types of failures as independent right censoring events.

The cumulative incidence function is defined as F1(t) = P (T ≤ t,D = 1), t > 0, the

cumulative incidence rate of type 1 failure by time t, which can be uniquely characterized

by the following sub-distribution hazard:

λ̃1(t) = lim
dt↓0

P (t ≤ T < t+ dt,D = 1|T ≥ t ∪ (T < t ∩D 6= 1))/dt = −d log {1− F1(t)} /dt.

In particular, Gray (1988) developed a class of nonparametric tests to compare the cumu-
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lative incidence function of a given type of failure between different groups and Fine and

Gray (1999) introduced a proportional sub-distribution hazards model for the regression

problem.

Despite of the extensive literature on this topic, there are still confusions to practitioners

as to which method should be used in practice when studying the effects of a variable on

type 1 failure. We point out that joint inference for both λ1(t) and F1(t) should be made.

First of all, these two quantities describe different characteristics of type 1 failure: λ1(t)

represents the instantaneous type 1 failure rate at time t given survival to t, whereas F1(t)

summarizes the prevalence or cumulative incidence of type 1 failure over the time interval

[0, t]. Secondly, λ1(t) and F1(t) do not uniquely determine each other except when J = 1. It

can be shown that F1(t) =
∫ t
0
S(u)λ1(u)du, where S(u) = P (T > u) is the all-cause survival

function. Thus F1(t) depends not only on λ1(t), but also on other cause-specific hazards

through the all-cause survival function S(t). Finally, the effects of a variable on λ1(t) can

be different from its effects on F1(t) (Gray, 1988; Fine and Gray, 1999), and one often

does not know which effects are to be expected. To the best of our knowledge, no formal

joint inference procedure for these quantities is available in the literature. Although the

Bonferroni method provides a straightforward solution, it can be severely under-powered

as demonstrated later in Sections 4 and 5.

The primary purpose of this paper is to develop joint inference procedures to assess the

effects of a variable on λ1(t) and F1(t) simultaneously. We allow independent right censoring

in addition to competing risks. We first consider the two-sample comparison problem

with respect to both λ1(t) and F1(t). By establishing the asymptotic joint distribution of

the weighted log-rank test statistic for λ1(t) and the Gray (1988) test statistic for F1(t),

we derive two-sample joint tests for λ1(t) and F1(t). We then extend our method to a

regression setting based on Cox-type models for λ1(t) and F1(t)(or λ̃1(t)). We also discuss
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joint inference for other related quantities.

In section 2 we first review the weighted log-rank test for group comparison of λ1(t)

and the Gray (1988) test for F1(t). Then, we develop joint test procedures for group

comparisons of both λ1(t) and F1(t). We also discuss joint tests for other equivalent pairs

including λ1(t) with the all-cause hazard, and λ1(t) with the cause-specific hazard for other

failure types. Section 3 develops joint regression analysis methods for λ1(t) and F1(t)(or

λ̃1(t)) under Cox-type regression models. Section 4 presents some simulation results to

evaluate the proposed methods and compare them with the Bonferroni method. In section

5, we illustrate our methods on a Hodgekin disease data and a lymphoma data. Section 6

gives some further remarks. The proofs for the theorems and additional simulation results

are provided in the Appendix in the supplementary material.

2 Two-Sample Joint Tests for Competing Risks Data

Suppose that there are two independent groups of subjects. Let Tik, Dik, and Cik denote

the continuous failure time, the type of failure, and the censoring time, respectively, for

subject i in group k, i = 1, . . . , nk, k = 1, 2. Assume that the triplets (Tik, Dik, Cik) for

different subjects within each group are independent and identically distributed and that

the censoring time Cik is independent of the failure time Tik. The two groups are allowed to

have different censoring distributions. For group k (k = 1, 2), one observes a right censored

competing risks failure time data {(Xik, δik), i = 1, . . . , nk}, where Xik = min(Tik, Cik) and

δik = DikI(Tik ≤ Cik). Let Sk(t) = P (Tik > t) and Sck(t) = P (Cik > t). For group

k (k = 1, 2), let λ1k(t), F1k(t), and λ̃1k(t) denote the cause-specific hazard function, the

cumulative incidence function, and the sub-distribution hazard function, respectively, for
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type 1 failure. We develop nonparametric tests for the following null hypothesis,

H0 : λ11(t) = λ12(t) and F11(t) = F12(t) for all 0 < t < τ, (1)

where τ is some pre-specified fixed time.

2.1 Preliminaries

We first review the two-sample weighted log-rank test for the cause-specific hazard and the

Gray (1988) two-sample test for the cumulative incidence for type 1 failure. These tests

will be used as building blocks to develop joint tests for the hypothesis (1).

Two-Sample Tests for Cause-Specific Hazard

It is now well known that the standard (weighted) log-rank test (Peto and Peto, 1972;

Andersen et al., 1982) for right censored failure time data can be applied to test

H0 : λ11(t) = λ12(t) for all 0 < t < τ, (2)

by treating all other competing risks as independent right censoring (Tsiatis, 1975; Prentice

et al., 1978; Lindkvist and Belyaev, 1998). Specifically, let Njk(t) =
∑nk

i=1 I(Xki ≤ t,Dki =

j) be the counting process of the number of observed type j failures in group k by time

t, and Yk(t) =
∑nk

i=1 I{Xki ≥ t} be the at risk process indicating the number of subjects

in group k who are at risk prior to time t, k = 1, 2. Let Nj·(t) =
∑2

k=1Njk(t) and

Y·(t) =
∑2

k=1 Yk(t). The weighted log-rank test statistic for (2) is defined as

U1k =

∫ τ

0

W1(t)Yk(t)

{
dN1k(t)

Yk(t)
− dN1·(t)

Y·(t)

}
, (3)

where W1(t) is a predictable weight function that converges in probability to some deter-

ministic function w1(t) as n→∞, and τ is the largest time at which all of the groups have
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at least one subject at risk. It can be shown that under the null hypothesis (2), n−1/2U11/σ̂

has a standard normal limiting distribution where

σ̂2 =

∫ τ

0

W 2
1 (t)

Y1(t)Y2(t)

Y·(t)

dN1·(t)

Y·(t)
. (4)

This leads to an asymptotic χ2 test or a Z test for (2).

Two-Sample Tests for Cumulative Incidence Function

Gray (1988) developed a class of K-sample nonparametric tests to compare the cumulative

incidence between different groups. Consider the following null hypothesis,

H0 : F11(t) = F12(t) for all 0 < t < τ. (5)

The Gray (1988) nonparametric test statistic is defined as

Ũ1k =

∫ τk

0

W̃ (t)Rk(t)

{
dN1k(t)

Rk(t)
− dN1·(t)

R·(t)

}
, (6)

where W̃ (t) is a predictable weight function that converges in probability to some deter-

ministic function w̃(t) as n→∞, Rk(t) = I(τk ≥ t)Yk(t)Ĝ1k(t−)/Ŝk(t−) can be considered

as an adjusted risk set size for group k at time t, Ĝjk(t−) is the the left-hand limit of the

Kaplan-Meier (1958) estimate of Gjk(t) = 1 − Fjk(t), Ŝk(t−) is the left-hand limit of the

Kaplan-Meier estimate of Sk(t), τk is some fixed time point satisfying Sk(τk)S
c
k(τk) > 0,

and R·(t) represents the same quantity as Rk(t) using the pooled sample. Gray (1988)

showed that under (5), n−1/2Ũ11/ˆ̃σ has a standard normal limiting distribution, where

ˆ̃σ2 =
2∑

k=1

n−1
{∫ τ1

0

â2k(t)ĥ
−1
k (t)ĥ−1· (t)dN1·(t) +

∫ τ1

0

b̂22k(t)ĥ
−2
k (t)dN2k(t)

}
, (7)
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with

âk(t) = d̂1k(t) + b̂1k(t),

b̂jk(t) =
[
I(j = 1)− Ĝ1·(t)/Ŝk(t)

]
[ĉk(τ1)− ĉk(t)] ,

ĉk(t) =
∫ t
0
d̂1k(u)Ĝ1·(u−)−1ĥ−1· (u)dN1·(u),

d̂jk(t) = n−1I(j = 1)W̃ (t)R1(t)
[
I(k = 1)− ĥk(t)/ĥ·(t)

]
/Ĝ1·(t−),

ĥk(t) = I(t ≤ τk)n
−1Yk(t)/Ŝk(t−),

ĥ·(t) = I(t ≤ max(τ1, τ2))n
−1Y·(t)/Ŝ·(t−),

Ĝ1·(t) = 1− F̂1·(t) = 1− n−1
∫ t
0
ĥ−1· (u)dN1·(u).

(8)

This gives an asymptotic χ2 test for (5) based on n−1Ũ2
11/ˆ̃σ2 or a Z test based on n−1/2Ũ11/ˆ̃σ.

Examples of the weight functions in the above test statistics have been discussed by

a number of authors (Gray, 1988; Gehan, 1965; Breslow, 1970; Peto and Peto, 1972;

Kalbfleisch, 1980). A nice survey of various weight functions and their applications can be

found in Klein and Moeschberger (2003, chap 7.2).

2.2 Joint Two-Sample Tests for Cause-Specific Hazard and Cu-

mulative Incidence Function

To test the joint null hypothesis (1), we first establish the joint limiting distribution of U11

and Ũ11 below.

