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ABSTRACT OF THE DISSERTATION

Visual Analytics in Scalable Visualization Environments

by

So Yamaoka

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Professor Falko Kuester, Chair

Visual analytics is an interdisciplinary field that facilitates the analysis of

the large volume of data through interactive visual interface. This dissertation

focuses on the development of visual analytics techniques in scalable visual-

ization environments. These scalable visualization environments offer a high-

resolution, integrated virtual space, as well as a wide-open physical space that

affords collaborative user interaction. At the same time, the sheer scale of these

environments poses a number of challenges, including data management, visu-

alization techniques, and interaction paradigms that support large-scale, inter-

active visual exploratory analysis.

This dissertation addresses these challenges with the special attention

on the large volume of very high-resolution image data sets. The presented
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core visualization approach can immediately address tens of terapixel worth of

information by employing view-dependent, adaptive, out-of-core visualization

techniques.

Building on this approach, two domain-specific challenges are addressed.

One is interactive image fusion, facilitating the visualization and analysis of

high-resolution satellite imagery. The other is interactive visual exploratory

analysis of the large volume of cultural data sets, in order to support the de-

velopment and refinement of new insights and hypotheses into the data sets.

Finally, a method towards creating a co-located, collaborative user in-

teraction paradigm in scalable visualization environments is presented. This

method provides a multiuser, user-centric graphical user interface (GUI) for

these environments, controlled by multitouch mobile devices.
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Chapter 1

Introduction

Figure 1.1: Visualization of a collection of gigapixel images in a distributed vi-
sualization environment.

In recent years, the volume of information created, recorded and repli-

cated in digital form has been expanding at ever increasing pace. IDC and EMC

[GR10] reported that this digital universe amounted nearly 800 exabytes (= 800

million gigabytes) in 2009, and estimated that it will approach to nearly 1,800 ex-

abytes by the end of 2011. It should also be noted that, these numbers are much

larger using a broader definition of information, which includes the estimates

of the amount of data processed by servers globally. For example, Short et al.

[SBB10] reported that the amount of information was at 9,570 exabytes in 2008

based on the above alternative definition of information. This expanding digital

1
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universe is predominantly visual - about a quarter of the sheer amount of infor-

mation consists of images from cameras and camcorders [GRC+07]. The rapid

growth of the visual data is partly due to the proliferation of these consumer-

level digital devices, which can capture increasingly higher resolution images

each year.

As the vast volume of rich digital media content becomes available, re-

searchers come to face a daunting challenge of how to best access and represent

this data for analysis. Traditional analytic approaches using search engines and

computational techniques may be appropriate for finding a specific piece of in-

formation out of large data sets. However, they often result in only a partial

picture of the data, which could then be erroneously interpreted, with its sig-

nificance may be over-emphasized or understated in relation to the rest of the

data.

To better approach this challenge, visual analytics has emerged, which is

defined as the “science of analytical reasoning facilitated by interactive visual

interface [TC06].” This builds on the ability of the human mind to rapidly pro-

cess and visually understand complex information. Developing visual analytic

techniques is, however, not straightforward: these techniques must be able to

provide new visualization and interaction modes that are suitable for the data

types and visualization environments, to support a high-degree of interactiv-

ity for smooth exploratory visual analysis, and handle large data sets without

exhausting available resources.

In order to meet these challenges, this dissertation presents highly inter-

active visual analytic techniques using scalable display environments. These

techniques are designed to work with the large volume of visual data with the

ability to flexibly scale in distributed visualization environments. In developing

the large-scale visual analytic techniques, the challenges and essential compo-

nents are identified and presented as a model that goes beyond the informa-

tion visualization reference model [CMS99, Chi00]. The new model specifically

provides view-display mappings, support for a collaborative environment, and

emphasis on data access for interactive out-of-core visualization for very large
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Figure 1.2: A model for large-scale visual analytics systems. Multiple data sets
are created from a pool of source data, and mapped to one or more visual rep-
resentations. These visual representations are then transformed to produce one
or more interactive views, which are subsequently mapped to a scalable display
system. The scalable display system allows users to arrange the views using the
whole or a subset of display resources. Individual users can interactively con-
trol any of the mapping and transformation steps.
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data sets (Figure 1.2). It is not intended, however, to present an all-purpose vi-

sual analytics framework. Rather, the presented model is designed to address

the challenges in the development of high-performance visualization and inter-

action techniques in scalable visualization environments for co-located collabo-

rative analysis of the large volume of very high-resolution images.

Based on this model, the foundational approach is presented focusing

on high-performance visualization and interaction techniques in scalable dis-

play environments. This approach creates an integrated virtual space that spans

across entire display resources, facilitating the visualization of the large volume

of images of a variety of resolutions. When combined with a distributed ren-

dering approach, it enables the development of highly interactive techniques

for visual analysis. Additionally, data management mechanisms are employed

for out-of-core visualization techniques for image collections. A system capable

of immediately addressing tens of terapixel worth of information is shown in

Figure 1.1.

This foundation is then applied to address domain-specific problems,

including interactive image fusion of satellite imagery and visualization tech-

niques for the large volume of cultural data sets. The first examined domain

is image fusion, which is a technique to produce a high-resolution colored im-

age from multiple monochromatic images of varying resolutions. This process

is time-consuming especially for large images, bounded by the amount of data

needed to be handled. Furthermore, the image fusion process and subsequent

visualization of the result generally take two separate steps. In order to stream-

line this process and facilitate the analysis, an integrated approach to image

fusion and visualization of large satellite imagery is presented. This approach

exposes all tunable parameters, enabling the live modification of the image pro-

cessing pipeline and resulting visuals. The developed system demonstrates sig-

nificant savings with respect to overall data footprint and processing time.

The second domain is cultural analytics, an interdisciplinary field that

explores the large volume of cultural data sets using visual analysis techniques.

In cultural analytics, traditional analytic approaches using search engines and
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goal-oriented algorithms may not work well, because well-defined hypotheses

with a clear goal of the analysis are often not available. Therefore, a system that

supports exploratory visual analysis is developed, allowing researcher to pro-

gressively develop and refine hypotheses and gain new insights into the data

sets. This system is designed to take full advantages of a ultra-high display res-

olution to work with large image sets with associated multidimensional meta-

data. Based on the metadata, the data sets can be sorted and plotted on a large

visualization space, enabling researchers to investigate the relationships, and

discover patterns and anomalies within them.

These introduced systems could be based on the traditional single-user

interaction paradigm using a mouse and keyboard. Even within this traditional

paradigm, a scalable display environment affords multiple people to participate

in analysis as observers, thanks to its wide-open physical space. However, the

sheer scale of both virtual and physical workspaces call for an alternative ap-

proach to the new interaction paradigm for collaborative visual analysis. As

Swaminathan and Sato summarized, “when a display exceeds a certain size,

it becomes qualitatively different: different design issues come into play and

interaction design becomes full-blown environment design [SS97].”

Therefore, this dissertation explores the new opportunities available to

promote a co-located, collaborative visual analytics. Specifically, a multi-user

GUI is developed, enabling collaborative and intuitive interaction with a large-

scale display environment through multitouch mobile devices. The main objec-

tive of the interface is to provide a user-centric, contextual GUI that can be easily

navigated with multitouch gestures. Multitouch mobile devices are cost effec-

tive, ubiquitous, and sufficiently powerful to perform computation and wire-

less communication. With the broad adoption of these devices, they are now an

ideal candidate for an interface to the shared workspace in a large-scale display

environment.

In sum, the presented approaches support interactive visual exploratory

analysis in a scalable, distributed visualization environment. In order to facil-

itate collaborative and intuitive interaction with the environment, a multi-user
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GUI using multitouch mobile devices are provided. The computing capabilities

of the environment are fully utilized, offering highly interactive visualization of

high-resolution image collections. Together, this dissertation realizes a premise

of visual analytics: “discovery of the unexpected within massive, dynamically

changing information spaces [CES07].”

1.1 Previous Work

This section briefly reviews the literature in the areas that this disserta-

tion is based on, including models and frameworks for visual analytics, and the

approaches to interactive visualization of high-resolution images in large-scale

display environments. The reviews of two specific areas are then provided,

to which the presented techniques are applied. One is image fusion of high-

resolution satellite imagery, and the other is visual analysis tools for a large

collection of cultural data sets. Finally, interaction paradigms for large-scale

display systems are reviewed.

1.1.1 Visual Analytics

Visual analytics is an interdisciplinary field, which can be defined as the

science of analytical reasoning facilitated by interactive visual interface [TC06].

The goal of the visual analytics is to gain insights into data sets by combin-

ing data analysis, visualization, and human factors [KMSZ06]. Visual analytic

systems should support interactive visual exploratory analysis, which enables

researchers to create hypotheses and gain insights into the large volume of data

sets. By combining the high-performance computational resources, visualiza-

tion techniques for the massive volume of data, and interactive thinking of a

group of people, the visual analytic systems enable “the detection of the ex-

pected and discovery of the unexpected within massive, dynamically changing

information spaces [CES07].”

Models and frameworks for visual analytics have been introduced for

the specific domains, for example, collaborative analysis [BMZ+06], time and
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time-oriented data [ABM+07], feature and classifier analysis [Dol07], and un-

certain and incomplete data sets [CCM09]. Heer et al. [HA08] discussed the

design criteria for collaborative visual analytics, focusing on asynchronous dis-

tant collaborations. In this article, information visualization reference model

[CMS99, Chi00] is reviewed as a possible guide to the development of visual

analytics systems. While these articles sometimes introduces possible scenar-

ios using large-scale display environments, they generally do not address the

details and challenges in these environments. These challenges are discussed

in the visualization techniques using large-scale display systems, which are re-

viewed in the next section.

1.1.2 Visualization in Large-Scale Display Systems

Two primary approaches have emerged for the management and visual-

ization of data in large-scale display environments, both are based on network-

centric paradigms. One approach is to generate visualization first and subse-

quently stream the pixels of a resulting image through a network to a display

environment. The other is to use the network to fetch data using out-of-core

techniques, while visualization is being directly handled by the cluster that is

driving the display system. While both approaches are conceptually comple-

mentary to each other, there are distinct differences in scalability and rendering

performance to visualize big data.

The Scalable Adaptive Graphics Environment (SAGE) [JRJ+06, RJH+09]

is a pixel-streaming approach that can display multimedia content on tiled dis-

play walls. The pixel streaming approach has the advantage that any unmod-

ified application can be displayed on the walls, as long as the application can

provide a pixel-stream. However, this approach requires a high-bandwidth net-

work to transfer a large amount of pixel data to the display system. This bot-

tleneck becomes apparent when content has to be changed dynamically, forc-

ing a complete update of the displayed content, with new pixels having to be

streamed across the network. The network-bandwidth requirement for this

approach was illustrated by Herr [Her09] in the context of large-scale video
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streaming. When a 4K (4,096 x 2,160) video is streamed at 24 frames per second,

it requires 7.6 Gbps, occupying most of the bandwidth of a 10 Gbps network.

Therefore, streaming high-resolution images, which are orders of magnitude

bigger than 4K videos, is generally not possible.

JuxtaView [KVV+04] is a high-resolution image viewer based on a dis-

tributed memory technology called LambdaRAM, an alternative approach to

memory mapped files (mmap). Large images are distributed across in-core and

virtual memory in a PC cluster a-priori and represented to a user within a uni-

fied memory space. This approach requires a sizable number of dedicated PCs

that are interconnected with high-bandwidth networks, in order to provide a

sufficient amount of resources to keep and visualize multiple high-resolution

images. Furthermore, the resulting latency while interacting with an image does

not satisfy our targeted interactive requirement, which is less than 33 millisec-

onds (∼ 30 frames per second.)

Another approach by Meng et al. [MLS06] attempts to reduce the amount

of data being sent over a network. In this method, the entire image is com-

pressed and sent from a single controller node to a visualization cluster. In or-

der to alleviate the latency of data transfer and reduce the amount of data that is

sent from the controller node, the PCs in a cluster communicate with each other

to share the data. While their approach speeds up data transfer, the network is

still saturated when transferring multiple high-resolution images, which can be

hundreds of gigabytes.

Magic Carpet [SJLM06] is a standalone high-resolution image viewer that

can also run on tiled display systems in combination with SAGE. Magic Carpet

utilizes preprocessed, multi-resolution tiled images allowing it to load appro-

priate parts and level-of-details of high-resolution images in a view dependent

manner. However, when it visualizes images on tiled display systems through

SAGE, a set of expensive operations must be executed that impact visualiza-

tion performance. The first such operation is off-screen rendering to the SAGE

buffer and subsequent read-back from that buffer for final rendering to the tiled

display. Our approach eliminates these costly operations by directly visualizing



9

images on the cluster node, boosting the performance visualization.

GigaStack by Ponto et al. [PDK10], utilizes the CGLX (Cross-Platform

Cluster Graphics Library [DK10]) middleware to minimize network traffic, fully

utilizing the computational and rendering resources of distributed visualization

environments. Images are loaded and directly visualized on each node of a vi-

sualization cluster. However, this approach is specialized to work with layered

high-resolution images that are exactly the same width and height, and only

two images are visible at a time. More considerations are required when deal-

ing with hundreds of high-resolution images with arbitrary resolution and size

being available for immediate-mode interaction.

1.1.3 Image Fusion Techniques

Based on the core system that can handle multiple high-resolution im-

ages, an integrated approach to image fusion and visualization on large-scale

displays is developed. Image fusion is a technique to produce a high-resolution

color image by combining multiple spectral data sets with a high-resolution

monochromatic data, which is called a panchromatic band. The technique is of-

ten used to process satellite data sets, that come as a set of spectral bands and a

high-resolution panchromatic band. These individual bands are then processed

by an image fusion technique to produce a single, spectrally and spatially rich

image. As a great deal of research has been done for efficient and high-quality

image fusion, a brief summary of image fusion techniques is provided in this

section.

A variety of image fusion techniques have been proposed with the em-

phasis on fusion quality, including IHS (Intensity, Hue and Saturation), PCA,

arithmetic combinations, and wavelet-based fusion. A summary of these com-

mon techniques is provided by Zhang [Zha04], and an in-depth discussion is

provided by Pohl and Genderen [PV98]. Among these image fusion techniques,

IHS-based fusion is the most computationally efficient one, and the quality of

the resulting image has been improved by a number of researchers [Cho06,

TSSH01, THHC04, Zha04, MCC08, RSM+10]. An IHS-based fusion technique
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first converts RGB multispectral bands to the IHS color space and subsequently

replaces the intensity with a panchromatic band. Tu et al. have proposed a sim-

pler representation of the IHS fusion called Fast IHS (FIHS) [TSSH01], making

it further computationally efficient. Fast IHS is later extended to include more

than three visible spectral bands [THHC04].

In the presented application, an IHS-based technique was selected as the

primary image fusion technique, as the computational efficiency makes it suit-

able for an interactive version of image fusion.

1.1.4 Visualization of Cultural Data Sets

The presented core system is then applied to develop visualization tech-

niques for a large collection of cultural data sets. The humanities are increas-

ingly capitalizing on the ability to visualize patterns in multi-dimensional cul-

tural data and cultural dynamics. For example, infosthetics.com is hosting a

constantly growing list of information visualization projects that can be under-

stood as precedents for cultural analytics. Examples of these projects include

Valance by Ben Fry [Fry99], visualization of flow of books in a Seattle Public Li-

brary by George Legrady [LM05], and History Flow by Viégas and Wittenberg

[VWD04].

