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Abstract

The Modeling of White Matter Architecture and Networkings Using Diffusion MRI: 
Methods, Tools and Applications

Bagrat Amirbekian

Diffusion magnetic resonance imaging (dMRI) allows us to noninvasively investigate 
the microstructural properties of brain tissue, and reconstruct the axonal pathways that con-
nect distant brain regions. This enables us to infer the biological processes that give rise 
to thought and consciousness. However, despite significant advances in both imaging tech-
nology and computing power, our ability to estimate connectivity in a single subject using 
dMRI data remains quite limited. Barriers to accurate single subject estimates include poor 
accuracy and reproducibility of both fiber tracking and diffusion modeling results, and a 
difficulty in reproducing the methods of other researchers in this field. As a result, studies 
using different dMRI methods have drawn conflicting conclusions about the same biolog-
ical systems. To overcome these barriers, I first present a technique, based on the model 
residual bootstrap procedure, to estimate the noise in dMRI data and show that this mea-
sure is a good indicator of the reproducibility of dMRI measurements. Second, software 
engineering principles, such as modularization and thorough testing, were implemented 
and made publicly available in an open source library called Dipy. By providing a single 
platform where tools and methods from different developers can be implemented using 
shared constructs and made publicly available to users, Dipy aims to help the community 
more easily reproduce the findings of other researchers. In the last section of this work, I 
use these modeling and fiber tracking tools to reconstruct whole brain networks for individ-
ual subjects in a large population. The white matter tissue properties projected onto these 
networks show that regional differences in white matter integrity are strongly associated 
with body mass index in young, healthy individuals. This association helps explain the re-
duced cognitive ability in individuals with higher BMI. This study demonstrates the power 
of using single subject connectivity networks when studying how the human brain and its 
role in health outcomes. In order to fully unlock the potential of dMRI imaging, methods 
development needs to continue to focus on improving the reproducibility and accuracy of 
dMRI studies.
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CHAPTER 1

Introduction

Diffusion weighted magnetic resonance imaging (MRI) is an imaging technique that has
allowed unique insights into both the microstructural properties and the organization of
cerebral white matter tissues. This technique measures the relative displacement of water
molecules in the biological tissues and is highly sensitive to any microstructure which
restricts this diffusion. Diffusion MRI is particularly useful in tissues with a high degree
of organization, such as the white matter tissues of the brain. This organization means
that the restricted diffusion is coherent and measuring the diffusion signal allows us to not
only infer the presence or absence of diffusion restricting elements, but also how they’re
organized and other tissue properties. For example, in the white matter of the brain, the
diffusion characteristics of the tissue can give us insight into the organization of axons, the
level of myelination of those axons and possible pathology in these tissues. The level of
information contained in diffusion imaging makes this imaging technique both powerful
and challenging to work with.

Diffusion images cannot generally be read by human specialists, but instead must be
modeled using computational techniques. These modeling techniques can produce either
composite images or 3d renderings, which can then be used in clinic or for research, or
quantitative measurements which can then be used as biomarkers of brain heath or disease
progression. However, in order to maximize the utility of diffusion imaging one needs to
pick the right imaging protocol and modeling approach for a given problem. The modeling
of the diffusion signal can be approached both as a local problem, modeling the character-
istics of a given brain region or voxel using the diffusion signal specific to that structure.
The model can also be thought of as a whole brain model, trying not only the estimate local
tissue properties, but also the organization of connections and pathways that contribute to
the architecture of the whole brain. Fiber tracking, or tractography, describes the process
of using local directional information from brain tissues to build reconstruct these tracts
and pathways. These techniques are fairly new and actively being developed and have had
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some success in describing the organizational properties of the human brain, or the human
connectome.

In this work, I present some common diffusion modeling techniques that have been
applied to diffusion MRI, focused specifically on modeling techniques that estimate di-
rectional information which can be used for fiber tacking. I present and compare several
methods for estimating diffusion MRI noise and in the process discuss how noise estimates
for diffusion MRI acquisitions can help identify model failures inform the choice of model
for an acquisition type. I further present a framework for thinking about and implement
fiber tract reconstruction from diffusion MRI data. Finally I present an application of these
methods to a large, public data set for the purpose of understanding the impact of high body
mass index on brain health.
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CHAPTER 2

Background

2.1 Diffusion MRI Acquisition

Diffusion weighting in modern neuroimaging applications is most often done using the
echo planer imaging (EPI) technique[1, 2]. Because diffusion MRI is attempting to measure
the tiny, random motion of water molecules, it is highly sensitive to gross motion of the
subject. EPI helps mitigate issues related to subject motion by reducing the time required
to acquire each image to less than 100ms. This short acquisition time is also important in
diffusion MRI because a complete diffusion MRI data set often includes dozens, or even
hundreds, of brain volumes. The time efficiency of the EPI sequence makes it practical
to collect complete diffusion MRI data sets in MRI scan sessions that are acceptable for
research subjects and patients.

The EPI sequence uses a series of gradient echos, called an echo train, to acquire a
large portion of each image slice in a single radio frequency (RF) excitation. Multi-shot
EPI sequences have been proposed in order to improve SNR and reduce distortions in
diffusion MRI. However, these sequences require longer acquisition times and can produce
phase errors in the the data[3]. The result of these limitations has been that single-shot
EPI, where the entire image slice is acquired in a single excitation, has become dominant
in diffusion MRI acquisitions. The diffusion weighting in a diffusion MRI sequence is
introduced by using a pair of diffusion gradients on either side of a 180 degree RF pulse.
The first of these diffusion gradients serves to dephase the MRI signal. The following 180
degree pulse inverts the signal so that the second diffusion gradient can now rephase the
signal. In the absence of motion, these two gradients have no net effect on the diffusion
signal. However, when magnetic particles move during this diffusion weighting procedure,
their phases can only partially align, resulting in a single fallout. Equation 2.1 gives the
equation for the diffusion signal, S, defined in terms of S0, the expected signal when no
diffusion signal is applied [4]. In this equation, γ is a constant, called the gyromagnetic
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ratio, G is the gradient strength defined in units of Tesla per meter, δ is the length, in
seconds, of each of two gradient pulses applied, and ∆ is the time, in seconds, between the
first and second diffusion gradient. Finally, D(~u) is the net diffusivity along the direction
of the diffusion gradient, ~u.

S(~u) = S0e
−γ2G2δ2(∆− 1

3
δ)D(~u) (2.1)

In practice, all the terms that contribute to the diffusion weighting are grouped into
one factor called the b value, where b = γ2G2δ2(∆ − 1

3
δ). This b value has the inverse

units of diffusivity, s
m2 , and represents the net diffusion weighting of the sequence. In

some applications, like stroke imaging, diffusivity is so altered in the brain tissues that
imaging with a few gradient directions is enough to observe and measure the effect [5]. In
stroke imaging a metric called apparent diffusion coefficient (ADC) is used. The ADC is
the average diffusivity measured along three orthogonal directions, usually the x, y, and z
gradient directions. The ADC can be estimated by acquiring three diffusion weighted scans
and one scan with no diffusion weighting. However, to do any more complex modeling
of the diffusion signal requires acquiring diffusion weighted volumes. The next section
discusses different diffusion models, and the types of data need to support the modeling.

2.2 Modeling the Diffusion Signal

2.2.1 The Diffusion Tensor

Diffusion Tensor Imaging (DTI) is among the oldest and most commonly used models for
diffusion MRI applications. In order to fit a diffusion tensor model to the diffusion signal,
a minimum of six well dispersed gradient directions are necessary [6]. However, it is often
better to acquire at least 20-30 gradient directions to improve the accuracy of the tensor
estimate [7]. Even though it may seem that acquiring 30 directions may take significantly
more scan time than acquiring 6 directions, in practice a number of excitations (NEX) aver-
age is used in DTI studies to improve signal to noise ratio (SNR). Therefore, more gradient
directions can be acquired in the same scan time by reducing the NEX value. The increased
number of acquired gradient directions compensates for the reduced SNR of each individ-
ual image and allows for a more accurate tensor fit. Another consideration when designing
an acquisition sequence for DTI is the b-value or values to use. The diffusion tensor best
fits data collected at b-values less than 1500 s

m2 , [8]. This following chapter will also dis-
cuss the limitations of the tensor model at higher b-values. Some studies have suggested
that using multiple b-values can improve the reliability and reproducibility of DTI metrics
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[9]. However, DTI studies often use a set of well dispersed diffusion gradients with a con-
stant b-value in addition to one or more non-diffusion weighted images. One advantage of
the DTI model is that it can be used to fit most diffusion MRI acquisitions, even sequences
optimized for fitting other models tend to produce accurate and reproducible results.

Figure 2.1: The dti model posits that the diffusivity can be estimated as a tensor. The
tensor can be represented as an ellipsoid in three dimensional space. The measured dif-
fusivity, when gradient G is applied, depends on the orientation of the tensor relative to
underlying tissues. When the gradient is aligned with the orientation of the tensor, the
measured diffusivity is equal to the eigenvalues of the tensor, often called the axial and
radial diffusivity.

The diffusion tensor model assumes that the diffusion of water molecules, in the tissues
being imaged, can be described by a three dimensional Gausian distribution. This Gausian
diffusion profile can be described by a 3x3 tensor, D. Using this tensor, the diffusivity
D(~u) can be written as D(~u) = ~uTD~u. Using this expression for D and the definition of b
from before, we can express the diffusion signal as such.

S(~u) = S0e
−b(~uTD~u) (2.2)

This equation can be written in a linear form by taking the log of both sides and moving
some terms.

log
S(~u)

S0

= −b(~uTD~u) (2.3)

The elements of the diffusion tensor can be estimated by imaging with a series of non
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colinear gradient directions. Because the tensor is known to be real valued and positive
semidefinite, there are 6 unique elements in the tensor. The unique elements of the tensor
can be estimated several different ways. Equation 2.3 has a linear form and, when enough
signals are available, D can be solved for by inverting the system of equations in a way
that minimizes the residual error. This approach is known as the linear least squares (LLS)
method for estimating diffusion tensors from diffusion MRI signals. However, the LLS
method assumes that the error terms, or noise, in the system of equations is independent
and identically distributed (iid). It is true that the MRI noise, across gradient directions, can
be modeled as iid under some assumptions. However, the linear form of the equation mod-
els the log of the signal, so the error terms are in fact not iid at all. To address this issue, the
weighted least squares (WLLS) approach is often used to fit estimate the diffusion tensor
[10]. While the WLLS approach partially addresses the varying noise distribution, more
advanced methods have also been proposed to estimate the diffusion tensor. For example
the RESTORE method iteratively fits the diffusion signal, at each iteration identifying out-
lier signal measurements [11]. While this process allows RESTORE to be robust to patient
motion and certain artifacts in the diffusion signal, it comes at the cost of additional com-
putational complexity. The strength of the diffusion tensor comes from the simplicity of
its model. This simple model allows us to describe powerful metrics such as mean, axial
and radial diffusivity, as well as the seemingly ubiquitous fractional anisotropy. However
this strength is also the weakness of this model. The simplicity of the model means that
it cannot model the crossing of white matter tracts or multiple water compartments with
different diffusivity values. To address these limitations, more complex models have been
built to describe the diffusivity profile measured by diffusion MRI.

2.2.2 QBall Imaging and HARDI

High angular resolution diffusion imaging (HARDI) extends the capabilities of DTI by pro-
viding more detailed information about the diffusion profile of water molecules then can be
described by a tensor model [12]. While there is no strict definition of what qualifies as a
HARDI scan protocol, a typical HARDI protocol will consist of many gradient directions,
more than 50, acquired at a relatively high b value, 2000s/mm2 or more. The HARDI
protocol is better, relative to DTI, and able to capture more complex microstructural tissue
architecture not only because of the more complete directional coverage, but also because
the higher b-value makes the diffusion MRI scans more sensitive to the diffusion of water
molecules at a shorter length scale. HARDI protocols try and maximize angular infor-
mation relative to scan time, however this can come at the cost of additional information
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that might be gained by imaging at multiple b values. Even with that limitation, HARDI
scan protocols represent an efficient balance between gathering complete information and
minimizing scan times. They are especially useful for fiber tracking applications where
directional information is most essential. Data collected using a HARDI scan protocol can
be modeled using several methods, including using a diffusion tensor. However, more com-
plex modeling methods such as using a q-ball reconstruction allow us to fully exploit this
type of data.