Theorem 1 Let U11 and Ũ11 be defined by (3) and (6). Under the null hypothesis (1),

n−1/2(U11, Ũ11) has an asymptotically bivariate normal distribution with mean 0 and variance-

covriance matrix Σ(1) = (σ
(1)
ij ) as n → ∞, where Σ(1) is defined in (A.1) and (A.4) of

Appendix A.1. Furthermore, σ
(1)
11 and σ

(1)
22 are consistently estimated by (4) and (7), and
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the covariance σ
(1)
12 is consistently estimated by

σ̂
(1)
12 = n−1

{∫ τ
0
W1(t)

Y2(t)
Y·(t)

V̂11(t) + ĉ1(τ)
∫ τ
0
W1(t)

Y2(t)
Y·(t)

Ê11(t)ĥ
−1
1 (t)

}
Y1(t)dΛ̂11(t)

+ n−1
{∫ τ

0
W1(t)

Y1(t)
Y·(t)

V̂12(t) + ĉ2(τ)
∫ τ
0
W1(t)

Y1(t)
Y·(t)

Ê12(t)ĥ
−1
2 (t)

}
Y2(t)dΛ̂12(t),

(9)

where Λ̂1k(τ) =
∫ τ
0
Y −1k (t)dN1k(t), V̂jk(t) =

[
d̂jk(t)− Êjk(t)ĉk(t)

]
ĥ−1k (t), Êjk(t) = I(j =

1)− Ĝ1k(t−)/Ŝk(t−), and other quantities are defined in (8).

Chi-square Joint Test for (1)

Define

X2 = n−1
(
U11, Ũ11

)
Σ̂

(1)(−1)

 U11

Ũ11

 .

It follows from Theorem 1 that under (1), X2 has an asymptotically chi-square distribution

with 2 degrees of freedom. This leads to the following chi-square test for (1):

Reject (1) at level α if X2 > χ2
2(α),

where χ2
2(α) is the upper 1− α percentile of the standard χ2

2 distribution.

Rejection of (1) by the above chi-square test implies that there is a difference in either

cause-specific hazard or cumulative incidence between the two groups. However, it does not

indicate which individual quantity has a difference. The following maximum test provides

an alternative joint test that allows one to draw a conclusion on each individual quantity.

It also allows one-sided test.

Maximum Joint Test for (1)

Define

T ∗ = max(|Z11|, |Z̃11|)),

where Z11 = n−1/2U11/

√
σ̂
(1)
11 and Z̃11 = n−1/2Ũ11/

√
σ̂
(1)
22 . We would reject (1) if the ob-

served T ∗ is large. It follows from Theorem 1 that for large samples, the distribution of
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(Z11, Z̃11) can be approximated by the bivariate normal distribution N
(
(0, 0)T , (1, 1, ρ̂)

)
,

where ρ̂ =
σ̂
(1)
12√

σ̂
(1)
11

√
σ̂
(1)
22

. Thus we can approximate the distribution of T ∗ using Monte Carlo

simulation. Specifically, we generate N pairs of random variables from the bivariate nor-

mal distribution N
(
(0, 0)T , (1, 1, ρ̂)

)
. For the l-th generated pair, compute the maximum

absolute value, and denote it by T ∗l . Let Tα be the upper 100(1− α)-th sample quantile of

T ∗1 , . . . , T
∗
N . Reject the null hypothesis (1) at level α if T ∗ > Tα.

Remark 2.1: It is straightforward to modify the maximum joint test procedure to

test one-sided alternative(s) based on either T ∗ = max(Z11, Z̃11), T
∗ = max(|Z11|, Z̃11), or

T ∗ = max(Z11, |Z̃11|) as deemed appropriate.

Remark 2.2: (K-Sample Joint Tests) The above two-sample joint tests can be easily

extended to the K-sample problem (K ≥ 2) for the following null hypothesis

H0 : λ11(t) = · · · = λ1K(t) and F11(t) = · · · = F1K(t) for all 0 < t < τ, (10)

where τ is some pre-specified fixed time. Similar to Theorem 1, it can be shown that under

the null hypothesis (10), Vn = n−1/2(U11, · · · , U1K−1, Ũ11, · · · , Ũ1K−1) has an asymptotic

multivariate normal distribution with mean 0 and variance-covariance matrix Σ∗, where

Σ∗ is defined as the limit of the variance-covariance matrix of Vn and can be consistently esti-

mated as follows. From Kulathinal and Gasbarra (2002), we have Ĉov(n−1/2U1k, n
−1/2U1k′ ) =

−
∫ τ
0
W 2

1 (t)
Yk(t)Yk′ (t)

Y·(t)
dΛ̂1(t), where k, k

′
= 1, · · · , K. Ĉov(n−1/2Ũ1k, n

−1/2Ũ1k′ ) is given by

equation (2.10) on page 1146 of Gray (1988). Similar to the proof of Theorem 1,

Ĉov(n−1/2U1k, n
−1/2Ũ1k′ )

=
∫ τ
0

(
W1(t)V̂1k′k(t) + ĉk′k(τ)

∫ τ
0
W1(t)Ê1k(t)ĥ

−1
k (t)

)
Yk(t)dΛ̂1k(t)

+
∑K

l=1

(∫ τ
0
W1(t)

Yk(t)
Y·(t)

V̂1k′ l(t) + ĉk′ l(τ)
∫ τ
0
W1(t)

Yk(t)
Y·(t)

Ê1l(t)ĥ
−1
l (t)

)
Yl(t)dΛ̂1l(t),

where Λ̂1k(τ) =
∫ τ
0
Y −1k (t)dN1k(t), V̂jkl(t) =

[
D̂jkl(t)− Êjl(t)ĉkl(t)

]
ĥ−1l (t), D̂jkl = n−1I(j =

1)W̃ (t)Rk(t)
[
I(k = l)− ĥl(t)/ĥ·(t)

]
/Ĝ1·(t−), ĉkl(t) = n−1

∫ t
0
d̂1kl(u)Ĝ1·(u−)−1ĥ−1· (u)dN1·(u),
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Êjk(t) = I(j = 1) − Ĝ1k(t−)/Ŝk(t−), and all other quantities are defined in (8). These

results allow one to derive a chi-square test and a maximal test similar to the two-sample

case.

2.3 Joint Two Sample Tests for Other Quantities

Joint tests can also be derived for other related quantities. For group k, let λ2k(t) and λ·k(t)

denote the other (type 2) cause-specific hazard function and the all-cause hazard function,

respectively.

Two-Sample Joint Tests for Cause-Specific Hazard and All-Cause Hazard

Consider the following null hypotheses

H0 : λ11(t) = λ12(t) and λ·1(t) = λ·2(t) for all 0 < t < τ. (11)

Let

U·k =

∫ τ

0

W·(t)Yk(t)

{
dN·k(t)

Yk(t)
− dN··(t)

Y·(t)

}
, (12)

be the weighted log-rank test statistic for H0 : λ·1(t) = λ·2(t) for all t > 0, where N·k(t) =∑2
j=1Njk(t), N··(t) =

∑2
k=1

∑2
j=1Njk(t), and W·(t) is a predictable weight function that

converges in probability to some deterministic function w·(t) as n → ∞. Let U11 and

U·1 be defined by (3) and (12). Then, n−1/2(U11, U·1) has an asymptotic bivariate normal

distribution with mean 0 and variance-covariance matrix Σ(2) = (σ
(2)
ij ). Furthermore, Σ(2)

is consistently estimated by Σ̂
(2)

= (σ̂
(2)
ij ) where σ̂

(2)
11 =

∫ τ
0
W 2

1 (t) Y1(t)Y2(t)
Y1(t)+Y2(t)

dN11(t)
Y1(t)

, σ̂
(2)
22 =∫ τ

0
W 2
· (t) Y1(t)Y2(t)

Y1(t)+Y2(t)
dN·1(t)
Y1(t)

, and σ̂
(2)
12 =

∫ τ
0
W1(t)W·(t)

Y1(t)Y2(t)
Y1(t)+Y2(t)

dN11(t)
Y1(t)

. These results allows

one to construct a chi-square joint test and a maximum joint test for (11) similar to those

for (1) in the previous section.

Two-Sample Joint Tests for Both Cause-Specific Hazards
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Consider

H0 : λ11(t) = λ12(t) and λ21(t) = λ22(t) for all 0 < t < τ. (13)

Let

U2k =

∫ τ

0

W2(t)Yk(t)

{
dN2k(t)

Yk(t)
− dN2·(t)

Y·(t)

}
, (14)

be the weighted log-rank test statistic for H0 : λ21(t) = λ22(t) for all 0 < t < τ , where W2(t)

is a predictable weight function that converges in probability to some deterministic function

w2(t) as n→∞. It’s well known that U1k and U2k are asymptotically independent (Prentice

et al., 1978). Hence one can construct a chi-square joint test and a maximum joint test for

(13) based on the joint distribution of the two test statistics. Joint test for (13) was also

studied previously by Lindkvist and Belyaev (1998) and Kulathinal and Gasbarra (2002)

among others. In particular, the K-sample chi-square test of Kulathinal and Gasbarra

(2002, page 150) for the (λ1k, λ2k) pair with a special weight function Kn
kij(t) = I(i =

j)W1(t) reduces to that based on U1k and U2k. We also note that the ideas of Kulathinal

and Gasbarra (2002) could be extended to derive a test for the (λ1k, λ·k) pair, although it

was not explicitly developed in their paper.

Remark 2.3: It can be shown that for group k, the three pairs of functions (λ1k(·), F1k(·)),

(λ1k(·), λ·k(·)), and (λ1k(·), λ2k(·)) uniquely determine each other and that each pair uniquely

determines the joint distribution of (Xik, δik). This implies that the three null hypotheses

(1), (11), and (13) are equivalent. On the other hand, their alternative hypotheses are

different because the three pairs of functions characterize different features of competing

risks data. Furthermore, a significant effect of a variable on one pair does not necessarily

imply a significant effect on another pair, as illustrated later in Section 5.1. A practical

question is which pair(s) should be used, especially when planning a study. The answer

would depend on the specific research questions of a study. The cause-specific hazard and
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cumulative incidence pair, or (λ1k(·), F1k(·)), would be useful when studying the effects

of a variable on a given type (type 1) failure since they directly characterize two distinct

and easily interpretable features of type 1 failure. The cause-specific hazard and all-cause

hazard pair, or (λ1k(·), λ·k(·)), would be useful when the all-cause hazard describes a mean-

ingful clinical outcome such as “overall survival” (death due to any disease) in a randomized

clinical trial of a new treatment versus a standard treatment for a specific disease in which

the disease-specific survival and overall survival are co-primary endpoints. Note that the

all-cause hazard may not always describe a meaningful clinical outcome especially when the

two types of failures are negatively correlated as exemplified in the kidney transplantation

program example discussed in the beginning of Section 1. Finally, joint inference for both

cause-specific hazards, or (λ1k(·), λ2k(·)), would useful when both types of failures are of

interest to the study.

