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Abstract
Despite considerable advances in the treatment of multiple myeloma (MM) in the last decade, a substantial proportion of
patients do not respond to current therapies or have a short duration of response. Furthermore, these treatments can have
notable morbidity and are not uniformly tolerated in all patients. As there is no cure for MM, patients eventually become
resistant to therapies, leading to development of relapsed/refractory MM. Therefore, an unmet need exists for MM treatments
with novel mechanisms of action that can provide durable responses, evade resistance to prior therapies, and/or are better
tolerated. B-cell maturation antigen (BCMA) is preferentially expressed by mature B lymphocytes, and its overexpression
and activation are associated with MM in preclinical models and humans, supporting its potential utility as a therapeutic
target for MM. Moreover, the use of BCMA as a biomarker for MM is supported by its prognostic value, correlation with
clinical status, and its ability to be used in traditionally difficult-to-monitor patient populations. Here, we review three
common treatment modalities used to target BCMA in the treatment of MM: bispecific antibody constructs, antibody–drug
conjugates, and chimeric antigen receptor (CAR)-modified T-cell therapy. We provide an overview of preliminary clinical
data from trials using these therapies, including the BiTE® (bispecific T-cell engager) immuno-oncology therapy AMG 420,
the antibody–drug conjugate GSK2857916, and several CAR T-cell therapeutic agents including bb2121, NIH CAR-
BCMA, and LCAR-B38M. Notable antimyeloma activity and high minimal residual disease negativity rates have been
observed with several of these treatments. These clinical data outline the potential for BCMA-targeted therapies to improve
the treatment landscape for MM. Importantly, clinical results to date suggest that these therapies may hold promise for deep
and durable responses and support further investigation in earlier lines of treatment, including newly diagnosed MM.

Introduction

Multiple myeloma (MM) accounts for ~10% of all
hematologic malignancies in the United States, with the
highest incidences being observed in developed countries
[1]. Considerable advances have been made in the last
decade regarding the knowledge of the underlying biology
and natural progression of MM. In addition, the use of

proteasome inhibitors and immunomodulatory imide
drugs (IMiDs) has improved treatment options for this
condition [1]. Despite these advances, the 5-year survival
rate for patients with MM is ~50% and can be lower in
high-risk patients (e.g., frail elderly patients, MM with
high-risk cytogenetics), highlighting an unmet need for
improved treatment options for MM [1, 2]. With current
approaches, MM is not considered curable and relapse is
considered an inevitable part of the disease course, leading
to the development of relapsed/refractory MM (RRMM)
[1, 3–5]. Patients with RRMM have progressively shorter
durations of remission and lesser responses to standard
salvage therapies after relapse and treatment resistance. Of
note, patients who progress within 18 months of starting
initial therapy have particularly poor outcomes [1]. Ulti-
mately, there remains an unmet need for novel therapies
for newly diagnosed MM that could provide more durable
responses than standard therapies, or even potentially a
cure if used early in the disease course, as well as
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therapies for RRMM that can evade resistance to other
therapies [1, 3, 4].

B-cell maturation antigen (BCMA) has emerged as a
promising target for MM therapies. Currently, the three
most common treatment modalities for targeting BCMA are
bispecific antibody constructs including BiTE® (bispecific
T-cell engager) immuno-oncology therapies, antibody–drug
conjugates (ADCs), and chimeric antigen receptor (CAR)-
modified T-cell therapy. In this review, we provide an
overview of therapies from these classes that have presented
or published clinical data, including the BiTE® molecule
AMG 420, the ADC GSK2857916, and several CAR T-cell
therapies including NIH CAR-BCMA, bb2121, and LCAR-
B38M.

Materials and methods

Published or presented clinical data for BCMA-targeted
therapies were identified through PubMed (December 2,
2013 through May 16, 2019) and via search of abstracts
from major oncology and hematology conferences (2016
through May 2019, up to and including ASCO 2019).
BCMA-targeted therapies with clinical data presented or
published as of May 16, 2019 are summarized in this
review. The search terms used were “BCMA”, “CD269,”
and “TNFRSF17” for the therapeutic target and “MM” and
“myeloma” for the disease state. Major oncology and
hematology conferences included American Society of
Hematology, American Society of Clinical Oncology
(ASCO), American Association for Cancer Research, Eur-
opean Hematology Association, International Myeloma
Workshops, and Transplantation & Cellular Therapy
Meetings (cosponsored by the American Society for
Transplantation and Cellular Therapy and the Center for
International Blood & Marrow Transplant Research). The
most recent evidence regarding the biology of BCMA and
its use as a biomarker was assessed using published
research data and review articles.

Rationale for targeting BCMA for treatment
of MM

Biology of BCMA

B-cell maturation antigen, also referred to as TNFRSF17 or
CD269, is a member of the tumor necrosis factor receptor
(TNFR) superfamily [6, 7]. Ligands for BCMA include B-
cell activating factor (BAFF) and a proliferation-inducing
ligand (APRIL), of which APRIL has a higher affinity for
BCMA [8]. BCMA is expressed preferentially by mature B
lymphocytes, with minimal expression in hematopoietic

stem cells or nonhematopoietic tissue, and is essential for
the survival of long-lived bone marrow plasma cells (PCs),
but not overall B-cell homeostasis [9–12]. Membrane-
bound BCMA can undergo γ-secretase–mediated shedding
from the cell surface, leading to circulation of soluble
BCMA (sBCMA) and reduced activation of surface BCMA
by APRIL and BAFF [7, 13, 14].

Biology of BCMA in MM

The overexpression and activation of BCMA are associated
with progression of MM in preclinical models and humans,
which makes it an attractive therapeutic target [7, 15, 16].
Murine xenografts with induced BCMA overexpression
grow faster than BCMA-negative controls. This over-
expression leads to the upregulation of canonical and non-
canonical nuclear factor kappa-B pathways, as well as
enhanced expression of genes critical for survival, growth,
adhesion, osteoclast activation, angiogenesis, metastasis,
and immunosuppression [15]. Similar results are observed
after APRIL-induced activation of BCMA in ex vivo human
MM cells [15]. Furthermore, sBCMA can inhibit the
activity of BAFF via complex formation, leading to MM-
associated immunodeficiency [16]. BCMA is also expressed
at much lower concentrations (9- to 50-fold lower) by
plasmacytoid dendritic cells, which are known to help
promote MM PC survival in the bone marrow environment
[13, 17]. Additional details regarding the role of BCMA in
B-cell biology and in MM, including illustrations, can be
found in other reviews [18–21].

BCMA as a biomarker for diagnosis of MM

Malignant MM PCs typically compose a small subset of
bone marrow cells, so accurate identification of these cells
is important to ensure representative characterization of the
disease [22]. The traditional MM biomarker CD138 is
highly specific to PCs but rapidly disappears from the cell
surface when sample analysis is delayed or if the sample is
frozen [22]. Therefore, additional biomarkers to diagnose or
monitor MM are needed.

BCMA is highly expressed on malignant PCs collected
from patients with MM compared with normal bone mar-
row mononuclear cells (BMMCs) from healthy donors, and
several studies have assessed whether BCMA has value as a
marker for diagnosis, prognosis, and/or as a predictor of
treatment response (Table 1) [7, 23–28]. In contrast with
CD138, BCMA is readily identified in delayed and frozen
MM samples [22]. The levels of membrane-bound BCMA
can be measured by various techniques (e.g., flow cyto-
metry, immunohistochemistry), with flow cytometry being
more sensitive than immunohistochemistry, though the
quantification of BCMA levels can differ between studies
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owing to differences in methodology [7, 23, 28]. Interest-
ingly, BCMA mRNA is expressed at similar levels by
malignant PCs in patients with newly diagnosed MM and
RRMM, suggesting that BCMA may be a promising ther-
apeutic target throughout the MM disease course [24].

sBCMA levels are elevated in patients with MM and
correlate with the proportion of MM cells in BMMC sam-
ples [7]. sBCMA may also serve as a valuable biomarker in
select patient populations that are otherwise difficult to
monitor. The levels of sBCMA are independent of renal
function, which permits its use as a biomarker in patients
with renal insufficiency, and sBCMA is detectable in the
serum of patients with nonsecretory disease as well as in
nonsecretory murine xenograft models [7, 21, 29].

BCMA as a tool for prognosis and treatment response

The clinical course of MM is variable and there remains a
need for reliable methods to assess the prognosis of patients
and monitor their disease status [29]. The levels of sBCMA
have prognostic value, as patients with higher levels, par-
ticularly those ~25–325 ng/mL or higher, have poorer
clinical outcomes than those with lower sBCMA values
[7, 25, 29]. Similarly, baseline sBCMA levels have been
suggested to be inversely correlated with future response to
treatment [7, 30], though this correlation has not been
observed in all studies [25, 31–34]. Higher sBCMA levels
in patients with monoclonal gammopathy of undetermined
significance or smoldering MM also appear to be associated
with an increased risk of progression to MM [35].