Cultural analytics uses image processing techniques to extract various

visual features, including brightness and color measures, line orientations and

curvature, texture, etc. from the multimedia content. These extracted features

and the available metadata can then be combined to create interactive explo-

ration of the visual data. The method was tested in projects in humanities, in-

cluding Soft Cinema by Manovich et al. [MZ02, MK05] and analysis of Manga

(Japanese comic books) series by Douglass et al. [DHM11].

Similar to the aforementioned method, which combines the actual con-

tent and its visual features, has been used in visualization of a large photo collec-

tion. For example, new types of photo browsers have been developed, present-

ing collections of photos based on similarity-based metrics [KS00, Bed01, PCF03,

KAGM+08]. Some are combined with similarity-based content-based image re-
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trieval [CGR00, MTL+04, NW08]. A variety of visualization techniques have

also been explored that are dynamic [Por06], or specialized for a time-based ar-

rangement [HDBW05], to visualize a photo collection. Chang et al. developed

an interactive system, enabling users to rearrange the display of image collec-

tions, focusing on understanding the images as a collection [CLF+04]. Many of

these approaches tried to summarize the entire photo collection by fewer repre-

sentative images based on some metric, such as similarity measures.

Complimentary to these techniques, the presented application presents

a set of visualization techniques for a collection of images using a large-scale

display system.

1.1.5 User Interaction with Large Displays

In large-scale display environments, a simple task such as picking up

an object by a pointing device can be challenging, especially when acquiring a

small target within the wall-size visualization space provided by these environ-

ments. Up-close interaction including direct touches using hands or pen-like

devices is one approach to interact with these display systems more naturally.

While this interaction mode has been explored on both tabletops [MHPW06,

WB03] and large-scale display systems [BCR+03, GSW01, KFA+04], a common

challenge is to efficiently operate on far away objects, that may not be physically

reachable within the workspace.

A variety of software-based techniques have been introduced to access

those objects. Baudisch et al. tried to move objects that are within a certain

distance from the pointer location closer to the user [BCR+03]. The Vacuum,

a technique introduced by Bezerianos et al. also brings far away objects closer

through proxy objects, but within a different type of influential region, which

is a sector of a circle that spans to the edge of the entire display region [BB05].

Khan’s Frisbee is a portal to another region of the display, allowing quick ac-

cess to far away objects, for example, at the opposite end of the display wall

[KFA+04]. Blanch et al. designed a method called Semantic Pointing, which

improves the target acquisition by minimizing physical actions of people to in-
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teract with virtual objects like GUI elements [BGBL04]. A unique method to

reach a far away object is Shadow Reaching, which uses the elongated shadow

of a person [STB07].

These up-close interaction techniques share another challenge, related to

the user’s field of view and ability to see the whole scene while interacting with

individual objects. In contrast, another interaction mode, distant interaction, al-

lows people to interact with a large-scale display system from afar. For example,

laser pointers may be used to pick up a displayed object [DC02, ON01]. How-

ever, distant interaction has different challenges that come from the inherent

instability of the human body [KSMB08]. To alleviate this challenge, Kopper

et al. proposed more precise pointing techniques using two custom pointing

devices [KSMB08].

Cao and Balakrishnan created a special wand that is tracked in 3D, inter-

preting its movements as gestures to interact with the object displayed on the

wall [CB03]. Vogel and Balakrishnan [VB05] presented a pointing and clicking

technique by optically-tracked hand gestures in the air. Vision-based tracking

of the face, hands, and head of a user in 3D can also be used to interact with

a large-scale display systems [NS03, YHC+10]. Furthermore, vision-based 3D

reconstruction of a person can be used to interpret natural finger-pointing ges-

tures to pick up a far away object [SvdCIS09]. Malik et al. [MRB05] used hand

gestures on a vision-tracked tabletop surface area to interact with objects dis-

played on a large-scale display system. While this approach is more appropriate

mapping to a virtual 2D surface, the input area provided by a tabletop is fixed to

one location. In general, vision-based systems are not mobile and significantly

limit the physical interaction space.

Mobile phones have also been used as a tool to interact with large-scale

display systems. The interaction space can be practically limitless using mobile

phones’ communication capabilities. Boring et al. experimented with facilitat-

ing pointer movements by using an accelerometer in a mobile phone [BJB09].

Ballagas et al. performed picking tasks using the embedded camera of a mo-

bile phone [BRS05]. While these techniques can be applied to modern, multi-
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touch smart phones, a set of multitouch, gesture-based techniques may enable

smoother interaction with large-scale display systems. In our design, the map-

ping between multitouch-based gestures and actions are leveraged by those al-

ready used in smart phones, e.g., pinch open/close to scale up/down objects,

flick to scroll or pan quickly, etc. [Inc10], avoiding a steep learning curve.

These mobile devices are used to display and interact with a partial area

of the larger, shared virtual space [Yee03, VTS+09]. Boring et al. uses the camera

of the mobile phone [BBB+10] to remotely interact with the object on the screen.

In these approaches, the user’s attention is directly on the mobile device or is

required to be on the mobile device. Instead, the presented approach tries to

steer the people’s attention to a high-resolution large virtual space, facilitating

the communication between users.

Multiple mobile devices have been used to interact with a larger display

system, e.g., palmtop devices with a whiteboard [Rek98] or a SMART board

[GBL99], and multitouch devices with a tiled display system [PDW+10]. Uti-

lizing the device management mechanism described by Ponto et al. [PDW+10]

and multitouch mobile devices, our system provides a multiuser, user-centric

GUI that can be accessed through multitouch gestures. A file system browser

and media object viewer (i.e., image and streaming video) were used to study

its effectiveness.

1.2 Organization of Material

This dissertation describes the utilities of scalable display environments.

Chapter 2 describes the visualization environments, which are used in the case

studies throughout this dissertation.

Chapter 3 describes the foundation, which enables interactive visual anal-

ysis of image collections in a high-resolution tiled display context. This sec-

tion describes a unified visualization space, and subsequently, resource man-

agement mechanisms for out-of-core visualization, enabling the visualization

of collections of gigapixel images.
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Chapter 4 presents an integrative approach to image fusion and visual-

ization. This approach facilitates the analysis of multi-spectral image data.

Chapter 5 presents interactive visualization techniques in scalable visu-

alization environments for the large volume of cultural data with associated

multi-dimensional metadata.

Chapter 6 introduces the concept of multi-user, user-centric GUI for large

display systems using mobile multitouch devices, providing an intuitive, co-

located, collaborative interaction paradigm for media collections on scalable

display environments.

Chapter 7 summarizes the contributions and future research directions.



Chapter 2

Scalable Visualization Environments

2.1 Scalable Display Systems

Figure 2.1: A high-resolution, scalable, collaborative visualization environment.

Interactive visualization of very high-resolution images using conven-

tional single display systems forces researchers to navigate through a huge im-

age space using just a tiny window into it. It is impossible to simultaneously

see an overview and the details of a multi-gigapixel image that is several mag-

nitude bigger than the available display resources. Normally, a researcher must

zoom in and move the image left and right in order to investigate the details,

which forces a user to constantly orient himself within the large image space

15
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during the analysis. This imposes limitations on our ability to analyze these

data sets. The situation becomes progressively worse if researchers intend to

analyze massive image sets looking for relationships between them, while ex-

amining individuals, each showing some studied problem.

Therefore, the presented approach uses scalable display systems, which

offer several magnitude higher display resolutions. Specifically, OptIPortals

[DLR+09], a form of large-scale display systems that can gracefully scale to

support ultra-high display resolutions, are used to develop visualization tech-

niques. A tiled display system is usually driven by a cluster of PCs, providing

high-performance computational and rendering capabilities.

The combined display resources of a scalable display system offer flex-

ible display arrangements, which can be configured before and during the vi-

sualization. For example, by integrating all the display resources, the system

can provide a vast virtual space, which is capable of displaying the large vol-

ume of information. For another example, the display system can be divided

into sub-regions, allowing multiple visuals to be mapped to different regions of

the display system. This flexibility in the display configuration assists a class of

large-scale visualization techniques introduced in Chapter 5. This is an impor-

tant step in developing a visual analytics system using a scalable display system

as illustrated in Figure 1.2.

Furthermore, a scalable display system supports a wide-open physical

space that offers multiple people to participate in an analysis session. This space

affords physical navigations, allowing researchers to interact with large-scale

visualization by walking, moving the head, and so on. For analytic tasks such

as finding patterns in geographical data, the physical navigations have been

shown to outperform more traditional virtual navigations, including zooming

and panning using a mouse and keyboard [BN07].
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2.2 Distributed Visualization Environments

There are two primary approaches to the visualization in these scalable

display environments, both are based on network-centric paradigm. One is a

pixel-streaming approach, which is to generate visualization first and subse-

quently stream the pixels of a resulting image through a network to the displays.

The other is a distributed visualization approach, which is to use the network

to fetch data using out-of-core techniques, while visualization is directly han-

dled by the cluster that is driving the display system. While both approaches

are conceptually complementary to each other, there are distinct differences in

scalability and rendering performance to visualize big data.

The presented approach is based on a distributed visualization paradigm

in order to achieve the high scalability and rendering performance by fully ex-

ploiting the computational and rendering resources of the cluster. In this ap-

proach, identical applications run directly and natively on individual comput-

ers of the cluster, managed by a cluster graphics API, Cross-platform Cluster

Graphics Library (CGLX) [DK10]. CGLX is developed to provide access to dis-

tributed rendering contexts and a software-level synchronization mechanism

with minimal network bandwidth requirement.

This approach is highly scalable because: the basic mechanisms require

only a minimal network bandwidth for synchronization; and computationally

and graphically intensive operations are delegated to each cluster computer.

The approach network usage is negligible (around 70 Kb/s = 8.75 KB/s [DK10]),

which increases only in linear fashion against the number of the cluster comput-

ers. In terms of the rendering capabilities, each computer is responsible for only

a part of the whole scene, which generally less than several megapixels. While

newer graphics cards are being able to draw more pixels, the display systems

using a single computer and a single powerful graphics card is not readily scal-

able. Furthermore, as new display technologies are beginning to provide much

higher density of the pixels on the display surfaces, the distributed visualization

approach is likely to be required for high-performance, scalable visualization

techniques.
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The presented distributed visualization approach employs a master-slave

style management of the cluster, where the control node called head node pro-

cesses events (e.g., input from users), which are subsequently distributed to

the visualization cluster. By exchanging control signals, all the events are co-

ordinated to be synchronously executed on individual computers of the cluster,

preventing inconsistent update of the integrated scene. An illustration of the

environment is shown in Figure 4.8 including the dataflow, which is described

in the following sections.

2.3 Heterogeneous Devices and Services

The collaborative analysis using high-performance visualization is a part

of the presented approach. In particular, this dissertation focuses on co-located,

collaborative environment, combining the integrated virtual space of highly in-

teractive visualization with the wide-open physical space offered by the scalable

display environment. To support this, the approach loosely couples the core vi-

sualization system to external, heterogeneous devices and services in a form of

independent servers, which can then communicate with the core system over

the network. This separation between the services and the visualization envi-

ronment is crucial for the development of a scalable environment.

Based on the device managing mechanism introduced by Ponto et al.

[PDW+10], the approach allows multiple users to join an analysis session us-

ing their own devices such as mobile phones. Each user can actively engage

in the analysis having an ability to influence the shared virtual space individ-

ually. Furthermore, external services including databases are supported using

the mechanism. From the management point of view, a database server is an

another external service just like the mobile phones, allowing to start up before

and during an analysis session.

In the case studies presented in this dissertation, a MIDI controller, mul-

titouch mobile devices, and a database server are integrated in the environment.

The MIDI controller is provided as a specialized input device for the parameter
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Figure 2.2: A diagram of the distributed visualization environment. User’s ac-
tions are sent to a visualization cluster from the head node. Each node in the
cluster drives a portion of the wall. Image data can be pulled from remote
servers.
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control for image manipulation, which is decribed in Chapter 4. The multitouch

mobile devices are used as generic input devices to interact with the virtual ob-

jects in the scene, which is described in Chapter 6. The metadata about image

collections is managed by an external database service, running on an indepen-

dent server within a local network, which is described in Chapter 5.

2.4 Data Management

In the presented approach, an out-of-core visualization approach is em-

phasized as it is essential for high-performance interactive visualization using

the limited computer resources of the commodity PCs. This means that the data

sets must always be accessible from all the cluster computers during the interac-

tive visualization. When managing the large data sets however, data replication

on each computer of the cluster should generally be avoided due to the data

size and need to keep the data consistent across the multiple computers.

An alternative approach is to decouple the data management and the

core visualization mechanisms. The data management can be delegated to re-

mote storage servers, which consistently and reliably maintain the large data

sets. In the presented case studies, a single remote server is generally used,

which offers the sufficient capacity to manage the data sets. This storage server

is accessible from the head node and the cluster via high-bandwidth network

connections. The data sets can then be fetched by each cluster computer on de-

mand through a network-mounted file system (NFS and CIFS are used in case

studies) during the interactive visualization. This dataflow is shown in the right

side of the Figure 4.8 as green arrows. The clear separation between the data

storage and core visualization system simplifies the data management, which is

crucial for the development of the scalable environment.

2.4.1 Metadata

In addition to the collections of large data sets, the visualization tech-

niques utilizes the multi-dimensional metadata about the data sets for analysis.
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As described in Chapter 5, the metadata can add structures to the data sets,

which helps gaining the insights into them.

The metadata of the images are kept in a separate database server run-

ning in a local area network. To communicate with the database, a front-end

gateway is developed as a layer between the database and the visualization sys-

tem. The gateway is responsible for interpreting database-related requests from

the core system, and translating them to actual database queries. By decoupling

the database from the application, the flexibility in system configurations is in-

creased. This dataflow is illustrated in the bottom part of Figure 4.8.

2.5 Case Study Environments

Throughout this dissertation, two OptIPortal [DLR+09] instances are uti-

lized as test environments. One is called AESOP, for Almost Entirely Seamless

OptIPortal (Figure 2.5 and 2.6). AESOP is a 4.10m × 2.32m wall, which has a

combined resolution of over 16 megapixels (5,464 × 3,072), consisting of 16 in-

dividual, slim-bezel, 46" diagonal display tiles in a 4 × 4 layout. Each display

tile operates at a resolution of 1,366 × 768 and groups of four are assigned to

each cluster node (quad-display setup).

The other is called HIPerSpace (Figure 2.3 and 2.4).HIPerSpace is a 9.66m

× 2.25m wall and a combined resolution of over 286 megapixels (35,840 ×
8,000), consisting of 70 conventional 30" monitors with a resolution of 2,560 ×
1,600 each, in a 5 × 14 layout. Each cluster node was again configured in a

quad-display setup.

The cluster PCs are interconnected through 1 Gbps networks, with each

node having an additional 10 Gbps uplink into a remote data storage server.

Different type of additional external servers are used in individual systems de-

scribed in the following chapters.
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2.6 Summary

This chapter describes the scalable display environments, which are used

in the case studies presented in this dissertation. Specifically, two tiled display

systems based on the distributed visualization paradigm are introduced, which

are used in the case studies discussed in the following chapters. The data man-

agement, external devices and services are loosely coupled with the core visu-

alization system, increasing the scalability and flexibility of the approach.