The goal of the q-ball reconstruction is to estimate the diffusion orientation distribution
function (ODF) from the diffusion signals. To fully understand the ODF one must first
consider the diffusion probability density function (PDF), the density of water molecules as
a function of their 3D displacement. This diffusion PDF is the most complete representation
of the diffusion profile in an imaging voxel and it turns out that the diffusion MRI signal
is actually the 3d fourier transform of the PDF [13, 14]. That is S(~q) = F[P (~r)] where ~q
is defined as ~q = γδ~g/(2π) and ~g, γ, and δ are the diffusion gradient, the gyromagnetic
constant and gradient duration [15]. Estimating the PDF directly from the diffusion signal
by measuring a full diffusion spectrum in q-space is called diffusion spectrum imaging
(DSI). In HARDI imaging however, only one b value is used so only one shell, or ”ball”,
of the diffusion spectrum is collected. This prevents the reconstruction of the full PDF, but
the ODF can still be reconstructed from HARDI data.

The diffusion ODF is the radial integral of the diffusion PDF, however this integral has
been defined two different ways in the literature. These different definitions of the ODF
give slightly different results in the reconstruction, but they both aim to measure the net
diffusion of water molecules, as a function of radial direction. The first definition was
used by Wedeen et al. when estimating fiber directions using the DSI approach and then
later used by Aganj et al. and Tristán-Vega et al. to define a q-ball reconstruction where
the radial integral is expressed using a constant solid angle [16, 17]. That is, the ODF
is defined as Φ(~u) =

∫
P (~r)r2dr where ~r = r~u and ~u is a unit vector. The alternate

definition of the ODF, Ψ =
∫
P (~r)dr was used by Tuch in the original formulation of the

q-ball reconstruction [15]. In both cases, the goal is to represent the directional component
of the diffusion profile while collapsing the radial information.

The key insight in q-ball imaging is that the radial integral of the diffusion PDF can be
expressed as a great circle integral of the diffusion signal, or some function of the diffusion
signal [18, 16]. In reality, this relationship is a simplification, and each of the q-ball variants
uses a different set of assumptions in order to reduce what should be a plane integral into
a great circle integral, but ultimately expresses the diffusion ODF as a great circle integral
over some function of the diffusion signal. Equation 2.4 gives this relationship, known as
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the Funk radon transform.

F [f(~w)](~u) =

∫ ∫
~u⊥

f(~w)δ(|w| − 1)d2 ~w (2.4)

Under this formulation, both the diffusion signal and the ODF are expressed as func-
tions defined on S2 in R3.

The spherical harmonic (SH) series represents a set of orthonormal basis functions
defined on S2, or the surface of a unit sphere. This series is analogous to the fourier
series on the surface in that a fourier decomposition of a function is essentially a frequency
representation of the function and any continuous complex function defined on S2 can be
expressed as a sum over this series. Figure 2.2 shows a visual representation of first several
SH functions.

Figure 2.2: A visual representation of the spherical harmonic functions of order 0 to
3, from top to bottom. Notice the antipodal symmetry of the even orders, and the anti-
symmetry of the odd orders. Image by Inigo.quilez is licensed under CC BY-SA 3.0.

This series is particularly useful for q-ball imaging because the Funk radon transform
of each SH basis function has an analytical form. Applying the Funk radon transform to
any of the SH functions results in a scaled version of the same functions. As a consequence,
any function expressed as coefficients to the SH series also has an analytical form. Take
for example a function f defined in terms of the coefficients f̂(n,m), where the spherical
harmonic of order m and degree n is given as Y m

n .

f(~u) =
inf∑
n=0

n∑
m=−n

f̂(n,m)Y m
n (~u) (2.5)

8
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The Funk radon transform of this function can be written in terms of the SH functions
and the Legendre polynomials, Pn.

F [f(~u)] =
inf∑
n=0

Pn(0)
n∑

m=−n

f̂(n,m)Y m
n (~u) (2.6)

With a closed form equation for the Funk radon transform, the ODF of a diffusion MRI
signal can be easily computed if the diffusion signal can be be estimated as a SH series. In
practice, the full SH series is not used to fit the signal because two properties of the diffusion
signal allow us to restrict the coefficients. First, because both the signal and the ODF are
known to be be even, or antipodally symmetric, only the even degrees of the SH series need
to be used. That is to say, the coefficients of the odd degree SH functions are known to be
zero. Second, both the diffusion signal and ODF are known to be real-valued functions.
This constraint allows to one use a set of real values SH functions, which still represent
an orthonormal basis over functions defined on the sphere, but which can represent real
valued functions only using real valued coefficients. This choice allows the implementation
of q-ball imaging without the use of complex numbers, but is mathematically equivalent
to using the standard SH functions and enforcing conjugate symmetry in the coefficients.
One definition for the real SH functions is given here Y R

nm.

Y R
nm =


√

2 · Im[Y m
n ] if m > 0

Y 0
n if m = 0
√

2 ·Re[Y |m|n ] if m < 0

. (2.7)

The SH series must be truncated at a finite degree. It’s common to choose the maximum
SH degree to be either 6 or 8. The following chapter discusses in more detail some of the
considerations that go into picking the maximum SH degree for modeling the diffusion
signal. The diffusion signal can now be expressed as ~e = Zg~ce where ~ce is a vector of
coefficients, Zg is a matrix such that each row represents the truncated SH series evaluated
using the directions of the diffusion gradients, and ~e is some invertible function of the
diffusion signals[19]. In order to estimate the diffusion ODF, an inverse of Zg, denoted Z†g ,
must be computed. The Moore-Penrose pseudoinverse works well works well if the SH
degree is truncated at a relatively low value, however inverting Zg using a Laplace-Beltrami
regularization has been proposed in order to allow higher SH degrees to be used without
numerical instability [20]. The ODF, represented as SH coefficients, can be estimated as,
~cODF = PZ†g~e, where P is the diagonal matrix associated with the Funk radon transform.

The diagonal elements of P consist of the appropriate Legendre polynomial evaluated for
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each SH function. This formulation makes q-ball imaging powerful because the ODF can
be computed directly from the diffusion signal, without the need for numerical estimation
methods.

2.2.3 Constrained Spherical Deconvolution

The constrained spherical deconvolution (CSD) model is similar to the q-ball model in that
it attempts to estimate directional orientation information using data from a HARDI scan
protocol. However, unlike the q-ball model, the CSD model doesn’t attempt to estimate the
ODF, instead it attempts to model something called the fiber orientation distribution (FOD).
In q-ball imaging the water molecule is the basic unit under consideration. Each molecule
contributes to the diffusion signal, and from the diffusion signal we attempt to model the
net displacement of water molecules, at least in angular terms. The CSD model, however,
considers the ”fiber” to be the basic imaging unit. If we assume that each fiber contributes
equally to the diffusion signal, and that there are no major contributions to the signal from
other sources, we can reconstruct the configuration of fibers necessary to produce the ob-
served signal. Biologically a fiber is roughly analogous to a small bundle of axons. If one
could isolate such a bundle and image it in isolation, the diffusion signal it would produce
would be what’s known as the response function. In other words, the response function is
the signal produced from a single imaging unit. If the tissue being imaged consists only of
these fibers, then the measured signal is simply the sum of the response function from each
fiber. The goal of the CSD model is to reconstruct the orientations of the underling fibers
from the diffusion signal.

To build a CSD model, one needs to estimate the response function. Even though one
can approximate the response function analytically, for example by assuming that the dif-
fusion PDF associated with each fiber has a gaussian distribution, estimating the response
function from data produces the best results in general. The simplest way to do this is to
find an area of the an image known to have highly aligned axons, for example a region with
high FA values. In this area of the image we can assume that all the fibers share the same
orientation. If the fibers are all aligned, then the observed signal is simply a scaling of the
response function. The signal from the voxels in this image area should be rotated so the
fibers from all the voxels are aligned, we align the fibers with the z axis by convention,
then the signals can be averaged to produce an estimate for the response function. This ap-
proach works reasonably well, however more advanced methods have also been proposed
for estimating the response function of the CSD model. A recursive approach can be used
to at once estimate the response function and determine which voxels can be treated as
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fully aligned fibers [21]. The idea is to refine the response function until the voxels that
contribute to estimating the response converge.

With the response function computed, the CSD method models the signal as a sum over
rotated response function. Each fiber in the tissue contributes the same response function to
the signal, however the response function associated with each fiber is rotated to match the
alignment of the fiber. The diffusion signal is the sum of these rotated response functions.
In this formulation the diffusion signal can be expressed as a spherical convolution of the
fiber orientations, or the FOD function, and a convolution kernel expressed as rotational
harmonics[22]. If both the FOD and the diffusion signal are expressed using SH function,
as was the case for q-ball imaging, then the convolution can be expressed as a matrix
multiplication, ~cs = R ~cFOD, where ~cs and ~cFOD are the SH coefficients for the diffusion
signal and FOD function respectively and R is the convolution kernel. Using the CSD
model, the full equation for the diffusion signal ~s becomes:

~s = ZgR ~cFOD (2.8)

The convolution kernel R must be estimated from the response function, however if
the response function is assumed to be axially symmetric, of equivalently the SH repre-
sentation of the response function only contains nonzero coefficients for the m = 0 SH
functions, then the convolution kernel is known to be diagonal and can be simply estimated
by dividing the SH representation of the response function by the SH representation of a
delta function [23].

The CSD method uses the constrained deconvolution to estimate the FOD from the dif-
fusion signal. Because the R matrix is easily invertible, the deconvolution of the diffusion
signal can be expressed as a matrix multiplication ~cODF = R−1~cs, where ~cs is the least
squares estimate of the SH representation of the diffusion signal. However, as is often the
case with deconvolution problems, this inversion is ill-posed because inverting the R ma-
trix generally creates large terms which, when applied to noisy diffusion signals, magnify
the signal noise. The CSD method proposes to overcome this issue by applying a positivity
constraint during the deconvolution. This constraint requires that the FOD be positive on as
much of the sphere as is possible. This constraint is biologically motivated because nega-
tive fiber densities do not have a meaningful interpretation. The original presentation of the
positivity constraint by Tournier et al. proposes an iterative solution of the deconvolution,
where the FOD is sampled on a discrete sphere. At each iteration, a regularization term is
added to the deconvolution matrix for each negative FOD sample in the previous iteration.
The iteration stops when updating the constraints does not reduce the number of negative
points on the FOD. This solution does not guarinty a fully positive FOD, but it does allow
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a robust and reproducible solution to the deconvolution problem in the presence of noise.
Later work has extended the CSD model and proposed a new solution method to the CSD
problem that does not require a iterative regularization process.

2.2.4 Multi-tissue Constrained Spherical Deconvolution

The multi-tissue constrained deconvolution (MCD) model of diffusion is a natural exten-
sion of the CSD diffusion model. Much like the CSD model, the MCD model attempts to
reconstruct an FOD from the diffusion signal, however the MCD model allows for a more
complex response function. Specifically the MCD approach models the diffusion signal as
having contributions from multiple tissue types, each with an independent response func-
tion. In order to resolve contributions from multiple response functions, the MTD model
needs a multi-shell diffusion acquisition protocol, as opposed to the single-shell HARDI
acquisition used by the CSD model. In their initial presentation of this method, Jeurissen et
al. use 3 tissue types in the MTD model: white matter, gray matter and cerebrospinal fluid
(CSF) [24]. They estimate a response function for each of the 3 tissues, however the gray
matter and CSF response functions are assumed to be fully isotropic. A fully isotropic re-
sponse function has no dependence on gradient direction, only on gradient amplitude. The
white matter response function is estimated independently for each q-shell, following the
same procedure as the CSD model. Figures 2.3 and 2.4 show the WM response function,
computed from the WM tissues of a healthy subject, for a 3-shell, b of 0, 1000, 2000 and
3000, diffusion protocol.

Figure 2.3: The response function of the multi-tissue deconvolution model as viewed from
the axial view, camera is pointed along the maximum diffusion direction. From left to right,
the b values are 0, 1000, 2000, and 3000 s/mm2.
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Figure 2.4: The response function of the multi-tissue deconvolution model as viewed from
the radial direction, camera is pointed along the restricted diffusion direction. From left to
right, the b values are 0, 1000, 2000, and 3000 s/mm2.