The measurements of sBCMA may also be useful for
monitoring patient response to ongoing therapy. Patients
who have responded to therapy have reduced sBCMA
levels compared with patients with progressive disease
[7, 27]. Changes in sBCMA levels tend to correlate with the
clinical status of patients with MM during anti-MM treat-
ment, as well as tumor mass in preclinical models
[7, 21, 26–29, 36, 37]. For example, one study found that
patients with a complete response (CR) had lower sBCMA
levels (median, 38.9 ng/mL) than patients with a partial or
minimal response (median, 99.7 ng/mL) or nonresponsive
disease (median, 195.3 ng/mL) [29]. Because sBCMA has a
much shorter serum half-life (24–36 h) compared with M-
protein (3–4 weeks), changes in sBCMA more rapidly
reflect changes in disease status than M-protein levels and
therefore may serve as a useful alternative and potentially
more sensitive marker for monitoring disease status
[20, 34]. Notably, sBCMA levels do not appear to change
more significantly in response to one particular class of anti-
MM therapy over others [7].

The efficacy and durability of anti-BCMA therapies may
be particularly dependent on sBCMA levels. It has been
demonstrated that sBCMA can bind to and interfere with

anti-BCMA antibodies [38]. In this case, drugs that inhibit γ-
secretase could enhance the efficacy of BCMA-targeted
therapy by reducing shedding of BCMA from the cell surface
and subsequent interference of BCMA-targeted therapies by
sBCMA [20, 21, 38]. An additional approach could be to use
anti-BCMA monoclonal antibodies (mAbs) with higher
specificity for membrane-bound BCMA than sBCMA [39].
As it is currently unclear whether changes in membrane-
bound or sBCMA levels during therapy could alter the long-
term efficacy of anti-BCMA therapies, additional investiga-
tion into the relationship between baseline sBCMA and
response to BCMA-directed therapies is warranted.

Treatment modalities to target BCMA

Given the selective expression of BCMA on malignant PCs,
several BCMA-targeted therapies have been developed with
the aim of eradicating these malignant cells through distinct
mechanisms. Current anti-BCMA therapies generally fall
into one of three classes: bispecific antibody constructs,
including BiTE® (bispecific T-cell engager) molecules,
ADCs, and CAR T-cell therapy. In this section, we provide
an overview of anti-BCMA therapies in these classes,
focused on therapies with clinical data.

Use of minimal residual disease measures in MM

In addition to impressive response rates by International
Myeloma Working Group criteria, several BCMA-targeted
therapies described below have demonstrated minimal
residual disease (MRD)-negative status in heavily pre-
treated patients with RRMM [27, 34, 40, 41]. Minimal
residual disease is defined as the presence of a small
number of tumor cells after treatment that is below the level
of detection using conventional morphologic assessments
(e.g., stringent CR [sCR], CR). The precise definition of
MRD negativity depends on the threshold and detection
method used (e.g., flow cytometry, next-generation
sequencing) [42, 43]. The use of MRD endpoints in clin-
ical studies of hematologic malignancies has been
increasing over time, and achieving MRD negativity is
associated with better clinical outcomes [42, 44]. Even in
cases in which patients achieve a CR by conventional
measurements, patients who are MRD negative may have
longer overall and progression-free survival (PFS) com-
pared with patients who achieve a CR but are MRD posi-
tive [42, 43]. Therapies that help patients attain MRD-
negative status along with deep morphological remission
(i.e., CR) could ultimately lay the groundwork for
achieving a cure for MM [42]. However, there are limita-
tions to MRD measurements in the RRMM setting. First,
the measurement and definition of MRD may not always be

988 N. Shah et al.



reproducible across studies, as techniques for assessing
MRD differ in sensitivity and the cutoff used for defining
MRD (e.g., 10−4, 10−6) have not yet been standardized
[42, 43]. Second, MRD negativity cannot be directly
interpreted as a cure, and some patients who do not achieve
deep molecular remission still achieve long-term disease
control [42]. Third, there are limited clinical data that have
directly assessed the role of MRD in MM for guiding
treatment decisions [42, 43]. Finally, the assessment of
MRD in MM to date has been primarily in the newly
diagnosed or maintenance setting; therefore, the role of
MRD in RRMM prognosis or guidance of future treatment
remains unclear [42].

Bispecific antibody constructs

Bispecific antibody constructs are engineered to have dual
antigen specificity to facilitate cell-to-cell interactions
between the patients’ own T cells and malignant cells
expressing tumor-specific antigens [45]. Several different
structures have been used for bispecific antibody constructs
investigated in oncological clinical trials, as illustrated in a
recent review [46]. Forms of these constructs that have been
investigated in MM include BiTE® (bispecific T-cell
engager; Amgen, Thousand Oaks, CA, USA) molecules
and DuoBody® (Genmab A/S, Copenhagen, Denmark)
technology, among others. BiTE® molecules are fusion
proteins consisting of single-chain variable fragments
(scFv) with unique antigen specificities (Fig. 1) [45].
DuoBody® bispecific antibody constructs are generated via
Fab-arm exchange, which uses mutations and recombina-
tion at the CH3–CH3 antibody interface to combine heavy
and light chain homodimers from two separate mAbs into a
single heterodimeric, bispecific antibody structure [47].

Of these two modalities, BiTE® molecules are currently
the only type of bispecific antibody construct with pre-
liminary efficacy data from clinical trials in MM [41, 48].
The rationale for use of BiTE® molecules in MM is also
supported by the antitumor activity of blinatumomab, which
is approved for treatment of select patients with acute
lymphoblastic leukemia (ALL). Blinatumomab is a BiTE®
molecule that engages CD3+ cytotoxic T cells and CD19+

B cells to recognize and eliminate CD19+ ALL blasts,
leading to a survival benefit of 3.7 months compared with
chemotherapy in patients with Philadelphia chromosome-
negative B-cell ALL [49, 50]. BiTE® molecules for MM
incorporate one scFv that engages the T-cell receptor CD3ε
subunit, while the other engages a tumor-specific antigen
expressed on malignant cells. This dual engagement leads to
the formation of a cytolytic synapse between the T cell and
the BCMA-expressing cell. Because formation of the
cytolytic synapse is independent of standard antigen
recognition and costimulation mediated by major histo-
compatibility complex class I, lysis of the target tumor cell
occurs in a manner that is independent of immune escape
mechanisms that tumor cells may develop to evade detec-
tion. CD3ε is expressed by all CD8+ and CD4+ T cells,
which enables polyclonal T-cell activation, expansion,
cytokine production, and tumor cell lysis [51].

AMG 420

AMG 420, formerly BI 836909, is a BCMA × CD3 BiTE®
molecule that has been investigated in patients with RRMM
(Table 2). Data from a first-in-human, phase 1 dose-
escalation study (NCT02514239) reported an objective
response rate (ORR) of 70% (7/10) at 400 μg/day, which
included five MRD-negative CRs (i.e., a 50% MRD-

A

Anti-CD3 
mAb

Anti-BCMA 
mAb

Flexible 
linker

T cell

CD3

TCR

BCMA×CD3
BiTE® molecule

B

BCMA×CD3
DuoBody®

technology

Anti-CD3 
mAb

Anti-BCMA 
mAb

Fab-arm 
exchange

CD3

T cell
Malignant 

plasma cell
TCR

BCMABCMA

Malignant 
plasma cell

Cellular lysis Cellular lysis

Fig. 1 Bispecific antibody
constructs facilitate cell-to-cell
interactions via dual antigen
specificity. Different forms of
bispecific antibody constructs
include BiTE® molecules (left)
and DuoBody® technology
(right). Engagement of T cells to
malignant cells expressing B-
cell maturation antigen (BCMA)
leads to selective, redirected
lysis of MM cells.
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negativity rate), one VGPR, and one PR [41, 48]. Minimal
residual disease in this study was defined as <1 tumor cell
per 104 normal cells in the bone marrow by flow cytometry.
As of cutoff for the most recently presented data, some
responses were durable over 1 year, and two patients were
in ongoing treatment at the 400 μg/day dose. Overall,
median time to any response was 1 month. Serious AEs
(SAEs) observed in more than one patient were infections
and polyneuropathy (PN). Treatment-related SAEs included
two grade 3 PNs and one grade 3 edema. Grade 2 or 3
cytokine release syndrome (CRS) was observed in 3 of 42
patients included in the phase 1 study. AMG 701, a half-life
extended BiTE® molecule targeted to BCMA, appears to
induce potent T cell-directed lysis of BCMA-positive MM
cells in vitro [52] and is in clinical development.

PF-06863135

PF-06863135 (PF-3135) is a humanized bispecific IgG
mAb consisting of anti-CD3 and anti-BCMA-targeting arms
paired through hinge-mutation technology within an IgG2a
backbone [53]. Safety results from a phase 1 dose-
escalation study in patients with RRMM suggest that PF-
3135 is well tolerated, with no dose-limiting toxicities or
CRS events observed in the first five patients treated [53].

Other bispecific antibody constructs in clinical
development

Other BCMA-targeted bispecific antibody constructs in
clinical development that have demonstrated preclinical
efficacy include JNJ-957 (a humanized BCMA × CD3 bis-
pecific antibody construct with DuoBody® technology)
[54], REGN5458 (a humanized BCMA × CD3 bispecific
antibody construct) [55], TNB-383B (a fully human
BCMA × CD3 bispecific antibody construct with a low-
activating αCD3 arm that preferentially activates effector
T cells over regulatory T cells) [56], and CC-93269 (pre-
viously known as BCMA-TCB2/EM901, a dual-arm,
human IgG1-based bispecific antibody construct with one
CD3 and two BCMA-binding sites) [57, 58].