Figure 2.3: A side-by-side comparison of arial views of New Orleans before and
after Hurricane Katrina.
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Figure 2.4: HIPerGUI, a multi-user, user-centric GUI using multitouch mobile
devices, described in Chapter 6.

.

Figure 2.5: Interactive image fusion of IKONOS satellite imagery, described in
Chapter 4.
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Figure 2.6: A close up view of a graph of the Time magazine covers, described
in Chapter 5.



Chapter 3

Visualization of High-Resolution

Image Collections

3.1 Introduction

Figure 3.1: A collection of high-resolution images on a 286 megapixel tiled dis-
play system. Each of its 70 monitors is a 30-inch, 4-megapixel LCD display.

Very high-resolution images are being acquired at accelerating rates across

many science and engineering domains, such as biomedical engineering, astro-

physics, earth system sciences, as well as social sciences and humanities. With

this explosive growth of the data sets, new visualization challenges arise when

25
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it comes to capitalizing on the strengths of the human visual system and its cog-

nitive abilities. Conventional single display systems impose limitations on our

ability to analyze these data sets, as researchers are forced to navigate through

a huge image space using just a tiny window into it. The situation becomes

progressively worse if researchers intend to analyze massive data sets such as

a collection of high-resolution images, each showing certain attributes of the

studied problem, with the objective to discover relationships between them.

In response to these limitations, conventional display environments are

being replaced by tiled display systems, which provide orders of magnitude

higher resolutions and computational capabilities (e.g., DeFanti et al. [DLR+09],

Ball and North [BN07], Yost et al. [YHN07]). HIPerSpace [GRA] for example,

can display 286 megapixels worth of information, providing a seventy-fold in-

crease in visualization real-estate over a conventional four-megapixel display

(Figure 4.1). When combined with the proper middleware designed to sup-

port distributed high performance graphics, tiled display systems can provide a

large virtual space enabling the interactive visualization of images closer to their

native resolutions, while simultaneously supporting team-based data analysis.

It has become possible to visualize individual high-resolution images or

collections of low-resolution images. For example, Kopf et al. [KUDC07] de-

scribed an entire process from acquisition to visualization of gigapixel images.

However it has remained challenging to interactively operate on hundreds to

thousands of high-resolution images concurrently. The implementation of effec-

tive interrogation strategies in combination with highly responsive distributed

visualization systems are key components to enable interactive analysis and ma-

nipulation of such high-resolution data sets.

This paper presents an approach that can interactively visualize a large

number of high-resolution images by fully utilizing the distributed computing

and rendering capabilities of visualization clusters that are driving tiled display

walls. Furthermore, the presented approach allows researchers to interactively

move, resize, filter, and rearrange images to highlight characteristics and details,

and in the process, to expose patterns and correlations. We believe these tech-
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niques are fundamentally important for visual analytics environments, enabling

the development of new hypotheses and discovery of yet unknown relation-

ships while collaboratively and interactively exploring massive data collection.

3.2 Technical Approach

In order to meet the interactivity requirement, we developed a distributed

visualization approach as described in Chapter 2, allowing an application to

run natively on each node of a visualization cluster. In addition, it is impor-

tant to manage network demands of the distributed visualization environment,

including the bandwidth requirement, tolerance to network jitter, and packet

loss, all of which would compromise the user experience through choppy and

non-intuitive updates of the visuals. To address these issues at the middleware-

level, the OpenGL-based CGLX framework [DK10] is developed, which pro-

vides access to a distributed rendering context and a software-level synchro-

nization mechanism between all cluster nodes with minimal network band-

width requirement.

In this section, image tiling, construction of integrated virtual space, and

resource managements are described, enabling the steps to visualization of high-

resolution image collections.

3.2.1 Image Tiling

Our approach utilizes a multi-resolution tiled image format, produced

by preprocessing called image tiling. Image tiling provides access to the ap-

propriate level-of-detail (LOD) and region-of-interest (ROI) of a high-resolution

image in a view dependent manner. We utilize a tiled pyramidal tagged image

file format (TIFF) as a container for tiled images. In addition, tools to reliably

produce very large tiled pyramidal TIFFs, such as VIPS [CM96, MC05] are read-

ily available for this image format.

Using a preprocessed TIFF, the required LOD of an image is determined

based on the actual number of pixels that are displayed on screen. This resource-



28

aware technique guarantees that only data that can be physically displayed is

pulled across the network. Likewise, an appropriate ROI of an image is deter-

mined based on the overlapping region between each display and the projected

bounding rectangle of the image. Both LOD and ROI are computed in screen co-

ordinates, because these procedures require the actual pixel count per display.

Once the appropriate level and region are determined, data loading re-

quests are dispatched to separate loader threads, and the main visualization

thread continues without waiting for loading to complete. In this way a smooth

user experience is supported since the main visualization thread is not inter-

rupted by remote data access.

3.2.2 Construction of Integrated Virtual Space

The presented approach provides a large and integrated virtual space

that spans across the available display resources. For each display, a virtual

camera is created and a projection matrix and camera view matrix are com-

puted based on the physical display location relative to the tiled display system

(Figure 3.2). The monitor bezels are usually included as a part of the integrated

space, resulting in images being seen perceptually continuous when they span

across adjacent monitors.

This virtual space is subsequently populated by images which can be

interactively modified and rearranged by a user. The scene management is

supported by a scene graph, which manages a collection of images in a tree

structure. A tree node in the scene graph contains a geometrical transformation

matrix allowing each image to be independently transformed (e.g., moved and

resized) or any group of images to be transformed together. A node that rep-

resents an image is a rectangular container that keeps track of its geometrical

information, which are the transformation matrix and the width and height by

means of a bounding rectangle. The actual image data is loaded on-demand in a

view dependent manner. An identical copy of the scene graph is kept on every

cluster node to maintain the consistency of the scene.
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Figure 3.2: A cluster node with four displays and four virtual cameras. The view
frustum of each virtual camera is configured such that a perceptually seamless
scene can be constructed across multiple displays.

3.2.3 Resource Management for Interactive Visualization

In order to handle a large amount of data without exhausting computa-

tional resources, two kinds of mechanisms for resource management are used,

called Catalogue and Texture Pool. Catalogue is a list of registered objects, while

Texture Pool is a caching mechanism to manage the textures for a collection of

multi-resolution tiled images. Both mechanisms enable scene objects to share

resources and avoid resource duplicates.

Catalogue

Catalogue is a list of registered objects, managing essential system re-

sources. Catalogued resources are kept in memory unless explicitly unregis-

tered. For example, shader resources are managed by the Shader Catalogue

because most of them are mandatory to the rendering system. When a shader

resource is successfully loaded, it registers itself with the shader catalogue if it

does not already exist.
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Texture Pool

For the targeted research domains, images and image collection tend to

be significantly bigger than the computer’s main memory or the texture space

on the GPU. Therefore, based on the idea described by Ponto et al. [PDK10],

a view dependent resource management mechanism called Texture Pool was

developed. As described in the image tiling section (Section 4.3.1), each image

consists of a number of small square tiles of fixed width and height (e.g., 256

by 256 pixels), which we refer to as image-tiles. For visualization, currently vis-

ible image-tiles are transfered to GPUs as square textures of the same size. The

texture pool keeps a fixed number of those square textures that are sufficient to

cover the display region addressed by each node, replacing its contents on de-

mand. More specifically, the minimum number of textures in a pool is defined

by:

PoolSize = (dC ∗Wdisps/Wimage-tilee) ∗ (dC ∗ Hdisps/Himage-tilee) (3.1)

where Wdisps and Hdisps are the width and height of displays per node,

Wimage-tile and Himage-tile are the width and height of a image-tile. The constant

scalar C is set to 1.5 to ensure that there is a sufficient number of textures to

cover the display region, when the image is scaling down, before switching to a

new LOD. For example, let us assume that the dimension of a image-tile is 256 x

256, and a single node drives four displays in a row, where the resolution of each

display is 2,560 x 1,600 pixels. Based on Equation 3.1, the minimum number of

textures is bound by (d1.5 ∗ 2560 ∗ 4/256e) ∗ (d1.5 ∗ 1600/256e) = 60 ∗ 10 = 600.

The texture pools are shared amongst all multi-resolution tiled images in

the scene. If the texture pool is fully utilized, a victim texture in the pool is se-

lected and replaced using some replacement policy, e.g., a Least Recently Used

algorithm. While this mechanism is simple and works well, there are additional

issues to address when handling a collection of images, which are described in

the next section.
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Texture Pool Extension for Collections of Images

In GigaStack [PDK10], all images consisted of identical width and height

of image-tiles, and were layered such that only two images were visible at a

time. In our case, as these assumptions do not hold, two additional issues

must be considered. First, arbitrary dimensions of image-tiles must be han-

dled, which may be different amongst images. Second, the occlusions between

images must be considered, because occluded image-tiles can cause texture re-

source starvation.

The first issue we need to handle is the different dimensions of image-

tiles, because there will not be enough resources to create texture pools for com-

pletely arbitrary width and height of image-tiles. To address this, a series of

texture pools is created and populated by power-of-two (POT) square textures.

The texture pools are then shared between all images with arbitrary dimensions

of image-tiles. To do this, the maximum value between the width and height

of non-POT tiles is rounded up to the nearest POT, allowing he corresponding

POT texture pool to be used. For example, if the minimum width and height

of a image-tile is 32 x 32 pixels and the maximum is 512 x 512 pixels, five pos-

sible texture pools can be created whose dimensions are 32 x 32, 64 x 64, 128 x

128, 256 x 256, and 512 x 512 pixels (Figure 3.3). A texture pool of a particular

dimension is created only if there exists at least one image requiring that dimen-

sion. If the image-tile sizes of all images are identical, for example 128 x 92, only

one texture pool with the image-tiles with 128 x 128 pixels will be created. At

the visualization stage, the texture coordinates of image-tiles are appropriately

modified to keep the correct aspect ratio of the image.

The second issue that can cause texture starvation in texture pools is oc-

clusions between images. Since occluded image-tiles are not visible but within

the viewing volume, they are not automatically culled and still occupy slots

of texture pools. To address this issue, a geometric occlusion test between im-

ages is used to identify overlapped image-tiles that should be released from the

texture pool. However, there is a limitation to this approach. While this occlu-

sion test prevents texture starvation, it is only effective if the top-most image
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Figure 3.3: An illustration of the texture pools for different dimensions of image-
tiles. Visible image-tiles are marked as white boxes on the images. Non-power-
of-two (POT) image-tiles are rounded up to the nearest POT and use an appro-
priate texture pool, e.g., the image-tiles of 128 x 92 pixels use the texture pool of
128 x 128 pixel textures.
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is opaque. If transparent images are layered, all overlapping images must be

drawn. In this case, only a limited number of images can be displayed at their

native resolution because of limited texture resources. By default, the image-

tiled textures are prepared such that four high-resolution images can be dis-

played at their native resolutions. When more than four transparent images are

layered, the rest of the images are drawn at a lower resolution, still providing

an approximate visualization (Figure 3.4).

In practice, we have observed that side-by-side arrangements tend to be

more common when multiple images are in focus, therefore no overlap or small

overlaps are created between the foreground images.

Figure 3.4: Illustrations of layered images. If an opaque image is on top, the oc-
cluded images can be culled. However, if the images are transparent, all images
must be drawn, possibly saturating the texture pool. After the texture pool is
full, the rest of images are drawn at lower resolutions, still providing approxi-
mate visualization.
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3.3 Interactive Image Filtering

Image processing techniques are broadly applied following data acquisi-

tion and subsequent analysis. For example, a panoramic photograph may need

to be color-corrected and sharpened, or a set of satellite images consisting of

multi-spectral images and a panchromatic image may need to be composited

into one. While traditional parallel image processing through distributed com-

puting (e.g., Jones et al. [JJMP03]) is effective for more time-consuming tech-

niques, the presented approach enables researchers to interactively apply many

powerful filtering techniques to high-resolution images while analyzing them.

This is possible, since for each display context of, a cluster node can directly

process and render the images using its own GPUs.

In the hardware setup of our case-studies, one GPU drives 8 megapix-

els (i.e, two 4-megapixel monitors). This means that, regardless of the size of

high-resolution images, each GPU will have to fill only 8 megapixels, which is

easily managed by modern GPUs, allowing image filtering techniques such as

RGB-color filtering or RGB-HSV color conversions to be instantly applied. Con-

volution filters, such as gaussian blurs and edge enhancement, are also possible

by first computing a filter kernel on the CPU and subsequently transferring it

to the GPU as a texture. For example, a Laplacian of Gaussian kernel can be

computed on the CPU using the equation shown in Figure 3.5 and passed to the

GPU as the resulting texture.

3.3.1 Issues of Applying Convolution Filters on Tiled Images

As described in Section 4.3.1, our approach utilizes preprocessed, multi-

resolution tiled images as a way to visualize high-resolution images in a view

dependent manner. This results in different parts of a high-resolution image

being shown on each display, consisting of border-less image-tiles in a tightly

packed grid. Since each image-tile is bound to a different texture, a GPU shader

can not automatically access to the texture data of adjacent image-tiles. This

is problematic for filtering techniques that require neighborhood pixels such as
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Figure 3.5: Edge enhancement (Laplacian-of-Gaussian) filter, with a kernel size
of 5-by-5 and a σ of 0.7, applied to a 323-megapixel photograph.

convolution filters.

Ponto et. al [PDK10] have described a similar problem, which is the lin-

ear interpolation between a border pixel and direct neighboring pixels of adja-

cent textures. Their solution utilizes the OpenGL multi-texturing mechanism to

send all adjacent textures to GPUs, allowing the proper neighbor pixels to be ac-

cessed. While their approach is also applicable for convolution filters, managing

neighboring textures becomes complicated if the size of a filter kernel exceeds

the size of a image-tile.

In order to address this, we introduced a two-pass rendering approach

instead. During the first pass, the visible portion of an image is rendered to
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a texture using the OpenGL Frame Buffer Object (FBO) extension. During the

second pass, a convolution filter is applied to this FBO-bound texture, which is

then displayed as the final result, simplifying the process of applying convolu-

tion filters (Figure 4.5).

Figure 3.6: The steps to apply a convolution filter (e.g., a sharpening filter) to
a tiled image. This process is performed in parallel on every display of a tiled
display wall.

3.4 Sorting and Plotting

Sorting and plotting are two additional capabilities needed to support

visual analytics tasks, allowing researchers to see details of individual images

while examining patterns and relationships between sets of images. Our plot-

ting mechanism enables researchers to rapidly alternate multiple plots, and

thereby to highlight the differences and changes between different plots.
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Spreadsheet data is utilized in the form of an XML or a Comma Sepa-

rated Value (CSV) file that describes a set of images. For example, the spread-

sheet may contain statistical information about a set of images, such as the mean

and variance of RGB colors. Using this information, images can then be sorted

by any data column, and plotted as 2D plots based on pairs of user-selected

columns of spreadsheet data. The data type can be an integer, floating point, or

string.

We have developed two plotting techniques utilizing the vast virtual

space, termed Image Plot, and Small Multiples (coined by Tufte [Tuf86]) of image

plots. In an image plot, a high-resolution image itself represents a data point

of the plot, that can be dynamically transformed. Image plots are particularly

useful when researchers are interested in patterns within a collection of images

in combination with features in individual images.