3 Joint Regression Analysis for Competing Risks Data

3.1 Joint Regression Analysis of Cause-Specific Hazard and Cu-

mulative Incidence

We now consider joint inference for the cause-specific hazard and the cumulative incidence

hazard under a regression setting. Assume that one observes n independent and identically

distributed triples (Xi, δi,Zi), where for subject i (i = 1, . . . , n), Xi = min{Ti, Ci}, δi =

DiI(Ti ≤ Ci), Ti is the failure time of interest, Ci is a right censoring time, Di is discrete

random variable taking values on 1, 2 with Di = j indicating that type j failure is observed,

and Zi is a vector of fixed or time-varying covariates that are observed on [0, Xi]. Assume

Ci is independent of Ti, Di and Zi, and pr(Ci ≥ t) = Gc(t).
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Let λ1(t|z) and λ̃1(t|z) be the conditional cause-specific hazard function and the condi-

tional subdistribution hazard function for type 1 failure for an individual with covariate z.

Assume the proportional cause-specific hazards model (Prentice et al., 1978)

λ1(t|Z) = λ10(t) exp(βT1 Z(1)(t)), (15)

and the proportional subdistribution hazards model (Fine and Gray, 1999)

λ̃1(t|Z) = λ̃10(t) exp(γT1 Z(2)(t)), (16)

where λ10(t) and λ̃10(t) are unknown baseline cause-specific hazard and baseline subdistri-

bution hazard for type 1 failure, respectively, and Z(1)(t) and Z(2)(t) are functions of the

original covariates Z and t that allow time × covariates interactions. Prentice et al. (1978)

showed that inference for β1 under the proportional cause-specific hazards model (15) can

be made using the standard Cox (1972, 1975) partial likelihood method by regarding other

types of failure as independent censoring. The proportional subdistribution hazards model

(16) was introduced by Fine and Gray (1999) who developed large sample inference for γ1.

Below we develop joint inference for β1 and γ1. Specifically, we consider the following

joint null hypothesis

H0 : AT1 β1 = d1 and AT2 γ1 = d2, (17)

where A1 and A2 are constant matrices, and d1 and d2 are constant column vectors.

Following Prentice et al. (1978) and Fine and Gray (1999), let

U1(β1) =
n∑
i=1

∫ ∞
0

{
Z

(1)
i (t)− Z̄(1)(β1, t)

}
dNi1(t), (18)

and

Ũ1(γ1) =
n∑
i=1

∫ ∞
0

{
Z

(2)
i (t)− Z̄(2)(γ1, t)

}
ωi(t)dÑi1(t), (19)
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be the score functions for β1 and γ1 under models (15) and (16), respectively, where

Z̄(1)(β1, t) =
∑n
l=1 Yl(t)Z

(1)
l (t) exp(βT1 Z

(1)
l (t))∑n

l=1 Yl(t) exp(β
T
1 Z

(1)
l (t))

, Yi(t) = I{Xi ≥ t} and Ni1(t) = I(Xi ≤ t,Di = 1),

Z̄(2)(γ1, t) =
∑n
l=1 ωl(t)Ỹl(t)Z

(2)
l exp(γT1 Z

(2)
l (t))∑n

l=1 ωl(t)Ỹl(t) exp(γ
T
1 Z

(2)
l (t))

, Ñi1(t) = I(Ti ≤ t,Di = 1), Ỹi(t) = 1 − Ñi1(t−),

ωi(t) = I(Ci ≥ Ti ∧ t)Ĝc(t)/Ĝc(Xi ∧ t), and Ĝc is the Kaplan and Meier (1958) estimate

of the survival function Gc of the censoring variable C. Note that Ñi1(t) is different from

Ni1(t) and may not be observed if the subject is censored, but ωi(t)Ñi1(t) can always

be computed. Let β̂1 and γ̂1 be the solutions of the score equations U1(β1) = 0 and

Ũ1(γ1) = 0, respectively.

Theorem 2 Under similar regularity conditions to Andersen et al. (1982) and Fine and

Gray (1999), we have

n1/2

 β̂1 − β1

γ̂1 − γ1

 d−→ N(0,Σ(1)), as n→∞,

where Σ(1) is defined by (A.11) in the Appendix A.1. Furthermore, Σ(1) can be consistently

estimated by

Σ̂
(1)

=

 Ω̂
(1)−1
(pp) Ω̂

(1)−1
(pp) Ω̂

(1)

(pq)Ω̂
(1)−1
(qq)

Ω̂
(1)−1
(qq) Ω̂

(1)

(qp)Ω̂
(1)−1
(pp) Ω̂

(1)−1
(qq) Ω̂

∗(1)
(qq)Ω̂

(1)−1
(qq)

 , (20)

where

Ω̂
(1)

(pp) = 1
n

∑n
i=1

∫∞
0

[∑n
l=1 Yl(t)Z

(1)
l (t)⊗2 exp(β̂

T
1 Z

(1)
l (t))∑n

l=1 Yl(t) exp(β̂
T
1 Z

(1)
l (t))

− Z̄(1)(β̂1, t)
⊗2
]
dNi1(t),

Ω̂
(1)

(qq) = 1
n

∑n
i=1

{∑n
l=1 ωl(t)Ỹl(t)Z

(2)
l (t)⊗2 exp(γ̂T1 Z

(2)
l (t))∑n

l=1 ωl(t)Ỹl(t) exp(γ̂
T
1 Z

(2)
l (t))

− Z̄(2)(γ̂1, t)
⊗2
}
I(δi = 1),

Ω̂
(1)

(pq) = 1
n

∑n
i=1

{∫∞
0

(
Z

(1)
i (t)− Z̄(1)(β̂1, t)

)(
dNi1(t)− Yi(t) exp(β̂

T

1 Z
(1)
i (t)dΛ̂10(t)

)
∗ η̂i

}
+ 1

n

∑n
i=1

{∫∞
0

(
Z

(1)
i (t)− Z̄(1)(β̂1, t)

)(
dNi1(t)− Yi(t) exp(β̂

T

1 Z
(1)
i (t))dΛ̂10(t)

)
∗ φ̂i

}
Ω̂
∗(1)
(qq) = 1

n

∑n
i=1(η̂i + φ̂i)

⊗2,

(21)
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with

η̂i =
∫∞
0

{
Z

(2)
i (t)− Z̄(2)(γ̂1, t)

}
ωi(t)d

ˆ̃Mi1(t),

ˆ̃Mi1(t) = Ñi1(t)−
∫ t
0
Ỹi(u) exp(γ̂T1 Z

(2)
i (u))d ˆ̃Λ10(u),

ˆ̃Λ10(t) = 1
n

∑n
i=1

∫ t
0

{∑n
l=1 Ỹl(u) exp(γ̂T1 Z

(2)
l (u))

}−1
ωi(u)dÑi1(u),

φ̂i =
∫∞
0

q̂(t)
π̂(t)

dM̂ c
i (t),

M̂ c
i (t) = I(Xi ≤ t, δi = 0)−

∫ t
0
I(Xi ≥ u)dΛ̂c(u),

Λ̂c(t) =
∫ t
0

∑n
i=1 d{I(Xi≤u,δi=0)}∑n

i=1 I(Xi≥u)
,

q̂(t) = −n−1
∑n

i=1

∫∞
0

{
Z

(2)
i (s)− Z̄(2)(γ̂1, s)

}
I(s ≥ t > Xi)ωi(s)d

ˆ̃Mi1(s),

π̂(t) = n−1
∑n

i=1 I(Xi ≥ t).

Corollary 1 Let ξn = n1/2(A1β̂1 − d1) and ηn = n1/2(A2γ̂1 − d2). Then, under the null

hypothesis (17), we have  ξn

ηn

 d−→ N(0,V), as n→∞,

where

V =

 A1 0

0 A2

Σ(1)

 AT
1 0

0 AT
2

 . (22)

Define the following Wald-type test statistic

X2
W =

(
ξTn ,η

T
n

)
V̂−1

 ξn

ηn

 ,

where V̂ is a consistent estimate of V obtained by replacing Σ(1) with Σ̂
(1)

in (22). It

follows immediately from Corollary 1 that under (17), X2
W has an asymptotic chi-squared

distribution with pd1 + pd2 degrees of freedom, where pd1 and pd2 are the dimensions of d1

and d2, respectively. This leads to the following chi-square joint test for (17):

16



Reject (17) at level α if X2
W > χ2

pd1+pd2
(α),

where χ2
pd1+pd2

(α) is the upper 1− α percentile of the standard χ2
pd1+pd2

distribution.

3.2 Joint Regression Analysis of Other Quantities

Besides analyzing λ1(t|Z) and λ̃1(t|Z) jointly, it is sometimes also useful to consider other

related quantities as discussed in Section 2.3 (Remark 2.3).

Joint Regression Analysis of Cause-Specific Hazard and All-Cause Hazard

Assume that the proportional cause-specific hazards model (15) holds. In addition, assume

the proportional all-cause hazards model:

λ(t|Z) = λ0(t) exp(βT· Z
(3)(t)), (23)

where λ(t|Z)) denote the conditional all-cause hazard function given Z, λ0(t) is an unknown

baseline hazard, and Z(3)(t) are functions of the original covariates Z and t that allow time

× covariates interactions. Below we derive joint inference for β1 and β·.