Figure 2.5: A sagittal section of volume fractions estimated using MTD. Red is CSF,
Green is gray matter, and blue is white matter. Each voxel is estimated as a mixture of the
three.

2.3 Fiber Tracking

Each of the diffusion models previously described in this work allow us to model the direc-
tional alignment of white matter tissues and extract primary tract directions associated with
those tissues. Whether the primary tract directions can be extracted directly, as is the case
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when the primary eigen direction of the tensor model is used, or indirectly, as is the case
when peak finding is applied to an ODF or FOD, these directions serve as means to follow
white matter pathways that connect distant brain regions. An early tracking approach was
proposed by Mori et al., and dubbed fiber assignment by continuous tracking or FACT [25].
The basic idea was to follow the path of white matter tissues by tracing along the primary
direction estimated using a diffusion model. The FACT algorithm called for the tracing
direction to be adjusted at every voxel edge. Figure 2.6 shows an example of such a pro-
cedure. More recently, tracking algorithms have generally switched to using a small, fixed
step size and reevaluating the tracking direction after each step. Despite small changes, the
basic idea hasn’t changed all that much.

Figure 2.6: A basic diagram of the FACT procedure. Each seed, in green, serves as the
starting point for the streamline. The tracking direction is adjusted at each voxel bound-
ary to follow the best estimate of the directional alignment of the local tissue. Tracking
continues until a stopping condition is reached.
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CHAPTER 3

Bootstraping for Noise

Noise estimates are widely used in image processing tools to evaluate image quality and
to estimate signal to noise ratio (SNR). Advanced analysis methods use noise estimates to
inform data-driven inferences. The robust model fitting method RESTORE, for example,
uses a noise estimate to reject outlier data during the model fitting process. Noise in an
MRI image is typically estimated using the signal variance in a region that is expected to
have uniform signal. These types of simple noise estimation methods fail in the presence of
modern imaging and reconstruction methods. More advanced methods have been proposed
to measure noise in images acquired using parallel imaging, but these methods have their
own limitations. For example, two recent methods utilize the raw data to estimate the noise
[26, 27], but because these methods work with raw data, they must be implemented as part
of the vendors’ reconstruction algorithm or the raw data must be saved for post hoc analy-
sis. Other noise estimation methods have been proposed which overcome these limitations
by analyzing the statistical properties of the intensities in the image background [28, 29].
These background methods rely on the known statistical properties of background voxels,
voxels made up primarily of air. These methods simultaneously identify which voxels be-
long to the background and estimate the noise amplitude. One major limitation of these
background methods is that they greatly underestimate the noise if a reconstruction filter is
used or if other post processing steps change the statistical distribution of the background
voxels[30]. In general, past methods were not developed specifically for dMRI and each of
the methods has limitations that must be considered before its use in dMRI applications.

In this work, we present and evaluate several methods for estimating spatially varying
noise in high angular resolution diffusion imaging (HARDI) data sets. To our knowledge,
this work demonstrates the first method to estimate voxelwise noise maps for dMRI data
sets. We focus on HARDI scans because they can be completed in clinically practice
acquisitions time and they also support the use of many standard and advanced diffusion
models, for example DTI, Q-ball [15] or constrained spherical deconvolution (CSD) [23].
Because the methods we present estimate noise maps directly from signal regions in the
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image, they produce detailed noise maps in addition to an overall noise estimate. In this
paper, we compare the noise maps produced by each of the four methods to simulated and
measured noise maps to evaluate the accuracy and precision of each of the four methods.

3.1 Methods

Each time intensities of an image are measured, a noise sample is drawn from a particular,
unknown noise distribution. For the purposes of this study, we attempt to measure the vari-
ance of this distribution, termed “noise amplitude”, for each voxel. When an MRI sequence
is repeated, the noise amplitude can be estimated directly from these repeated acquisitions.
This approach, however, is not practical for either clinical or research applications; if there
is extra time in a study for dMRI, the addition of gradient directions or b-values is usually
preferred over repeating the same sequence. This study, therefore, focuses on methods that
are able to estimate the noise amplitude from a single typical HARDI acquisition. This
section describes the four specific methods tested in this study. The noise estimation meth-
ods described in this study will be made available as part of Diffusion Imaging in Python
(Dipy), an open source software library [31].

3.1.1 Theory

3.1.1.1 B0 noise estimate

The first method we evaluated is the simplest and does not use a bootstrap procedure.
Repeating an entire MRI study is impractical, but it is common practice to acquire multiple
minimally diffusion weighted images (b0 images) in a typical dMRI sequence. If multiple
b0 images are available, a noise map can be estimated from the observed signal variance
across these images. In this paper, we refer to noise amplitude estimated in this manner as
the b0 noise estimate.

3.1.1.2 Tensor noise estimate

The second and third methods we evaluated are both residual bootstrap methods, but em-
ploy different models. Residual bootstrap methods have been used to estimate uncertainties
in metrics derived from diffusion [32, 33] and to inform fiber tracking [34]. These methods
work by generating bootstrap data sets, which are analogous to simulated data acquisitions.
These bootstrap data sets can then be used to make inferences about the distribution from
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which the data was sampled. In this study, we applied these methods to infer the underlying
variance of the diffusion imaging noise distribution.

One model we used for generating bootstrap data sets was the diffusion tensor. Our im-
plementation closely follows the description given by Chung et. al. and is briefly described
here. The diffusion signal is modeled as

S(gi) = S0e
−bgTi Dgi (3.1)

where S(gi) is the diffusion signal measured with gradient gi, S0 is the signal with no
diffusion weighting, b is the diffusion weighting, D and is the diffusion tensor. We use this
model to generate bootstrap data sets using the following method. The tensor equation can
be re-written in the common linear regression form as

y = Xβ + ε (3.2)

where y = [ln(S(g2)
S0

), ln(S(g1)
S0

), ..., ln(S(gN )
S0

)] is the log of the normalized measured
signals,X is the design matrix derived from the gradient table, and β is the parameter vector
to be fit (composed of the 6 unique elements of the diffusion tensor), and ε = [ε1, ε2, ..., εN ]

is the set of model residuals. It has been shown that weighted linear least squares (WLLS)
outperforms ordinary least squares (OLS) for fitting the diffusion tensor model [35]. The
weighted least squares estimate of β is

β̂ = (XTWX)−1XTWy (3.3)

where W is a diagonal matrix of weights such that

Wii = Ŝ2
i (3.4)

Ŝi = S0e
µ̂OLS
i (3.5)

µ̂OLS = Hy (3.6)

H = (XTX)−1XT (3.7)

The matrix H is often called the hat matrix. In order to use this fit to generate boot-
strap data sets, a set of centered, leverage-corrected residuals must be computed. The raw
residuals are given as
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e = y −Xβ̂ (3.8)

The centered, leverage-corrected residuals q are given as

ri =
ei

w
−1/2
i (1− hi)1/2

(3.9)

qi = ri − r̄ (3.10)

where wi and hi are the diagonal elements of the W and H matrices, respectively.
A bootstrap data set, y∗, is produced by randomly drawing values from q for ε∗ (with
replacement). This is given by

y∗i = xiβ̂ + w
−1/2
j ε∗ (3.11)

S∗(gi) = S0e
y∗i (3.12)

Once bootstrap datasets have been generated from the diffusion data set, the noise am-
plitude at each voxel can be estimated by taking the variance of the bootstrap data sets for
that voxel. In this paper, we refer to noise amplitude estimated in this manner as the DTI
noise estimate.

3.1.1.3 SH noise estimate

The third method for estimating noise amplitudes evaluated in this study is the same as
the above method, except the spherical harmonic (SH) functions are substituted for the
tensor as the diffusion model. Even though the SH functions are not a diffusion model,
when truncated at a maximum SH order, they can be used as a model for residual bootstrap
purposes. Because the diffusion signal is real valued and antipodally symmetric we can use
the real valued spherical harmonic functions defined in equation 2.7. The signal equation
in terms of these SH functions is:

y(gi) =
inf∑
n=0

l∑
m=−n

cnmYnm(gi) (3.13)

where cnm are the coefficients associated with each of the SH functions Ynm of degree
n and order m, and gi is a unit vector. It can often be useful to use a single index for the
SH functions. We can replace the degree and order with a new single index j and express
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the signal equation as:

y(gi) =
N∑
j=1

cjYj(gi) + ei (3.14)

or

y = Xc+ e (3.15)

where the matrix X is defined Xij = Yj(gi) , and c = {c1, c2, ..., cN} is a vector of
coefficients. These coefficients can be efficiently estimated using a least squares method
and take the form c = (XTX)−1XTy.

The bootstrap samples are created using leverage-corrected and centered residuals. The
raw residuals can be computed as

e = y −Xc (3.16)

e = y −X(XTX)−1XTy (3.17)

e = y −Hy = (I −H)y (3.18)

where H = X(XTX)( − 1)XT and I is the identity matrix. The SH fitting is linear,
so the leverage correction term can be computed directly from H . The leverage-corrected
residuals are

ri =
ei√

1− hi
(3.19)

where hi = Hii are the diagonal entries of the hat matrix. The leverage-corrected
residual vector r can also be written as

r = L(I −H)y (3.20)

where L is a diagonal matrix such that Lii = 1/
√

(1− hi). The centered residuals are
defined as qi = ri − r̂ or equivalently

q = CNL(I −H)y (3.21)

where the centering matrix is defined as CN = 1 − 1
N
~1~1T . q∗ is created by sampling

from q with replacement and the bootstrap data sets is defined as
S∗ = Xc+ q∗

The noise amplitude of the diffusion signal can be estimated by taking the variance of
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these bootstrap samples. We refer to the noise amplitude estimated in this way as the SH
noise estimate. In practice, we don’t need to generate bootstrap samples S∗ if we notice
that E[var(S∗)] = 1

N−1
var(q). Also, the matrix CNL(I − H) can be computed a-priori,

so the computation of the SH noise estimate in each voxel is reduced to two operations, a
matrix multiplication and the computation of variance.

3.1.1.4 Non-local means noise estimate

The fourth method we evaluated for estimating noise maps was the application of non-
local means filter[36]. This de-noising filter has proven to be a valuable tool for improving
data quality of dMRI images before diffusion models are fit to the data or fiber tracking
is performed. By taking the difference between the noisy data and the denoised data, we
compute a set of residuals, which can be used to generate a voxelwise noise map. Because
non-local means filtering requires the average noise amplitude as an input, it needs to be
used along with another noise estimation method. For this study, we were only interested
in the quality of the noise maps, so we used the known noise amplitude measured from
the ground truth data set as the input. This procedure gives an upper bound, best possible
result, for the non-local means noise estimation method because in practice the average
noise must be computed from the data and may have some error. In order to produce noise
maps from the non-local means residuals, the residuals must be scaled so that the average
noise amplitude matches the expected value. This step replaces the leverage correction step
of the other methods [37]. After scaling, the non-local means noise maps can be compared
directly to the ground truth noise maps.

3.1.2 Simulation

Model bootstrap methods work well when the model assumptions are satisfied, but tend to
overestimate residuals when the model assumptions are violated. In this application, the
extent to which model assumptions are violated depends on the b-value, the SH order, and
the SNR of the data. In order to understand the performance of the two bootstrap methods
as a function of these choices, we used a simulation of two equal-sized fibers crossing
at 90 degrees. We simulated each of the two fibers using a tensor model with FA of .7
and mean diffusivity of .5 cm2/sec. To simulate Rican noise, we added samples from a
standard normal distribution (µ = 0, σ = 1) in both the real and complex channels to
this simulated signal, and then computed the amplitudes. To vary the SNR, we scaled the
signal and held the simulated noise amplitude constant at 1. At each SNR and b-value,
we simulated 10,000 independent acquisitions. The simulations were done using the same
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b-values and 181-direction gradient table, as were used for acquiring the human subject
data. The simulations for this study were performed using the Diffusion Imaging in Python
(Dipy) software library [31].

3.1.3 Data collection

A human subject was scanned on a 3T Siemens Skyra MRI scanner after obtaining in-
formed consent per the requirements of our local institutional review board. The human
subject was scanned to acquire 6 total data sets: a repetition data set and a HARDI data set
at each b-value (b=1000, 2000, and 3000 s

mm2 ). For each b-value, the repetition data set
consisted of 3 gradient directions acquired 80 times each, along with 7 images with no dif-
fusion weighting. Each HARDI data set consisted of 181 non-collinear gradient directions
and 7 images with no diffusion weighting. All images were acquired at 2.2mm isotropic
resolution, TR = 3s, using a multiband factor of 2.