Small Multiples is an approach to visualize different aspects of large data

sets using identical visualization techniques. The resulting consistency between

all of the plots allows “a viewer to focus on changes in the data rather than on

changes in graphical design [Tuf86]”. Utilizing literally the tiled-display version

of a spread sheet, one plot is plotted per display. One default plotting rule is

that, a user-selected column from the underlying spreadsheet is plotted against

all possible combinations with its remaining columns, with the user selection

mapped to the x-axis of the plot.

A challenge with realizing small multiples of plots is the drawing time.

As the number of plots and associated data points increase, drawing each plot

using points, lines, and images becomes expensive. In order to mitigate the

problem, a two-pass drawing approach, similar to the technique used for con-

volution filters described in the previous section, was developed. During the

first pass, a plot with all the images on data points is rendered to a FBO-bound

texture with a resolution matching that of one physical display. The second

pass then simply displays the FBO-bound texture on each display, reducing the

rendering cost for subsequent drawing of a plot.
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3.4.1 Limitations on Sorting and Plotting

The presented approach keeps the entire spreadsheet data in memory

(in-core). While this allows researchers to quickly go through different columns

of data, there is a limitation on how much data can be kept in-core. In addi-

tion, as the number of items in a spreadsheet increases, the time to sort all items

becomes non-trivial. Typically, our high-resolution image sets range from tens

to thousands, which has not been a problem with respect to the size and pro-

cessing speed of the spreadsheet data. However, this will become an issue once

millions of high-resolution image sets are targeted.

3.5 Applications

The application domains initially targeted with the presented approach

included analysis of data from remote reconnaissance, data from the biomedical

engineering domain [ncm04], and unconventional analysis of cultural records

for which the term Cultural Analytics [Man08] was created. Sets of sample data

are selected here to illustrate data visualization strategies in the different disci-

plines.

The first example shows two satellite images of New Orleans before and

after hurricane Katrina (Figure 3.7). For this case study, a set of related images

is presented within the integrated virtual space and can be freely positioned

and resized to expose both the high-level view, literally the big picture, and in

minute detail. The images can be overlaid on top of each other and blended

to aid with change detection, color channels filtered to highlight encoded in-

formation such as flooded areas, and processed with a range of image filters to

enhance features. Thanks to the large physical space, domain experts can be

co-located to discuss the observed information and synthesize new insight.

The second case-study is a confocal microscopy image of a rat brain, con-

taining multiple color channels, corresponding to different injected dyes, that

can be color-filtered on the fly (Figure 7). The rightmost image is the original

composite, which is stained to identify distributions of glial cell intermediate
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Figure 3.7: Two satellite images of New Orleans before (top) and after Hurri-
cane Katrina (bottom) are shown side-by-side, exposing wide spread flooding
throughout the city. Even at this zoom level, severe damage to the Superdome
is visible.

filament protein (red), an intracelluar calcium channel enriched in Purkinje cells

(green), and a DNA stain (blue) [ncm04]. RGB color filtering can interactively

de-emphasize or entirely remove selected color channels from the original im-

age. This enables researchers to focus on individual dyed slices and their corre-

sponding features, and arbitrary combinations of stains, all the way to the fully

synthesized representation.

The third case study is looking at a the set of paintings by American

artist, Mark Rothko. This data collection contains images as well as statistical

information such as, mean brightness and standard deviation, obtained on a per

image basis during a pre-processing step. This statistical data is exposed for the

entire image collection via a spreadsheet in CSV format. With this in place, it is

then possible to use spreadsheet data to control the visual representation of the
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Figure 3.8: RGB color filtering is applied to four copies of a multi-channel Rat
Brain images (324 megapixels each). The rightmost image is the original.

image collection. For example, researchers may flip through different columns

of the spreadsheet data using sorting and plotting techniques to explore the

relationships and patterns of the paintings created throughout Rothko’s career

(Figure 3.9).

3.6 Result

Our approach was developed, tested, and deployed to a range of research

institutes including the California Institute for Telecommunications and Infor-

mation Technology (Calit2), The National Center for Microscopy and Imaging

Research (NCMIR), Center for Research in Computing and the Arts (CRCA),

and San Diego Supercomputer Center (SDSC). All case-studies introduced in

the previous section reflect capabilities used within our distributed visualiza-

tion environments on a daily basis. While the largest tiled display we have

experimented with is the 1/3-gigapixel HIPerSpace, the performance measure-

ment below shows that our approach can support well beyond terapixel-scale

visualization.

3.6.1 Case Study Environment

The 286 megapixel ultra-high-resolution OptIPortal introduced in Chap-

ter 2 was used to test the scalability of the introduced technique. The speci-
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Figure 3.9: A set of paintings by Mark Rothko. The top image shows an image
plot, and the bottom image shows small multiples of image plots.

fication of cluster PC is as follows: Intel Core 2 Quad 2.4 GHz, 6-GB in-core

memory, and two Quadro FX 5600. The PCs are interconnected through high-

bandwidth networks (e.g., OptIPuter [SCD+03]), with 1 Gbps connectivity be-

tween the head node and the cluster nodes, and a 10 Gbps link into the external

network and storage fabric.

3.6.2 Performance Metrics

There are many parameters to characterize the performance of the pre-

sented distributed visualization approach, including rendering performance,

data loading time, the total size of image collections on disk, the performance
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of networked file systems, network latency, jitter and packet losses, all of which

are interconnected. Among others, the rendering performance, data loading

time, and the size of images are identified as critical parameters to characterize

our approach. The rendering performance is a measurement of how quickly

the system can respond to users, and reflect the result in the visual representa-

tion. A tight timing constraint of 30 frame per second (fps) is set to maintain

high-level responsiveness. Data loading time is the time to fetch the requested

data from a NFS-mounted remove server, corresponding to the time to visualize

images at the request resolutions. The total size of image collections on disk in-

dicates the effectiveness of the resource management mechanisms and suggests

the scalability of our approach.

Measurement Method

The rendering performance and loading time are recorded during a 6-

minute test run. At the beginning, a set of 119 images is loaded, placing all

images in the integrated virtual space throughout the course of the test run. A

series of interactions is then performed one-by-one on three different images,

followed by all 119 images at once. First, one 300-megapixel image is moved

across the entire area of the virtual space, and is resized from its lowest resolu-

tion to the highest resolution. This move-and-resize process is repeated multiple

times, visualizing the different portions of the image. The same interactions are

performed on a 5.6-gigapixel and then a 310-gigapixel image. Finally, the same

interactions are performed on all 119 images at once, while grouped as a set of

images.

Visualization Performance

Figure 3.10 shows the loading time per image-tile in seconds and the

rendering performance in fps. The number of image-tiles that are requested at a

certain instant varies, but the average time to load all necessary image-tiles was

190 milliseconds, reasonably fast to display the images at the requested resolu-

tions. The loading time increases as the size of the image grows, because the
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time to reach to the requested location within the image increases as the num-

ber of image-tiles of the image grows. However, while the loading time varies

during the test run, the rendering performance stays above 40 fps, keeping the

system responsive.

The plot also shows that, while the rendering performance is around 160

fps when no image-tile is being loaded, it drops to around 80 fps on average

when images are moving. This is mainly due to the texture uploads (others be-

ing contentions between threads). When an image-tile is loaded from a disk, the

image-tile data must be sent to graphics cards, replacing a texture in a texture

pool. This texture upload must be performed in the main visualization thread

as it requires an OpenGL context, resulting the rendering performance degra-

dation. While the loading time affected the rendering performance, the average

fps satisfied our goal of interactivity.

Scalability

In order to examine the scalability of our approach, one hundred 310-

gigapixel images were displayed concurrently. To do this, a single 310-gigapixel

image is symbolic-linked 100 times to different names. This is slightly differ-

ent situation than having 100 unique 310-gigapixel images, however we can

still test our resource management mechanisms as each image is independently

created in a scene. This test environment provides the total of 30 terapixels im-

mediately accessible. During the test run, the memory footprint was hovering

around 18% ≈ 1 GB, and the rendering performance stayed mostly above 40

fps, providing smooth user interactions.

Other Considerations

Sometimes, the data loader threads are blocked for a short time because

of the unfortunate events in the infrastructure. We have experienced that Net-

work File System (NFS) being choked when the large amount of data are re-

quested concurrently from 18 different cluster nodes. We have also experi-

mented with the Common Internet Files System (CIFS) as an alternative op-
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Figure 3.10: The x-axis represents time for a 6-min sample run. Both the loading
time per tile in seconds and rendering performance in FPS are shown on the y-
axis. While the loading time varies over the course of the test run, the rendering
performance stays above 40 fps, keeping the system responsive.

tion to NFS. CIFS did not show this problem, however there were not meaning-

ful differences between the two in terms of the loading time, since NFS shows

slightly better data transfer rates than CIFS.

In addition, the overall performance is affected by various quality-of-

service parameters, such as network latency and jittering. Network latency be-

tween the head node and cluster nodes affects the interactivity because it delays

the control signals that are being sent. Network latency between the nodes and

the remote server affects the performance of the data loading time.

Under these circumstances, it is a difficult process to characterize the
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overall performance of the presented approach. However, the presented results

show that our approach can support well beyond terapixel-scale visualization,

while providing a highly responsive interactive virtual space.

3.7 Conclusion

This paper introduces an approach to visualize a large number of high-

resolution images in distributed visualization environments. A large, integrated

virtual space provides a large-scale visualization environment on a tiled display

system, while view-dependent resource management strategies support smooth

and fully interactive data analysis of a collection of images. Interactive image

filtering and plotting techniques enable highlighting the features of individual

images and patterns of a set of images. By combining our approach with high-

resolution tiled display environments, images may be individually analyzed,

transformed, rearranged, filtered and plotted to extract new insights, while op-

erating on a collection of large-scale images.
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Chapter 4

Interactive Image Fusion in

Distributed Visualization

Environments

4.1 Introduction

Figure 4.1: Interactive image fusion of 653 megapixel worth of GeoEye-1 data
on a 286 megapixel resolution tiled display wall.

High-resolution satellite data are being produced at accelerating rates.

These data generally come as a set of low-resolution spectral images (e.g., red,

green, blue and near IR) and a panchromatic image, which is of greater resolu-

46
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tion. For these multi-band satellite data, an image fusion technique is usually

applied before the data are made available for further studies including visual-

ization. By fusing the multispectral and panchromatic bands, both high-spatial

and high-spectral information can be provided, extending its application poten-

tials (Figure 4.2).

Figure 4.2: A close-up comparison between a original multispectral image and
a fused image.

While existing image fusion techniques have been focused on producing

an image with minimized color distortion, maximized detail, and natural color

and feature integration, visualization of the fused high-resolution image has re-

mained as a separate task. Traditionally, image fusion techniques are applied be-

fore the data can be visualized, because they are usually time-consuming offline

processes. Moreover, subsequent visualization of fused, high-resolution images

at their native resolutions is not a straightforward task due to their massive di-

mension (width and height) and data size. Common visualization techniques

use interactive scaling and translation in order to visualize high-resolution im-

ages using space-limited conventional desktop systems, employing some out-

of-core visualization technique. These techniques give us only a tiny window

to navigate through a complex image space, imposing limitations on our ability

to analyze and correlate data.

In response to these limitations, conventional display environments are

being replaced by distributed visualization environments, such as tiled display

systems, which can provide orders of magnitude higher resolutions in combina-
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tion with increased computational capabilities. When combined with the proper

middleware, which is designed to support distributed high performance graph-

ics, tiled display systems can provide a large, seamless scene enabling interac-

tive image fusion and visualization of high-resolution satellite images closer to

their native resolutions (Figure 4.1).

This paper presents an immediate-mode, integrated approach to image

fusion and visualization of multi-band satellite data by combining a very high-

resolution tiled display wall with high-performance graphics capabilities of a

distributed visualization cluster. In addition, the presented approach can apply

image processing techniques within the integrated fusion-visualization frame-

work, supporting visual analysis by interactively adjusting contrast, brightness,

and color balance of images. With this integrated approach, researchers can

very quickly experiment with a wide variety of parameters in order to produce

a desired image. To further strengthen our interactive exploration mode, exter-

nal devices can be used, such as a MIDI controller, to expose the controllable

parameters and modify the overall visual representation.

4.2 Image Fusion Techniques

IHS fusion techniques first convert RGB multispectral bands to IHS col-

orspace and subsequently replace the intensity with a panchromatic band. Tu

et al. have proposed a computationally efficient method called Fast IHS (FIHS)

[TSSH01], which is extended to include more than three visible spectral bands

[THHC04]. In FIHS, the fused image F can be computed by simple additions

between a panchromatic band P and multispectral bands Mi as follows:

Fi = Mi + (P− I) (4.1)

where the intensity I is:

I =
N

∑
j=1

wjMj (4.2)
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The wj are the coefficients that are generally used to minimize spectral

distortions of a resulting image F by adjusting the linear combinations of the

multispectral bands ([Cho06, THHC04, RSM+10, Zha04]). N is the number of

multispectral bands, e.g., four if a near-infrared band is included in addition to

RGB spectral bands.

In this way, the final fused image employs the high-spatial resolution

from the pan-chromatic data and color information from the available multi-

spectral bands through a very computational efficient way.

Figure 4.3: A fused result of 155 megapixel IKONOS data shown on AESOP, a
slim-bezel multi-tile display system.
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4.3 Technical Approach

One possible workflow applied to high-resolution satellite images con-

sists of a sequence of offline steps, which are image fusion, image processing or

adjustment, image tiling, and visualization. In this case, all preprocessing steps

are performed offline before data can be visualized. In contrast, our approach

requires only one offline processing step, image tiling, which only takes a frac-

tion of time compared to traditional approaches as shown in Section 5. The rest

of the steps are performed on the fly within one interactive application.

In this section, starting with the concept of image tiling, each of the GPU-

based processes are described in detail, including high-resolution image visual-

ization, immediate-mode image fusion, and image processing, followed by the

introduction to an interaction paradigm using an external MIDI controller.

4.3.1 Image Tiling

Image tiling provides an easy access to the appropriate level-of-detail

(LOD) and region-of-interest (ROI) of a high-resolution image in a view depen-

dent manner. We utilize a tiled pyramidal tagged image file format (TIFF) as a

container for tiled images, as it is one of the most widely available image for-

mats. In addition, tools to reliably produce very large tiled pyramidal TIFFs,

such as VIPS [CM96, MC05] are readily available.

Using a preprocessed TIFF, the required LOD of an image is determined

based on the actual number of pixels that are displayed on screen. This resource-

aware technique guarantees that only data that can be physically displayed is

pulled across the network. Likewise, an appropriate ROI of an image is deter-

mined based on the overlapping region between each display and the projected

bounding rectangle of the image. Both LOD and ROI are computed in screen co-

ordinates, because these procedures require the actual pixel count per display.

Once the appropriate level and region are determined, data loading re-

quests are dispatched to separate loader threads, and the main visualization

thread continues without waiting for loading to complete. In this way a smooth
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user experience is supported since the main visualization thread is not inter-

rupted by remote data access.