Let

U·(β·) =
n∑
i=1

∫ ∞
0

{
Z

(3)
i (t)− Z̄(3)(β·, t)

}
dNi(t), (24)

be the score function for β· under model (23), where Z̄(3)(β·, t) =
∑n
l=1 Yl(t)Z

(3)
l (t) exp(βT· Z

(3)
l (t))∑n

l=1 Yl(t) exp(β
T
· Z

(3)
l (t))

and Ni(t) = I(Xi ≤ t, δi = 1). Let β̂· be the solution of the score equation U·(β·) = 0.

Theorem 3 Under some regularity conditions, as n→∞,

n1/2

 β̂1 − β1

β̂· − β·

 d−→ N(0,Σ(2)),
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where Σ(2) is defined by (A.13) in the Appendix A.1. Furthermore, Σ(2) can be consistently

estimated by

Σ̂
(2)

=

 Ω̂
(2)−1
(pp) Ω̂

(2)−1
(pp) Ω̂

(2)

(pq)Ω̂
(2)−1
(qq)

Ω̂
(2)−1
(qq) Ω̂

(2)

(qp)Ω̂
(2)−1
(pp) Ω̂

(2)−1
(qq)

 , (25)

where

Ω̂
(2)

(pp) = 1
n

∑n
i=1

∫∞
0

[∑n
l=1 Yl(t)Z

(1)
l (t)⊗2 exp(β̂

T
1 Z

(1)
l (t))∑n

l=1 Yl(t) exp(β̂
T
1 Z

(1)
l (t))

− Z̄(1)(β̂1, t)
⊗2
]
dNi1(t),

Ω̂
(2)

pq = 1
n

∑n
i=1

∫∞
0

(
Z

(3)
i (t)− Z̄(3)(β̂·, t)

)(
Z

(1)
i (t)− Z̄(1)(β̂1, t)

)
Yi(t) exp(β̂

T

1 Z(1)(t))dΛ̂10(t),

Ω̂
(2)

(qq) = 1
n

∑n
i=1

∫∞
0

[∑n
l=1 Yl(t)Z

(3)
l (t)⊗2 exp(β̂

T
· Z

(3)
l (t))∑n

l=1 Yl(t) exp(β̂
T
· Z

(3)
l (t))

− Z̄(3)(β̂·, t)
⊗2
]
dNi(t),

with Λ̂10(t) = 1
n

∑n
i=1

∫ t
0

{∑n
l=1 Yl(u)(β̂

T

1 Z
(1)
i (u))

}−1
dNi1(u) is an estimator of the baseline

cumulative cause-specific hazard for type 1 failure.

Theorem 3 enables one to draw joint inference for β1 and β· along the lines of the previous

section.

Joint Regression Analysis of Both Cause-Specific Hazards

Assume the proportional cause-specific hazards model (15) for type 1 failure. In addition,

assume the following proportional cause-specific hazards model for type 2 failure:

λ2(t|Z) = λ20(t) exp(βT2 Z(4)(t)), (26)

where λ20(t) is a unknown baseline cause-specific hazard, and Z(4)(t) are functions of the

original covariates Z and t that allow time × covariates interactions.

Let

U2(β2) =
n∑
i=1

∫ ∞
0

{
Z

(4)
i (t)− Z̄(4)(β2, t)

}
dNi2(t), (27)

be the score test statistic under model (26), where Z̄(4)(β2, t) =
∑n
l=1 Yl(t)Z

(4)
l (t) exp(βT2 Z

(4)
l (t))∑n

l=1 Yl(t) exp(β
T
2 Z

(4)
l (t))

.

Let β̂2 be the solution of the score equations U2(β2) = 0. It can be shown that U1 and
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U2 are asymptotically independent since Ni1(t) and Ni2(t) do not jump at the same time.

Therefore one draw joint inference for β1 and β2 similar to the previous sections.

Remark 3.1. In addition to being easy to interpret, the PH models for the cause-

specific hazard and the all-cause hazard only require that the censoring time be condition-

ally independent of the survival time given the observed covariates, which is weaker than

the completely censoring at random assumption needed by the proportional subdistribution

hazards model.

Remark 3.2. (Model Checking) Model diagnostic techniques for the standard Cox

(1972) proportional hazards model can be readily applied to assess model assumptions of

the individual models (15), (23) and (26) (Schoenfeld, 1980, 1982; Lagakos, 1981; Andersen,

1982; Nagelkerke et al., 1984; Moreau et al., 1985; Arjas, 1988; Beyersmann et al., 2007;

Latouche et al., 2007; Grambauer et al., 2010; Haller et al., 2012; Andersen et al., 2012).

Graphical methods for these models can also be adapted for the proportional subdistri-

bution hazards model (16). Formal goodness-of-fit tests for (16) have been developed by

Scheike and Zhang (2008). In addition to assessing goodness-of-fit of an individual model,

it is also important to check if two individual models hold simultaneously. For example, it

has been well recognized that the proportional hazards assumption for a time-independent

covariate does not hold simultaneously for the cause-specific hazard and the cause-specific

subdistribution hazard, and thus it is important for models (15) and (16) to allow time ×

covariates interactions. To check if (15) and (16) hold simultaneously, one needs to verify

that for any z, Λ2(t|z) ≡ Λ̃1(t|z) − Λ1(t|z) + logλ1(t|z) − logλ̃1(t|z) is nondecreasing and

satisfies Λ2(0|z) = 0. In other words, the above defined Λ2(t|z) is a proper conditional

cumulative cause-specific hazard function for type 2 failure. We provide an example of the

joint model of (15) and (16) in Section 4(model (28)).
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4 Simulations

We present some simulation results to illustrate the advantage of the proposed joint tests

over the Bonferroni method. The weight function is set to be a constant 1 in all simulations.

The first simulation considers two-group comparison of type 1 failure with respect to

both cause specific hazard (CSH) and cumulative incidence function (CIF). We assign equal

number of patients in the two groups. Competing risks data are generated using Beyers-

mann et al. (2009)’s cause-specific hazard driven method that requires only specification

of the cause-specific hazard for each type of failure.

Figure 1 depicts simulated rejection power of the two-sided chi-square joint test, max-

imum joint test and Bonferroni joint test for hypothesis (1) for various sample sizes per

group under four scenarios. Figure 1(a) corresponds to a null case under H0. Figure 1(b)

corresponds to a scenario where there is a small group difference in CSH and a large group

difference in CIF, whereas Figure 1(c) corresponds to an opposite situation. Figure 1(d)

corresponds to a case where the group effects on CSH and CIF are similar. Specifically,

in the first two scenarios, we assume constant cause specific hazard for both causes, with

λ11 = λ12 = 0.04, λ21 = λ22 = 0.01 for Figure 1(a) and λ11 = λ12 = 0.1, λ21 = 0.04, λ22 =

0.01 for Figure 1(b), where λjk denotes the cause-specific hazard for type j failure in group

k. In the last two scenarios, we assume λ1(t|Z) = λ10(t) exp(γZ ∗ I(t < 1) + βZ ∗ I(t ≥ 1))

and λ̃1(t|Z) = λ̃10(t) exp(γZ), with β = 0.4, γ = 0.01 for Figure 1(c) and β = 0.5, γ = 0.5

for Figure 1(d), where λ10(t) = 0.05 ∗ I(0 ≤ t < 1) + 0.1 ∗ I(t ≥ 1), λ̃10(t) = 0.05e−t

1−0.05(1−e−t) ,

and Z is a binary group variable. The censoring rate is set to be 0.1 with an indepen-

dent exponential censoring time in each scenario. The nominal significance level is 0.05.

A graphical illustration of the CIF by groups under all four scenarios is presented in the

Appendix A.3 (Figure A.5).

20



●

●

● ●
●

●

●

●

●

●

●

●

● ●

100 200 300 400

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

(a)

Sample Size

Po
w

er

●

●

Bonferroni
Chisq
Max

●

●

●

●

●

●
●

●

●

● ● ● ● ●

100 200 300 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)

Sample Size

Po
w

er

●

●

Bonferroni
Chisq
Max

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 100 200 300 400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c)

Sample Size

Po
w

er

●

●

Bonferroni
Chisq
Max ●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d)

Sample Size

Po
w

er

●

●

Bonferroni
Chisq
Max

Figure 1: Simulated power of the two-sided chi-square joint test, maximum joint test and

Bonferroni joint test for two-group type 1 failure comparison with respect to the CSH and

CIF pair under four scenarios as described in Section 4: (a) null case under H0, (b) smaller

group difference in CSH and larger group difference in CIF, (b) larger group difference in

CSH and smaller group difference in CIF, and (d) similar group effects on CSH and CIF.

21



It is seen from Figure 1(a) that the type I error rates for all three tests are well controlled

around the 0.05 nominal level. In all three alternative cases ((b)-(d)), either the chi-square

joint test, or the maximum joint test, or both are more powerful than the Bonferroni

method. In the cases where the group effects on CSH and CIF are quite different (Figures

1(b) and 1(c)), the chi-square joint test is observed to be most powerful with subtaintially

improved power. When the effect sizes for CSH and CIF are similar (Figure 1(d)), the

maximum joint test outperforms the others. The improved power of the proposed joint

tests has important implications for the design of clinical trials in the presence of competing

risks. For example, to achieve 80% power under the second scenario (Figure 1(b)), it would

require n = 80 patients for the chi-square joint test, about 200 patients for the maximum

joint test, and more than 200 patients for the Bonferroni joint test.

We also conducted power comparisons for one-sided joint tests under the same four

scenarios as in Figure 1. The results are presented in Figure A.1 in the Appendix A.2.