We used a motion and eddy current correction scheme similar to the method employed
by FSL’s “eddy correct”. This correction scheme registers all the diffusion-weighted im-
ages to a reference to compensate for scaling and shearing introduced by eddy and subject
motion during the scan. In order to compare voxelwise between the HARDI and repetition
data sets, we combined the b0 images from the two data sets to make one reference image.
This method produced one eddy correction reference for each of the 3 b-values acquired.
To produce this reference, we first averaged all b0 images from the two data sets. We then
registered those same b0 images to the average image, and computed the average trans-
form to ensure that all images are moved as little as possible. We then used this image as
the reference for our motion and eddy current correction. The end result of this process
was a repetition and a HARDI data set that were eddy-corrected and co-registered to each
other. The repetition data set was made up of repeated signal measurements along three
gradient directions. By taking the variance of the repeated measurements at each voxel and
averaging the three results, we created the “ground truth noise maps”. Noise maps were
also estimated from the HARDI data sets using each of the candidate methods described.
Even though we do not refer to the ground truth noise maps as estimates for brevity and
clarity, they are in fact estimates as well and when comparing the candidate noise maps to
the ground truth noise maps, one must account for the standard error in both noise maps.
For our quantitative comparisons of the different noise estimates to the ground truth noise
maps, we limited the analysis to a brain tissue mask. The brain tissue mask was created
by first fitting a tensor model to each of the data sets and taking the voxels with fractional
anisotropy (FA) greater than .1 and axial diffusivity less than 2 cm2

s
. We then performed
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Table 3.1: The median DTI, SH (order 6), and B0 noise estimates and RMS errors com-
puted from a single subject. The data was normalized using the repetition ground truth so
that the expected noise amplitude is 1.

b-value ( s
mm2 ) 1000 2000 3000

DTI noise estimate 1.08 1.11 1.31
DTI RMS error 0.44 0.31 0.49

SH-6 noise estimate 1.01 0.96 1.13
SH-6 RMS error 0.23 0.22 0.19

B0 noise estimate 1.00 0.97 0.85
B0 RMS error 1.44 1.26 0.91

NLM RMS error 1.08 0.84 0.51
Median B0 SNR 24.92 19.68 18.02

Median DWI SNR 11.79 5.67 4.02

binary erosion to the result to produce the final brain tissue mask.

3.2 Results

Overall, the SH noise estimates and noise maps were the most accurate and most precise.
Figure 3.1 and 3.2 show a qualitative comparison of the noise maps produced by the 4
single-acquisition methods along side the repetition ground truth for human data at b-value
of 3000. It is clear from visual comparison of the four noise maps that the SH noise map
(C) most closely matches the ground truth (A). The DTI noise map (B) captures some of the
features present in the repetition ground truth, however it overestimates the noise amplitude
in several regions. The B0 noise map (D) is too grainy to capture any of the fine features in
the ground truth noise map. The B0 noise estimation method may still be useful as a global
estimate of the average noise amplitude in an image, but it is not useful as a noise map.
The noise maps produced using the non-local means filtering (E) also had a tendency to
overestimate the noise specific tissue regions. In the next section, we present a quantitative
analysis of accuracy and precision of the 4 single-acquisition noise estimation methods.

3.2.1 Simulation Results

In simulation, the SH noise estimates show near-perfect behavior, while the DTI noise
estimates are positively biased. Table 3.2 shows the average noise estimates and root mean
square (RMS) errors obtained from the simulated data using the two residual bootstrap
methods. The average noise estimate is a measure of the method accuracy. The RMS error
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Figure 3.1: The ground truth (A), DTI estimate (B), SH estimate (C), B0 estimate (D) and
non-local means estimate(E) noise maps produced from the b=3000 data set.
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Figure 3.2: The ground truth (A), DTI estimate (B), SH estimate (C), B0 estimate (D) and
non-local means estimate(E) noise maps produced from the b=3000 data set.

is a measure that captures both the bias (the difference between the average estimate and the
expected result) and the precision (sampling error) in an estimate. From this table we can
see that, at least in simulation, the accuracy and precision of the SH residual method is not
dependent on b-value or on SNR. The median noise estimate is close to 1.0 (the simulated
noise amplitude) at all three b-values and at both SNRs. Additionally, the RMS error in
the estimate is consistently 0.11 (the analytical value we expect) and does not depend on
b-value or SNR. The DTI model does almost as well as the SH model at a b-value of 1000;
the noise estimates are 1.02 – 1.04 and the RMS error of the voxelwise estimate is 0.11 -
0.12. At higher b-values, however, the DTI model is insufficient to represent the data and
overestimates the noise. At a b-value of 3000, for example, the median DTI estimates of
noise amplitudes are 1.19 and 1.41 at SNR 18 and 25 respectively.
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Figure 3.3: Median SH noise estimates and RMS error as a function of SH order computed
from simulated diffusion weighted data with SNR of 25. The median DTI noise estimate
and RMS error have been included as solid bars for comparison.

3.2.2 Human Data

The results using real-world data largely mirror those we see in the simulation. As shown
in Table 3.1 and Figure 3.1, the noise estimate using the SH model of order 6 is consistently
more accurate and more precise than that of the DTI model; the median estimate is closer
to 1.0 and the RMS error is lower. Unlike the simulation, accuracy of the estimate obtained
using the SH model does show some b-value dependence, but not as much as the DTI
model. The magnitude of this b-value dependence is similar to that observed in the B0 noise
estimate. The RMS error in the voxelwise noise estimates obtained using the B0 method
is substantially higher than the RMS error associated with the DTI or SH models. While
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Table 3.2: The median DTI and SH (order 6) noise estimates and RMS errors computed
from simulated diffusion weighted data.

B0 SNR 25 25 25 18 18 18

b-value ( s
mm2 ) 1000 2000 3000 1000 2000 3000

DTI noise estimate 1.04 1.24 1.41 1.02 1.11 1.19
DTI RMS error 0.12 0.28 0.44 0.11 0.16 0.23

SH-6 noise estimate 1.00 1.00 0.99 0.99 0.99 0.97
SH-6 RMS error 0.11 0.11 0.11 0.11 0.11 0.11

DWI median SNR 15.28 9.75 6.54 11.08 7.11 4.80

Figure 3.4: Human data median SH noise estimates and RMS error as a function of SH
order. The median DTI noise estimate and RMS error have been included as solid bars for
comparison. The data was normalized so that the expected noise amplitude is 1.
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the B0 method produces a fairly accurate estimate, the average estimated noise amplitude
is close to 1.0, the high RMS error means this method does not produce useful noise maps
(Figure 3.1 D). The noise maps produced using non-local means filtering overestimated
the noise in boundary regions between tissues. The overestimate can be seen in the noise
maps and results in a higher RMS error compared to the ground truth noise map. The SH
noise estimates and noise maps were the most accurate and most precise, but similar to the
simulation results, the SH order influences precision of SH noise estimates.

Figure 3.4 shows the accuracy and precision of the SH noise estimates as a function of
SH order. We see that the accuracy (Figure 3.4 blue line) of the SH noise estimate does
not change substantially once a sufficiently high SH order is used. In order to measure the
precision of the noise, we use the repetition ground truth as a reference. We define the RMS
error to be the root mean square error between the noise estimate and the noise amplitude
measured from the repetition data set. Lastly, we can estimate the stochastic component of
the RMS error using simulations. The RMS error of the noise estimates as a function of
SH order (Figure 3.4 green line) predicted the expected stochastic error depicted by the red
line. The RMS error of the noise estimates show a minimum at SH order 4 for b-values
1000 and 2000, and a minimum at SH order 6 for b-value of 3000. After the minimum,
the RMS error increases with SH order. The RMS error in the SH estimates (Figure 3.4
green line) was higher than the stochastic RMS error we predicted using simulation (Figure
3.4 red line). This means that not all the error in the noise estimate can be explained by
sampling variation, and other sources of error are present in the estimate. However, the two
lines show the same trend and sampling variation does explain the increase in RMS error
and decrease in estimate precision as a function of SH order.

The precision difference between the noise estimates produced using low and high order
SH models can be seen by comparing the respective noise maps. Figure 3.5 shows axial
and coronal slices from three noise maps estimated using SH orders 4 (B), 14 (C) and 16
(D) compared to the ground truth noise map generated from repeated measurements (A).
The SH order 6 (B) estimate is visibly smoother than higher order estimates and more fine
detail is visible in this lower order noise map. For example, the outline of the Globus
Pallidus (in the red box) is visible in the ground truth noise map (A) and this structure has
visibly lower noise amplitude than the surrounding tissues. This structure has similar detail
in the SH order 6 estimate (B), but in the SH order 14 (C) and 16 (D) estimates the structure
becomes progressively harder to resolve. This is not surprising because the precision of the
noise estimates defines the level of contrast in the noise maps. The SH order 6, 14 and 16
estimates have 152, 60, and 27 degrees of freedom respectively. SH harmonic order 8 is
commonly used to fit SH functions to HARDI data. In order to produce noise maps with
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a matching number of degrees of freedom to B, C and D in Figure 3.5 with a SH order 8
model, one would need to acquire 198, 106, and 73 linearly independent diffusion gradient
directions respectively.

Figure 3.5: Noise maps produced from DWI data. From left to right A) noise amplitude
measured using repeated samples B) SH order 4 noise map estimate C) SH order 14 noise
map estimate D) SH order 16 noise map estimate.

3.3 Discussion

Our results show that using a SH model to estimate noise maps for HARDI data is more
accurate and more precise than using a DTI model or using the currently available b0 and
non-local means methods. The accuracy of the noise map is mostly independent of the SH
order used, provided that a sufficiently large order is used. However, the precision of the es-
timate does depend on the choice of SH order. Even though the SH model noise estimate is
better than the tensor or B0 estimates, we did observe some discrepancy between SH noise
estimate and the ground truth noise measured by repeated data acquisition, not all of which
can be explained by stochastic variation. The simulation we used to estimate the expected
stochastic RMS error is conservative and we would not expect to achieve that level of pre-
cision, even under ideal conditions. However, we believe the precision of the noise maps
may be improved if better eddy current correction and image alignment methods are used
in the processing of the raw data. The repeated gradient acquisition data we used for our
ground truth noise measurement has very consistent alignment. The consistent alignment
is not surprising because each of the repeated images is impacted by the same eddy current
distortions. On the other hand, the data used to produce the bootstrap noise estimates has
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visibly worse alignment between the images. The areas where misregistration is most pro-
nounced are consistent with the areas of largest differences between the noise estimate and
the ground truth. While we explored possible parameters for improving the alignment, the
simple eddy current correction method we used is not capable of fully correcting the eddy
current distortions present in this kind of data.

Other factors may also contribute to differences between the ground truth noise mea-
surement and the bootstrap noise estimates, but it is important to note that there is no
evidence that model failure is one of these factors when sufficiently high SH order is used.
This is in contrast to the DTI method, where there is strong evidence for model failure.
In the presence of model failure, the bootstrap procedure overestimates the residuals and
overestimates the variance in the metric of interest. In this case, we would expect a model
failure to result in a positive bias, or an overestimate, of the noise amplitude. The DTI
results show an overestimation of the median noise. The noise maps show that this overes-
timation is not uniform over the image, but most predominant in the white matter regions
where we expect crossing voxels. Additionally, the SH model produces a lower noise esti-
mate in these regions, which is consistent with the expectation that the SH model can better
represent crossing voxels. The SH model shows evidence of model failure at order 2 and
order 4 for b=3000. However, there is no evidence of model failure at higher SH orders.
In the presence of model failure, we expect the median noise estimate and RMS error to
decrease as higher SH order models decrease the model failure.

In this study, we have focused on noise estimation for single shell q-ball data, however
these methods could still be useful for studies that acquired multi-shell diffusion acqui-
sitions. The noise in each shell could be analyzed independently using these methods as
long as there were at least about 20 gradients acquired in each shell. This approach is the
simplest and would work for acquisitions where imaging parameters are adjusted indepen-
dently for each shell to maximize SNR at each shell. The disadvantage of treating each
shell independently is that model parameters must be fit resulting in a noise estimate with
fewer degrees of freedom. To avoid this one could use one of the several recently pub-
lished methods that use SH functions to fit multi-shell data [24]. Because these methods
make additional assumptions about the nature of the data being modeled, they would need
to be validated independently, but that work is outside the scope of this paper.