Antibody–drug conjugates

ADCs are tumor-associated antigen (TAA)-targeted mAbs
conjugated to toxic payloads, such as tubulin polymeriza-
tion inhibitor monomethyl auristatin F (MMAF), pyrrolo-
benzodiazepine (PBD), or the RNA polymerase II inhibitor
α-amanitin, using a cleavable or non-cleavable linker
[17, 31, 59, 60]. Once bound to TAA-expressing target
cells, ADCs are internalized and the toxic payload is
released to induce DNA damage and cell death (Fig. 2)
[17, 39, 59]. Cleavable linkers are enzymatically processed

within the target cell, while the action of ADCs with non-
cleavable linkers requires degradation of the attached anti-
body within lysosomes to release the payload [59].
Currently, one anti-BCMA ADC (GSK2857916) has
demonstrated antimyeloma activity in a phase 1 trial
(Table 2; described further below), and others have been
investigated in preclinical species.

GSK2857916

The anti-BCMA ADC GSK2857916 consists of an afuco-
sylated, humanized IgG1 anti-BCMA mAb conjugated to
the tubulin polymerization inhibitor MMAF [31, 61]. The
use of a defucosylated Fc region also helps facilitate the
binding of effector cells to promote cell lysis of BCMA-
expressing tumor cells via antibody-dependent cell-medi-
ated cytotoxicity and antibody-dependent cellular-mediated
phagocytosis [17]. GSK2857916 was investigated in a
phase 1 trial of patients with progressive MM
(NCT02064387) that included dose escalation and expan-
sion (Table 2) [31, 61]. GSK2857916 was administered via
1-h infusions once every 3 weeks, and the ORR in the dose-
expansion phase was 60% (21/35 patients), including two
sCR, three CR, 14 VGPR, and two PR. Overall median PFS
in these patients was 12.0 months. The most common grade
3 or 4 adverse events (AEs) during dose expansion were

Toxic
payload

ADC 
binding

Internalization

Lysosomal 
degradation

Release of 
toxic payloadBCMA

ADC Anti-BCMA
mAb

Fig. 2 Antibody–drug conjugates bind to tumor-associated antigens on
target cells, which leads to subsequent internalization and release of
the toxic payload to induce selective cell death.
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thrombocytopenia (34%) and anemia (17%). Corneal events
were reported in 69% of patients, most of which were mild
to moderate in severity, and had a median duration of
35 days. GSK2857916 was granted breakthrough therapy
designation by the US Food and Drug Administration
(FDA) in November 2017 and is currently being investi-
gated in clinical trials in combination with IMiD therapies
for treatment of patients with RRMM [62].

Other anti-BCMA ADCs in clinical development

Other anti-BCMA ADCs in clinical development include
HDP-101 (an anti-BCMA antibody conjugated to the RNA
polymerase II inhibitor amanitin), which may provide potent
antitumor activity in patients with 17p deletions due to
reduced RNA polymerase II subunit A expression in these
patients, and MEDI2228, an anti-BCMA mAb conjugated to
the PBD tesirine via a cleavable linker [39, 60, 63].

Chimeric antigen receptor (CAR)-modified T-cell
therapy

CAR T cells are genetically modified T cells that express a
CAR targeted against a specific TAA, which upon binding
initiates T-cell activation in a human leukocyte
antigen–independent manner (Fig. 3) [64–67]. These CAR
constructs consist of TAA-targeted scFvs (typically murine
or human) connected to the CD3ζ intracellular signaling
domain along with costimulatory domains (e.g., CD28,
OX40, 4-1BB) by an extracellular spacer and transmem-
brane domain [65–67]. First-generation CARs only con-
tained a CD3ζ signaling domain, but next-generation CARs
have included multiple costimulatory domains to enhance
the likelihood of CAR T-cell proliferation [65, 66]. Pro-
liferation of CAR T cells in vivo has been shown to cor-
relate with clinical activity and is frequently assessed in
preclinical and clinical studies [26, 27, 68].

CAR T cells are typically generated from autologous
T cells collected from the patient via leukapheresis, mod-
ified to express the CAR, and expanded ex vivo. While the
CAR T cells are being manufactured, patients may receive

bridging chemotherapy to maintain disease control before
the CAR T cells are ready to be infused back into the patient
[34, 64, 65, 69]. Before reinfusion of the expanded CAR
T cells, most patients undergo a conditioning lymphode-
pletion chemotherapy regimen (e.g., fludarabine and
cyclophosphamide), which reduces endogenous levels of
lymphocytes to create a favorable environment for CAR T-
cell expansion, persistence, and subsequent activity
[64, 70, 71].

Anti-BCMA CAR T-cell therapies in clinical development

Several BCMA-targeted CAR T-cell therapies have demon-
strated efficacy in early-phase clinical trials (Table 3).
Though the constructs for these CAR T cells share some
similarities, they differ in the costimulatory domains used
(e.g., 4-1BB [33, 34, 37, 72, 73], CD28 [27, 74, 75], OX40
[75]), hinge regions (e.g., CD8 [27, 34, 37]), transmembrane
domain (e.g., CD8 [27, 37, 76], CD28 [33, 74]), the species
used to generate anti-BCMA scFvs (e.g., murine [27, 74],
human [33, 37, 73, 77], llama [32]), and the use of mod-
ifications to enhance the safety of the CAR T-cell therapy
(e.g., truncated epidermal growth factor receptor [73, 74, 77]
or other safety switches [78]). The process of generating
CAR T-cell therapies can also notably differ between dif-
ferent compounds, including the method of transduction
(retroviral vs lentiviral), and the culture media used for
ex vivo enrichment and stimulation of CAR T cells (e.g.,
paramagnetic beads coated with anti-CD3/anti-CD28 mAbs,
OKT3, phosphoinositide 3 kinase inhibitors). Of note,
although most CAR T-cell therapies to date are transduced
using either a retroviral or lentiviral vector, the CAR T-cell
therapy P-BCMA-101 is produced using the piggyBacTM

DNA modification system and is the only BCMA-targeted
CAR T-cell therapy produced using a non-viral transduction
method to date [78].

In addition to differences in the structure and manu-
facturing of CAR T-cell constructs, clinical trial designs and
results have differed between BCMA-targeted CAR T-cell
therapies to date, including differences in the studied patient
populations, dosing and persistence of CAR T cells, and

CD3

T cell Malignant 
plasma cell

TCR

BCMA

Anti-BCMA 
scFV

CAR

CD3ζ
signaling 
domain

SpacerHinge 
region

Costimulatory 
domain(s) 

(eg, CD28, 4-1BB)

Fig. 3 Chimeric antigen
receptors (CARs) consist of
tumor-associated antigen
(TAA)-targeted single-chain
variable fragments connected
to intracellular signaling
domains along with
costimulatory domains. T cells
that are genetically modified to
express CARs bind to TAA-
expressing target cells to initiate
cellular lysis and death.
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efficacy and safety data (Table 3). Clinical data for several
of these therapies show ORR > 80% in patients with
RRMM. The most common AEs across therapies are CRS
and neurotoxicity, though incidence, severity, and time to
CRS onset vary by therapy.

bb2121 and bb21217

The CAR T-cell therapy bb2121 has been investigated in
patients with RRMM who have ≥50% BCMA expression
on malignant cells [34]. The ORR was 85% (28/33 patients)
and 45% of patients experienced CR or sCR, with a median
duration of response of 10.9 months. Median PFS was
11.8 months. In 16 responders evaluated for MRD nega-
tivity, 100% were MRD negative at 10−4 cells or better,
94% were MRD negative at 10-5 cells or better, and 19%
were MRD negative at 10−6 cells. In contrast, two patients
who did not achieve a response to bb2121 were MRD
positive 1 month post infusion. All 33 patients experienced
AEs, with 97% of patients experiencing at least one grade ≥
3 AE. CRS occurred in 76% of patients, including grade 3
CRS in two patients. Among 14 patients experiencing
neurotoxicity, one patient had grade 4 neurotoxicity 11 days
after infusion. On the basis of early clinical data, bb2121
received breakthrough therapy designation from the FDA in
late 2017.

Another CAR T-cell construct similar to bb2121, known
as bb21217, is also under clinical investigation [40]. These
CAR T cells are cultured in the presence of the phosphoi-
nositide 3 kinase inhibitor bb007 ex vivo to promote a
memory-like phenotype, which is hypothesized to increase
the persistence and potency of CAR T cells. Among seven
treated patients, ORR was 86% (one sCR, three VGPR, and
two PR), and all three evaluable responders were MRD
negative by next-generation sequencing. CRS was observed
in 62.5% (5/8) of patients, including one case of grade 3
CRS that was accompanied by grade 4 encephalopathy with
signs of posterior reversible encephalopathy syndrome.