4.3.2 Visualization of High-resolution Satellite Imagery

If a collection of satellite imagery becomes bigger than the computer’s

in-core main memory or the texture space on the GPU, view dependent, out-of-

core techniques are required, allowing only the visible portion of the images to

be loaded and visualized. The TIFF-encoded images lend themselves particu-

larly well to this type of visualization as explored by Ponto et al. [PDK10] and

Yamaoka et al. [YDK11] in the context of scalable display environments. Basi-

cally, a tiled image is visualized as a collection of small, TIFF-tile textures, tightly

packed as a grid (see the leftmost image of Figure 4.5), and any TIFF-tiles that

fall outside the current viewing volume are invalidated and recycled, allow-

ing to maintain a fixed memory footprint. With this mechanism, only a fixed

number of textures are required per cluster node that are sufficient to cover the

display region addressed by that node. For the presented GPU-based image fu-

sion technique, five multi-band images (i.e., R, G, B, Near IR, and panchromatic)

are required, therefore by default, the TIFF-tile textures are prepared such that

five multi-band images can be displayed at their native resolutions.

Once the images are loaded and visualized on the display wall, they may

be individually analyzed, transformed, rearranged, and filtered, one by one or

in groups. Combined with view dependent resource management techniques,

multiple images can be stacked together while maintaining the required resolu-

tions. The GPU-based image fusion techniques can be subsequently applied to

this stack of the high-resolution images (Figure 4.4).

4.3.3 Interactive Image Fusion

While IHS fusion methods are computationally efficient, traditionally,

some pre-processing and post-processing steps are required to support inter-

active visualization. These steps include: 1) reading the data from a disk; 2) up-
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Figure 4.4: The steps of immediate-mode image fusion and visualization
pipeline leveraging computational and display resources of tiled display en-
vironments. The shown intermediate processing steps are used for debugging
and illustration purposes.

sampling lower-resolution multispectral data; 3) performing image fusion and

image processing; 4) writing back the resulting fused image to the disk; and 5)

post-processing for visualization, including tiling. Since the performance of the

whole process is I/O bound, it becomes progressively more time-consuming as

the data size becomes larger. Our approach combines the image fusion and vi-

sualization steps, performing all of the above steps on the fly, with the exception

of Step 5, which has to be performed only once. Step 1 through 4 are performed

immediately, allowing users to modify image fusion and visualization parame-

ters interactively.

In order to streamline processing and maximize performance, the pre-

sented approach utilizes the local GPUs of the cluster nodes. The basic idea is to

send all the required, currently visible data to the GPUs, and perform the image

fusion and visualization there. To do this, all of the visible TIFF-tile-textures of

all five images must be sent to the GPUs. As only the limited number of textures

(typically 8) can be sent to GPUs at a time, we introduced a two-pass rendering
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approach.

During the first pass, all the visible TIFF-tiles of each of the five images

are rendered to a texture using the OpenGL Framebuffer Object (FBO) exten-

sion. By doing so, five FBO-bound textures are prepared per display. During

the second pass, the five FBO-bound textures are sent to the GPUs using multi-

texturing functionality. GPU-based image fusion and visualization then can be

performed using FBO-bound textures with GPU shaders having access to all the

required information. The corresponding workflow of the presented approach

is shown in Figure 4.5.

Figure 4.5: The workflow of GPU-based image fusion. This process is per-
formed on every display of a tiled display wall.

This approach provides greater flexibility when experimenting with a

wide variety of image fusion and processing parameters, since any modifica-

tions to those parameters are immediately reflected in the final visualization.

This provides a significant saving in time and more intuitive support for visual

data analysis over traditional approaches for which all the online and offline
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steps must be performed again, if the resulting fused image needs to be recon-

figured.

4.3.4 Live Image Processing

GPU-based image filtering and processing can coexist well within the

presented image fusion approach. As an example, the contrast of a fused im-

age can be adjusted during the image fusion process, in order to achieve vi-

sually compelling representations. As another example, the color of the fused

image can be exaggerated by converting the image to HSV colorspace, increas-

ing its saturation and value, and converting back to RGB colorspace for visu-

alization (the lower-left image of Figure 4.6). Both filtering techniques can be

implemented as a part of the shader code that performs the GPU-based image

fusion, therefore adding almost no overhead.

Figure 4.6: A quad-view of an IKONOS imagery. Top-left: the original mul-
tispectral data; top-right: the original panchromatic data; bottom-left: the re-
sulting fused image, subsequently modified in HSV colorspace; bottom-right:
IKONOS-specialized IHS image fusion based on Choi et al. [Cho06].
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4.3.5 User Interface

A MIDI controller with sliders and knobs was selected as a user inter-

face to quickly experiment with the wide range of fusion parameters, such as wi

in Equation 4.2, as well as image processing parameters, such as those for ad-

justing brightness and contrast. The values of the sliders and knobs are sent to

the head node through the network, and subsequently distributed to the cluster

using the event forwarding mechanism in CGLX.

Informal user studies have shown that users preferred MIDI controller

over a regular computer keyboard. The controller provides rapid modifications

to the parameters, good tactile feedback, and easy visual representation of the

current values (Figure 4.7).

One technical drawback of MIDI controllers is that most messages are

encoded by only 7 bits. While 128 unique values are sufficient for most cases,

it would be nice to have finer controls of parameters. Nevertheless, the inter-

action paradigm can efficiently produce approximations to the final result very

quickly.

4.4 Result

The case studies utilized satellite images from IKONOS and GeoEye-1.

The dimension of the panchromatic data from IKONOS is 12, 364× 12, 600 pix-

els (Figure 4.3), and GeoEye-1 is 14, 124 × 46, 264 pixels (Figure 4.1). In both

cases, image fusion, image processing, and visualizations were immediately

performed, while keeping the system responsive to user actions. The rendering

performance is not severely affected by the data loading, with loading handled

by a separate thread.

A traditional FIHS method was tested using Matlab to establish the base-

line for it computational complexity, when preparing satellite data for visualiza-

tion. The shrunken IKONOS images were used (3, 092× 3, 152) because the orig-

inals were too big for Matlab to process. The required offline processing time

for traditional approaches and our approach is shown in Figure 4.9. Matlab took
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Figure 4.7: The contrast and color of the left image is being adjusted with a
MIDI controller.

44 seconds on average while our approach took 4 seconds to prepare data for

subsequent visualization. These 4 seconds for the tiling is a one-time cost in our

approach, while traditional techniques need to repeat all the processes even if

only a single fusion parameter is to be tweaked.

Additionally, the required data size of our approach can be much smaller

than traditional approaches, which must upsample all the multispectral bands.

Let us assume that the width and height of a multispectral band are a half of

the panchromatic band. If there are 4 multispectral bands (R, G, B, and Near

IR), the required size of traditional approaches is (4 ∗ Apan + Apan) ∗ spp =

5 ∗ Apan ∗ spp, where Apan is the area of the panchromatic band and spp is the

number of samples per pixel. In contrast, the required size of our approach is

(4 ∗ 1/4 ∗ Apan + Apan) ∗ spp = 2 ∗ Apan ∗ spp, because no offline upsampling is
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Figure 4.8: Distributed visualization environment with an external controller,
whose state information is (a) sent to the head node and (b) subsequently dis-
tributed to the visualization cluster. Each node in the cluster drives a portion
of the wall. Image data are pulled from a remote server through networked file
systems (indicated as green arrows).

required. In this example, our approach requires less than a half of the data size

of traditional approaches.

As a result, the operations that are I/O bound can be performed more

quickly. For example, tiling in a traditional approach takes more time because

the fused image on disk is larger than the original images combined. Moreover,

the traditional approaches usually require that the original images are kept for

later use, while our approaches allows to discard the originals, as they can be

replaced by the tiled versions of the originals.
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Figure 4.9: Comparison of the time to perform offline processing between a
traditional approach and the proposed method for visualization purposes.

4.5 Conclusions

This paper presented an integrated approach to GPU-based, immediate-

mode image fusion and visualization of high-resolution satellite data, allowing

researchers to rapidly and visually analyze these data. Moreover, the presented

approach provides a rapid and direct way to experiment with a wide variety of

image fusion and processing parameters through an external MIDI controller.

The presented approach allows immediate modifications of the image fusion

and filtering parameters, as opposed to the traditional approaches that must

repeat all time-consuming processes offline in order to modify those parame-

ters. The result show that the presented approach is flexible and fast, especially

suited for visualization purposes.
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Chapter 5

Cultural Analytics in Large-Scale

Display Environments

5.1 Introduction

The volume of cultural data sets in digital form is rapidly increasing,

which is partly due to the digitization efforts by museums, libraries and com-

panies. This gives new opportunities to humanities researchers who have tra-

ditionally relied on manual analysis of specific cultural objects. With the newly

available, large cultural data sets in combination with computer-based analy-

sis techniques, researchers may be able to identify and explore broader patterns

and anomalies that have not been visible previously.

However, given the sheer size and higher-dimensional nature of these

data sets, the discovery of cultural processes and better understanding of arti-

facts, heavily rely on the development of a new methodology for their study.

The availability of large cultural data sets in digital form calls for a new

methodology for the study of cultural processes and artifacts. Traditionally,

search engines and analysis algorithms require researchers to specify what to

look for and how to solve a particular problem within specific data sets. How-

ever, this is often not the case with large cultural data sets as the researchers may

or may not have a well-defined hypothesis with a clear goal before analysis. In

60
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Figure 5.1: Researchers engaging in cultural analytic process using the pre-
sented approach.

this case, an alternative approach to the data sets may be needed.

Visual Analytics has emerged in response to a massive amount of data

created by rapidly growing sensing and computing techniques. The goal of

visual analytics is to enable the “discovery of the unexpected within massive,

dynamically changing information spaces [CES07]” by means of interactive,

exploratory visual analysis. This approach has already yielded significant ad-

vances in many scientific fields, and its success is reflected in the National Sci-

ence Foundation’s Cyberinfrastructure Vision for 21st Century Discovery report

[NSF06]. This document emphasizes the development of tools for the collection,

storage, analysis, and visualization of large data sets.

The combination of visual analytics techniques with cultural data sets,
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which are driving research questions in the humanities, have developed a new

approach that we call Cultural Analytics [Man08, ?]. Cultural analytics is taking

on the challenges of how to best access and visualize large collections of rich cul-

tural media content. Once it is possible to interactively and concurrently load,

display, transform, filter and navigate through the large volume of image sets,

the identification of patterns and anomalies, and the development of associated

hypotheses can be significantly improved (Figure 5.1).

In this paper, we present a system that explores these possibilities using

scalable, high-resolution, and collaborative display environments (Figure 6.2).

Taking full advantage of the high-resolution visualization space of these envi-

ronments, interactive visualization techniques are developed for collections of

humanities data with a broad range of associated metadata. An approach to

data management is also described, in the context of how to maintain large col-

lections of images and the metadata.

Figure 5.2: A multi-wall collaborative digital workspace with the 1/3 gigapixel
resolution.

5.2 Visualization Techniques on Large Displays

A particular challenge in cultural analytics is that the sheer amount of

cultural data sets may prevent researchers from developing hypotheses and
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goals for analysis. In response to this challenge, visualization techniques that

enable interactive exploratory analysis are needed in a setting tailored towards

collaboration. We attempt to address the challenge by providing a highly inter-

active, large visualization environment.

Specifically, three interactive visualization techniques are explored and

developed. The first of such techniques is Image Collage, which creates a variety

of overviews of an image collection. It sorts and glues images together based on

a user-selected variable from the metadata. The second technique is Image Plot,

which plots each data point as an image source itself at sufficient resolutions,

while allowing researchers to examine the plot for patterns and anomalies. Fi-

nally, Scatterplot Multiples provides a large number of scatterplots from multiple

data sets, through consistent views and visual representations. It enables re-

searchers to examine the relationships between many pairs of variables at once.

Each of the three techniques are described in the following sections.

5.2.1 Image Collage

The image collage technique glues individual images of the data sets

together to summarize the whole collection. Similar collage-based techniques

have been explored as a way to present a collection of information [FFH01,

Ker01, CLF+04]. However, many different versions of collages can be created

from a randomly ordered set of images. This may not be as useful as a summary

of the collection compared to the ones created from an ordered set.

Therefore, we used the associated metadata to give a structure to present

an overview, attempting to foster new insights into the data set. This technique

first sorts the images based on a user-defined variable from the metadata, then

presents them on the display system in a rectangular format. The technique

allows researchers dynamically select the variable to recreate a version of im-

age collages, as the goal of the technique is to support interactive exploratory

analysis to iteratively refine the hypotheses and insights.

Figure 5.3 shows an image collage of the Time magazine covers, sorted

based on the publication dates. This collage shows general trends in cover de-
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signs, while still being able to look at the details of individual covers without

resizing the images.

Figure 5.3: A collage of Time magazine covers, chronologically listed from the
top-left to the bottom-right, from the year 1923 to 2009. The close-up photo
shows individual covers at sufficient resolutions.

5.2.2 Image Plot

A scatterplot is a versatile and useful visualization techniques to explore

the relationships of two variables [FD05]. For the researchers working with a

set of images however, it is often important to be able to see the details of an

image source itself, while examining the relationships between variables. To

support this, Image Plots represents each data point as an image source, rather

than a simple dot (Figure 5.4). In order to provide sufficient resolutions for

individual images, an image plot is drawn using the entire visualization space

on a large-scale display system. The plotted images can be freely resized and
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moved, allowing researchers to examine actual image sources without derailing

from the analysis.

Figure 5.4: Image Plot, showing a graph of Time magazine covers from 1923 to
2009. The dates of publication and the mean saturation values are mapped onto
x and y axes respectively.

This image plot can be created at runtime for any combinations of the

variables in the metadata. First, the images are sorted based on a selected vari-

able along the x axis (horizontal axis), and then plotted based on another se-

lected variable along the y axis (vertical axis). If it is numerical, the minimum

and maximum values are computed to set the range of the x and y axes. If it is

alphabetic, the number of the unique strings is used to determine the range of

the axes.

A variable mapped to either axis can be switched quickly to the other

variables in the metedata. For example, a user can map the time to the x axis

and the mean intensity of images to the y axis. A user can then switch the y

axis to a different variable, say the standard deviation of the intensity of images,

while x axis is fixed. With this, the relationships between different combinations
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of variables can be revealed on the fly.

Animated Transitions

In large-scale display environments, perceiving the changes between the

plots can be slightly more demanding as the displayed objects travel much far-

ther compared to traditional display systems. In order to help researchers better

perceive changes, the transitions between two plots are smoothly interpolated,

presented as animation. As Heer et al. have shown, animation is a promising

approach that can facilitate perception of changes when transitioning between

related data graphics [HR07].

Figure 5.5: Scatterplot multiples in a Multi-Variable mode, showing 70 pairs of
variables of the Time magazine data set. The time is mapped to the x (hori-
zontal) axis and all the other variables are mapped to the z (vertical) axis of
individual plots, including the mean intensity, entropy, etc. The color shows the
mean intensity in this example.