Understanding which combination of model and parameters produces the best voxel-
wise noise map is important not only for accurately estimating noise, but also for choosing
the right bootstrap procedure in other applications. In recent years, many new models for
characterizing diffusion profiles in brain tissue have been proposed. Many of these models,
such as NODDI[38] or CHARMED[39], require complex non-linear fitting of the diffusion
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data. Residual bootstrap methods could be used to estimate the standard errors produced
by these models, but bootstrapping the models directly is not practical because leverage
correcting the residuals produced by these models is impractical or impossible. However,
one could use a different model to produce bootstrap datasets and then apply the model of
interest to those datasets in order to estimate standard errors in the model parameters or
metrics. The quality of an estimate produced using a bootstrap procedure depends on how
well that procedure can generate bootstrap samples that are representative of the distribu-
tion from which the data is sampled. Any bootstrap sample that represents the underlying
data distribution should, at minimum, be able to estimate the variance (or noise) of that
distribution. Therefore, when picking a bootstrap procedure for any dMRI application, one
should consider how well that procedure estimates the imaging noise.

While this study demonstrates that noise maps can be estimated from dMRI acquisi-
tions, how well the methods presented here perform may depend somewhat on the MRI
acquisition sequence used and the biological characteristics of the tissue being imaged.
Two important criteria are required for model residual bootstrap methods to be effective.
First, the model must be a reasonably accurate representation of the diffusion characteris-
tics of the biological tissue. Our results indicate that the tensor model fails at high b-values,
causing the noise to be overestimated. While the SH model has similar accuracy over a b-
value dependent range of orders, the lowest order in that range provides best precision in
the noise estimates. The second criterion for accurate noise estimation is that the imaging
noise must be approximately normally distributed. MRI imaging noise is generally be-
lieved to have a Rician distribution that can be approximated as normal when the SNR is
sufficiently high. Therefore this criterion is satisfied for most dMRI data sets. However,
data sets that approach the noise floor will result in some bias in the noise estimates due to
violation of the normally distributed noise assumption.

3.4 Conclusion

We have demonstrated that model residual bootstrap methods can be used to produce noise
maps for HARDI data sets and are superior to the currently used methods using b0 repeti-
tions and nonlocal-means. For this purpose, the DTI model only performs well if relatively
low b-values are used. The SH model performs well at all b-values, but the precision of
the SH noise estimate depends on the SH order used. In our simulations and human dif-
fusion data, SH orders 4 and 6 provided the best balance between fitting the data well and
preserving degrees of freedom for the noise estimate.
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CHAPTER 4

Dipy, a Diffusion Analysis Platform

Fiber tracking, or tractography, is a developing set of techniques for identifying and mea-
suring the properties of white matter (WM) pathways in mammalian brains. By measuring
the restricted Brownian motion of water molecules in brain tissues, diffusion MRI gives us
a way to examine the microstructural properties of those tissues. Diffusion models such
as diffusion tensor imaging (DTI) or constrained spherical deconvolution (CSD) can be
applied to diffusion MRI data sets to estimate tissue properties from diffusion weighted
images. These tissue properties allow us to see into the microstructure of the axons that
make up white matter tissues. These axons, and their surrounding myelin, restrict water
diffusion therefore diffusion weighted MRI is sensitive to their diameter, density, integrity,
and directionality. Fiber tracking allows us to take this analysis to the next level and begin to
estimate the properties of individual WM tracts or the collections of tracts that make up the
structural network of the brain. Dipy provides a unified tool set which allows researchers
and developers to both analyze diffusion MRI data sets and develop new modeling and
analysis methods. This chapter describes the design and organization of dipy’s diffusion
modeling and fiber tracking tools and how these tools can be extended to implement anal-
ysis methods.

4.1 Model the diffusion signal

The first step in any diffusion MRI analysis, after pre-processing is complete, is to model
the diffusion MRI signal. The model that one chooses depends on several factors. As with
most modeling applications, the right model will balance several competing priorities in-
cluding: simplicity of the model, assumptions built into the model, and accuracy of the
result. In diffusion MRI, finding the optimal balance largely depends on the characteristics
of the data to be modeled and the specifics of the application. For example, when the diffu-
sion data to be modeled includes images acquired with different diffusion weightings, often
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called multiple q-shell data, a more complex model like Multitissue Constrained Decon-
volution or Diffuison Spectrum Imaging can be used. If the data is acquired using a large
number of diffusion gradient directions, more than 50, on a single q-shell with moderate to
high b-value, then an intermediate model like QBall or Constrained Spherical Deconvolu-
tion might be the best choice. For data sets with a low b-value or a relatively few gradient
directions, than a more simple model, such as DTI, is most appropriate.

It’s also important to consider the requirements of the application when picking a
model. While a given data set might support more complex modeling, if the goal of the
project is identify large, well defined white matter tracts in the brain, then the additional
complexity and computational cost associated with a more complex model might not be
justified. However, if the goal is to model areas of the cerebral white matter with finer
structures and axonal crossings, than a simple model like DTI will simply fail to capture
the underlying complexity of the biological architecture. The choice of model is often a
subtle decision that can only be made empirically. Dipy aims to aid the user in the task of
choosing the right models by providing a model API so that users can run the same tracking
and analysis methods using different models in order to compare results.

4.1.1 Model and Fit Classes

Models in dipy serve two related functions. First a model can be used to fit diffusion MRI
signals and estimate model parameters. Second, some dipy models provide a predict
method, which allows the model to predict diffusion MRI signals from model parameters.
Here is a formal description of the model and fit interfaces in Dipy.

1. The model class.

(a) Models classes are initialized with any required parameters to create model
instances. In this context, a gradient table is considered a parameter and should
be passed to the model in the constructor.

(b) Models should have a fit method. The fit method should return a fit object,
meaning an instance of a fit class.

i. The fit method should take two parameters: data and mask. Data is
an array of diffusion MRI signals and mask is a binary array where True
values identify the non-background voxels of the image.

(c) The model may have a predict method. The predict method should predict
diffusion signals from model parameters.
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i. The predict method should take two arguments: model parameters and a
gradient table. The gradient table argument should be optional and the
gradient table associated with the model should be used, by default.

1. The fit class.

(a) Each fit object should have a model attribute which will generally be the model
object used to create the fit object.

(b) The fit class may also have a predict method. The predict method of the
fit class does not take model parameters as an argument, instead it estimates a
signal prediction based on the model parameters associated with the fit instance.

(c) The fit object may have an odf method which takes a Sphere instance as an
argument and returns an the Orientation Distrubtion Function estimated by the
model and sampled on the vertices of the Sphere instance. The odf method
is used for peak finding and fiber tracking.

(d) The fit class may have attributes and methods specific to the model type which
the fit represents. For example, a DTI fit has the attributes fa and md which
are the fractional anisotropy and mean diffusivity, respectively, of the diffusion
tensor.

All the models in dipy follow this basic interface. Dipy only enforces this interface
through ”duck typing”, meaning the interface is checked at run time on an as needed basis,
as opposed to strictly enforced using a mechanism such as inheritance. The result of this
design choice is that Dipy does not require all model classes to implement the entire model
interface. However, a model class that omits part of the interface may fail if it interacts
with dipy functions or methods which require the missing portion of the interface.

4.2 Dipy Utilities for Models

4.2.1 Gradient Table

Dipy provides some tools for making the implementation of new models easier. The first
of these tools is the GradientTable class. A gradient table object can be initialized
from gradient table files, for example bvec and bval files commonly used in diffusion
imaging, or simply an array of gradients by using the gradient_table factory func-
tion in dipy.core.gradients. A gradient table object allows a user to easily access
different representations of gradient information. For example, the bvals attribute of the
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Figure 4.1: A HemiSphere with 66 vertices. The faces of this sphere are shown as a
wire mesh. Two of these vertices have been highlighted in green. These two vertices are
neighbors, even though they appear on opposite sides of the spherical surface, and therefore
are connected by an edge. The edge that connects these two vertices is highlighted in red.

Figure 4.2: A Sphere which is the mirror of the HemiSphere in figure 4.1. This Sphere has
a total of 132 vertices. The green vertices of the original HemiSphere have been mirrored
to create the blue vertices. Each of the green points is now a neighbor too, and shares an
edge connection with, the mirror of the other green point.

gradient table object exposes the diffusion weighting, commonly known as the b-value, of
each gradient. Similarly, the bvecs attribute exposes the direction of each gradient as a
unit vector and the gradients attribute exposes the total gradient vector.

34



4.2.2 Spheres and Hemispheres

Dipy uses the Sphere and HemiSphere classes as discrete representations of the unit
sphere. The HemiShere class is a subclass of the Sphere class, provides the same
interface, and can be used anywhere Dipy requires a Sphere instance. Both Sphere

and HemiSphere objects consist primarily of a set of dispersed points, or vertices, on the
unit sphere. The Sphere class also provides faces and edges attributes which provide
neighbor information about the vertices of the sphere. Each face of the Sphere is triplet
of integers between 0 and N - 1, where N is the number of points of the Sphere. The
faces, taken together, make up a mesh surface which approximates a sphere. Each edge of
a Sphere is a pair of integers between 0 and N - 1 and represents two neighbor points.
Each point has a neighbor relationship with the closest points to itself. This neighbor
relationship is important for peak finding and fiber tracking applications.

Though the Sphere and HemiSphere classes are similar, there is one key difference.
The HemiSphere class incorporates an understanding of antipodal symmetry into its def-
inition of distance between points. On the surface of the sphere, we can define a distance
function between two points, ~v1 and ~v2 as d(~v1, ~v2) = cos−1(~v1 · ~v2). This is the intuitive
definition of distance that is familiar to most people. Under this definition, the points ~v
and −~v are separated by a distance of π, the furthest possible distance between two points
on a unit sphere. In the context of diffusion imaging, we want to be able to represent an-
tipodally symmetric distance function where the points v and −v are in effect the same
point. To represent this symmetry, we can define a new distance function on the sphere,
d(~v1, ~v2) = cos−1(|~v1 · ~v2|). By using this new distance function, the HemiSphere class
is able to effectively represent an antipodally symmetric sphere with half as many points,
without loosing important neighbor relations. While it is redundant to use a full Sphere
to represent an antipodally symmetric spherical surface, sometimes a full Sphere object
can still be useful, for example for visualizing spherical functions without discontinuities.
The HemiSphere class provides a mirror method to duplicate and project the ver-
tices of a HemiSphere onto a full sphere. Figures 4.1 and 4.2 show a 3d rendering of a
HemiSphere and its mirror respectively.

Dipy provides a default_sphere object, which is an instance of HemiSphere,
in dipy.data. The default_sphere consists of 362 vertices dispersed on a unit
hemisphere. We’ve found that this number of points provides a good balance between
coverage and computational performance.
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Figure 4.3: The organization of the local tracking components. Green arrows denote inputs
into tracking components.

4.3 Local Tracking Components

By framing the local tracing problem as one of independent but interacting modules, we’re
able to focus on the behaviour of the independent components. In this section we dis-
cuss how the components of the local tracking model are built, the responsibilities of each
component and how the components interact.

4.3.1 Direction Getter

As the name suggests, it is the responsibility of the direction getter to pick tracking di-
rections based on the tissue information at the current tacking location. The first current
tracking location is the last point, so far, of the streamline being tracked given relative to
the diffusion MRI images. The second piece of available information is the direction of
previous streamline segment. This second piece of information is important because it al-
lows crossings, and other complex architectures, to be modeled by the tracking algorithm.
When multiple plausible tracking directions are available, the best directions can be chosen
contingent on the direction of the previous segment. The direction getter must also be able
to provide initial directions for tracking from seed points. Because seed points are used to
initialize the tracking procedure, there is no previous segment from which to extract a di-
rection. A direction getter can provide multiple initial directions for a given seed point, for
example if the seed point is in a WM structure where axons from different tracts cross. The
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tracking framework is then responsible for either picking the best of the initial directions
or tracking multiple directions and returning a streamline for each of the directions.