NIH CAR-BCMA

NIH CAR-BCMA has been investigated in a phase 1 dose-
escalation trial in patients with measurable MM and uni-
form BCMA expression on PCs [26, 27]. Among 16
patients treated with doses of 9 × 106 cells/kg or higher, the
ORR was 81% (13/16), and all 11 evaluated patients had
MRD-negative disease 2 months after NIH CAR-BCMA
infusion as assessed by bone marrow flow cytometry (limit
of detection, 7 × 10−6). Duration of myeloma responses
ranged from 2 to 51 weeks, and 6 of the 11 patients who
were MRD negative had an ongoing response at the last
follow-up before publication. Treatment-related toxicity
was mild at lower doses (no grade ≥ 3 CRS). However,

CRS-related toxicity was substantial at the highest dose
tested (9 × 106 cells/kg), particularly for patients with high
tumor burden, and, overall, 38% of patients required
vasopressor support for hypotension. Neurologic toxicities
accompanying severe CRS were limited to confusion or
delirium, except for one patient who experienced encepha-
lopathy and muscle weakness consistent with PN.

FCARH143

FCARH143 is a fully human BCMA-targeting CAR T-cell
therapy that is formulated in a 1:1 ratio of CD4+ to CD8+

CAR T cells for infusion and expresses a truncated non-
functional human epidermal growth factor receptor to help
identify transduced T cells [73]. Preliminary results from an
ongoing phase 1 trial in patients with RRMM indicated that
treatment with FCARH143 was associated with an ORR of
100% at 28 days in 6 evaluable patients, and all 6 patients
had no detectable abnormal bone marrow PCs by immu-
nohistochemistry and flow cytometry. All patients were
currently alive at a median (range) of 16 (2–26) weeks of
follow-up. Grade 2 or lower CRS was experienced by 86%
of patients and no neurotoxicity was observed.

LCAR-B38M

LCAR-B38M is a dual epitope-binding CAR T-cell therapy
directed against two distinct BCMA epitopes that was
investigated in a phase 1 trial in patients with RRMM [32].
Treatment with three infusions of LCAR-B38M adminis-
tered over 7 days resulted in an ORR of 88% (50/57
patients), including 39 CR, three VGPR, and eight PR, and
an MRD negativity rate of 63% (36/57 patients) as assessed
by bone marrow flow cytometry, defined as <1 tumor cell
per 104 normal cells. At data cutoff before publication, 20%
of patients who achieved a PR or better had subsequently
progressed. Median PFS was 15 months. The most common
grade ≥ 3 AEs were leukopenia (30%), thrombocytopenia
(23%), and aspartate aminotransferase elevations (21%).
Ninety percent (51/57) of patients experienced CRS of any
severity, including four patients (7%) with grade ≥ 3 CRS,
and grade 1 neurotoxicity was observed in one patient.
Similar efficacy and safety were observed in an additional
exploratory trial of LCAR-B38M at a separate site with 17
patients with RRMM, regardless of whether LCAR-B38M
was administered as a three-infusion or single-infusion
process [79].

JCARH125

JCARH125 is a fully human CAR T-cell therapy with a 4-
1BB costimulatory domain that has been investigated in
a multicenter phase 1/2 trial in patients with RRMM
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(EVOLVE) [33]. Among 44 patients treated at doses of 50,
150, or 450 × 106 cells, ORR was 82%, with 48% of
patients achieving VGPR or greater. Some patients had
improved responses over time, and six of nine evaluable
patients were MRD negative by next-generation sequencing
(defined as ≤1 tumor cell per 105 normal cells) at day 29
post infusion. CRS occurred in 80% of patients and 9%
experienced grade ≥ 3 CRS. Grade 1 to 2 and grade ≥ 3
neurotoxicity occurred in 18 and 7% of patients,
respectively.

MCARH171

MCARH171 is a human-derived CAR T-cell therapy with a
truncated EGFR safety system that has been investigated in
a phase 1 dose-escalation trial [77]. In 11 patients, ORR was
64% across all dose levels tested; all five patients who
received the higher dose levels tested (≥450 × 106 cells)
achieved an objective response. Responses ranged in
duration from 17 to 235 days, with three of five patients
treated at the highest doses having responses longer than
6 months and two patients having ongoing responses at 7.5
and 10 months of follow-up. Grade 1–2 and grade 3 CRS
occurred in 40% and 20% of patients, respectively, and one
case of grade 2 neurotoxicity (encephalopathy) was
reported.

CART-BCMA

CART-BCMA is a CAR T-cell therapy with a fully human
scFv with a 4-1BB costimulatory domain that has been
investigated in a phase 1, open-label study in patients with
RRMM [37]. Twenty-five patients were treated across three
dose cohorts, which varied in CART-BCMA dose level
and/or coadministration of cyclophosphamide (Table 3).
The ORR across all 25 treated patients was 48% and was
higher (55%) in those receiving the higher dose level
(1–5 × 108 CART-BCMA cells). The median (range) dura-
tion of response was 124.5 (29–939+) days. Three patients
remained progression free at data cutoff, with a median
overall survival of 502 days among all treated patients.
Grade 3 or higher AEs were observed in 96% (24/25) of
patients, regardless of attribution to study drug. CRS was
observed in 88% of patients (32% grade 3 or 4), and 32% of
patients experienced neurotoxicity (including 3 cases of
grade 3–4 encephalopathy).

Discussion and future perspectives

BCMA is a promising novel target for antimyeloma thera-
pies. Different classes of BCMA-targeting drugs, including
bispecific antibody constructs, ADCs, and CAR T-cell

therapies, have shown antimyeloma activity in patients with
RRMM and could help address a critical unmet need for
therapies in patients with MM [1, 3, 4]. While there are not
yet trials underway using BCMA-targeted therapies for
treatment of newly diagnosed MM, these therapies could
offer promise in this population as well, as supported by the
high MRD negativity rates, high ORR, and durable
responses reported to date with select BCMA-targeted
therapies. As MRD negativity is associated with prolonged
remission, further study is warranted to investigate whether
BCMA-targeted therapies could provide durable responses
or even a cure in earlier lines of therapy for MM, including
newly diagnosed MM [42, 80].

Each BCMA-targeted treatment modality carries poten-
tial strengths and limitations. Bispecific antibody constructs
are off-the-shelf therapies that have the potential to be
available to patients to initiate treatment immediately and
do not depend on ex vivo manipulation of patients’ cells.
Clinical and notable antimyeloma activity has been
observed with the BiTE® molecule AMG 420 in a phase 1
trial [41, 48]. One limitation of AMG 420, and similar
bispecific antibody constructs, is that its relatively short
half-life necessitates prolonged intravenous infusion using a
central venous access device, though this short half-life may
help manage treatment-emergent AEs, such as CRS
[41, 45]. To address this limitation, several groups are
developing bispecific antibody constructs with longer half-
lives that are being investigated in ongoing clinical trials,
including AMG 701 (NCT03287908) [52], CC-93269
(NCT03486067) [57], JNJ-64007957 (NCT03145181)
[54], REGN5458 (NCT03761108) [55], and TNB-383B
(NCT03933735) (Table 4) [56]. Unlike CAR T-cell thera-
pies, bispecific antibody constructs themselves do not pro-
liferate but rather act by inducing expansion of antigen-
experienced T cells. Although it is unclear how to directly
compare the immune expansion capability of bispecific
antibody constructs and CAR T-cell therapies, it has been
noted that the expansion of antigen-experienced T cells by
bispecific antibody constructs can be order of magnitudes
lower than the self-expansion of CAR T-cell therapies [81].
Because the resolution of malignant disease could require
continued action of T cells over prolonged time periods,
differences in T-cell expansion and persistence between
bispecific antibody constructs and CAR T-cell therapies
could lead to differences in durability of remission, though
there is currently insufficient clinical data for BCMA-
targeted therapies to date to make direct comparisons [81].

Similar to bispecific antibody constructs, ADCs do not
require sample collection from the patient to generate a
personalized ADC, and the antimyeloma activity of
GSK2857916 has been observed in patients with RRMM
[31]. The most common AEs observed with GSK2857916,
thrombocytopenia and corneal events, are consistent with
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the known adverse effects of the toxic payload MMAF [31].
Indeed, the safety profile of ADCs depends on the toxic
payload used. For certain ADC constructs, extracellular
cleavage of the ADC before target cell penetration could
lead to premature liberation of the toxic payload and
negative effects on healthy cells, but the use of noncell-
permeable payloads (e.g., MMAF) or non-cleavable linkers
can reduce this concern [17, 59]. Similar to bispecific
antibody constructs, ADCs can induce immunogenic
responses against myeloma cells, which could help promote
durable endogenous antimyeloma activity [17, 31]. How-
ever, similar to bispecific antibody constructs and in con-
trast with CAR T-cell therapies, ADCs are not anticipated to
expand and persist in vivo based on their mechanism of
action. This contrast may lead to differences in durability of
responses compared with CAR T-cell therapies, though
there have been no direct comparisons of BCMA-targeted
ADCs and CAR T-cell therapies to date.

