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ABSTRACT OF THE DISSERTATION

Toward Sustainable Cities:

Modeling and Data Analytics for Urban Mobility

by

Jingwei Zhang

Doctor of Philosophy in Management

University of California, Los Angeles, 2023

Professor Christopher S. Tang, Co-Chair

Professor Auyon A. Siddiq, Co-Chair

Urbanization accelerates greenhouse gas emissions and traffic congestion, endangering the

environmental sustainability of cities and causing significant economic losses. In this thesis,

we aim to tackle practical problems faced by public sector by leveraging tools including

economic modeling, optimization, and data analytics to achieve sustainable urban mobility.

In Chapter 2, we focus on an incentive mechanism design problem to improve public

transportation adoption. Due to a prolonged decline in public transit ridership over the

last decade, transit agencies across the United States are in financial crisis. To entice com-

muters to travel by public transit instead of driving personal vehicles, municipal governments

must address the “last mile” problem by providing convenient and affordable transportation

between a commuter’s home and a transit station. This challenge raises an important ques-

tion: Is there a cost-effective subsidy program that can improve public transit adoption by

solving the last-mile problem? To address the question, we present and analyze two incen-

tive mechanisms applied in practice for increasing commuter adoption of public transit. In
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a direct mechanism, the government provides a subsidy to commuters who adopt a “mixed

mode”, which involves taking public transit and hailing rides to/from a transit station. The

government funds the subsidy by imposing congestion fees on personal vehicles entering the

city center. In an indirect mechanism, instead of levying congestion fees, the government se-

cures funding for the subsidy from the private sector. These two mechanisms are especially

relevant because several jurisdictions in the U.S. have begun piloting incentive programs

in which commuters receive subsidies for ride-hailing trips that begin or end at a transit

station. We then examine the implications of both mechanisms on five self-interested stake-

holders (commuters, public transit agency, ride-hailing platform, municipal government, and

local private enterprises), and provide conditions where either mechanism is superior with

respect to total cost and commuter welfare. Our findings offer cost-effective prescriptions to

municipal governments seeking to improve urban mobility and public transit ridership.

Chapter 3 of the thesis delves into improving cycling ridership through bike lane net-

work planning. Sustainable urban infrastructure plays a pivotal role in the creation of livable

cities. To meet the growing demand for cycling and reduce emissions, municipal governments

worldwide have made significant investments in the expansion of bike lane networks. How-

ever, re-allocating road capacity from vehicles to cycling can often prove controversial due

to the risk of exacerbating traffic congestion. This chapter presents a method for bike lane

network planning that accounts for ridership and congestion effects. We first develop a

game theoretic model that captures the traffic equilibrium and consumers’ transportation

mode choice. We then present an estimator for recovering unknown parameters of a traffic

equilibrium model from features of a road network and observed vehicle flows, which we

show asymptotically recovers ground-truth parameters as the network grows large. We sub-

sequently present a prescriptive model that recommends paths in a road network for bike

lane construction while endogenizing cycling demand, driver route choice, and driving travel

times. Our framework allows for a thorough assessment of bike lane network expansion on

both cycling ridership and traffic congestion, which offers valuable insights and solutions for
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social planners seeking to promote urban mobility via urban infrastructure planning.

In Chapter 4, we build on the theoretical foundation of Chapter 3 and conduct a com-

prehensive empirical study on the City of Chicago. We bring together data on the road and

bike lane networks, vehicle flows, travel mode choices, bike share trips, driving and cycling

routes, and taxi trips to estimate the impact of expanding Chicago’s bike lane network. We

estimate that adding 25 miles of bike lanes as prescribed by our model can lift ridership from

3.9% to 6.9%, with at most an 8% increase in driving times. We also find that three intuitive

heuristics for bike lane planning can lead to lower ridership and worse congestion outcomes,

which highlights the value of a holistic and data-driven approach to urban infrastructure

planning.
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CHAPTER 1

Introduction

Accelerating global urbanization is typically accompanied by increased greenhouse gas emis-

sions and traffic congestion, which threatens the environmental sustainability of cities and

incurs enormous economic losses. Alleviating emissions and traffic congestion is likely to re-

quire a multi-faceted solution, including increased adoption of sustainable travel modes (e.g.,

walking, cycling, and public transit). In this thesis, motivated by practical problems faced

by public sector, we utilize multiple methodologies including economic modeling, optimiza-

tion, and data analytics, to support organizations in making decisions that are economically,

environmentally, and socially sustainable.

The thesis is organized as follows. Chapter 2 tackles an incentive design problem aimed

at increasing public transit ridership. This issue is motivated by innovative partnerships

established between public transit agencies and private ride-hailing platforms, as well as

recent advancements in transit mobile apps (Corselli 2020). In Chapter 3, we introduce an

estimation and optimization framework for bike lane planning that seeks to improve cycling

ridership. This initiative is driven by recent plans by various municipal governments to

expand bike lane networks. Chapter 4 builds on the foundations of Chapter 3 by conducting

an empirical study of bike lane expansion in the City of Chicago and examining its policy

implications. Chapter 5 concludes the thesis and lists potential future research directions.