Dipy provides several standard direction getters. The function peaks_from_model,
from dipy.direction returns a deterministic direction getter which estimates tracking
directions from ODF or FOD peaks. Both q-ball type, which typically estimate ODFs, and
spherical deconvolution type, which typically estimate FODs, can be used with this direc-
tion getter. Dipy also provides a probabilistic direction getter, 
ProbabilisticDirectionGetter

in dipy.probabilistic_direction_getter. This direction getter returns direc-
tions stochastically by choosing from a discrete set of predefined directions based on a set
of weights. The ProbabilisticDirectionGetter is usually constructed using the
FODs as those weights. While in principle any function defined on the surface of the
sphere can be used to weight the selection probabilities of the tracking directions, ODF
functions tend to be too smooth and produce poor tracking results. For that reason, the
FODs of spherical deconvolution type models, or similar functions, are typically used with
the ProbabilisticDirectionGetter.

Dipy also allows users to define their own direction getter class, either in python or in
cython. Here are the requirements for implementing a direction getter.

1. A direction getter should inherit from DirectionGetter from the module 
dipy.tracking.local.

2. A direction getter should implement a get_direction method.
(a) The get_directionmethod takes two arguments, point and direction.

i. Both arguments are of type memoryview with shape (3,) and format
'd'.

ii. point is the current streamline position in voxel coordinates.

iii. direction is the direction of the previous tracking step, given as a unit
vector.

(b) get_direction should return 1 if no tracking direction can be established
and 0 otherwise.

(c) get_direction should update direction with the next tracking direc-
tion if 0 is returned.

3. A direction getter should implement an initial_direction method.

(a) The initial_direction method takes one argument, point similar to

get_direction.
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(b) The initial_direction method should return an (N, 3) array of direc-
tions as unit vectors.

i. These directions should be suitable tracking directions for tracking from
seeds at point.

ii. Because of the antipodal symmetry in diffusion imaging, the directions x
and -x are considered the same. Only one of the directions associated with
each pair should be included.

iii. If some directions are more suitable for tracking, the directions should be
sorted in order of suitability. The most preferred direction first.

iv. If no suitable directions can be established, a (0, 3) array should be
returned.

4.3.2 Tissue Classifier

The tissue classifier is the component of the local tracking model which is aware of the
different tissue types in the image. At it’s most basic, it is the responsibility of the tissue
classifier to terminate streamlines when they leave WM tissues. However, the tissue classi-
fier can also be used to exclude streamlines which pass through tissues which are known not
to contain axons. Currently dipy supports four point classes, TRACKPOINT, ENDPOINT,
INVALIDPOINT, and OUTSIDEIMAGE. The choice of tissue classifier when tracking de-
pends on the imaging and other data available for assessing tissue types. Based on all the
available information about anatomical tissues, the tissue classifier must be able to deter-
mine which of the above point classes best represents each tracking point.

Dipy currently has several standard tissue classifiers available. The threshold classi-
fier, ThresholdTissueClassifier from the module dipy.tracking.local,
allows metric maps to be used, along with a threshold value, to classify tissues as ei-
ther WM or not WM. This classifier is a good choice when the user does not have or
want to use imaging data in addition to the diffusion MRI data set. In this case, sim-
ple metrics like FA or generalized fractional anisotropy (GFA) can identify WM tissues
reasonably well. The binary classifier, BinaryTissueClassifier from the module
dipy.tracking.local, allows WM segmentations to be imported as binary masks.
This option is a good choice when additional imaging data or better analysis tools are
available for producing a white matter segmentation. For example, freesurfer [40] or FSL’s
FAST [41] can be used to identify WM tissues from structural images, and those results
can be used for fiber tracking. Lastly, the Anatomically-Constrained Tractography (ACT)
classifier, ActTissueClassifier from the module dipy.tracking.local, al-
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lows the use of two probabilistic tissue maps, an include map and an exclude map. This
approach allows for a more fine grained classification of streamline points and allows some
streamlines to be excluded completely based on the tissues traversed. This classifier is
based on work by Smith et. al. [42] and Girard et. al. [43].

Dipy also allows a user to define their own tissue classifiers. Here are the requirements
for implementing a direction getter

1. The tissue classifier must inherit from TissueClassifier from the module
dipy.tracking.local.tissue_classifier

.

2. The tissue classifier must implement a check_point method.

(a) The check_point method takes one argument, point.

i. point is of type memoryview with shape (3,) and format 'd'.

ii. point is the current streamline position in voxel coordinates.

(b) The check_point method should return a TissueClass.

i. Currently the four valid tissue classes are: TRACKPOINT, ENDPOINT,
INVALIDPOINT, and OUTSIDEIMAGE.

4.3.3 Local Tracking Class

The local tracking class implements the basic logic of the local fiber tracking algorithm. In
the heart of the local tracking class is the main tracking loop. The main tracking loop uses
a direction getter, a tissue classifier, and a seed to produce half a streamline. Because of an-
tipodal symmetry, each seed is tracked in two opposing directions and the results joined to
produce each streamline. Appendix ?? contains psudo-code for the local tracking algorithm
including the basic loop. In dipy, the basic tracking loop is implemented using cython. Be-
cause this is the very inner loop of the tracking algorithm, it is important that this part of
the code be optimized for performance. By implementing this loop in cython, we’re able
to compile this piece of the code and call the compiled code from python. Using cython
has another major advantage. Because the abstract base classes DirectionGetter and
TissueClassifier are both also defined in cython, their subclasses can implement
the direction getter and tissue classifier interfaces either in cython or in python. While
implementing these subclasses in python will be slower than using an optimized cython
implementation, this design gives users maximum flexibility. For development and test-
ing of new concepts, developing in python allows users to quickly implement and try out
different ideas and for many basic use cases, python is often fast enough. However, for
performance critical tasks users can implement direction getters and tissue classifiers in
cython.
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4.3.4 Multi Voxel Fit Decorator and Class

When fitting a dipy diffusion model, a single voxel or an entire data set can be passed
to the model’s fit method. While this design choice makes it easier for users to create
and fit models to their data, it requires that all model and fit classes are able to accept
and work with 4d data sets. Some models might choose to explicitly handle the 4d data
sets, however in some cases it’s helpful to be able to abstract out the looping logic and
implement the model with respect to only one voxel. Dipy provides a decorator, a python
object used to modify function or method definitions, which allows users and developers
to easily implement a model without explicitly considering the 4d nature of the data. This
decorator, dipy.reconst.multi_voxel.multi_voxel_fit, can be applied to
the fit method of a model class. The decorator guarantees that the fit method of the model
is called for each data voxel when a multi-voxel data set is passed to the fit method. The
implementation of the fit method should return a fit class, like all other models. Here is an
example of a model and fit class pair that use the multi-voxel decorator. Notice that other
than the decorator, both classes can ignore the multidimensional nature of the data.

from d ipy . r e c o n s t . m u l t i v o x e l i m p o r t m u l t i v o x e l f i t , M u l t i V o x e l F i t

c l a s s SampleModel ( o b j e c t ) :
d e f i n i t ( s e l f , g r a d i e n t t a b l e ) :

s e l f . g t a b = g r a d i e n t t a b l e

@ m u l t i v o x e l f i t
d e f f i t ( s e l f , d a t a ) :

r e t u r n S a m p l e F i t ( s e l f , [ d a t a . mean ( ) , d a t a . v a r ( ) ] )

c l a s s S a m p l e F i t ( o b j e c t ) :
d e f i n i t ( s e l f , model , f i t p a r a m e t e r s ) :

s e l f . model = model
s e l f . mean = f i t p a r a m e t e r s [ 0 ]
s e l f . v a r = f i t p a r a m e t e r s [ 1 ]

A fit method with is decorated with the multi-voxel fit decorator can return either an in-
stance of the appropriate fit class if in the data input is a one dimensional array of diffusion
signals or an instance of the MultVoxelFit class if the input is a multidimensional data
set. The MultVoxelFit class is an abstraction which allows the attributes and methods
of the single voxel fit class to be applied to man fit instances at once. For example, the
sample fit class in the previous example has mean and var attributes that are scalars in the
single voxel case. In the multidimensional case, the fit method returns a MultVoxelFit.
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The mean and var attributes now return multidimensional arrays which represent the
mean and variance computation for each voxel of the multidimensional data set that was
passed to the fit method.

i m p o r t numpy as np

g r a d i e n t t a b l e = o b j e c t ( )
model = SampleModel ( g r a d i e n t t a b l e )
s a m p l e d a t a = np . random . random ( ( 1 0 , 10 , 10 , 64) )

f i t = model . f i t ( s a m p l e d a t a [ 0 , 0 , 0 , : ] )
a s s e r t np . i s s c a l a r ( f i t . mean ) and np . i s s c a l a r ( f i t . v a r )

f i t = model . f i t ( s a m p l e d a t a )
a s s e r t t y p e ( f i t ) i s M u l t i V o x e l F i t
a s s e r t f i t . mean . shape == ( 1 0 , 10 , 10)
a s s e r t f i t . v a r . shape == ( 1 0 , 10 , 10)

This decorator is used in the implementation of several dipy models and allows users to
quickly and easily implement their own diffusion models.

4.4 Streamline Utilities

Tractography can be used to identify connections between brain regions, estimate the path
of specific connection or measure white matter tissue properties in a single subject brain. To
facilitate these applications Dipy provides several utilities that transform streamline data.
This section describes some of these utilities in more detail.

4.4.1 Connectivity Matrix

A connectivity matrix represents the streamlines that begin and end in two given tissue
regions of the brain. To create a connectivity matrix one needs to start with a parcel-
lation of the brain tissues. In this parcellation each tissue region is represented by a
unique, non-negative integer value. The zero value is usually reserved for background
and non-brain tissues. This tissue parcellation can then be combined with the result of
the local tracking output to produce a connectivity matrix. This example shows a typi-
cal use of the connectivity_matrix function. Here we return both the matrix, the
number of streamlines that connect two regions, and the mapping. The mapping is a dic-
tionary of the streamlines that connect every pair of regions. Each streamline is repre-
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sented in the matrix and the mapping exactly once, and for every tissue region i and j,
matrix[i, j] == len(mapping[i, j]).

from d ipy . t r a c k i n g . u t i l s i m p o r t c o n n e c t i v i t y m a t r i x

ma t r i x , mapping = c o n n e c t i v i t y m a t r i x ( s t r e a m l i n e s , p a r c e l l a t i o n , a f f i n e =
a f f i n e ,

symmet r i c =True , r e t u r n m a p p i n g =
True ,

m a p p i n g a s s t r e m a l i n e s =True )

4.4.2 Targeting

Targeting is the filtering of streamlines based on whether or not they intersect with a specific
ROI. Multiple ROI targets can be combined by sequential application of the target function.
This example demonstrates how one could select only streamlines that intersect with both
of two given ROIs: ROI1 and ROI2.

from d ipy . t r a c k i n g . u t i l s i m p o r t t a r g e t

# s e l e c t s t r e a m l i n e s t h a t i n t e r s e c t w i th bo th ROI1 and ROI2
i n t e r m e d i a t e r e s u l t = t a r g e t ( s t r e a m l i n e s , ROI1 , a f f i n e = a f f i n e )
f i l t e r e d s t r e a m l i n e s = t a r g e t ( i n t e r m e d i a t e r e s u l t , ROI2 , a f f i n e = a f f i n e )

To exclude streamlines based on a ROI, the include keyword should be set to False.
This example shows how one can one can select streamlines that intersect with ROI1 but
do not intersect with ROI2.

from d ipy . t r a c k i n g . u t i l s i m p o r t t a r g e t

# s e l e c t s t r e a m l i n e s t h a t i n t e r s e c t w i th bo th ROI1 b u t do n o t i n t e r s e c t
w i th ROI2

i n t e r m e d i a t e r e s u l t = t a r g e t ( s t r e a m l i n e s , ROI1 , a f f i n e = a f f i n e )
f i l t e r e d s t r e a m l i n e s = t a r g e t ( i n t e r m e d i a t e r e s u l t , ROI2 , a f f i n e = a f f i n e ,

i n c l u d e = F a l s e )

More complex targeting and filtering procedures can be implemented by applying log-
ical operators to the ROIs, as well as chaining together multiple targets.