Early-phase clinical efficacy has been observed with
several different anti-BCMA CAR T-cell constructs
(Table 3). A notable advantage of CAR T cells is that these
cells can expand after a single infusion, which may lead to
persistent immunity against cancer cells [4, 64, 71]. The
most common toxicities associated with CAR T cells
include CRS and neurologic toxicity, which are typically
managed with an IL-6 receptor antagonist (e.g., tocilizu-
mab) and systemic corticosteroids, respectively
[4, 66, 71, 82]. Other common toxicities include cytopenias
and hypogammaglobulinemia [82]. One approach to avoid
potential toxicities has been to engineer an “off switch” into
CAR T-cell therapies so that the activity of these cells can
be modified post infusion by dosing with an antibody-based
switch [83]. Moreover, patients receiving CAR T-cell
therapy may receive treatment with bridging chemother-
apy before infusion, which could impact subsequent out-
comes [69]. One limitation of CAR T-cell therapy is the
prolonged manufacturing time needed before treatment, as
several days to weeks are required for the collection of
leukocytes from patients, ex vivo expansion and transduc-
tion of autologous T cells with CAR, and infusion at a
specialized treatment center [27, 31, 71, 84]. This prolonged
manufacturing time can lead to disease progression between
leukapheresis and CAR T-cell infusion [37]. The develop-
ment of allogeneic off-the-shelf CAR T cells with reduced
risk of graft-versus-host disease could significantly change
the workflow of CAR T-cell therapy if these treatments
become available to patients without the requirements for
standard CAR T-cell manufacturing [84–88]. Another
potential drawback of CAR T-cell therapy is the use of
preconditioning lymphodepletion regimens. Though lym-
phodepletion is an important part of the CAR T-cell treat-
ment process, reduction of endogenous lymphocyte levels
and subsequent CAR T-cell expansion may have

implications for salvage therapy after failure of CAR T-cell
therapy, as these processes modify the characteristics of
patients’ T cells [87]. As a result, treatment responses to
subsequent lines of therapy could be altered in these
patients, and the implications of lymphodepletion regimens
for treatment sequencing should be considered.

Other unique BCMA-targeted therapies are being
investigated for treatment of MM. These include an anti-
BCMA mAb conjugated to an antitumor maytansine deri-
vative via a non-cleavable linker (AMG 224, under clinical
study); combination therapy with an antibody-coupled T-
cell receptor (ACTR087) plus an anti-BCMA antibody
(SEA BCMA); a BCMA- and CD16A-directed tetravalent
antibody that engages natural killer cells (AFM26); anti-
BCMA recombinant immunotoxins; a heteroclitic BCMA
peptide encapsulated nanoparticle-based cancer vaccine;
and an antibody-based scaffold that binds CD3, BCMA,
and programmed cell death ligand 1 [89–93]. Antimyeloma
therapies targeting or incorporating APRIL, the primary
ligand for BCMA, have also been developed. These thera-
pies include two APRIL-based CAR T-cell constructs
(ACAR, APRIL-CAR), which use truncated forms of
APRIL as the tumor-targeting domain for dual targeting of
the APRIL receptors BCMA and transmembrane activator
and calcium-modulating cyclophilin ligand [94, 95].

In current clinical trials, patients who are treated with a
previous anti-BCMA-directed therapy are often excluded
from receiving any subsequent anti-BCMA treatments.
Because these exclusion criteria may limit BCMA-targeted
treatment options for these patients, trials assessing anti-
BCMA therapies should carefully consider patient selection
until we have a greater biological and clinical understanding
of how anti-BCMA treatment sequencing may be conducted
in the future. For example, patients at high risk of pro-
gression may not be suitable for the lag time required for
CAR T-cell manufacturing and may be better suited for
readily available anti-BCMA products [86]. Further
assessment of anti-BCMA therapies in patients with MM
with unmet needs (e.g., patients with high-risk MM, elderly
and frail patients, or patients with renal failure) is also
necessary, as these patients are often excluded from clinical
trials [96, 97]. There are currently >50 ongoing clinical
trials assessing BCMA-targeted therapies for MM, includ-
ing ~15 phase 2 studies, and these trials will help gain
insight into the efficacy and safety across MM populations.
Furthermore, several studies are underway to assess whether
combination of anti-BCMA therapies in combination with
other treatments with different targets and mechanisms of
action can enhance the efficacy of antimyeloma treatment
regimens [7, 14, 20, 26, 27, 36–38, 94, 98–100].

Though they have predominantly been investigated in an
RRMM population to date, the striking data observed with
BCMA-targeted therapies suggest that these therapies could
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be transformative for MM treatment paradigms if used in
earlier lines of treatment. Currently, even the most intensive
initial lines of therapy followed by stem cell transplantation
has resulted in limited extension of PFS, which necessitates
the use of maintenance therapies for a prolonged duration
until progression occurs [101]. If BCMA-targeted therapies
are able to demonstrate deep and durable responses after
short treatment durations, they may reduce the need for
“treat-to-progression” paradigms for MM, which are less
feasible in the real-world setting compared with clinical
studies, or could even replace stem cell transplantation as
first-line treatment for newly diagnosed MM, for which not
all patients are eligible [31, 102].

Though mechanisms of failure of BCMA-targeted ther-
apy are not fully known, observations and hypotheses
regarding potential limitations of this approach have been
reported. Targeted immunotherapies, including BCMA-
targeted agents, may be affected by antigen-escape
mechanisms. sBCMA levels have been widely demon-
strated to decrease during treatment in response to new MM
therapies, including BCMA-targeted therapies [7, 27, 36].
Although these reductions in sBCMA levels may lessen
concerns with sBCMA interfering with BCMA-targeted
therapies by competing with membrane-bound BCMA [38],
there may also be a corresponding decline in membrane-
bound BCMA that would alter the ability of BCMA-
directed therapies to target MM. Indeed, a trial assessing
BCMA CAR T-cell therapy observed that the majority of
patients showed a decline in BCMA intensity post infusion,
though membrane BCMA expression increased back
toward baseline in the majority of these patients [37].
Though clinical data are limited, BCMA-negative relapse
has also been reported with BCMA-targeted CAR T-cell
therapy [26, 98]. Because the majority of relapses after
BCMA-targeted therapies may involve BCMA-positive
disease [26], retreatment with different BCMA-targeted
therapies may also be feasible in the future, though
sequencing with these therapies has yet to be investigated in
clinical trials. Immunogenicity to anti-BCMA mAbs or
scFvs could also limit the efficacy and persistence of
BCMA-targeted therapy. This may be partially addressed
by the use of humanized mAbs or scFvs, which are less
likely to be immunogenic compared with fragments gen-
erated from other species (e.g., mice) [100]. Moreover,
structural alterations have been pursued for CAR T-cell
therapies, in particular to promote the expansion and per-
sistence of these therapies in vivo, and further advance-
ments within the MM field could benefit from similar
optimization [103]. Ultimately, clinical data from larger
randomized trials are needed to further understand the
limitations of BCMA-directed therapies, including potential
differences between BCMA-targeted bispecific antibody
constructs, ADCs, and CAR T-cell therapies.

Summary

BCMA-targeted therapies have demonstrated promising
and exciting clinical results in heavily pretreated patients
with RRMM. Further study is warranted to investigate
whether BCMA-targeted therapies could provide long-
lasting responses when used in earlier lines of therapy
for MM.

Acknowledgements Editorial assistance was provided under the
direction of the authors by Nathan Rodeberg, PhD, and Jennifer Rossi,
MA, ELS, MedThink SciCom, with support from Amgen Inc, and
Susanna Mac, MD, PhD, Amgen Inc.

Funding This work was funded by Amgen Inc.

Author contributions NS contributed to the conception of the study.
NS, AC, ES, KM, and SZU contributed to the design of the study; the
acquisition, analysis, and interpretation of the data; the drafting of the
manuscript; and critically revising the manuscript for important
intellectual content. All authors approve the final version of the
manuscript and take responsibility for the decision to submit for
publication.

Compliance with ethical standards

Conflict of interest NS has received research funding from Celgene,
Janssen, Bluebird Bio, and Sutro Biopharma; has served in an advisory
role for Genentech, Seattle Genetics, Oncopeptides, Karyopharm,
Surface Oncology, Precision BioSciences, GlaxoSmithKline, Nektar,
Amgen, Indapta Therapeutics, and Sanofi; and owns stock in Indapta
Therapeutics. AC has received research funding from Amgen, Cel-
gene, Janssen, Millennium/Takeda, Novartis Pharmaceuticals, Phar-
macyclics, and Seattle Genetics; has served in an advisory role for
Amgen, Celgene, Janssen, Karyopharm, Novartis Pharmaceuticals,
Oncopeptides, Sanofi, and Seattle Genetics; and has served as a con-
sultant for Amgen, Bristol-Myers Squibb, Celgene, Janssen, Millen-
nium/Takeda, and Novartis Pharmaceuticals. ES and KM are
employees and stockholders of Amgen. SZU has served as a con-
sultant for Amgen, AbbVie, Bristol-Myers Squibb, Celgene, Janssen,
Karyopharm, Sanofi, Seattle Genetics, and SkylineDx; has received
speaker’s fees from Amgen, Celgene, Janssen, and Takeda; and has
received research funding from Amgen, AbbVie, Array-Biopharma,
Bristol-Myers Squibb, Celgene, Janssen, Pharmacyclics, Sanofi,
Seattle Genetics, and SkylineDx.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic. . . 1001

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


References

1. Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P,
Mateos M-V, et al. Multiple myeloma. Nat Rev Dis Prim.
2017;3:17046.

2. Costa LJ, Brill IK, Omel J, Godby K, Kumar SK, Brown EE.
Recent trends in multiple myeloma incidence and survival by
age, race, and ethnicity in the United States. Blood Adv. 2017;1:
282–7.

3. Chim CS, Kumar SK, Orlowski RZ, Cook G, Richardson PG,
Gertz MA, et al. Management of relapsed and refractory multiple
myeloma: novel agents, antibodies, immunotherapies and
beyond. Leukemia. 2018;32:252–62.