5.2.3 Scatterplot Multiples

Scatterplot multiples (Figure 5.5 and 5.6) is a subset of Small Multiples,

which is a visualization technique that shows different aspects of a large data

set using identical visualization techniques. The resulting consistency between

all of the graphics allows “a viewer to focus on changes in the data rather than

on changes in graphical design [Tuf86].” On conventional displays, multiple
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Figure 5.6: Scatterplot multiples in a Multi-Dataset mode, showing 5 pairs of the
variables of 14 different manga titles (note that 2 more columns exist outside
this photo). Time is mapped to the x axis, and one of the following variables is
mapped to the z axis: contrast, sobel, entropy, std, and mean intensity. The color
shows the mean intensity.

scatterplots can quickly clutter an available visualization space, impairing the

readability of individual scatterplots. The problem can be alleviated by a num-

ber of techniques, such as focusing and linking [BMMS91, PKH04], interac-

tion techniques [BCW87, EDF08], and visualization techniques [PKH04, SP07,

SW09]. The main goal of these techniques is to effectively represent a large

multi-dimensional data set in a limited visualization space.

Complementary to the above techniques, tiled display walls offer an-

other potential solution to this problem by providing a vast visualization space.

In scatterplot multiples, each display of the wall shows a single interactive scat-

terplot. In this technique, all the displays maintain the consistency between the

plots with a consistent viewpoint, i.e., the identical projection and model trans-

formations. For example, all the scatterplots can be rotated completely in sync.

Each scatterplot is an interactive, color-coded 3D plot, encoding a total of

four variables using x, y, and z axes and a transfer function for colors. The rela-

tionships between these variables can then be interactively explored by rotating

the plot in 3D. However, the main use-case scenario of this visualization is to

compare many 2D scatterplots, as 2D plots are easier to understand. Therefore,

the 3D scatterplots turn themselves to 2D by snapping to the currently domi-

nant 2D plane when rotated 90± 5 degrees around each axis.
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Variables for the x and y axes and the color can be user-defined, while the

z axis automatically varies between the each of the scatterplots. By doing so, a

variation of scatterplots are systematically created, with x–z and y–z planes pro-

viding all the combinations of the variables against the user-defined variables.

These planes can be a good candidate to begin analysis sessions.

Multiple Variables and Multiple Data Sets

Scatterplot multiples have two modes, namely Multi-Variable and Multi-

Dataset. The multi-variable mode visualizes many combinations of the variables

from a single data set; and the multi-dataset mode visualizes multiple data sets

for the selected variables, shared between these data sets.

The multi-variable mode simultaneously displays many aspects of a sin-

gle data set using all available display resources of a tiled display system. With

this, several interesting plots can be identified within the single data set. Fig-

ure 5.5 shows a scatterplot multiples in the multi-variable mode.

The multi-dataset mode enables comparisons between multiple data sets

using their common variables. For example, a set of comic book titles can be

simultaneously compared based on identical pairs of variable. These variables

can be the combinations of mean intensity, entropy and contrast of the individ-

ual comic pages. The individual titles may be shown in each column, while the

variables are shown in each row. Figure 5.6 shows an example of scatterplot

multiples in the multi-dataset mode.

In both modes, navigation mechanisms are provided, allowing users to

go forward and backward the list of scatterplots. By accommodating on-the-fly

filtering of the data, scatterplot multiples enables unwanted rows and columns

to be excluded from the visualization, as the variables in metadata are some-

times not well organized. In addition, the rows of scatterplot multiples in the

multi-dataset mode can be sorted by a selected variable, facilitating the compar-

isons between the data sets.
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Visual Extensions to Scatterplot

Two supplemental visualization techniques, linear regression lines and

2D histograms, are created in order to help understanding the characteristics

of the data sets. Linear regression estimates a linear relationship between two

variables, which is represented as a straight line. This is applied to each com-

bination of the axes, x–y, x–z, and y–z planes, exposing a general trend of the

relationship between two variables.

2D histograms summarize the distribution of the data points, which are

represented as a coarse density map [PKH04]. The density value is mapped

to a transparency of the bin of the map, so that the higher the value is the more

opaque. The histograms provide a summary of how many data points lie within

that particular region. These visualization techniques can be combined with a

scatterplot by overlapping with the 2D planes of a 3D scatterplot (Figure 5.7).

5.3 Data Management

In order to keep a constant memory foot print when dealing with large

data sets, out-of-core techniques are critical for the data management. In the dis-

tributed environment, one computer usually does not need to keep the whole

data sets in-core, as it is responsible for only a part of the entire scene. It should

then load and unload the data dynamically, recycling the computer resources.

The presented system employs an adaptive texture management, which dynam-

ically adjusts the image resources required for visualization based on the current

dimension in the virtual scene.

When working with large data sets, data replication on each computer

of the cluster should generally be avoided due to the data size and need to

keep the data consistent across the multiple computers. Alternative approach

to make the management easier is to use a remote storage server that offers a

huge capacity to store collections of large images. These images can then be

fetched by each cluster node on demand in a view-dependent manner through

a network-mounted file system during the interactive visualization sessions.
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(a) x-y plane (b) x-z plane

(c) y-z plane (d) 3D

Figure 5.7: 3 planes and a 3D view of a scatterplot. Linear regression lines are
indicated as a straight line overlapped to the data points. 2D histograms are
shown in the 3D view.
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The metadata of the images are kept in a separate database server. In

order to query the metadata on the database, a front-end gateway is developed

rather than directly communicating with the database server from an applica-

tion. The gateway is responsible for interpreting database-related requests from

the application, and translating them to actual database queries. By decoupling

the database from the application, the flexibility in system configurations is in-

creased (Figure 5.8).

Figure 5.8: A diagram of the dataflow when the head node request the metadata
to a database server.

Additionally, the metadata must be synchronously delivered to the clus-

ter to avoid the inconsistent updates of visuals. Therefore, the gateway is de-

veloped as a CGLX server [PDW+10], which takes external input and sends to

the head node, and then the head node delivers the information to all the clus-

ter nodes in sync. With this, the metadata fetched from the database server is

transferred to the cluster consistently.
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5.3.1 Image Analysis

In order to efficiently extract features and numerical descriptions of the

large volume of cultural image sets, the batch workflow using a custom software

is developed. The software takes sets of images on the local or network file

system, and output the results in a standard text format. The output is then

managed by a database.

The software is capable of extracting hundreds of visual features to pro-

vide a comprehensive description of image content. The features cover cate-

gories commonly used in machine vision and content-based image retrieval:

grey scale and texture descriptions, and color descriptions in RGB and HSV

spaces. This software and the complete list of features can be found in [Stu09].

This custom analysis software is written in Python and utilizes ffmpeg

and Matlab as back end. The batch workflow was used to process the data

sets on supercomputers on the National Energy Research Scientific Computing

Center (NERSC).

5.4 Case Studies

This development of the presented tools was driven by research applica-

tions. During the last three years, the systems have been used for the analysis

and visualization of over 20 different image collections (also video as a sequence

of images) covering a number of humanities fields. Specifically, three case stud-

ies are discussed to illustrate and validate the cultural analytics pipeline. The

first case study is focused on a single data set (Time magazine covers), the sec-

ond compares two data sets (paintings by famous 20th century artists Piet Mon-

drian and Mark Rothko), and the third takes up the challenge of working with

hundreds of data sets (883 manga titles).
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5.4.1 Case Study Data Sets

The first example is 4,535 Time magazine covers published between 1923

and 2009. The resolution of individual source images is identical at 0.2 megapix-

els. The metadata contains 28 variables, including the publication date, color

measures, and cover genres. The color measures are extracted offline using the

presented method (Section 5.3.1). The cover genres are manually annotated by

the humanities researchers.

The second example compared the paintings of two artists, Piet Mon-

drian and Mark Rothko. The size of Piet Mondrian’s data set is 2.8 GB. It con-

sists from 128 images with the average dimensions of 5.7 megapixels. The size

of Mark Rothko data set is 28 MB. It consists from 151 images with the average

resolution of 0.3 megapixels.

The third example is 883 manga titles. The resolution of individual source

image is typically around 1 megapixel. The total data size of all manga pages

are around 100 GB. The metadata contains 50 variables, similarly including the

publication date, color measures, and manually annotated genres. The color

measures are acquired in the same way as the first example.

5.4.2 Case Study Environment

A test environment for the presented techniques was an OptIPortal

[DLR+09] termed AESOP, for Almost Entirely Seamless OptIPortal. AESOP is

a 4.10m × 2.32m wall, which has a combined resolution of over 16 megapix-

els (5, 464× 3, 072), consisting of 16 individual, slim-bezel, 46" diagonal display

tiles in a 4× 4 layout. Each display tile operates at a resolution of 1, 366× 768

and groups of four are assigned to each cluster node (quad-display setup).

The approach was validated on a second OptIPortal called HIPerSpace.

HIPerSpace is a 9.66m × 2.25m wall and a combined resolution of over 286

megapixels (35, 840 × 8, 000), consisting of 70 conventional 30" monitors with

a resolution of 2, 560× 1, 600 each, in a 5× 14 layout. Each cluster node was

again configured in a quad-display setup.
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The cluster PCs are interconnected through 1 Gbps networks, with each

node having an additional 10 Gbps uplink into a remote data storage server. A

database server running MongoDB (www.mongodb.org) is accessible via local

area networks. MongoDB was chosen for the case studies for its performance.

5.4.3 Base Performance

The performance of the system with the introduced visualization tech-

niques was measured before the actual case studies using cultural data sets.

The performance of the base system had been reported in [YDK11], demonstrat-

ing that the rendering performance around 80 fps when dealing with 119 high-

resolution images, the total of 360 gigapixels worth of information. We then

verified that the presented techniques, which are sorting and plotting, could

maintain this performance. In order to do this, the mean and standard devia-

tion of the intensity of each image were computed and kept as a metadata. The

test is then performed using this metadata, resulting in that sorting and plotting

did not incur an additional overhead to the base system, maintaining smooth

and fast interaction.

5.4.4 Results and Findings

Time Magazine Covers

Figure 5.9 shows a collage of 4535 Time magazine covers arranged in a

grid layout (left to right and top to bottom) in order of publication from 1923 to

2009. This collage reveals a number of interesting historical patterns.

• Medium: In the 1920s and 1930s Time covers use mostly photography.

After 1941, the magazine switches to paintings. In the later decades the

photography gradually comes to dominate again. In the 1990s we see

emergence of the contemporary software-based visual language, which

combines manipulated photography, graphic and typographic elements.
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• Color vs. black and white: The shift from early black and white to full

color covers happens gradually, with both types coexisting for many years.

• Hue: Distinct “color periods” appear in bands: green, yellow/brown,

red/blue, yellow/brown again, yellow, and a lighter yellow/blue in the

2000s.

• Brightness: The changes in brightness (the mean of all pixels’ grayscale

values for each cover) follow a similar cyclical pattern.

• Contrast and Saturation: Both gradually increase throughout the 20th cen-

tury. However, since the end of the 1990s, this trend is reversed: recent

covers have less contrast and less saturation.

• Content: Initially most covers are portraits of individuals set against neu-

tral backgrounds. Over time, portrait backgrounds change to feature com-

positions representing concepts. Later, these two different strategies come

to co-exist: portraits return to neutral backgrounds, while concepts are

now represented by compositions which may include both objects and

people - but not particular individuals.

The image plot technique is then applied to the Time covers image set,

providing further insights (Figure 5.4). Each cover is positioned according to

its publication date on the x-axis, and average saturation on the y-axis. This

visualization reveals a number of additional temporal patterns. It makes visi-

ble the pre-color printing era on the far left, a cluster of brief early experiments

in color printing (with left-margin coloration), and then the gradual shift from

black and white to full color covers, with both types coexisting for a number

of years. Taking a step back, we can see that brightness and saturation follow

a cyclical pattern of rising and falling, with dramatic peaks and valleys only

becoming apparent over periods of a decade or more. Standing apart from the

overall curve are extreme exceptions, such as glowing bright images and pale

designs that float above or below the cloud of covers, typical of an era. Taking
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another step back, we can compare our present decade to the entire 86 mag-

azine history. The drop in saturation since the end of the 1990s represents an

unexpected development - since for the previous 50 years average saturation

level first gradually went up and then stayed the the same (since middle of the

1960s). The two visualizations also reveal an important “meta-pattern”: almost

all historical changes are gradual. Each of the new communication strategies

emerges slowly over a number of months, years or even decades. Such meta-

pattern exemplifies a type of discovery which would be very hard or impossible

to arrive at using traditional methods.

Mondrian and Rothko

The next case study demonstrates how our visual techniques can be used

to analyze more than one data set. In this case, the goal is to compare a similar

number of paintings by Mondrian and Rothko, which were produced over sim-

ilar stretches of time and which are structurally similar. In the beginning of the

period each artist was imitating his predecessors and contemporaries; by the

end of the period each developed his mature style for which he became famous.

Figure 5.10 shows two image plots side-by-side. The left contains 128

paintings by Mondrian; the right contains 151 paintings by Rothko. The paint-

ings are organized according to average brightness (x-axis) and average satu-

ration (y-axis). The plots show how Mark Rothko - the abstract artist of the

generation which followed Mondrian’s - was exploring the parts of brightness-

hue space which Mondrian did not reach (highly saturated and bright paintings

in the upper right corner, and desaturated dark paintings in the left part). An-

other interesting pattern revealed by the visualization is that all paintings of one

artists are sufficiently different from each other - no two occupy the same point

in brightness-saturation space. This makes sense given the ideology of modern

art on unique original works - if we are to map works from earlier centuries,

when it was common for artists to make copies of successful works which were

considered to be equally valuable, we may expect to see a different pattern.

However, what could not be predicted is that the distances between any two
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paintings that are closest are rather similar to each other. I.e., while each image

occupies its own unique position, its not very far from its neighbors.

If we consider the relative dates when the paintings were produced, we

find another interesting pattern. Rothko starts his explorations in late 1930–

1940s in the same part of brightness-saturation space where Mondrian arrives

by 1917 - high brightness-low saturation area (the right bottom corner of the

plot). But as he develops, he is able to move beyond the areas already “marked”

by his European predecessors such as Mondrian.

Multiple image plots, which use the same coordinates, allow us to com-

pare multiple image sets to quickly see their differences and similarities. In the

next case study we extend this idea to the study of 883 separate image sets.

Manga Sets

Manga (Japanese-style comics) is one of the most popular cultural forms

around the world. In spite of this, there have been few academic studies of its

visual languages so far. In 2009, Douglass et al. started collecting and analyz-

ing massive manga collections, which consist of 883 titles containing 1,074,790

unique pages [DHM11]. In this case study, we apply the presented cultural an-

alytics techniques to these massive data collections for multiple manga titles.

The image collage technique is used to display all pages in a title, which

allows researchers to quickly see the visual and narrative structure of a title;

how it is divided into chapters, the presence of color pages, and possible pres-

ence of a few distinct visual languages. To further study visual characteristics

of a single title, an image plot is created where all of its pages are mapped using

combinations of some of the visual features which have been extracted with the

presented batch process.

For example, the right side of Figure 5.12 shows an image plot of 5,827

Manga pages from one title, organized by standard deviation (x-axis) and en-

tropy (y-axis). This combination of features captures important characteristics

of manga’s visual languages. The pages in the bottom part of the visualization

are the most graphic (they have the least amount of detail). The pages in the
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upper right have lots of detail and texture. The pages with the highest contrast

are on the right, while pages with the least contrast are on the left. In between

these four extremes, we find every possible stylistic variation. From this visu-

alization, we learn that in the case of titles such as this, it would be incorrect

to talk about a single visual “style” of a title. The same applies to a large pro-

portion of titles in our sample. This is a crucial discovery that changes how we

understand manga culture as a whole.