The results are consistent with the two-sided case except that the maximum joint test has

much more pronounced improvement over the chi-square joint test in the last scenario. We

note that the chi-square joint test is constructed for a two-sided hypothesis, and thus can

be underpowered when used as a one-sided test as shown in Figure A.1(d).

The second simulation study considers a joint regression model of CSH and CIF with

respect to type 1 failure. It is well known that the proportional hazards assumption for

a time-independent covariate usually does not hold simultaneously for the CSH and the

CIF hazard (or subdistribution hazard), so it’s imperative to include time by covariate

interactions in the joint model. As a illustration, we consider the following joint model:

λ1(t|Z) = λ10(t) exp(γTZ ∗ I(t < τ0) + βTZ ∗ I(t ≥ τ0)),

λ̃1(t|Z) = λ̃10(t) exp(γ̃TZ ∗ I(t < τ0) + β̃
T
Z ∗ I(t ≥ τ0)),

(28)

where λ10(t) = aI(0 ≤ t < τ0) + bI(t ≥ τ0), λ̃10(t) = ce−t

1−c(1−e−t) , Z = (Z1, Z2), with Z1, Z2
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being binary variables, γ = (γ1, γ2), β = (β1, β2), and τ0 is some pre-specified constant.

Note that under model (28), the conditional cumulative cause-specific hazard function for

cause 2 given Z = z is Λ2(t|z) = Λ̃1(t|z)− Λ1(t|z) + logλ1(t|z)− logλ̃1(t|z). For Λ2(t|z) to

be a proper conditional cumulative cause-specific hazard function, it must satisfy

Λ2(0|z) = 0 and λ2(t|z) =
∂Λ2(t|z)

∂t
≥ 0 for all t ≥ 0,

which imply some constraints on the parameters in model (28). For simplicity, we further

assume γ̃ = β̃ for our simulation. In this case, it can be shown that Λ2(t|z) is a proper

cumulative cause-specific hazard function if the following constraints hold: 1) a = c ≤ b,

2) eγ
T z < 1−a

c
, 3) eβ

T z < 1/a(1− e−τ0), and 4) γ̃ = γ. We then generated competing risks

data from λ1(t|z) and λ2(t|z) using the method of Beyersmann et al. (2009).

Figure 2 displays the simulated power curves of the three two-sided joint tests described

in Section 3.1 for the following local hypothesis regarding the effects of Z1 on the CSH and

the CIF hazard after time τ0:

H0 : β1 = 0 and γ1 = 0. (29)

We consider four scenarios: (a) the null case (β1 = 0, γ1 = 0); (b) smaller Z1 effect on

CSH and larger Z1 effect on CIF (β1 = −0.1,γ1 = −0.4); (c) larger Z1 effect on CSH and

smaller Z1 effect on CIF (β1 = −0.6,γ1 = −0.2); and (d) similar Z1 effects on CSH and

CIF (β1 = −0.5,γ1 = −0.5). In all four scenarios, we set a = 0.05, b = 0.1, β2 = −0.2,

γ2 = −0.1, γ = γ̃, and τ0 = 1.

Figure 2 leads to similar conclusions to what we have observed for the two-group case in

the first simulation study. In the supplementary material, we also present some simulations

for the CSH and all-cause hazard (ACH) pair which have similar conclusions.

Finally, we conducted a small-scale simulation to compare the power of the three joint

tests for (1), (11), and (13). When there is little group difference in a particular quantity,

23



●

●
●

●

●

●

●

●

●

●

100 200 300 400

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

(a)

Sample Size

Po
w

er

●

●

Bonferroni
Chisq
Max ●

●

●

●

●

●

●

●

●

●

0 100 200 300 400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)

Sample Size

Po
w

er

●

●

Bonferroni
Chisq
Max

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 100 200 300 400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c)

Sample Size

Po
w

er

●

●

Bonferroni
Chisq
Max

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d)

Sample Size

Po
w

er

●

●

Bonferroni
Chisq
Max

Figure 2: Simulated power of the two-sided chi-square joint test, maximum joint test and

Bonferroni joint test of a local hypothesis (29) for a joint regression model (28) of CSH

and CIF under four scenarios as described in Section 4: (a) null case, (b) smaller effects on

CSH and larger effects on CIF, (b) larger effects on CSH and smaller effects on CIF, and

(d) similar effects on CSH and CIF.
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a test for a pair involving that quantity was observed to have lower power than those for

other pairs. This is not surprising because a joint test for a specific pair is constructed to

detect a group difference in the direction of that pair. The details are omitted.

5 Real Data Example

We illustrate our methods on two real data sets. In the first example we consider joint

inference for time to second malignancy in Hodgkin disease patients. In the second example,

we perform joint analysis of the cause-specific hazard (CSH) for time to progression (TTP)

and the all-cause hazard (ACH) for time to progression or death (progression free survival

or PFS) for follicular type lymphoma patients.

5.1 Hodgkin Disease

The Hodgkin disease data was described in Pintilie (2006). It consists of 865 patients who

were diagnosed with Hodgkin disease and received radio therapy in Princess Margaret Hos-

pital between 1968 and 1986. Here we are interested in studying time to second malignancy

after receiving radio therapy, which is an important variable for evaluating the side effects

of radio therapy. Death without second malignancy is a competing risk. Among the 865

patients, 93 developed second malignancy, 386 were dead without the second malignancy,

and 386 were right censored who did not experience any of the two events by the end of

study. For illustration purpose, we investigate whether or not the risks of developing second

malignancy were the same among older(≥ 30) and younger (< 30) patients.

Figures 3 (a) and (b) depict the cumulative cause-specific hazard functions and the

cumulative incidence functions, respectively, for time to second malignancy for the older(≥

30) and younger (< 30) groups. There appears to be a higher cause-specific hazard for the
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Figure 3: (a) Cumulative cause-specific hazard functions for time to second malignancy for

older(≥ 30) and younger (< 30) patients (log-rank test p-value=0.037). (b) Cumulative

incidence functions for time to second malignancy for older(≥ 30) and younger (< 30)

patients (Gray’s test p-value=0.770).

older patients since the slope of their cumulative cause-specific hazard is noticeably bigger

(Figure 3(a)). However, the cumulative incidence functions for the two age groups are

barely distinguishable (Figure 3(b)) . The two-sample log-rank test for the cause-specific

hazard for time to second malignancy yields a p-value=0.037. The Gray (1988) two-sample

test for the cumulative incidence for time to second malignancy gives a p-value=0.770. At

5% overall significant level, none of the individual tests is statistically significant at the

Bonferroni adjusted level 0.05/2=0.025.

We performed the chi-square joint test and the maximum joint test for the null hy-

pothesis that there is no difference in the cause-specific hazard (CSH) and the cumulative

incidence (CIF) for time to second malignancy between older and younger patients. The

p-values are presented in the first part of Table 1, along with the results of the individual

tests and the Bonferroni’s method. In contrast to the Bonferroni method, the two-sample
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Table 1: Separate and Joint Test Results for Hodgkin Disease Example for Three Pairs of

Quantities

Separate Test Joint Test

Test CSH CIF Bonferroni χ2 Max

p-value 0.037 0.770 0.074 0.020 0.050

Test CSH ACH Bonferroni χ2 Max

p-value 0.037 5.2E − 8 1.0E − 7 3.4E − 7 3.0E − 8

Test CSH OCH Bonferroni χ2 Max

p-value 0.037 4.7E − 7 9.4E − 7 3.5E − 7 8.0E − 7

NOTE: χ2 and Max are abbreviations for the Chi-square joint test and the maximum joint test described in Section 2.2.

chi-square joint test for the cause-specific hazard and the cumulative incidence yields a

p-value 0.02, which is highly significant at 5% significance level. The maximum joint test

is also significant at level 0.05 (p-value =0.05). As illustrations, we also performed joint

tests for (CSH, ACH) and for CSH with the other cause-specific hazard (OCH) (parts 2

and 3 of Table 1), which show that in addition to an elevated cause-specific hazard for

time to second malignancy, the older patients also had a higher risk of dying from other

life-threatening diseases without developing second malignancy. This explains why their

observed cumulative incidence for time to second malignancy was not significantly different

from the younger patients.

5.2 Follicular cell lymphoma study

The follicular cell lymphoma study (Pintilie, 2006; Scheike and Zhang, 2011) consists of

541 early stage (I or II) follicular type lymphoma patients who were enrolled between 1967
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and 1996 and treated with either radiation alone (RT) or with radiation and chemother-

apy (CMT). There were 272 events due to disease (relapse or no treatment response), 76

competing risk events (death without relapse), and 193 censored individuals who didn’t

experience any of the two events at the end of the followup. As in Scheike and Zhang

(2011), we test if the CMT group has a longer time to relapse or no treatment response

than the RT group. Although one could study different pairs of quantities, we consider

joint inference of the cause-specific hazard and the all-cause hazard based on models (15)

and (23) because they correspond to two commonly used clinical endpoints, namely time to

progression (TTP) and progression free survival (PFS), in oncology trials. Here TTP, de-

fined as time to relapse or no treatment response, is an endpoint for the anti-tumor activity

of a treatment, and PFS, defined as time to progression or death before progression, is an

endpoint for the overall effects on a patient. In addition to a binary treatment variable (1

for RT and 0 for CMT), we adjust for patient’s baseline age, stage, and Haemoglobin level

(hgb) by including them as covariates in our models. The Cox-Snell residual plots for the

proportional all-cause hazards model (Figure A.6(a)) and the proportional cause-specific

hazards model (Figure A.6(b)), which presented in Appendix A.3, indicate reasonable over-

all fit of both models. We conducted the chi-square joint test and the maximum joint test

for the treatment variable and summarized the results along with Bonferroni adjustment

method and the individual tests in Table 2. The maximum joint test (p-value= 0.047) is

significant, whereas the chi-square joint test (p-value=0.182) and the Bonferroni method

(p-value=0.07) are not significant at 5% significance level. The one-sided individual test

statistics for CSH and ACH are 1.81 and 1.78, respectively, both exceeding 1.77, the cutoff

value of the maximum test. Therefore we conclude that at 5% overall significance level,

CMT group has a lower risk of TTP (cause-specific hazard) and a lower risk of PFS (ACH)

as compared to the RT group adjusting for patient’s baseline age, stage, and Haemoglobin
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Table 2: Separate and Joint Test Results for Follicular Cell Lymphoma Study

Separate Test Joint Test

Test CSH ACH Bonferroni χ2 Max

p-value 0.035 0.037 0.070 0.182 0.047
NOTE: χ2 and Max are abbreviations for the Chi-square joint test and the maximum joint test.

level (hgb). Finally, the chi-square joint test has a relatively large p-value because it is

actually a two-sided test that is not powered for a one-sided hypothesis, especially when the

effect sizes for CSH and ACH are similar, which is consistent with our simulation results

(Figure A.3(d)).