4. D’Agostino M, Boccadoro M, Smith EL. Novel immu-
notherapies for multiple myeloma. Curr Hematol Malig Rep.
2017;12:344–57.

5. National Comprehensive Cancer Network. NCCN clinical
Practice Guidelines in Oncology (NCCN Guidelines®). Multiple
myeloma (version 2.2019). http://www.nccn.org/professionals/
physician_gls/pdf/myeloma.pdf. Accessed 2 May 2019.

6. Madry C, Laabi Y, Callebaut I, Roussel J, Hatzoglou A, Le
Coniat M, et al. The characterization of murine BCMA gene
defines it as a new member of the tumor necrosis factor receptor
superfamily. Int Immunol. 1998;10:1693–702.

7. Sanchez E, Li M, Kitto A, Li J, Wang CS, Kirk DT, et al. Serum
B-cell maturation antigen is elevated in multiple myeloma and
correlates with disease status and survival. Br J Haematol.
2012;158:727–38.

8. Rennert P, Schneider P, Cachero TG, Thompson J, Trabach L,
Hertig S, et al. A soluble form of B cell maturation antigen, a
receptor for the tumor necrosis factor family member APRIL,
inhibits tumor cell growth. J Exp Med. 2000;192:1677–83.

9. Novak AJ, Darce JR, Arendt BK, Harder B, Henderson K,
Kindsvogel W, et al. Expression of BCMA, TACI, and BAFF-R
in multiple myeloma: a mechanism for growth and survival.
Blood. 2004;103:689–94.

10. O’Connor BP, Raman VS, Erickson LD, Cook WJ, Weaver LK,
Ahonen C, et al. BCMA is essential for the survival of long-lived
bone marrow plasma cells. J Exp Med. 2004;199:91–97.

11. Xu S, Lam K-P. B-cell maturation protein, which binds the
tumor necrosis factor family members BAFF and APRIL, is
dispensable for humoral immune responses. Mol Cell Biol.
2001;21:4067–74.

12. Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld
M, Yang S, et al. B-cell maturation antigen is a promising target
for adoptive T-cell therapy of multiple myeloma. Clin Cancer
Res. 2013;19:2048–60.

13. Schuh E, Musumeci A, Thaler FS, Laurent S, Ellwart JW,
Hohlfeld R, et al. Human plasmacytoid dendritic cells display
and shed B cell maturation antigen upon TLR engagement. J
Immunol. 2017;198:3081–8.

14. Laurent SA, Hoffmann FS, Kuhn P-H, Cheng Q, Chu Y,
Schmidt-Supprian M, et al. γ-Secretase directly sheds the sur-
vival receptor BCMA from plasma cells. Nat Commun.
2015;6:7333.

15. Tai Y-T, Acharya C, An G, Moschetta M, Zhong MY, Feng X,
et al. APRIL and BCMA promote human multiple myeloma
growth and immunosuppression in the bone marrow micro-
environment. Blood. 2016;127:3225–36.

16. Sanchez E, Gillespie A, Tang G, Ferros M, Harutyunyan NM,
Vardanyan S, et al. Soluble B-cell maturation antigen mediates
tumor-induced immune deficiency in multiple myeloma. Clin
Cancer Res. 2016;22:3383–97.

17. Tai Y-T, Mayes PA, Acharya C, Zhong MY, Cea M, Cagnetta A,
et al. Novel anti–B-cell maturation antigen antibody-drug

conjugate (GSK2857916) selectively induces killing of multi-
ple myeloma. Blood. 2014;123:3128–38.

18. Maus MV, June CH. Zoom zoom: racing CARs for multiple
myeloma. Clin Cancer Res. 2013;19:1917–9.

19. Rickert RC, Jellusova J, Miletic AV. Signaling by the TNFR
superfamily in B-cell biology and disease. Immunol Rev.
2011;244:115–33.

20. Sanchez E, Smith EJ, Yashar MA, Patil S, Li M, Porter AL, et al.
The role of B-cell maturation antigen in the biology and man-
agement of, and as a potential therapeutic target in, multiple
myeloma. Target Oncol. 2018;13:39–47.

21. Sanchez E, Tanenbaum EJ, Patil S, Li M, Soof CM, Vidisheva
A, et al. The clinical significance of B-cell maturation antigen as
a therapeutic target and biomarker. Expert Rev Mol Diagn.
2018;18:319–29.

22. Frigyesi I, Adolfsson J, Ali M, Christophersen MK, Johnsson E,
Turesson I, et al. Robust isolation of malignant plasma cells in
multiple myeloma. Blood. 2014;123:1336–40.

23. Salem DA, Maric I, Yuan CM, Liewehr DJ, Venzon DJ,
Kochenderfer J, et al. Quantification of B-cell maturation anti-
gen, a target for novel chimeric antigen receptor T-cell therapy in
myeloma. Leuk Res. 2018;71:106–11.

24. Seckinger A, Delgado JA, Moser S, Moreno L, Neuber B, Grab
A, et al. Target expression, generation, preclinical activity, and
pharmacokinetics of the BCMA-T cell bispecific antibody
EM801 for multiple myeloma treatment. Cancer Cell. 2017;31:
396–410.

25. Lee L, Bounds D, Paterson J, Herledan G, Sully K, Seestaller-
Wehr LM, et al. Evaluation of B cell maturation antigen as a
target for antibody drug conjugate mediated cytotoxicity in
multiple myeloma. Br J Haematol. 2016;174:911–22.

26. Ali SA, Shi V, Maric I, Wang M, Stroncek DF, Rose JJ, et al.
T cells expressing an anti-B-cell maturation antigen chimeric
antigen receptor cause remissions of multiple myeloma. Blood.
2016;128:1688–1700.

27. Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M, Lam N,
et al. T cells genetically modified to express an anti-B-cell
maturation antigen chimeric antigen receptor cause remissions of
poor-prognosis relapsed multiple myeloma. J Clin Oncol.
2018;36:2267–80.

28. Friedman KM, Garrett TE, Evans JW, Horton HM, Latimer HJ,
Seidel SL, et al. Effective targeting of multiple B-cell maturation
antigen-expressing hematological malignances by anti-B-cell
maturation antigen chimeric antigen receptor T cells. Hum Gene
Ther. 2018;29:585–601.

29. Ghermezi M, Li M, Vardanyan S, Harutyunyan NM, Gottlieb J,
Berenson A, et al. Serum B-cell maturation antigen: a novel
biomarker to predict outcomes for multiple myeloma patients.
Haematologica. 2017;102:785–95.

30. Bujarski S, Soof C, Li M, Wang CS, Sanchez E, Emamy-Sadr
M, et al. Baseline and early changes in serum B-cell maturation
antigen levels predict progression free survival and response
status for multiple myeloma patients in a phase 1 trial evaluating
ruxolitinib, lenalidomide and methylprednisolone. Blood.
2018;132(Suppl 1):1894.

31. Trudel S, Lendvai N, Popat R, Voorhees PM, Reeves B, Libby
EN, et al. Targeting B-cell maturation antigen with GSK2857916
antibody-drug conjugate in relapsed or refractory multiple
myeloma (BMA117159): a dose escalation and expansion phase
1 trial. Lancet Oncol. 2018;19:1641–53.

32. Zhao WH, Liu J, Wang BY, Chen YX, Cao XM, Yang Y, et al.
A phase 1, open-label study of LCAR-B38M, a chimeric antigen
receptor T cell therapy directed against B cell maturation antigen,
in patients with relapsed or refractory multiple myeloma. J
Hematol Oncol. 2018;11:141.

1002 N. Shah et al.

http://www.nccn.org/professionals/physician_gls/pdf/myeloma.pdf
http://www.nccn.org/professionals/physician_gls/pdf/myeloma.pdf


33. Mailankody S, Htut M, Lee KP, Bensinger W, DeVries T, Pia-
secki J, et al. JCARH125, anti-BCMA CAR T-cell therapy for
relapsed/refractory multiple myeloma: initial proof of concept
results from a phase 1/2 multicenter study (EVOLVE). Slides
presented at: 60th ASH Annual Meeting and Exposition;
December 1–4, 2018; San Diego, CA.

34. Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D,
et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or
refractory multiple myeloma. N Engl J Med. 2019;380:1726–37.

35. Dispenzieri A, Soof CM, Rajkumar V, Gertz MA, Kumar S,
Bujarski S, et al. Serum BCMA levels to predict outcomes for
patients with MGUS and smoldering multiple myeloma (SMM).
J Clin Oncol. 2019;37:8020.

36. Udd K, Soof C, Etessami S, Rahbari A, Gross Z, Casas C, et al.
Changes in serum B-cell maturation antigen levels are a rapid
and reliable indicator of treatment efficacy for patients with
multiple myeloma. Clin Lymphoma Myeloma Leuk. 2017;17:
e27–8.

37. Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey
SF, Lancaster E, et al. B cell maturation antigen-specific CAR
T cells are clinically active in multiple myeloma. J Clin Investig.
2019;129:2210–21.

38. Chen H, Li M, Xu N, Ng N, Sanchez E, Soof CM, et al. Serum
B-cell maturation antigen (BCMA) reduces binding of anti-
BCMA antibody to multiple myeloma cells. Leuk Res. 2019;81:
62–6.