To efficiently explore all 883 titles together, we use interactive scatterplot

multiples. Figiure 5.11 shows the 14 longest titles in our collection (the total of

117,856 pages). Each column is reserved for a single title; each row is reserved

for a particular visual feature. This layout allows us to quickly compare a num-

ber of titles along a number of visual dimensions simultaneously.

In this example, we position pages on the x-axis (red) according to their

order in a title; the other axes represent the values of one the measured fea-

tures (e.g., entropy on the y-axis, and standard deviation on the z-axis.) Since

certain low-level visual features correspond to high-level (and intuitive for non-

technical users such as art historians) characteristics of visual language, such vi-

sualization reveals which titles have significant changes in their visual language

throughout the during the duration of publication and which do not. It is also

easy to see outliers (the titles which shows unusual patterns as in Figure 5.12).

Having identified particular titles of interest using interactive scatterplot mul-

tiples, we can then study them in detail using collages and image plots. Thus,

while using the three key techniques presented in this paper together is useful

for work with any cultural image set, this becomes particularly useful with the

massive image collections which are beginning to attract interest of humanities

researchers [?].

5.5 Conclusion

In this paper, we introduced cultural analytics in scalable display envi-

ronments for analysis of massive image data collections. The system config-
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urations and data management were described, as well as three visualization

techniques designed for interactive analysis of image collections. Case stud-

ies were provided using cultural data sets, showing a potential for large-scale

cultural analytics.
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Figure 5.9: The collage of Time magazine covers, chronologically listed from the
top-left to the bottom-right, from the year 1923 to 2009.
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Figure 5.10: A side-by-side comparison between the paintings by Piet Mon-
drian and Mark Rothko using two image plots. X and Y axes shows the mean
brightness and mean saturation, respectively.

Figure 5.11: Scatterplot multiples of the 14 longest manga sets in the data sets.
Each column shows a single set and each row shows a particular combination
of visual features.
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Figure 5.12: A scatterplot multiples and an image plot of a manga title. The x-
axis (red) is the filename, the y-axis (green) is the entropy, and the z-axis varies
depending on the row of the tiled display system. The visualization shows a
small cluster of bright colors within multiple scatterplots, which is not present
in the other data sets. Looking at the images on the plot, they are a cluster of
pale gray pages, which contain either a title logo or a pencil drawing of the face
of a character.



Chapter 6

HIPerGUI: A Gesture-oriented

Interface for Team-based Interaction

with Large-Scale Display

Environments Using Multitouch

Mobile Devices

6.1 Introduction

Large-scale visualization environments offer unique opportunities for

scientific research and development. The increased visualization real-estate of

such environments allows multiple experts to be present in front of the system

for interactive and collaborative exploratory analysis and discussion [JLJ+10,

PDW+10]. These wall-sized, high-resolution display environments leverage

the benefits of scalable display arrays, driven by computer clusters, and offer

significant computational, rendering and display capabilities [DLR+09]. When

combined with scalable cluster graphics APIs such as Cross-platform Cluster

Graphics Library (CGLX) [DK10], the system’s resources can be fully utilized

and integrated as a uniform display canvas with a high-degree of interactivity,

83
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Figure 6.1: 14x5 tiled display wall, which is 9.66m wide and 2.25m tall, with a
combined resolution of 286 megapixels.

suitable for real-time visualization and visual analytics (Figure 6.1).

However, many challenges still remain in the context of human computer

interaction [HA08]. As Swaminathan and Sato summarized, "when a display

exceeds a certain size, it becomes qualitatively different: different design issues

come into play and interaction design becomes full-blown environment design

[SS97]." For example, a traditional interaction paradigm that assumes a single

desktop controlled by a single keyboard and mouse, generally does not work

well in these environments. Keyboard and mouse-based approaches limit mo-

bility and are difficult to scale to multiple users, in addition, a simply larger

desktop would be challenging to work with, because 1) the large display sys-

tem requires a pointer to travel much farther, and 2) concurrent user events are

difficult to handle with globally placed GUI widgets.

Traditional virtual interaction paradigms generally assume a pointing

device for point-and-click behavior to interact with virtual objects. This requires

extensive pointer movements and precise target acquisition, limiting our abil-

ity to intuitively, swiftly, and cooperatively operate within the environment. As

opposed to personal desktop systems, large-scale, interactive visualization sys-

tems encourage people to move around. Physical navigation in these environ-

ments has been shown to outperform traditional virtual navigation for basic
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visualization tasks [BN07]. Therefore, interaction techniques should support

a sizable and scalable interaction space. Unfortunately, direct touch and up-

close interaction techniques limit the interaction space to be very close to a dis-

play system, and most of computer vision-based tracking systems do not scale

well. Furthermore, fatigue is an important criterion to consider in designing

interaction paradigms for visual analytics, which generally means interactive

exploratory analysis. The visual analytics tasks may extend over long periods

of time due to the scale and complexity of problems that can be tackled in these

environments.

In this paper, we present a human-computer interface for large display

systems, capturing three primary design decisions that address the above chal-

lenges. First, a multiuser, user-centric GUI that departs from a single, global

desktop paradigm is presented. Second, as opposed to a traditional point-

and-click paradigm, multitouch, gesture-based navigation techniques are devel-

oped based on commonly used gestures for multitouch-enabled mobile devices.

Third, a practically limitless interaction space is provided, allowing for people

to walk around unconstrained while interacting with the system. In combina-

tion with the three design criteria, HIPerGUI presents an interaction paradigm

for large-scale display environments that support team-based, extended dura-

tion, collaborative analysis sessions.

The presented proof-of-concept consists of an interface framework that

enables general navigation tasks, such as interactively browsing through a file

system to access the existing data pool, and arranging visual media (e.g., images

and live streams). Figure 6.2 shows HIPerGUI running on a 4x4 tiled display

wall.

6.2 Design Factors

The goal of HIPerGUI is not to achieve the shortest possible completion

time for a given task, but rather to provide an interaction method for a large

visualization space for extended duration, collaborative sessions.
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Figure 6.2: HIPerGUI on a 4x4 tiled display wall. The user controls his personal
GUI with an iPod touch, identified by a color-coded frame (green for this user),
and a currently active media object at the center of the screen that is tagged the
same way. Two additional users are also represented through their respective
GUIs, shown in red and blue.

Multiuser, User-centric GUI: In a wall or room-sized display environment,

a simple remapping or scaling of the desktop can be a challenging environment

to work with. First, the sheer size of the display system requires the mouse

pointer to travel much farther. For example, opening a file involves locating a

‘File’ item from a menu bar (typically located at the top-left side of the bar), and

then clicking an ‘Open’ item from a drop-down list. This action is awkward

when standing at a wrong location that, e.g., gives an very oblique view of the

menu item. Second, concurrent user events are difficult to handle with a shared

global desktop because of the contentions in using it. In order to address these

issues, a user-centric GUI widget is provided to each individual who joins a

session. This uniquely colored widget provides a default set of items, indepen-

dently owned by each user. The widget is transformable, allowing each user to

modify its size and position when needed, to address the possible presence of
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bezels, readability of custom content (e.g. text size), and overall accessibility.

Minimal Physical Movements (Pointer-Free): Most of the distant interac-

tion approaches are based on a point-and-click paradigm, which requires both

extensive pointer movements and precise pointer positioning to acquire the tar-

get. A common approach to improve the efficiency of picking far away objects

is to reduce the physical movements required to perform that task. Instead of

a pointer, using multitouch gestures on a small mobile device reduces the need

for extensive physical movements and precise pointing. Given that many peo-

ple are now familiar with multitouch-based navigation on smart phones, some

navigation techniques such as moving and scaling an object can be naturally

implemented. One of the goals is to design GUI widgets that can be navigated

through multitouch gestures without a pointer.

Lazy Postures, Anywhere: In order to support interactive, extended dura-

tion collaborative sessions, it is important to allow users to freely walk around

without constraining their position, orientation or posture. HIPerGUI does not

require users to stay in a particular region, or to keep a particular posture for a

long time, or to move their body considerably to produce gestures. In HIPer-

GUI, the events from mobile devices are sent via wireless network, allowing

people to walk around. In addition, mobile devices are entirely content free,

keeping users’ attention on the shared workspace by simply providing them as

a touch-based remote control interface. In this setting, people can share and see

the actions of other people, e.g., navigating a file system to find a particular file

can be done collaboratively by casually monitoring what each other is doing

within the shared workspace (Figure 6.3).

6.3 Gestuer-Action Mapping

HIPerGUI utilizes gesture-action relationships, which are already com-

mon for multitouch mobile devices, such as the ones described in the iOS Hu-

man Interface Guidelines [Inc10]. Gestures may include a flick to scroll or pan

quickly, pinch open/close to zoom in/out, etc. Combined with existing knowl-
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Figure 6.3: A conceptual illustration of a HIPerGUI system. Multiple users can
interact with the objects displayed on the shared workspace. A uniquely colored
menu is provided to each individual who joins a session. Note that people can
hold a mobile device in any way.

edge and a few new gesture-action mappings, this leads to a more gradual learn-

ing curve compared to introducing many new gestures. Below is the list of ges-

tures and their mapping to events in HIPerGUI.

Tap gesture triggers the action attached to the selected object.

Pan gesture moves the selected object. This is also used to navi-

gate through a menu, i.e., a list or grid of items.

Pinch open/close gesture scales up/down the selected object.
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Flick left/right gesture goes forward/backward through a list

of ordered menus. Flick up/down scrolls through a list of items

quickly.

The two new gesture-action mappings are Long Press and Two-finger Pan

gestures. A long press gesture toggles between two different modes (Figure 6.4),

and a two-finger pan gesture (Figure 6.5) provides access to the objects in the

scene. Both are described in the following sections.

Figure 6.4: A long press gesture toggles between two different modes. The left
shows the transformation mode which can scale and move this widget, and the
right shows the navigation mode, which allows navigating through the list of
items within this widget.

6.3.1 Two Modes in Widget

A HIPerGUI widget can have two modes, one is Transformation of pre-

sentation and the other is Navigation of contents. These two modes can be tog-

gled back and forth by long-pressing a multitouch surface, if the currently active

widget implements both modes. When only one mode is implemented, the long

press gesture switches the focus back to the default file browser widget.

The transformation mode enables scaling and moving the selected wid-

get. Unlike the GUI on a mobile device, HIPerGUI is a virtual representation of
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Figure 6.5: A two-finger horizontal pan gesture toggles between a file browser
and the grid view of currently opened objects (e.g., images.) Visually, this ges-
ture flips the front-facing menu by 180 degrees to reveal the other one behind.

a device, which can scale up and down and move to anywhere within the pro-

vided visualization space. In transformation mode, only transformations can be

applied to the selected widget using pan and pinch gestures. When the size and

position of the widget are set, a user can transition to the navigation mode by

long pressing the multitouch surface.

The navigation mode allows menu navigation and item selection. For

example, the list of items in a file browser can be navigated using pan and flick

gestures. A tap gesture selects an item and subsequently triggers an assigned

event, e.g., loading an image.

6.3.2 Pointer-Free Selection

The selection mechanism in our approach is different from the traditional

point-and-click paradigm. The list of items moves around while the selection

area remains at a fixed location in each GUI widget. For example, when a verti-

cally arranged list of items is provided, the list itself moves up and down while

the selection area is fixed at the middle of the list. The closest object to the se-

lection area is chosen as the picked object among those that intersect with the

selection area (Figure 6.6 and 6.7). As a result, extensive pointer movements and

precise pointing, which can be stressful in large-scale display environments, are
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eliminated. Furthermore, the GUI widget can be freely moved across the can-

vas and used to anchor the user’s primary workspace within the larger shared

canvas.

Figure 6.6: Object selection in a file browser via a vertical pan gesture. The
dark gray rectangle is the fixed selection area for the file browser. As the list of
items moves up and down, the selected item is computed based on the distance
between the center of the selected area and the items.

6.4 File And Grid Browsers

The File Browser shown in Figure 6.8 is provided to each user to facilitate

media selection and content creation. The default set of options includes an

access to a data server, predefined sets of images, and video streams, which

are defined by a user in an XML file or automatically generated from the file

structure on the server. Top-level operations include the following:

• Open scans the user’s home directory and subsequently displays the list of

items. Note that a directory scanner is dispatched as a separate thread to

maintain smooth interaction with the file browser.

• Image Set allows reading of multiple images at once, which are described

as a separate list. Multiple lists can be presented when Image Set is trig-

gered, each of which can describe a different set of images.
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Figure 6.7: Object selection in a grid browser via a pan gesture . In this case, the
list of items moves in 2D.

• Slide Show similarly bundles media as a slide show object, which allows

users to go through the media objects one-by-one.

• Live Streams lists available streaming servers, feeding streams from a re-

mote video camera or desktop directly to HIPerGUI application.

• My Stuff shows a linear list of the currently opened items, e.g,. images and

streaming videos, allowing selection of user-specific content.

Illustrated in Figure 6.9 is the Grid Browser, which provides a quick access

to a user’s media objects currently active in the shared context. The grid browser

is initially hidden behind the file browser, and can be exposed by a two-finger

pan gesture as shown in Figure 6.5. It is functionally similar to the My Stuff list,

but the grid browser presents the items in a 2D grid for better space utilization.

Each object in the 2D grid is a proxy object, which is a pointer to the real object

in the scene. When a proxy object is moved to the middle of the grid browser,

the real object, represented by the proxy object reveals itself at the top of the

other objects in the scene. Tapping a proxy object in the grid picks up the real

object for interaction and visually highlights it to get the user’s attention.
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Figure 6.8: Uniquely color-coded three file browser widgets for three different
individuals.

6.5 System Overview

The tiled display systems described in Chapter 2 are used as the basis of

the system. In addition, Ponto et al. [PDW+10] developed a device manager

and server model within the CGLX middleware, enabling multiple devices to

join and leave a session dynamically. Based on this model, a native iOS appli-

cation is developed that connects to and disconnects from the device manager

dynamically. The iOS application recognizes gestures, and subsequently sends

the result as a byte stream, which includes the type of a gesture, the origin of

the gesture, the number of touches, and optionally translation and velocity in-

formation. A CGLX server is embedded into the iOS application, guaranteeing

that these events are sent to the head node, and subsequently executed at both

the head node and cluster nodes synchronously (Figure 6.10).

6.6 User Feedback

While developing HIPerGUI, informal user studies have been conducted

based on interviews and observations. Test users include students, faculty and
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staff, mostly familiar with computer systems and multitouch interfaces. The

purpose of these studies is to refine the user experiences by discovering design

flaws and inappropriate look-and-feel at early stages. In fact, the design deci-

sions described in this paper come from the collective results of this process.

For example, the earlier version of this project has provided a traditional desk-

top replica with a mouse pointer per user, which was discarded because of the

presented reasons in this paper. In this section, the comments on the final ver-

sion are described.

Media object navigation, including translation and scaling were straight-

forward, allowing users to start interacting with objects such as images without

prior instructions. File browser navigation was also straightforward as all users

immediately understood how to navigate through a file system. To select an

item, a single-tap is used because it is necessarily invoked while recognizing a

double-tap. Some people used a double-tap instead and expressed a slight con-

fusion as the event seemed to be invoked slightly earlier than they had expected.

However, they quickly learned to use a single-tap when instructed.