6 Discussion

We emphasize the importance of joint inference for the cause-specific hazard and the cu-

mulative incidence because one quantity alone does not fully characterize the time to a

particular type of failure in the presence of competing risks. As illustrated in our simula-

tions and real data examples, the proposed chi-square joint test and maximum joint test

can be much more powerful than the Bonferroni method. The increased power implies

substantial saving in the number of patients required in a clinical trial. In a sequel, we

will develop power analysis methods to determine the required sample size to test a group

difference based on the developed joint tests. We also note that the chi-square joint test

tends to be more powerful than the maximum joint test when the effects on the two quan-

tities are very different and that the maximum joint test dominates the chi-square joint

test when the effects on the two quantities are similar. In practice, we recommend that

both joint tests be performed together with the separate tests for the individual quantities
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as illustrated in our real data example. The joint regression methods in Section 3 can be

extended to beyond Cox’s models. For example, the accelerated failure time models can be

used to model the cause-specific hazard. Scheike and Zhang (2008) considered other regres-

sion models for the sub-distribution hazard. Joint inference procedures for these models

can be developed similarly. Finally, joint modeling of the cause-specific hazard and the

cumulative incidence is non-trivial since the proportional cause-specific hazards model and

the proportional sub-distributional hazards model are unlikely to hold simultaneously, es-

pecially for a time-independent covariate. However, this issue can be resolved by including

time by covariate interactions in the regression models. In particular, we presented a joint

model with piecewise proportional cause-specific hazards and piecewise proportional sub-

distributional hazards and discussed how to check if the two models hold simultaneously

in Section 4.

SUPPLEMENTARY MATERIAL

Appendix: Proofs for the theorems and additional simulation results. (pdf)
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APPENDIX A. Supplementary Material

APPENDIX A.1. Proofs for the theorems in the manuscript

Proof for Theorem 1. Let Mjk(t) = Njk(t)−
∫ t
0
Yk(u)dΛjk(u), where Λjk(t) =

∫ t
0
λjk(u)du

is the cumulative cause-specific hazard for cause j in group k. Under the null hypothesis,

we can rewrite (3) as

n−1/2U11 =

∫ τ

0

W1(t)
Y1(t)Y2(t)

Y·(t)

{
dM11(t)

Y1(t)
− dM12(t)

Y2(t)

}
,

and (6) as

n−1/2Ũ11 =
2∑
j=1

2∑
k=1

{Ajk(τ) + Ck(τ)Bjk(τ)} ,

where

Ajk(τ) =
∫ τ
0

[Djk(t)− Ejk(t)Ck(t)] ĥ−1k (t)n−1/2dMjk(t),

Bjk(τ) =
∫ τ
0
Ejk(t)ĥ

−1
k (t)n−1/2dMjk(t),

Ck(τ) =
∫ τ
0
n−1W̃ (t)R1(t) [I(k = 1)−Rk(t)/R·(t)] /Ĝ1k(t−)dF1k(t),

Djk(τ) = I(j = 1)n−1W̃ (τ)R1(τ) [I(k = 1)−Rk(τ)/R·(τ)] /Ĝ1k(τ−),

Ejk(τ) = I(j = 1)−G1k(τ)/Sk(τ).

Under some regularity conditions, by using the multivariate martingale central limiting

theorem (Fleming and Harrington (1991), Theorem 5.3.5), we can prove that n−1/2(U11, Ũ11)
T

has a multivariate normal limiting distribution with mean 0 and variance-covariance Σ(1) =

(σ
(1)
ij ), where σ

(1)
11 and σ

(1)
22 are developed by Fleming and Harrington (1991); Gray (1988),

where

σ
(1)
11 = σ2 =

∫ τ
0
w2

1(t)
y1(t)y2(t)
y·(t)

dΛ11(t),

σ
(1)
22 = σ̃2 =

∑2
k=1 n

−1 {∫ τ1
0
a2k(t)h

−1
k (t)h−1· (t)dF1·(t) +

∫ τ1
0
b22k(t)h

−2
k (t)dF2k(t)

}
,

(A.1)
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with

Λjk(t) =
∫ t
0
λjk(u)du,

ak(t) = djk(t) + bjk(t),

bjk(t) = [I(j = 1)−G1k(t)/Sk(t)] [ck(τ1)− ck(t)] ,

ck(t) =
∫ t
0
d1k(u)λ̃1k(u)du,

djk(t) = I(j = 1)W̃ (t)R1(t) [I(k = 1)− hk(t)/h·(t)] /G1k(t),

hk(t) = I(t ≤ τk)yk(t)/Sk(t),

h·(t) = I(t ≤ max(τ1, τ2))(y1(t) + y2(t)/Sk(t),

yk(t) = pkSk(t)S
c
k(t),

pk = nk/(n1 + n2).

To obtain the covariance σ
(1)
12 , we first note that〈

n−1/2U11, n
−1/2Ũ11

〉
= n−1

〈∫ τ
0
W1(t)

Y1(t)Y2(t)
Y·(t)

{
dM11(t)
Y1(t)

− dM12(t)
Y2(t)

}
,
∑2

k=1

∑2
j=1 {Ajk(τ) + Ck(τ)Bjk(τ)}

〉
= n−1

〈∫ τ
0
W1(t)

Y1(t)Y2(t)
Y·(t)

{
dM11(t)
Y1(t)

− dM12(t)
Y2(t)

}
,∫ t

0
V11(t)dM11(t) + C1(τ)

∫ τ
0
E11(t)ĥ

−1
1 (t)dM11(t)

+
∫ τ
0
V12(t)dM12(t) + C2(τ)

∫ τ
0
E12(t)ĥ

−1
2 (t)dM12(t)

〉
= n−1

{∫ τ
0
W1(t)

Y2(t)
Y·(t)

V11(t) + C1(τ)
∫ τ
0
W1(t)

Y2(t)
Y·(t)

E11(t)ĥ
−1
1 (t)

}
d〈M11,M11〉(t)

+n−1
{∫ τ

0
W1(t)

Y1(t)
Y·(t)

V12(t) + C2(τ)
∫ τ
0
W1(t)

Y1(t)
Y·(t)

E12(t)ĥ
−1
2 (t)

}
d〈M12,M12〉(t),

(A.2)

where Vjk(t) = [Djk(t)− Ejk(t)Ck(t)] ĥ−1k (t). Furthermore, Mjk(t) are orthogonal square

intergrable martingales with predictable variation process

〈Mjk(t),Mj′k′ (t)〉 = γjj′γkk′

∫ t

0

Yk(u)dΛjk(u), (A.3)
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where γuv = 1 if u = v. After plugging (A.3) into (A.2), we have〈
n−1/2U11, n

−1/2Ũ11

〉
= n−1

[∫ τ
0
W1(t)

Y2(t)
Y·(t)

V11(t) + C1(τ)
∫ τ
0
W1(t)

Y2(t)
Y·(t)

E11(t)ĥ
−1
1 (t)

]
Y1(t)dΛ11(t)

+n−1
[∫ τ

0
W1(t)

Y1(t)
Y·(t)

V12(t) + C2(τ)
∫ τ
0
W1(t)

Y1(t)
Y·(t)

E12(t)ĥ
−1
2 (t)

]
Y2(t)dΛ12(t),

which converges in probability to

σ
(1)
12 =

[∫ τ
0
w1(t)

y2(t)
y·(t)

v11(t) + c1(τ)
∫ τ
0
w1(t)

y2(t)
y·(t)

e11(t)h
−1
1 (t)

]
y1(t)dΛ11(t)

+
[∫ τ

0
w1(t)

y1(t)
y·(t)

v12(t) + c2(τ)
∫ τ
0
w1(t)

y1(t)
y·(t)

e12(t)h
−1
2 (t)

]
y2(t)dΛ12(t),

(A.4)

where

ejk(t) = I(j = 1)−G1k(t)/Sk(t),

vjk(t) = [djk(t)− ejk(t)ck(t)]h−1k (t).

Finally a consistent estimator of σ
(1)
12 is obtained by replacing each unknown quantity in

(9) by its consistent sample estimate. �

Proof for Theorem 2. First, we derive the asymptotic joint distribution of n−1/2(U1(β1), Ũ1(γ1))
T .