39. Kinneer K, Flynn M, Thomas SB, Meekin J, Varkey R, Xiao X,
et al. Preclinical assessment of an antibody-PBD conjugate that
targets BCMA on multiple myeloma and myeloma progenitor
cells. Leukemia. 2019;33:766–71.

40. Shah N, Alsina M, Siegel DS, Jagannath S, Madduri D, Kaufman
JL, et al. Initial results from a phase 1 clinical study of bb21217,
a next-generation anti Bcma CAR T therapy. Blood. 2018;132
(Suppl 1):488.

41. Topp MS, Duell J, Zugmaier G, Attal M, Moreau P, Langer C,
et al. Treatment with AMG 420, an anti-B-cell maturation anti-
gen (BCMA) bispecific T-cell engager (BiTE®) antibody con-
struct, induces minimal residual disease (MRD) negative
complete responses in relapsed and/or refractory (R/R) multiple
myeloma (MM) patients: results of a first-in-human (FIH) phase I
dose escalation study. Blood. 2018;132(Suppl 1):1010.

42. Paiva B, van Dongen JJ, Orfao A. New criteria for response
assessment: role of minimal residual disease in multiple mye-
loma. Blood. 2015;125:3059–68.

43. Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau
P, et al. International Myeloma Working Group consensus cri-
teria for response and minimal residual disease assessment in
multiple myeloma. Lancet Oncol. 2016;17:e328–46.

44. Munshi NC, Avet-Loiseau H, Rawstron AC, Owen RG, Child
JA, Thakurta A, et al. Association of minimal residual disease
with superior survival outcomes in patients with multiple mye-
loma: a meta-analysis. JAMA Oncol. 2017;3:28–35.

45. Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers
for cancer immunotherapy. Immunol Cell Biol. 2015;93:290–6.

46. Suurs FV, Lub-de Hooge MN, de Vries EGE, de Groot DJA. A
review of bispecific antibodies and antibody constructs in
oncology and clinical challenges. Pharm Ther. 2019;201:103–19.

47. Gramer MJ, van den Bremer ET, van Kampen MD, Kundu A,
Kopfmann P, Etter E, et al. Production of stable bispecific IgG1
by controlled Fab-arm exchange: scalability from bench to large-
scale manufacturing by application of standard approaches.
MAbs. 2013;5:962–73.

48. Topp MS, Duell J, Zugmaier G, Attal M, Moreau P, Langer C,
et al. Anti–B-cell maturation antigen BiTE molecule AMG 420
induces responses in multiple myeloma. J Clin Oncol. 2020
[Epub ahead of print].

49. Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh A,
Ribera JM, et al. Blinatumomab versus chemotherapy for
advanced acute lymphoblastic leukemia. N Engl J Med. 2017;
376:836–47.

50. Velasquez MP, Bonifant CL, Gottschalk S. Redirecting T cells to
hematological malignancies with bispecific antibodies. Blood.
2018;131:30–38.

51. Ross SL, Sherman M, McElroy PL, Lofgren JA, Moody G,
Baeuerle PA, et al. Bispecific T cell engager (BiTE®) antibody
constructs can mediate bystander tumor cell killing. PLoS ONE.
2017;12:e0183390.

52. Goyos A, Li C-M, Deegen P, Bogner P, Thomas O, Klinger M,
et al. Cynomolgus monkey plasma cell gene signature to quantify
the in vivo activity of a half-life extended anti-BCMA. Poster
presented at: American Association for Cancer Research Annual
Meeting; April 14–18, 2018; Chicago, IL.

53. Lesokhin AM, Raje N, Gasparetto CJ, Walker J, Krupka HI,
et al. A phase I, open-label study to evaluate the safety, phar-
macokinetic, pharmacodynamic, and clinical activity of PF-
06863135, a B-cell maturation antigen/CD3 bispecific antibody,
in patients with relapsed/refractory advanced multiple myeloma.
Blood. 2018;132(Suppl 1):3229.

54. Frerichs K, Broekmans M, Soto JM, van Kessel B, Axel A, Chiu
C, et al. Preclinical evaluation of the new BCMAxCD3 bispecific
antibody JNJ-957 for the treatment of multiple myeloma. Slides
presented at: 23rd Congress of EHA; June 14–17, 2018; Stock-
holm, Sweden.

55. Dilillo DJ, Olson K, Mohrs K, Meagher C, Ray K, Sineshche-
kova O, et al. REGN5458, a bispecific BCMAxCD3 T cell
engaging antibody, demonstrates robust in vitro and in vivo anti-
tumor efficacy in multiple myeloma models, comparable to that
of BCMA CAR T cells. Blood. 2018;132(Suppl 1):1944.

56. Buelow B, Choudry P, Clarke S, Dang K, Davison L, Aldred SF,
et al. Pre-clinical development of TNB-383B, a fully human
T-cell engaging bispecific antibody targeting BCMA for
the treatment of multiple myeloma. J Clin Oncol. 2018;36
(Suppl 15):8034.

57. Moreno L, Zabaleta A, Alignani D, Lasa M, Maiso P, Jelinek T,
et al. New insights into the mechanism of action (MoA) of first-
in-class IgG-based Bcma T-cell bispecific antibody (TCB)
for the treatment of multiple myeloma (MM). Blood. 2016;
128:2096.

58. Cho SF, Anderson KC, Tai YT. Targeting B cell maturation
antigen (BCMA) in multiple myeloma: potential uses of BCMA-
based immunotherapy. Front Immunol. 2018;9:1821.

59. Kinneer K, Meekin J, Tiberghien AC, Tai YT, Phipps S, Kiefer
CM, et al. SLC46A3 as a potential predictive biomarker for
antibody-drug conjugates bearing non-cleavable linked may-
tansinoid and pyrrolobenzodiazepine warheads. Clin Cancer Res.
2018;24:6570–82.

60. Singh RK, Jones RJ, Hong S, Shirazi F, Wang H, Kuiatse I, et al.
HDP101, a novel B-cell maturation antigen (BCMA)-targeted
antibody conjugated to α-Amanitin, is active against myeloma
with preferential efficacy against pre-clinical models of deletion
17p. Blood, 2018;132(Suppl 1):593.

61. Trudel S, Lendvai N, Popat R, Voorhees PM, Reeves B,
Libby EN, et al. Antibody-drug conjugate, GSK2857916, in
relapsed/refractory multiple myeloma: an update on safety and
efficacy from dose expansion phase I study. Blood Cancer J.
2019;9:37.

62. Gavriatopoulou M, Ntanasis-Stathopoulos I, Dimopoulos
MA, Terpos E. Anti-BCMA antibodies in the future management
of multiple myeloma. Expert Rev Anticancer Ther. 2019;19:
319–26.

63. Pahl A, Ko J, Breunig C, Figueroa V, Lehners N, Baumann A,
et al. HDP-101: preclinical evaluation of a novel anti-BCMA

B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic. . . 1003



antibody drug conjugates in multiple myeloma. J Clin Oncol.
2018;36(Suppl 15):e14527.

64. Kriegsmann K, Kriegsmann M, Cremer M, Schmitt M, Dreger P,
Goldschmidt H, et al. Cell-based immunotherapy approaches for
multiple myeloma. Br J Cancer. 2019;120:38–44.

65. Mikkilineni L, Kochenderfer JN. Chimeric antigen receptor T-
cell therapies for multiple myeloma. Blood. 2017;130:2594–602.

66. Danhof S, Hudecek M, Smith EL. CARs and other T cell
therapies for MM: the clinical experience. Best Pract Res Clin
Haematol. 2018;31:147–57.

67. Ghosh A, Mailankody S, Giralt SA, Landgren CO, Smith EL,
Brentjens RJ. CAR T cell therapy for multiple myeloma: where
are we now and where are we headed? Leuk Lymphoma.
2018;59:2056–67.

68. Smith EL, Staehr M, Masakayan R, Tatake IJ, Purdon TJ, Wang
X, et al. Development and evaluation of an optimal human
single-chain variable fragment-derived BCMA-targeted CAR T
cell vector. Mol Ther. 2018;26:1447–56.

69. Buechner J, Kersten MJ, Fuchs M, Salmon F, Jäger U. Chimeric
antigen receptor-T cell therapy. HemaSphere. 2018;2:1.

70. Maus MV, June CH. Making better chimeric antigen receptors
for adoptive T-cell therapy. Clin Cancer Res. 2016;22:1875–84.

71. Hay KA, Turtle CJ. Chimeric antigen receptor (CAR) T cells:
lessons learned from targeting of CD19 in B-cell malignancies.
Drugs. 2017;77:237–45.

72. Liu Y, Chen Z, Wei R, Shi L, He F, Shi Z, et al. Remission
observed from a phase 1 clinical study of CAR-T therapy
with safety switch targeting BCMA for patients with
relapsed/refractory multiple myeloma. J Clin Oncol. 2018;36
(Suppl 15):8020.

73. Green DJ, Pont M, Sather BD, Cowan AJ, Turtle CJ, Till BG,
et al. Fully human Bcma targeted chimeric antigen receptor
T cells administered in a defined composition demonstrate
potency at low doses in advanced stage high risk multiple
myeloma. Blood. 2018;132(Suppl 1):1011.