The two new gestures, long press gestures for mode changes and two-

finger pan gestures for switching browsers, required instruction. Users needed

a bit of time to get used to the required duration for a long press gesture, which

is based on the iOS default value, but independently worked out the modes

within a minute of experimentation. When a long press gesture is recognized,

the selected GUI widget changes its appearance to alternate the mode in order

to give users a cue that the mode has changed. Some users missed the visual

cue and let the widget goes back to the original mode by trying again.

One challenge is the initial location of the default file browser widget

when a user joins a session. The current setup on purpose does not include 3D

device or user tracking in order to evaluate “walk-in collaboration,” allowing

users to join spontaneously, without the need of prior configuration, instrumen-

tation or calibration of the new user. The initial position therefore starts from a

predefined location such as the middle of the workspace, requiring subsequent

gesture s to move to the desired position. Depending on the user’s location,
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the widget may have to travel a long distance. Accelerating movement based

on gesture velocity partially addressed the need for object placement across the

whole workspace with a minimal number of pan gestures.

6.7 Conclusion

This paper presents a proof-of-concept interface for large-scale, high-

resolution collaborative workspace using mobile devices. HIPerGUI provides

a pointer-free, multitouch-based, multiuser interaction paradigm based on: 1)

user-centric GUI, providing flexible and individual access to media objects, 2)

the use of common multitouch gestures, easing adoption and increasing user

comfort; 3) mobile devices, providing practically limitless interaction space al-

lowing users to freely operate within a large physical space. With HIPerGUI,

basic navigation tasks were generally easy to understand and rarely required

instructions.
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Figure 6.9: Grid browser for one user showing the currently opened items, e.g.,
images.
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Figure 6.10: Diagram of the system architecture. Each mobile device is running
an embedded CGLX server independently.



Chapter 7

Conclusion

This dissertation presents visual analytics techniques for the large vol-

ume of data sets in scalable display environments. In the development of high-

performance visualization and interaction techniques in these environments,

the essential processes and challenges are identified, including the support for

out-of-core visualization techniques and an interaction paradigm for co-located,

collaborative analysis. The interaction paradigm employs a multi-user, user-

centric GUI using by multitouch mobile devices, allowing multiple users to ac-

tively engage in the analysis. These highly scalable display environments are

created based on a distributed visualization approach, consisting of display ar-

rays and a cluster of commodity PCs. The presented foundation and techniques

have shown to scale more than a terapixel worth of information.

7.1 Contributions

The presented model identifies the important components to develop

highly interactive visual analysis techniques in scalable display environments.

These components include the mapping from the visuals to scalable displays,

the support for collaborative analysis, and the emphasis on the data access for

out-of-core visualization techniques.

Fundamental techniques and mechanisms are then developed that pro-

vide the integrated virtual space, and data and resource management for out-
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of-core visualization of the large volume of high-resolution images. The case

study showed that this approach is highly scalable, as 30-terapixel worth of in-

formation is made immediately accessible to users.

Using the above techniques, an integrated approach to image fusion and

visualization of high-resolution satellite imagery is presented. This system fully

utilizes the rendering resources of the distributed visualization environment,

showing significant performance improvement that allows both image fusion

and visualization to be performed on the fly. This approach provides an ability

to immediately synthesize multiple high-resolution images, readily present the

resulting visuals for further visual analysis. Specifically, it allows researchers to

interactively adjust and experiment a wide range of image fusion and process-

ing parameters, providing the level of interactivity that can change the tradi-

tional image fusion and subsequent visualization processes.

Next, a set of visualization techniques are developed for undirected vi-

sual exploratory analysis of a large cultural data sets with associated multi-

dimensional metadata. These techniques provide interactive sorting and plot-

ting of large image sets based on the metadata. Live controls over the param-

eters exposed by these techniques facilitates the analysis through the develop-

ment and refinement of new hypotheses and insights. The case studies and

results supported the approach and presented techniques.

Finally, the interaction paradigm for collaborative visual analysis is sup-

ported by a multi-user GUI using multitouch mobile devices. Each user who

joins the session is given a uniquely color-coded GUI, which can be navigated

through multitouch gestures. The environments offer a practically limitless

physical space to interact with the display system, as the mobile devices com-

municate with the system over a wireless network. Combined with the visual-

ization capabilities and this interface, a co-located, collaborative workspace is

supported in the distributed visualization environment.
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7.2 Future Work

While the dissertation introduced a visual analytics model for scalable

display environments, it is a limited view of what these environments can of-

fer. Especially, the user experience and collaboration within these environments

require more investigation.

7.2.1 Visualization Multiples

In Chapter 5, the visualization of multiple parameters in a single data set,

and the visualization of multiple data sets are introduced through a technique

named scatterplot multiples. Another possibility based on the idea of multiples

is the Visualization Multiples, which visualizes a data set (or multiple data sets)

using several different visualization techniques. The idea is not new, but is not

exercised at this scale yet. For example, using 5× 14 tiled display wall, 5 visu-

alization techniques such as a scatterplot, 2D histogram, geographical map, pie

chart, and bar graphs of 14 different data sets can be simultaneously viewed.

The challenges would be to provide an efficient way to interact with different

visualization techniques, including selecting the variables, linking the data sets,

and transforming views that provides the meaningful consistency.

7.2.2 Remote Collaboration

In this dissertation, a specific form of the collaboration, which is co-

located collaboration, is covered. The remote collaboration is another important

form of collaboration, especially the number of OptIPortals are increasing glob-

ally. The challenges includes: greater latency, consistency between the shared

workspaces, data sharing and management of very large data sets, and the vi-

sual and audio communication between the remote sites. To tackle these chal-

lenges, a holistic development of the environments must be made in addition

to the software development, including the availability of high-speed and high-

bandwidth network, the scalable data management systems, and the spatial au-

dio environments.
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7.2.3 Long-Term User Studies

The formal user studies require a extensive period of time and generally

careful and rigorous methods to perform, which require a level of expertise in

this field. Each of the systems developed here should be formally tested for long

period of time, because the introduced approach attempted to support progres-

sive and iterative analysis sessions.

Specifically, the cultural analytics system introduced in Chapter 5 sup-

ports the long-term analysis that can stretch to days to weeks. While the pre-

sented case studies and experiences suggest that the system would help the

iterative analysis, formal user studies for extensive period of time are necessary

to strongly claim this point. One interesting point to focus would be how the

researchers develop their insights into the data sets, beginning to see what they

have not seen before through iterative analytic sessions.

The user interaction paradigm introduced in Chapter 6 aimed to support

analysis sessions that last long time. One of the design goals of this interaction

paradigm is to reduce the fatigue. While the design criteria seems reasonable,

there may be other factors that are overlooked that cause the fatigue, when us-

ing these devices in combination with the large display systems for a long time.

In order to invesitgate, the formal user studies may need to be repeatedly per-

formed for extensive period of time.

7.2.4 Production, Presentation, and Dissemination

The scalable display environments offer an interesting opportunity to re-

search into the often neglected or overlooked focus area of visual analytics, pro-

duction, presentation, and dissemination of results. Production is the creation of

materials that summarize the results of an analytical effort. Presentation is the

packing of those materials in a way that helps the audience understand the ana-

lytical results in context using terms that are meaningful to them. Dissemination

is the process of sharing that information with the intended audience [TC06].

While building the theoretical foundation for these steps may require
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more research, the scalable display environments have an potential to support

these steps. For example, these environments have been and are being regu-

larly used as demonstration environments to general public in multiple global

research sites. A purpose of these demonstrations is to present and disseminate

information about the products, projects, research results across diverse areas.

It may now possible to share these experiences and present them as research

results.



Bibliography

[ABM+07] Wolfgang Aigner, Alessio Bertone, Silvia Miksch, Christian
Tominski, and Heidrun Schumann. Towards a conceptual frame-
work for visual analytics of time and time-oriented data. In WSC
’07: Proceedings of the 39th conference on Winter simulation, pages
721–729, 2007.

[BB05] Anastasia Bezerianos and Ravin Balakrishnan. The Vacuum: Fa-
cilitating the Manipulation of Distant Objects. Proceedings of the
SIGCHI conference on Human factors in computing systems - CHI ’05,
page 361, 2005.

[BBB+10] Sebastian Boring, Dominikus Baur, Andreas Butz, Sean Gustafson,
and Patrick Baudisch. Touch projector: mobile interaction through
video. Proceedings of the 28th international conference on Human fac-
tors in computing systems - CHI ’10, page 2287, 2010.

[BCR+03] Patrick Baudisch, Edward Cutrell, Dan Robbins, Mary Czerwin-
ski, Peter Tandler, Benjamin Bederson, Alex Zierlinger, and Fraun-
hofer Ipsi. Drag-and-Pop and Drag-and-Pick : techniques for ac-
cessing remote screen content on touch- and pen-operated sys-
tems. Human-Computer Interaction–INTERACT ’03, pages 57–64,
2003.

[BCW87] Richard A. Becker, William S. Cleveland, and Allan R. Wilks. Dy-
namic Graphics for Data Analysis. Statistical Science, 2(4):355–383,
1987.

[Bed01] Benjamin B. Bederson. PhotoMesa: a zoomable image browser
using quantum treemaps and bubblemaps. Proceedings of the 14th
annual ACM symposium on User interface software and technology -
UIST ’01, page 71, 2001.

[BGBL04] Renaud Blanch, Yves Guiard, and Michel Beaudouin-Lafon. Se-
mantic Pointing: Improving Target Acquisition with Control-

103



104

Display Ratio Adaptation. CHI ’04 Proceedings of the SIGCHI con-
ference on Human factors in computing systems, 6(1):519–526, 2004.

[BJB09] Sebastian Boring, Marko Jurmu, and Andreas Butz. Scroll, Tilt or
Move It: Using Mobile Phones to Continuously Control Pointers
on Large Public Displays. Proceedings of the 21st Annual Conference
of the Australian Computer-Human Interaction Special Interest Group
on Design: Open 24/7 - OZCHI ’09, page 161, 2009.

[BMMS91] Andreas Buja, John Alan McDonald, John Michalak, and Werner
Stuetzle. Interactive data visualization using focusing and link-
ing. Proceedings of the 2nd conference on IEEE Visualization ’91, pages
156–163, 1991.

[BMZ+06] Susan Brennan, Klaus Mueller, Greg Zelinsky, Iv Ramakrishnan,
David Warren, and Arie Kaufman. Toward a Multi-Analyst, Col-
laborative Framework for Visual Analytics. 2006 IEEE Symposium
On Visual Analytics And Technology, pages 129–136, October 2006.

[BN07] Robert Ball and Chris North. Realizing embodied interaction for
visual analytics through large displays. Computers & Graphics,
31(3):380–400, June 2007.

[BRS05] Rafael Ballagas, Michael Rohs, and Jennifer G Sheridan. Sweep
and Point and Shoot: Phonecam-Based Interactions for Large Pub-
lic Displays. CHI ’05 extended abstracts on Human factors in comput-
ing systems - CHI ’05, page 1200, 2005.

[CB03] Xiang Cao and Ravin Balakrishnan. VisionWand: interaction tech-
niques for large displays using a passive wand tracked in 3D. Pro-
ceedings of the 16th annual ACM symposium on User interface software
and technology - UIST ’03, 5(2):173–182, 2003.

[CCM09] Carlos D. Correa, Yu-Hsuan Chan, and Kwan-Liu Ma. A frame-
work for uncertainty-aware visual analytics. 2009 IEEE Symposium
on Visual Analytics Science and Technology, pages 51–58, 2009.

[CES07] Kris Cook, Rae Earnshaw, and John Stasko. Discovering the un-
expected. IEEE computer graphics and applications, 27(5):15–9, 2007.

[CGR00] Chaomei Chenl, George Gagaudakis, and Paul Rosin. Content-
Based Image Visualization. Information Visualization, pages 1–6,
2000.

[Chi00] E.H. Chi. A taxonomy of visualization techniques using the data
state reference model. IEEE Symposium on Information Visualization
2000. INFOVIS 2000. Proceedings, 94301(Table 2):69–75, 2000.



105

[Cho06] Myungjin Choi. A new intensity-hue-saturation fusion approach
to image fusion with a tradeoff parameter. IEEE Transactions on
Geoscience and Remote Sensing, 44(6):1672–1682, 2006.

[CLF+04] Michelle Chang, John J. Leggett, Richard Furuta, Andruid Kerne,
J. Patrick Williams, Samuel A. Burns, and Randolph G. Bias. Col-
lection understanding. Proceedings of the 2004 joint ACM/IEEE con-
ference on Digital libraries - JCDL ’04, page 334, 2004.

[CM96] John Cupitt and Kirk Martinez. VIPS: an image processing system
for large images. Proceedings of SPIE, pages 19–28, 1996.

[CMS99] Stuart K Card, J D Mackinlay, and Ben Shneiderman. Readings in
Information Visualization: Using Vision to Think. The Morgan Kauf-
mann Series in Interactive Technologies. Morgan Kaufmann, 1999.

[DC02] James Davis and Xing Chen. Lumipoint: multi-user laser-
based interaction on large tiled displays. Displays, 23(5):205–211,
November 2002.

[DHM11] Jeremy Douglass, William Huber, and Lev Manovich. Under-
standing scanlation: How to read one million fan-translated
manga pages. Image & Narrative, 12(1):190–228, 2011.

[DK10] Kai-Uwe Doerr and Falko Kuester. CGLX: A Scalable, High-
performance Visualization Framework for Networked Display
Environments. IEEE transactions on visualization and computer
graphics, pages 1–14, April 2010.

[DLR+09] T Defanti, J Leigh, L Renambot, B Jeong, A Verlo, L Long,
M Brown, D Sandin, V Vishwanath, Q Liu, Mason J. Katz,
Philip Papadopoulos, Joseph P. Keefe, Gregory R. Hidley, Gre-
gory L. Dawe, Ian Kaufman, Bryan Glogowski, Kai-Uwe Doerr,
Rajvikram Singh, Javier Girado, Jurgen P. Schulze, Falko Kuester,
and Larry Smarr. The OptIPortal, a scalable visualization, storage,
and computing interface device for the OptiPuter. Future Genera-
tion Computer Systems, 25(2):114–123, February 2009.

[Dol07] Henrico Dolfing. A Visual Analytics Framework for Feature and
Classif ier Engineering. Master Thesis, 2007.

[EDF08] N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling the Dice: Mul-
tidimensional Visual Exploration using Scatterplot Matrix Navi-
gation. IEEE Transactions on Visualization and Computer Graphics,
14(6):1539–1148, November 2008.



106

[FD05] Michael Friendly and Daniel Denis. The early origins and devel-
opment of the scatterplot. Journal of the History of the Behavioral
Sciences, 41(2):103–130, 2005.

[FFH01] James Fogarty, Jodi Forlizzi, and Scott E. Hudson. Aesthetic infor-
mation collages: generating decorative displays that contain in-
formation. Proceedings of the 14th annual ACM symposium on User
interface software and technology - UIST ’01, 3(2):141, 2001.

[Fry99] Ben Fry. Valence. Online, 1999.

[GBL99] Saul Greenberg, Michael Boyle, and Jason Laberge. PDAs and
shared public displays: Making personal information public, and
public information personal. Personal Technologies, 3(1-2):54–64,
March 1999.

[GR10] John Gantz and David Reinsel. The Digital Universe Decade âĂŞ
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