It can be shown that

n−1/2U1(β1) = n−1/2
∑n

i=1 Ui1(β1) + op(1),

n−1/2Ũ1(γ1) = n−1/2
∑n

i=1 (ηi(γ1) + φi(γ1)) + op(1),
(A.5)

where

Ui1(β1) =

∫ ∞
0

{
Z

(1)
i (t)− z̄(1)(β1, t)

}
dMi1(t),

ηi =

∫ ∞
0

{
Z

(2)
i (t)− z̄(2)(γ1, t)

}
wi(t)dM̃i1(t),

φi =

∫ ∞
0

q(t)

π(t)
dM c

i (t),

M̃i1(t) = Ñi1(t)−
∫ t

0

Ỹi(t) exp(γT1 Z
(2)
i (u))dΛ̃10(u),

3



M c
i (t) = I(Xi ≤ t, δi = 0)−

∫ t

0

I(Xi ≥ u)dΛc(u),

q(t) = −n−1
n∑
i=1

∫ ∞
0

{
Z

(2)
i (u)− Z̄(2)(γ1, u)

}
wi(u)dM̃i1(u)I(u ≥ t > Xi),

and

π(t) = n−1
n∑
i=1

I(Xi ≥ t),

with Λ̃10(t) =
∫ t
0
λ̃10(u)du being the baseline cause-specific cumulative hazard for cause 1,

Λc(t) =
∫ t
0
λc(u)du the cumulative hazard for censoring variable,

z̄(1)(β1, t) =
limn→∞ n

−1∑n
l=1 Yl(t)Z

(1)
l (t) exp(βT1 Z

(1)
l (t))

limn→∞ n−1
∑n

l=1 Yl(t) exp(βT1 Z
(1)
l (t))

,

and z̄(2)(γ1, t) =
limn→∞

∑n
l=1 ωl(t)Ỹl(t)Z

(2)
l (t) exp(γT1 Z

(2)
l (t))

limn→∞
∑n
l=1 ωl(t)Ỹl(t) exp(γ

T
1 Z

(2)
l (t))

.

It follows from (A.5) and the multivariate central limit theorem that n−1/2(U1(β1), Ũ1(γ1))
T

has a p+ q multivariate normal limiting distribution with mean 0 and variance-covariance

Ω(1) =

 Ω
(1)
(pp) Ω

(1)
(pq)

Ω
(1)
(qp) Ω

(1)∗
(qq)

 , (A.6)

where

Ω
(1)
(pp) =

∫∞
0

[
limn→∞ n−1

∑
l Yl(t)Z

(1)
l (t)⊗2 exp(βT1 Z

(1)
l (t))

limn→∞ n−1
∑
l Yl(t) exp(β

T
1 Z

(1)
l (t))

− z̄(1)(β1, t)
⊗2
]

limn−1
∑n

l=1 Yl(t) exp(βT1 Z
(1)
l (t))dΛ10(t),

(A.7)

and

Ω∗(1)qq = E
{

(ηi(γ1) + φi(γ1)) (ηi(γ1) + φi(γ1))
T
}
. (A.8)

Note that variance-covariance matrix between the two score test statistics is obtained as

4



the limit of〈
n−1/2U1(β1), n

−1/2Ũ1(γ1)
〉

= n−1
∑n

i=1 〈Ui1(β1),ηi(γ1) + φi(γ1)〉

= n−1
∑n

i=1 〈Ui1(β1),ηi(γ1)〉+ n−1
∑n

i=1 〈Ui1(β1),φi(γ1)〉

= n−1
∑n

i=1

∫∞
0

{
Z

(1)
i (t)− z̄(1)(β1, t)

}{
Z

(2)
i (t)− z̄(2)(γ1, t)

}
ωi(t)d < Mi1, M̃i1 > (t)

+n−1
∑n

i=1

∫∞
0

{
Z

(1)
i − z̄(1)(β1, t)

}
q(t)
π(t)

d < Mi1,M
c
i > (t),

which converges in probability to

Ω
(1)
(pq) = E

∫∞
0

{
Z

(1)
i (t)− z̄(1)(β1, t)

}{
Z

(2)
i (t)− z̄(2)(γ1, t)

}
ωi(t)d < Mi1, M̃i1 > (t)

+ E
∫∞
0

{
Z

(1)
i − z̄(1)(β1, t)

}
q(t)
π(t)

d < Mi1,M
c
i > (t).

(A.9)

Let β̂1 and γ̂1 be solutions to U1(β̂1) = 0 and Ũ1(γ̂1) = 0, respectively. Appying Taylor

series expansion to (U1(β̂1), Ũ1(γ̂1))
T around (β1,γ1), we have

n1/2

 β̂1 − β1

γ̂1 − γ1

 =

 Ω
(1)−1
(pp) 0

0 Ω
(1)−1
(qq)

 U1(β1)

Ũ1(γ1)

+ op(1),

where

Ω
(1)
(qq) =

∫∞
0

{
limn→∞

1
n

∑n
l=1 ωl(t)Ỹl(t)Z

(2)
l (t)⊗2 exp(γT1 Z

(2)
l (t))

limn→∞
1
n

∑n
l=1 ωl(t)Ỹl(t) exp(γ

T
1 Z

(2)
l (t))

− z̄(2)(γ1, t)
⊗2
}

limn−1
∑n

l=1 ωl(t)Ỹl(t) exp(γT1 Z
(2)
l (t))dΛ̃10(t).

(A.10)

This, together with (A.6), implies that

Σ(1) =

 Ω
(1)−1
(pp) Ω

(1)−1
(pp) Ω

(1)
(pq)Ω

(1)−1
(qq)

Ω
(1)−1
(qq) Ω

(1)
(qp)Ω

(1)−1
(pp) Ω

(1)−1
(qq) Ω

(1)∗
(qq)Ω

(1)−1
(qq)

 . (A.11)

A consistent estimator for Σ(1) is obtained by replacing all unknown quantities with their

respective sample estimates in (21) in section 3. �
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Proof for Theorem 3. Under the null hypothesis, it was shown by Fleming and

Harrington (1991) that

U1(β1) =
∑n

i=1

∫ τ
0

(
Z

(1)
i (t)− z̄(1)(β1, t)

)
dMi1(t)− n

∫ τ
0

(
Z̄(1)(β1, t)− z̄(1)(β1, t)

)
dMi1(t),

U·(β·) =
∑n

i=1

∫ τ
0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)
dMi(t)− n

∫ τ
0

(
Z̄(3)(β·, t)− z̄(3)(β·, t)

)
dMi(t)

where

Mi1(t) = Ni1(t)−
∫ t

0

λj0(u)Yi(u) exp(βT1 Z
(1)
i (u))du,

Mi(t) = Ni·(t)−
∫ t

0

λ0(u)Yi(u) exp(βT· Z
(3)
i (u))du,

and z̄(3)(β·, t) =
limn→∞ n−1

∑n
l=1 Yl(t)Z

(3)
l (t) exp(βT· Z

(3)
l (t))

limn→∞ n−1
∑n
l=1 Yl(t) exp(β

T
· Z

(3)
l (t))

.

The first part of (U1(β1),U·(β·))
T , i = 1, 2, . . . , n can be viewed as a sum of indepen-

dently identically distributed random vector. By using multivariate central limit theory,

we can prove the first part of the vector (2) has a bivariate normal distribution with mean

0, and variance-covariance matrix Ω(2). Since Z̄(1)(β1, t) and Z̄(3)(β·, t) converge in prob-

ability to some deterministic process z̄(1)(β1, t) and z̄(3)(β·, t), respectively, we can prove

the second part of the vector (2) converge in probability to zero by using the central limit

theory for stochastic integrals with respect to counting process martingales. Then we can

use Slusky theorem to prove n−1/2(U1(β1),U·(β·))
T has a p + q dimension multivariate

normal limiting distribution with mean 0 and variance-covariance matrix Ω
(2)
(pp) Ω

(2)
(pq)

Ω
(2)
(qp) Ω

(2)
(qq)

 , (A.12)

where Ω
(2)
(pp) is defined in (A.7),

Ω
(2)
(qq) =

∫∞
0

[
limn→∞ n−1

∑n
l=1 Yl(t)Z

(3)
l (t)⊗2 exp(βT· Z

(3)
l (t))

limn→∞ n−1
∑n
l=1 Yl(t) exp(β

T
· Z

(3)
l (t))

− z̄(3)(β·, t)
⊗2
]

limn−1
∑n

l=1 Yl(t) exp(βT· Z
(3)
l (t))dΛ0(t).
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and the covariance

Ω
(2)
(pq) = E

∫ τ

0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)(
Z

(1)
i (t)− z̄(1)(β1, t)

)
exp(βT1 Z

(1)
i (t))Yi(t)dΛ10(t)

is the limit of〈
n−1/2U·(β·), n

−1/2U1(β1)
〉

= n−1
∑n

i=1

〈∫ τ
0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)
dMi(t),

∫ τ
0

(
Z

(1)
i (t)− z̄(1)(β1, t)

)
dMi1(t)

〉
= n−1

∑n
i=1

∫ τ
0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)(
Z

(1)
i (t)− z̄(1)(β1, t)

)
d < Mi,Mi1 > (t)

= n−1
∑n

i=1

∫ τ
0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)(
Z

(1)
i (t)− z̄(1)(β1, t)

)
d < Mi1+i2,Mi1 > (t)

= n−1
∑n

i=1

∫ τ
0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)(
Z

(1)
i (t)− z̄(1)(β1, t)

)
d < Mi1,Mi1 > (t)

= n−1
∑n

i=1

∫ τ
0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)(
Z

(1)
i (t)− z̄(1)(β1, t)

)
exp(βT1 Z

(1)
i (t))Yi(t)dΛ10(t).

Applying the Taylor series expansion to (U1(β̂1),U·(β̂·))
T around (β1,β·), we have

n1/2

 β̂1 − β1

β̂· − β·

 ≈
 Ω

(2)−1
(pp) 0

0 Ω
(2)−1
(qq)

 U1(β1)

U·(β·)

 .