74. Li C, Wang Q, Zhu H, Mao X, Wang Y, Zhang Y, et al. T cells
expressing anti B-cell maturation antigen chimeric antigen
receptors for plasma cell malignancies. Blood. 2018;132
(Suppl 1):1013.

75. Shi X, Yan L, Shang J, Qu S, Kang L, Zhou J, et al. Tandom
autologous transplantation and combined infusion of CD19 and
Bcma-specific chimeric antigen receptor T cells for high risk
MM: initial safety and efficacy report from a clinical pilot study.
Blood. 2018;132(Suppl 1):1009.

76. Raje NS, Berdeja JG, Lin Y, Munshi NC, DiCapua Siegel DS,
Liedtke M, et al. bb2121 anti-BCMA CAR T-cell therapy in
patients with relapsed/refractory multiple myeloma: updated
results from a multicenter phase I study. J Clin Oncol. 2018;36
(Suppl 15):8007.

77. Mailankody S, Ghosh A, Staehr M, Purdon TJ, Roshal M,
Halton E, et al. Clinical responses and pharmacokinetics of
MCARH171, a human-derived Bcma targeted CAR T cell
therapy in relapsed/refractory multiple myeloma: final results of
a phase I clinical trial. Blood. 2018;132(Suppl 1):959.

78. Gregory T, Cohen AD, Costello CL, Ali SA, Berdeja JG,
Ostertag EM, et al. Efficacy and safety of P-Bcma-101 CAR-T
cells in patients with relapsed/refractory (r/r) multiple myeloma
(MM). Blood. 2018;132(Suppl 1):1012.

79. Xu J, Chen L-J, Yang S-S, Sun Y, Wu W, Liu Y-F, et al.
Exploratory trial of a biepitopic CAR T-targeting B cell
maturation antigen in relapsed/refractory multiple myeloma. Proc
Natl Acad Sci USA. 2019;116:9543–51.

80. Barlogie B, Mitchell A, van Rhee F, Epstein J, Morgan GJ,
Crowley J. Curing myeloma at last: defining criteria and pro-
viding the evidence. Blood. 2014;124:3043–51.

81. Slaney CY, Wang P, Darcy PK, Kershaw MH. CARs versus
BiTEs: a comparison between T cell-redirection strategies for
cancer treatment. Cancer Discov. 2018;8:924–34.

82. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen
receptor T cells: recognition and management. Blood. 2016;127:
3321–30.

83. Viaud S, Ma JSY, Hardy IR, Hampton EN, Benish B, Sherwood
L, et al. Switchable control over in vivo CAR T expansion, B cell
depletion, and induction of memory. Proc Natl Acad Sci USA.
2018;115:E10898–E10906.

84. Levine BL, Miskin J, Wonnacott K, Keir C. Global manu-
facturing of CAR T cell therapy. Mol Ther Methods Clin Dev.
2016;4:92–101.

85. Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-
Sotinel I, Derniame S, et al. Multiplex genome-edited T-cell
manufacturing platform for “off-the-shelf” adoptive T-cell
immunotherapies. Cancer Res. 2015;75:3853–64.

86. Graham C, Jozwik A, Pepper A, Benjamin R. Allogeneic CAR-T
cells: more than ease of access? Cells. 2018;7:E155.

87. Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ.
Clinical development of CAR T cells-challenges and opportu-
nities in translating innovative treatment concepts. EMBO Mol
Med. 2017;9:1183–97.

88. Sommer C, Boldajipour B, Kuo TC, Bentley T, Sutton J, Chen
A, et al. Preclinical evaluation of allogeneic CAR T cells tar-
geting BCMA for the treatment of multiple myeloma. Mol Ther.
2019;27:1126–38.

89. Benson DM Jr, Holmes H, Hari P, Sachs J, Exter B, Ranger A,
et al. A phase 1 study of two investigational agents, ACTR087,
an autologous T cell product expressing an antibody-coupled T
cell receptor, in combination with SEA-BCMA, a novel non-
fucosylated monoclonal antibody, in subjects with relapsed or
refractory multiple myeloma. Blood. 2018;132(Suppl 1):1997.

90. Gantke T, Reusch U, Kellner C, Klausz K, Haneke T, Knack-
muss S, et al. AFM26-targeting B cell maturation antigen
(BCMA) for NK cell-mediated immunotherapy of multiple
myeloma. Blood. 2017;130(Suppl 1):3082.

91. Bae J, Neha P, Amiji M, Munshi N, Anderson K. BCMA
heteroclitic peptide encapsulated nanoparticle enhances
antigen stimulatory capacity and tumor-specific CD8+ cytotoxic
T lymphocytes against multiple myeloma. Blood. 2018;132
(Suppl 1):3195.

92. Shancer Z, Liu X-F, Nagata S, Zhou Q, Bera TK, Pastan I. Anti-
BCMA immunotoxins produce durable complete remissions in
two mouse myeloma models. Proc Natl Acad Sci USA. 2019;
116:4592–8.

93. Leisner C, Borras L, Jungmichel S, Richle P, Scheifele F,
Schleier T. Local activator and T cell engager (LocATE) selec-
tively blocks PD-L1 at the cytolytic synapses for deeper
responses in multiple myeloma. J Clin Oncol. 2019;37:8045.

94. Lee L, Draper B, Chaplin N, Philip B, Chin M, Galas-Filipowicz
D, et al. An APRIL-based chimeric antigen receptor for dual
targeting of BCMA and TACI in multiple myeloma. Blood.
2018;131:746–58.

95. Schmidts A, Ormhoj M, Taylor AO, Lorrey SJ, Scarfò I, Frigault
MJ, et al. Engineering an optimized trimeric APRIL-based CAR
to broaden targetability of multiple myeloma. Blood. 2018;132
(Suppl 1):2059.

96. Yadav P, Cook M, Cockwell P. Current trends of renal impair-
ment in multiple myeloma. Kidney Dis. 2016;1:241–57.

97. Larocca A, Palumbo A. How I treat fragile myeloma patients.
Blood. 2015;126:2179–85.

98. Ma T, Shi J, Liu H. Chimeric antigen receptor T cell targeting B
cell maturation antigen immunotherapy is promising for multiple
myeloma. Ann Hematol. 2019;98:813–22.

1004 N. Shah et al.



99. Chen KH, Wada M, Pinz KG, et al. A compound chimeric
antigen receptor strategy for targeting multiple myeloma. Leu-
kemia. 2018;32:402–12.

100. Cho S-F, Anderson KC, Tai Y-T. BCMA CAR T-cell therapy
arrives for multiple myeloma: a reality. Ann Transl Med. 2018;6
(Suppl 2):S93.

101. Ludwig H, Durie BG, McCarthy P, Palumbo A, San Miguel J,
Barlogie B, et al. IMWG consensus on maintenance therapy in
multiple myeloma. Blood. 2012;119:3003–15.

102. Rajkumar SV, Kumar S. Multiple myeloma: diagnosis and
treatment. Mayo Clin Proc. 2016;91:101–19.

103. Sadelain M, Brentjens R, Rivière I. The basic principles
of chimeric antigen receptor design. Cancer Discov. 2013;3:
388–98.

104. Cohen AD, Popat R, Trudel S, Richardson PG, Libby EN III,
Lendavi N, et al. First in human study with GSK2857916, an
antibody drug conjugated to microtubule-disrupting agent

directed against B-cell maturation antigen (BCMA) in patients
with relapsed/refractory multiple myeloma (MM): results
from study BMA117159 part 1 dose escalation. Blood. 2016;
128:1148.

105. Han L, Gao Q, Zhou K, Zhou J, Fang B, Zhang J, et al. The
phase 1 clinical study of CART targeting BCMA with huma-
nized alpaca-derived single-domain antibody as antigen recog-
nition domain. J Clin Oncol. 2019;37:2535.

106. Jiang S, Jin J, Hao S, Yang M, Chen L, Ruan H, et al. Low dose
of human scFv-derived BCMA-targeted CAR-T cells achieved
fast response and high complete remission in patients with
relapsed/refractory multiple myeloma. Blood. 2018;132(Suppl
1):960.

107. Li C, Zhou J, Wang J, Hu G, Du A, Zhou X, et al. Clinical
responses and pharmacokinetics of fully human BCMA targeting
CAR T-cell therapy in relapsed/refractory multiple myeloma. J
Clin Oncol. 2019;37(Suppl):8013.

B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic. . . 1005


	B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches
	Abstract
	Introduction
	Materials and methods
	Rationale for targeting BCMA for treatment of MM
	Biology of BCMA
	Biology of BCMA in MM
	BCMA as a biomarker for diagnosis of MM
	BCMA as a tool for prognosis and treatment response

	Treatment modalities to target BCMA
	Use of minimal residual disease measures in MM
	Bispecific antibody constructs
	AMG 420
	PF-06863135
	Other bispecific antibody constructs in clinical development
	Antibody–nobreakdrug conjugates
	GSK2857916
	Other anti-BCMA ADCs in clinical development
	Chimeric antigen receptor (CAR)-modified T-cell therapy
	Anti-BCMA CAR T-cell therapies in clinical development
	bb2121 and bb21217
	NIH CAR-BCMA
	FCARH143
	LCAR-B38M
	JCARH125
	MCARH171
	CART-BCMA

	Discussion and future perspectives
	Summary
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