4.4.3 Moving Streamlines

Streamlines represent paths through three dimensional space. Being able to describe these
paths in different coordinate spaces is often useful. For example, if a subject returns for
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a followup study, one may want to co-register the streamlines from the first session with
the MRI data of the second session. In order to move streamlines between two coordinate
spaces, one needs to know the affine transformation between each of the coordinate spaces
and a common reference space. Sometimes, one of the two coordinate spaces is the same as
the reference space, in that case one of the two affine transformations is simply the identity
transform. Dipy provides a utility function that will transfrom streamlines between two
coordinate spaces given a common reference space.

from d ipy . t r a c k i n g . u t i l s i m p o r t m o v e s t r e a m l i n e s

o u t p u t s t r e a m l i n e s = m o v e s t r e a m l i n e s ( s t r e a m l i n e s , o u t p u t s p a c e =
o u t p u t a f f i n e , i n p u t s p a c e = i n p u t a f f i n e )

4.4.4 Density Maps

A tractogram can be used to create a density map, sometimes called a track density image or
TDI[44, 45]. Because the streamlines of a tractogram are defined in a 3d continuous space,
density maps can be created at arbitrary resolution. When the resolution of the track density
image is higher than the resolution of the diffusion MRI data used to create it, the density
image is called a super resolution TDI [45]. If the voxel size of TDI is smaller than the
step size of the streamlines in the tractogram, subsegmenting the streamlines will produce
a better quality TDI. In this example we combine the subsegment and density_map
funtions to create a super resolution TDI.

from d ipy . t r a c k i n g . u t i l s i m p o r t subsegment , d e n s i t y m a p

d a t a m a t r i x = [ 1 2 8 , 128 , 64]
t d i m a t r i x = [ 1 0 2 4 , 1024 , 512]
t d i r e s o l u t i o n = . 1 2 5 # a p p r o x i m a t e r e s o l u t i o n i n mm

s u p e r r e s s t r e a m l i n e s = subsegment ( s t r e a m l i n e s , t d i r e s o l u t i o n )
s u p e r r e s t d i = d e n s i t y m a p ( s u p e r r e s s t r e a m l i n e s , t d i m a t r i x ,

a f f i n e = s u p e r r e s a f f i n e )
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CHAPTER 5

BMI as it Relates to White Matter Tissues

The negative health effects of being overweight or obese are well known and include higher
risk of cardiovascular disease, diabetes and even some cancers. The neurological and cog-
nitive effects of having high body weight are less well known. Obesity has been associated
with both lower levels of cognitive function and an increased risk of dementia later in life.
Recent work has found that obesity and high body mass index (BMI) are associated with
declines in several cognitive domains including executive functioning, attention and motor
skills [46, 47, 48, 49]. Additionally, persons with high BMI in mid-life have a higher risk of
developing both Alzheimer’s Disease and non-Alzheimers dementia. Even children with
higher BMI appear to have declined cognitive abilities compared to their normal weight
peers [50], and among college athletes with excellent cardiovascular health, high BMI is
associated with lower cognitive function [51]. However, there is also evidence that higher
body weight may play a neuro-protective role later in life [52]. Brain imaging can help
us better understand the mechanisms that underlie these links between body weight and
cognition.

In addition to cognitive effects of body weight, recent work has demonstrated that high
body weight can effect the macro and micro-structure of the brain. Lower brain volumes
have been reported in people with high BMI [53, 54]. Additional work focused on re-
gional differences in brain volumes has found both gray matter (GM) and white matter
(WM) atrophy, particularly in the temporal and parietal regions of the brain [55]. Micro-
structural alterations in brain tissues associated with high BMI and obesity have also been
reported. Several studies using diffusion tensor imaging (DTI) have found lower fractional
anisotropy (FA) and possibly lower axonal coherence in several white matter tracts, in-
cluding the corpus callosum and cingulate bundle [56]. These DTI findings are supported
by a spectroscopic imaging study which found that high BMI correlated with lower con-
centrations of N-acetylaspartate, a marker of neuronal viability [57]. While these findings
demonstrate that the observed neuro-cognitive differences between persons with high BMI
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and normal weight are mediated through alterations in the brain, there is disagreement in
the literature about which brain regions are implicated and to what extent.

In this work we apply a new methodology for examining the associations between white
matter biomarkers and patient outcomes to the a large, public data set of young subject in
order to better understand the link between body mass and brain health. This new method-
ology maps white matter tissue markers onto a large, intersecting set of white matter path-
ways reconstructed using advanced tractography methods. The tract based markers are then
statistically modeled to identify associations between white matter structures and health
outcomes. We present the results of our white matter analysis along with cortical thickness
analysis and show that the BMI effects to the brain, in this young population, are most
measurable in the white matter tissues.

5.1 Methods

For this study we used the S900 release of HCP [58]. This release included 766 subjects
with complete diffusion MRI data sets and BMI information. The mean age of the group
was 28.8 +- 3.7 years old and the group had 426 females and 339 males. The sex of 1
subject was not disclosed. The group had a mean BMI of 26.4 +- 5.1. The HCP acquires
3 similar diffusion MRI scans with 1.25mm isotropic resolution. Each of the 3 scans have
different gradient directions so they can be combined into one data set with 270 unique
gradient directions. These 270 directions are distributed over 3 shells, with b-values of
1000, 2000 and 3000. The combined data set also contains 18 volumes with minimal diffu-
sion weighting (b0 images). Both unprocessed and preprocessed versions of the diffusion
MRI images are available publicly. For this study we used the preprocessed images. These
images were reconstructed using a SENSE1 MRI image reconstruction and then eddy cor-
rected using a gaussian process predictor [59]. In addition to diffusion MRI images, we
also used the structural T1 images, the MNI registrations, and the freesurfer segmentations
of those T1 images provided as part of the structural preprocessed HCP data set [60]. We
chose the HCP data for this study because it contains a large number of patients, high
resolution structural imaging, freesurfer processing, and high resolution and high quality
diffusion MRI images. This data is also publicly available for repetition and follow up
studies.
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5.1.1 Fiber Tracking and DIffusion Metrics

From the diffusion MRI data we extracted DTI metrics for a large number of white matter
pathways identified using whole brain fiber tracking. These pathway specific metrics served
as features in our statistical analysis. In this study we focused on two metrics specifically,
fractional anisotropy (FA) and mean diffusivity (MD). Our goal was to find the mean FA
and mean MD along as many white matter pathways as possible. To achieve this goal we
used whole brain tractography to create a tractogram for each subject using fiber tracking
tools in the Dipy software library [31]. Our fiber tracking methodology is described below.
We used probabilistic fiber tracking with a step size of .5 mm to generate tractograms for
each subject. We created gray matter and white matter masks using the freesurfer segmen-
tation results provided in the HCP data set. The probabilistic fiber tracking was seeded
in the white matter voxels adjacent to gray matter tissues using 27 seeds per voxel. The
probabilistic fiber tracking was restricted using the white matter as a binary tissue classifier.
Streamlines were included in the tractogram only if both endpoints of the streamline were
in the gray matter mask. We used a Multi-Tissue Constrained Deconvolution model, with
spherical harmonic order 8, to estimate an fiber orientation distribution (FOD) at each voxel
[24]. These FODs were used, with a 30 degree angular threshold, to generate probabilistic
tracking directions.

Using the whole brain tractograms, we identified the white matter pathways that were
most promising for further analysis. For this study, we estimate a white matter pathway to
be a path along all the streamlines that connect two gray matter regions. Using cortical and
subcortical gray matter regions from the freesurfer segmentations, we identified 1102 such
white matter pathways which were identified in all the subjects of our study. For each white
matter pathway, we measured the average MD and FA to produce 2204 total measurements
that we then used as features in our statistical analysis.

5.1.2 Statistics

For statistical analysis we used scipy and scickits learn [61, 62, 63]. Tissue volumes, corti-
cal thickness, age, gender and BMI information were obtained from the HCP data set. We
used a partial least squares (PLS) regression [64] to model the association between white
matter measures, cortical thicknesses and BMI. In order to validate our results, we split the
original dataset into two groups. The training group consisted of all 437 subjects released
by the HCP in the S500 release or before. We set aside 329 subjects from the S900 release
to be our test set. To determine the optimal number of latent variables for the PLS regres-
sion, we used a random 10 fold cross validation with 1000 iterations and fit models with
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slope R p

age 0.14 0.1 0.0051
gender -0.52 -0.05 0.16
total GM volume 4.6e-07 0.0059 0.87
total WM volume 4.2e-06 0.046 0.2
total cortical GM volume 5.8e-07 0.0061 0.87
total sub-cortical GM volume 2.2e-05 0.024 0.51
fractional anisotropy -27 -0.083 0.021
mean diffusivity -5.6e+04 -0.17 2.4e-06

Table 5.1: This table shows the result of predicting BMI with each of the regressor inde-
pendently using a linear regression. Gender, total GM and WM volumes as well as cortical
and sub-cortical GM volumes were not correlated with BMI in our population. Age, FA,
and MD showed a small, but statistically significant association with BMI.

up to 12 latent variables. Once the number of latent variables was established, we fit a PLS
regression using all subjects from the training set and used the test set to validate the result.
The results of the PLS regression were expressed as an image, denoted here as the effect
map. See Appendix 1 for more on how the effect map was created. Using all the subjects
in our training set, we warped the effect for each subject to MNI space and averaged the
effect maps to produce a normalized, average effect map.

Figure 5.1: Tract based diffusion metrics are estimated by estimating individual WM
pathways in each subject and extracting DTI metrics for those pathways.

5.2 Results

In our initial analysis we checked to see whether age, gender, total gray and white matter
volume, cortical and sub-cortical gray matter volume, average fractional anisotropy, and
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t value p value

age 1.1 0.27
fractional anisotropy -4.6 5.5e-06
mean diffusivity -5.9 4.2e-09

Table 5.2: A linear model for BMI using age, fractional anisotropy and mean diffusivity as
features. The R2 value for this model was .06. When these features are modeled together,
the association between age and BMI is no longer statistically significant.

average mean diffusivity were good independent predictors of BMI. Table 5.1 shows the re-
sults of this analysis. However, of the features we checked, only age, fractional anisotropy
and mean diffusivity showed a statistically significant association with BMI. We fit a lin-
ear model using these three significant features, and found that FA and MD accounted for
about 6% of the observed variance in BMI, however age no longer showed a statistically
significant association with BMI when modeled with FA and MD. These results are sum-
marized in Talbe 5.2. We also check to see the cortical thicknesses of the freesurfer defined
cortical regions were good predictors of BMI. Table 5.4 shows the association between re-
gional thickness and age adjusted BMI. We found that a significant number of regions in
the frontal lobe, parietal lobe and anterior cingulate cortex showed a positive association
with BMI. Also, three temporal lobe regions regions showed a strong negative association
with BMI.

To further understand the associations between specific GM and WM regions and BMI
we used a PLS regression model. PLS regression allows us to build a model with a large
number of predictors, which may in themselves be largely correlated, without over-fitting
the model. We fit PLS regression models with age, tract based diffusion metrics, and
cortical thickness as predictors, five models in total. Table 5.3 shows how well each of
these models predicted BMI in our data set. The number of latent variables for the PLS
model were determined and the model was fit using the training data set (all subjects in
the S500 and previous releases). The R2 values for each of the models was determined
using the testing data set (new subjects in the S900 release). The models with tract based
diffusion metrics included in the predictors did substantially better than the models that
did not. The best model without diffusion metrics included age and GM thicknesses as
predictors, and this model had an R2 of .045. The model with only tract based diffusion
metrics had an R2 of .2. We did not find evidence that including cortical thicknesses or
age in the model improved predictive performance above only using tract based diffusion
metrics.

Figures 5.2 and 5.3 show a spacial representation of the PLS regression model for pre-
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features used latent variables R2 p value

cortical thicknesses 2 0.024 0.0012
cortical thicknesses & age 3 0.045 0.0003
tract diffusion metrics 6 0.2 <1e-4
tract diffusion metrics & age 6 0.19 <1e-4
thicknesses & diffusion metrics 6 0.18 <1e-4

Table 5.3: How well cortical and WM features fit the data using the PLS regression model.

dicting BMI from tract based diffusion metrics. These spacial maps are an average of
normalized effect maps across subjects. The effect maps show how much each tract or
WM region contributes to the predicted BMI produced by the PLS model. Appendix 1
gives a formal definition of the effect map and more detail about how the effect maps are
computed. Figure 5.2 shows the relative importance of FA values in the PLS model and
Figure 5.3 similarly shows the relative importance of MD values. In the maps, red indicate
a positive association with BMI and blue areas a negative association, however it is impor-
tant to remember that these associations are relative to other regions. That is to say, the
relative values within a subject are more important than the absolute FA and MD values in
specific regions or tract. For example, the MD in the frontal aspect of the cinguate bun-
dle has a large positive association with BMI while the MD in the temporal aspect of the
same bundle has a large negative association. This pattern in the effect map tells us that the
contrast between frontal and temporal MD in the cigulate bundle drives the BMI prediction
more than the average MD or FA value in that bundle.