This, together with (A.12), implies that

Σ(2) =

 Ω
(2)−1
(pp) Ω

(2)−1
(pp) Ω

(2)
(pq)Ω

(2)−1
(qq)

Ω
(2)−1
(qq) Ω(2)

qp Ω
(2)−1
(pp) Ω

(2)−1
(qq)

 . (A.13)

Finally, a consistent estimator for Σ(2) is obtained by replacing all unknown quantities

with their respective sample estimates in (A.13). �
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Derivation for Covariance between U1k and Ũ1k′

n−1/2 < (U1k, Ũ1k′ ) >

= <
∫ τ
0
W1(t)YK(t)

(
dN1k(t)
Yk(t)

− dN1·(t)
Y·(t)

)
,
∑K

l=1

∑2
j=1

(
Ajk′ l(τ) + ck′ l(τ)Bjl(τ)

)
>

= <
∫ τ
0
W1(t)Yk(t)

(
dM1k(t)
Yk(t)

− dM1·(t)
Y·(t)

)
,∑K

l=1

∫ τ
0
V1k′ l(t)dM1l(t) + ck′ l(τ)

∫ τ
0
E1l(t)ĥ

−1
l (t)dM1l(t) >

= <
∫ τ
0
W1(t)Yk(t)

dM1k(t)
Yk(t)

,
∫ τ
0
V1k′k(t)dM1k(t) + ck′k(τ)

∫ τ
0
E1k(t)ĥ

−1
k (t)dM1k(t) >

+
∫ τ
0
W1(t)Yk(t)

∑K
l=1 dM1l(t)

Y·(t)
,
∑K

l=1

∫ τ
0
V1k′ l(t)dM1l(t) + ck′ l(τ)

∫ τ
0
E1l(t)ĥ

−1
l (t)dM1l(t) >

=
(∫ τ

0
W1(t)V1k′k(t) + ck′k(τ)

∫ τ
0
W1(t)E1k(t)ĥ

−1
k (t)

)
d < M1k(t),M1k(t) >

+
∑K

l=1

(∫ τ
0
W1(t)

Yk(t)
Y·(t)

V1k′ l(t) + ck′ l(τ)
∫ τ
0
W1(t)

Yk(t)
Y·(t)

E1l(t)ĥ
−1
l (t)

)
d < M1l(t),M1l(t) >

=
(∫ τ

0
W1(t)V1k′k(t) + ck′k(τ)

∫ τ
0
W1(t)E1k(t)ĥ

−1
k (t)

)
Yk(t)dΛ1k(t)

+
∑K

l=1

(∫ τ
0
W1(t)

Yk(t)
Y·(t)

V1k′ l(t) + ck′ l(τ)
∫ τ
0
W1(t)

Yk(t)
Y·(t)

E1l(t)ĥ
−1
l (t)

)
Yl(t)dΛ1l(t),

where Vjkl(t) = [Djkl(t)− Ejl(t)ckl(t)] ĥ−1l (t) and all other quantities are defined in Gray

(1988) on page 1153. n−1/2 < (U1k, Ũ1k′ ) > converges in probability to

cov(n−1/2U1k, n
−1/2Ũ1k′ )

=
(∫ τ

0
w1(t)v1k′k(t) + ck′k(τ)

∫ τ
0
w1(t)e1k(t)ĥ

−1
k (t)

)
yk(t)dΛ1k(t)

+
∑K

l=1

(∫ τ
0
w1(t)

yk(t)
y·(t)

v1k′ l(t) + ck′ l(τ)
∫ τ
0
w1(t)

yk(t)
y·(t)

e1l(t)ĥ
−1
l (t)

)
yl(t)dΛ1l(t),

(A.14)

where

ejk(t) = I(j = 1)−G1k(t)/Sk(t)

vjkl(t) = [djkl(t)− ejl(t)ckl(t)]h−1l (t),

and djkl is defined in Gray (1988) on page 1146. Finally a consistent estimator of cov(n−1/2U1k, n
−1/2Ũ1k′ )

is obtained by replacing each unknown quantity in (A.14) by its consistent sample estimate.

�
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APPENDIX A.2. Additional Simulation Results

Simulation results for one-sided two-sample tests with respect to the CSH and

CIF pair under the simulation setting of Figure 1

Under the simulation setting of Figure 1, we also conducted a simulation for the one-

sided two-sample tests with respect to the CSH and CIF pair. The results are presented in

Figure A.1 below.

Simulation results for two-sample comparisons with respect to the CSH and

ACH pair

Below we present a simulation for the two-group comparison problem with respect to

the CSH and all-cause hazard (ACH) pair. Let λ1k and λk denote the CSH for type 1

failure and the ACH, respectively, for group k (k = 1, 2). Assume that in each group, both

types of failures have constant cause-specific hazards and thus the all-cause hazard is also

constant. The censoring rate is set to be 0.1 with an independent exponential censoring

time. The nominal significance level is 0.05.

Figure A.2 below depicts the simulated rejection power curves of the two-sided chi-

square joint test, maximum joint test, and Bonferroni joint test for (11) under four scenarios.

Figure A.2(a) represents a null case where there is no difference with respect to type 1 failure

between the two groups (λ11 = λ12 = 0.04, λ1· = λ2· = 0.05). Figure A.2(b) corresponds

to a situation where the group difference in CSH is smaller than ACH (λ11 = 0.6, λ12 =

0.61, λ2· = 0.7, λ2· = 0.81). Figure A.2(c) corresponds to a situation where the group

difference in CSH is bigger than ACH (λ11 = 0.05, λ12 = 0.0625, λ2· = 0.058, λ2· = 0.17).

9
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Figure A.1: Simulated power of the one-sided chi-square joint test, maximum joint test and

Bonferroni joint test for two-group type 1 failure comparison with respect to the CSH and

CIF pair under four scenarios as described in Section 4: (a) null case under H0, (b) smaller

group difference in CSH and larger group difference in CIF, (b) larger group difference in

CSH and smaller group difference in CIF, and (d) similar group effects on CSH and CIF.
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Figure A.2: Simulated power of the two-sided chi-square joint test, maximum joint test

and Bonferroni joint test for two-group type 1 failure comparison with respect to the CSH

and ACH pair under four scenarios: (a) null case under H0, (b) smaller group difference in

CSH and larger group difference in ACH, (b) larger group difference in CSH and smaller

group difference in ACH, and (d) similar group effects on CSH and ACH.
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Figure A.3 shows the power curves for the three tests under the same scenarios as Figure

A.2, except that one-sided tests are performed.

It is seen from Figure A.2 and Figure A.3 that the results for the (CSH, ACH) pair

is consistent with those for the (CSH, CIF) pair. The type I errors are well controlled at

nominal level 0.05 for both two-sided and one-sided tests. When the group differences are

different in the two quantities, the chi-square joint test is much more powerful than the

Bonferroni test and the maximum test. When the group differences are similar in CSH and

ACH, then the maximum joint test performs better especially for a one-sided test.

Simulation results for joint regression of CSH and ACH

This section presents some simulation results for the joint Cox model with respect to

the CSH and ACH pair described in Section 3.2. Assume the following model:

λ1(t|Z) = λ10(t) exp(β11Z1 + β21Z2)

λ(t|Z) = λ0(t) exp(β1·Z1 + β2·Z2),
(A.15)

where Z1 and Z2 are binary variables. We are interested in testing the effects of Z1 on

both CSH and ACH, or H0 : β11 = 0 and β1· = 0. We generated data under various

different alternatives. Figure A.4 (a) represents the null case where β11 = β1· = 0. Figure

A.4 (b) corresponds to a situation where the effect size of Z1 for CSH is smaller than

ACH (Ha : β11 = 0 and β1· = −0.13). Figure A.4(c) corresponds to a situation where

the effect size of Z1 for CSH is bigger than ACH (Ha : β11 = −0.15 and β1· = 0).

Figure A.4(d) corresponds to a case when the effect sizes of Z1 are similar for CSH and

ACH (Ha : β11 = −0.15 and β1· = −0.14). For all the four scenarios, λ10(t) = 0.06,

λ0(t) = 0.08, β21 = 0.3 and β2· = 0.24.
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Figure A.3: Simulated power of the one-sided chi-square joint test, maximum joint test

and Bonferroni joint test for two-group type 1 failure comparison with respect to the CSH

and ACH pair under four scenarios: (a) null case under H0, (b) smaller group difference in

CSH and larger group difference in ACH, (b) larger group difference in CSH and smaller

group difference in ACH, and (d) similar group effects on CSH and ACH.
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Figure A.4: Simulated power of the two-sided chi-square joint test, maximum joint test

and Bonferroni joint test of a local hypothesis (H0 : β11 = 0 and β1· = 0. ) for a joint

regression model (A.15) of CSH and ACH under four scenarios: (a) null case, (b) smaller

effects on CSH and larger effects on ACH, (b) larger effects on CSH and smaller effects on

ACH, and (d) similar effects on CSH and ACH.
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Figure A.4 shows that the results are consistent with what we have observed for the

CSH and CIF pair.

APPENDIX A.3. Additional Simulation Results

Graphical display of the cumulative incidence function F1(t) by group under the

simulation setting of Figure 1

The cumulative incidence function F1(t) by group under the simulation setting of Figure

1 is illustrated in Figure A.5 below.

Cox-Snell residual plots for Follicular cell lymphoma study

For the Follicular cell lymphoma data, we constructed the Cox-Snell plot to check the

overall fit of the Cox model for the all-cause hazard and the cause-specific hazard. The

plots, along with pointwise 95% bootstrap confidence intervals are depicted in Figure A.6

below.
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Figure A.5: Graphical illustration of the cumulative incidence function (CIF) by group

under the simulation setting of Figure 1.
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Figure A.6: The Cox-Snell residual plot (solid line) for the proportional all-cause hazards

model (panel (a)) and the proportional cause-specific hazards model (panel(b)), with point-

wise 95% bootstrap confidence intervals (dashed lines), and the 45 degree line (dotted lines)

for the Follicular cell lymphoma data
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