5.3 Discussion

Our study did not find an association between lower brain volume and higher BMI values
in these young adults. Previous work in older populations has found that BMI is associ-
ated with reduced GM in many brain regions including the parietal, frontal occipital, and
temporal lobes [65, 54]. However, in this study we only observed cortical thinning in three
temporal GM regions. This apparent difference may be explained by the fact that the HCP
subjects are much younger than the populations in these previous studies. This difference
would arise if the reduced GM tissue observed in these studies of older individuals is due
to increased aging related atrophy in persons with higher BMI. The aging hypothesis is
consistent with previous work which found that dietary changes in young, obese mice can
reverse obesity related cognitive declines [66]. Previous work has also shown that rats fed
a high fat diet have higher levels pro-inflammatory cytokine expression in several brain
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Cortical Area R p value Cortical Area R p value
L Frontalpole 0.033 – R Frontalpole -0.0067 –

L Medialorbitofrontal 0.079 0.028 R Medialorbitofrontal 0.1 0.0057
L Lateralorbitofrontal 0.047 – R Lateralorbitofrontal 0.071 –

L Parsorbitalis 0.032 – R Parsorbitalis 0.025 –
L Parstriangularis 0.037 – R Parstriangularis 0.045 –
L Parsopercularis 0.059 – R Parsopercularis 0.042 –

L Rostralmiddlefrontal 0.098 0.0064 R Rostralmiddlefrontal 0.055 –
L Caudalmiddlefrontal 0.11 0.0027 R Caudalmiddlefrontal 0.054 –

L Superiorfrontal 0.078 0.031 R Superiorfrontal 0.061 –
L Precentral 0.086 0.017 R Precentral 0.052 –
L Paracentral 0.024 – R Paracentral 0.032 –

L Insula 0.035 – R Insula 0.075 0.038
L Rostralanteriorcingulate 0.18 4.1e-07 R Rostralanteriorcingulate 0.12 0.0012
L Caudalanteriorcingulate 0.08 0.028 R Caudalanteriorcingulate -0.0093 –

L Posteriorcingulate 0.026 – R Posteriorcingulate -0.03 –
L Isthmuscingulate 0.04 – R Isthmuscingulate -0.043 –

L Entorhinal -0.066 – R Entorhinal -0.14 6.5e-05
L Fusiform 0.063 – R Fusiform 0.024 –

L Parahippocampal 0.041 – R Parahippocampal -0.0035 –
L Inferiortemporal 0.08 0.028 R Inferiortemporal 0.031 –

L Temporalpole -0.13 0.00024 R Temporalpole -0.12 0.00092
L Middletemporal 0.021 – R Middletemporal 0.041 –

L Superiortemporal 0.015 – R Superiortemporal 0.011 –
L Transversetemporal -0.019 – R Transversetemporal -0.0019 –

L Bankssts 0.036 – R Bankssts 0.015 –
L Postcentral 0.03 – R Postcentral 0.049 –

L Supramarginal 0.046 – R Supramarginal 0.087 0.016
L Inferiorparietal 0.087 0.016 R Inferiorparietal 0.1 0.0045

L Superiorparietal 0.11 0.0027 R Superiorparietal 0.15 2.8e-05
L Precuneus 0.043 – R Precuneus 0.063 –

L Cuneus -0.0012 – R Cuneus 0.034 –
L Lateraloccipital 0.0047 – R Lateraloccipital 0.054 –

L Pericalcarine 0.0057 – R Pericalcarine 0.0092 –
L Lingual 0.047 – R Lingual 0.03 –

Table 5.4: Association between cortical thicknesses and BMI. Some temporal regions
show a negative association with BMI while frontal and parietal regions show a positive
association with BMI.
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Figure 5.2: A spacial representation of the PLS model for predicting BMI. Higher FAs in
red areas are associated with higher BMI and higher FAs in blue areas are associated with
lower BMIs.

regions [67]. An inflammatory mechanism may be the reason that we observed a signifi-
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Figure 5.3: A spacial representation of the PLS model for predicting BMI. Higher MDs in
red areas are associated with higher BMI and higher MDs in blue areas are associated with
lower BMIs.
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cant number of cortical GM regions which exhibit a positive association between cortical
thickness and BMI. If both inflammation and atrophy contribute to the observed GM tissue
thicknesses and volumes, the net effect may be small, at least in younger patients.

The strongest association we found in this population between imaging metrics and
BMI was in the WM. Using a PLS model, the whole brain tract based diffusion metrics
explain about 20% of the observed variance of BMI in this population. By contrast, cortical
GM thicknesses and age explain less than 5% of that variance. Using our tractography
approach, we modeled the white matter of the brain as a collection of a large number of
overlapping WM pathways, both short range and long range, that when taken together
constitute the connectivity of the brain. These pathways consist of both large bundles that
mainly overlap with well known WM structures, such as the corpus callosum or superior
lateral fasciculus, as well as smaller bundles that only minimally overlap with these well
studied structures. This approach allowed us to organize regional WM information in a
biologically motivated, data driven way without over simplifying the WM anatomy of the
human brain. While tractography can be very noisy, the HCP data set has high resolution,
multi shell diffusion MRI images with 270 unique gradient directions. The quality of this
data, when combined with advanced diffusion modeling techniques, allowed us to create a
robust and detailed model of the WM connectivity for each subject. Because the pathways
of this connectivity model overlap, each voxel of the image can contribute to multiple
pathways. When we used PLS regression to associate these pathways with BMI, we did
not identify individual pathways that were specifically predictive of BMI, however when we
computed effect maps from the PLS regression, we did find WM regions that contributed
more strongly to the final BMI prediction.

The largest contributions to the PLS model were from regions associated with the cingu-
late bundle and uncinate fasciculus. Both these tracts connect frontal and temporal regions
of the brain. We found that the FA and MD values in the temporal aspects of both these
tracts contributed negatively to the BMI prediction. Additionally, the FA and MD of the
anterior aspect of the cingulate bundle and the FA of some frontal WM areas contribute
positively to the BMI prediction. To understand this relationship further, we computed the
weighted average FA and MD in the red (positive contributions) and the blue (negative con-
tributes) regions of the effect maps. We found that the average MD in both areas, red and
blue, had a negative correlation with BMI. Also, the average FA in the blue regions had a
negative correlation with BMI, but the FA in the red regions had no significant correlation.
These findings are consistent with the linear model of BMI, which found a negative cor-
relation with both whole brain WM average FA and MD relative to BMI. Taken together,
these results tell us that higher BMI is associated with lower FA and MD in much of the

53



brain. This effect is strongest in the blue areas of the respective effect maps. However,
higher FA and MD in the red regions of the respective effect maps is also predictive of
higher BMI. This relationship exists either because the red regions are the least affected
but higher BMI or because these red regions are the most correlated the blue regions in
subjects with lower BMI and therefor serve as the best control regions for detecting BMI
related differences in those blue regions. Both these explanations may account for some of
the observed association in the model and the final result is that differences in FA and MD
between the red and blue regions of the respective effect maps are more predictive of BMI
than the FA and MD values taken from any given region of the brain.

Pervious studies have tried to identify WM effects related to BMI or obesity, but their
results have been inconsistent. Our findings confirm some of the previously reported re-
sults, but may also help explain some of the inconsistency. Previous studies have found
lower FA in some of the same WM pathways described in this paper. Specifically in studies
of older subjects, one study reported lower FAs in the several parts of the corpus callosum,
fornix, and cingulate bundle but did not find a relationship with FA in the uncinate fasicu-
lus [56]. Another study, with similar methodology, considered these four WM tracts, but
only found a relationship in the uncinate fasiculus, and no relationship between FA and
BMI in the other three tracts [68]. The relationship between FA and BMI has also been
studied in younger subjects, but with smaller sample sizes. One such study found lower
AD (consistent with lower FA and lower MD) in the superior lateral fasiculus and anterior
thalamic radiations while another study found lower FA in the mid-brain, internal capsule
and perihippocampul white matter [69, 70]. The discrepancy in these results may be due to
a lack of sensitivity in the methodologies used for these studies. DTI metrics exhibit a large
intersubject and regional variability within subjects. Differences in how ROIs are defined
in different subjects and in different studies can also contribute to estimation errors. If BMI
is associated with DTI metric changes in much of the brain, as we have observed in this
study, then small associations with BMI can be observed in many different regions. How-
ever, these observations will be limited by the sensitivity of the methodology and sample
size used. By modeling the whole brain WM based on a connectivity model, we were able
to measure a stronger association with BMI than any previously reported association.

5.4 Conclustion

In this study we used whole brain tractography to model the relationship between WM DTI
metrics and BMI. We found that both FA and MD reductions were associated with higher
BMI, especially in the temporal aspects of the cingulate bundle and uncinate fasciculus.
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These associations were strongest when relative differences in MD and FA within each
subject were accounted for. Three cortical regions in the temporal lob also showed thinning
associated with higher BMI.

5.5 Appendix

5.5.1 Effect Map

In this work we showed that BMI is associated with tract-wise white matter metrics and
modeled that association using PLS regression. The PLS regression model can be pro-
jected back into image space in order to create an effect map. The effect map is a spacial
representation of the PLS model and it can help unearth anatomical patterns in the white
matter BMI association. This section defines the effect map.

The PLS regression model can be used to predict an outcome variable ys, for subject s,
from a feature vectors [x0s, x1s, ..., xNs] using the following equation. In this equation L is
the y loading and and R is the x rotation matrix estimated by the PLS model. Also ȳ and x̄i
are the population means of ys and xis respectively. Similarly, σy and σxi are the standard
deviations ys and xis respectively. These means and standard deviations are also estimated
by the PLS model.

ŷs = σy
∑
c

∑
i

LcRic
xis − x̄i
σxi

+ ȳ (5.1)

By switching the order of the summations we can consolidate some of the terms and
simplify the equation.

ŷs =
∑
i

σy
σxi

∑
c

LcRic(xis − x̄i) + ȳ (5.2)

We can combine the contributes the rotation and loading terms of the PLS model for
each feature i into a single model coefficient ai.

ai =
σy
σxi

∑
c

LcRic (5.3)

Now, we can represent ŷ in terms of these model coefficients.

ŷs =
∑
i

ai(xis − x̄i) + ȳ (5.4)

We can define also a constant k to consolidate the terms with no dependence on xis.
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k = ȳ −
∑
i

aix̄i (5.5)

ŷs =
∑
i

aixis + k (5.6)

We have simplified the PLS prediction equation to a form that only requires a set of
coefficients, [a0, a1, ...] and a constant k to predict BMI from tract based metrics. We can
now expand the features because each feature is the average value of a metric, MD for
example, along a white matter tract in the brain. Each feature xis can be expressed as a sum
over msv, the value of the metric at voxel v, and disv, the density tract i at voxel v.

xis =

∑
v disvmsv∑
v disv

(5.7)

Using the expression for xis in equation 5.7, we can express the prediction for ŷ as a
sum over the voxels of an image.

ŷs =
∑
i

ai

∑
v disvmsv∑
v disv

+ k (5.8)

If we change the order of summation in equation 5.8, we get the following.

ŷs =
∑
v

∑
i aidisv∑
v disv

msv + k (5.9)

From equation 5.9 we can consolidate terms into an effect value Esv. The effect value
for each voxel v is the a sum of the model coefficients for each tract associated with that
voxel, weighted by how much that voxel contributes to that tract.

Esv =

∑
i aidisv∑
v disv

(5.10)

The prediction of ŷs can now be expressed in terms of the effect values and metric map.

ŷs =
∑
v

Esvmsv + k (5.11)

When represented as an image, we refer the effect values Esv as an effect map. The
effect map is in essence a set of weights which, when combined with a metric map, can
predict the outcome variable for a subject s. Each subject has a unique effect map because
the effect map is derived from the tract densities, disv, specific to that subject. To compute
a population average effect, we normalized the effect maps of each subject into a standard
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space, MNI space, and averaged across subjects.
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