In the following sections, we will present a high-level overview of the main ideas explored

in each chapter.
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1.1 Partnerships in Urban Mobility: Incentive Mechanisms for

Improving Public Transit Adoption

In recent years, the decline in public transit ridership has left transit agencies across the U.S.

facing financial crises. The “last mile” problem, which occurs due to the lack of convenient

and affordable transit options between an individual’s home and a transit station, is a major

obstacle to increasing public transit utilization. To address this issue, many municipalities,

including Los Angeles and Philadelphia (Schwieterman and Livingston 2018), have formed

partnerships with ride-hailing companies to offer subsidies for rides to and from transit

stations.

To identify a cost-effective mechanism to solve the last mile problem and improve transit

adoption, two mechanisms exist in practice. The first is a direct mechanism [D] in which

the subsidy program is funded by congestion fees collected from drivers, as seen in London

(Transport for London 2019). The second mechanism [I] is an indirect approach, which was

first implemented in 2020 by Miami (Corselli 2020). The funding source for this mechanism

is partner private sector who benefit from increased transit usage, such as shops near transit

stations and advertisers in public transit mobile apps.

Chapter 2 investigates the equilibrium of both mechanisms and provides conditions un-

der which one mechanism outperforms the other. We first present a novel game-theoretic

model to capture the strategic interactions among five self-interested stakeholders, including

commuters, public transit agencies, ride-hailing platforms, municipal governments, and local

private enterprises. By examining the equilibrium outcomes, three key findings are obtained.

First, we characterize how the optimal interventions associated with the direct or the

indirect mechanism depend on: (a) the coverage level of the public transit network; (b) the

public transit adoption target; and (c) the relative strength of commuter preferences for

driving over taking public transit. Second, we show that the direct mechanism cannot be

budget neutral without undermining commuter welfare. However, when the public transit
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adoption target is not too aggressive, we find that the indirect mechanism is budget neutral,

and it increases both commuter welfare and sales to the private enterprise. Finally, we

show that although the indirect mechanism restricts the scope of government intervention

(by eliminating the congestion fee), it can dominate the direct mechanism by leaving all

stakeholders better off, especially when the adoption target is modest. In conclusion, our

findings offer cost-effective prescriptions for improving urban mobility and public transit

ridership.

1.2 Planning Bike Lanes: Ridership, Congestion, and Path Selec-

tion

In Chapter 3, we focus on improving cycling ridership via bike lane network planning. This

chapter is strongly motivated by practice, and our modeling approach is informed by discus-

sions with city planners from the City of Chicago’s Department of Transportation and the

City of Vancouver’s Transportation Planning group.

Empirical evidence suggests an abundance of bike lanes is associated with increased cy-

cling ridership and safety. In order to accommodate the increasing demand for cycling and

encourage further adoption of this mode of transportation, municipal governments have re-

cently made significant investments in the installation of new bike lanes. However, bike lane

expansion remains contentious because it necessarily reduces road capacity for automotive

vehicles and amplifies congestion. The key research question of Chapter 3 is: Where should

bike lanes be built to promote cycling ridership while mitigating congestion effects? Realizing

the lack of analytical and data-driven approach in solving such complicated infrastructure

planning problems, our work fills the gap by developing an estimation procedure for quan-

tifying the effect of bike lanes on cycling ridership and congestion, which we extend to a

prescriptive model that generates recommendations for bike lane expansion.

We first develop an estimator for learning parameters of a traffic equilibrium model from

3



features of the road network and vehicle traffic flows. We provide sufficient conditions under

which the estimator is statistically consistent, i.e., provably recovers ground-truth parameters

in the limit as the network grows large. Building upon the estimation approach, we present

a prescriptive model for planning new bike lane locations, which endogenizes transportation

mode demand and travel times, and leads to a nonconvex integer optimization problem. For

tractability, we approximate the model as a mixed-integer linear program, and we show that

the approximation error (the suboptimality with respect to the exact formulation) can be

bounded as a function of network and demand parameters.

1.3 Empirical Study: Expanding Chicago’s Cycling Infrastructure

Chapter 3 introduces a novel framework for estimating traffic equilibrium and optimizing

bike lane planning, while Chapter 4 demonstrates its application through a comprehensive

empirical study utilizing real-world data from the city of Chicago. This study combines seven

distinct datasets, including Chicago’s road network, existing bike lane network, observed

traffic flows, travel mode choices, bike share trips, driving and cycling routes, and taxi trips.

Our estimation, based on this extensive dataset, achieves an out-of-sample relative travel

time prediction error of 14.3%, which is competitive to previously proposed methods for

predicting travel times using taxi trip data (Zhan et al. 2013). Once the travel time is

estimated, we proceed to identify the optimal bike lane locations under various specifications

of social planners’ tolerance for congestion increase and financial budget, to cater to the needs

of different municipalities. The outcomes of our analysis indicate that adding 25 miles of

bike lanes recommended by our model could increase ridership from 3.9% to 6.9%, with

a maximum increase in driving times of 8%. In addition to these findings, our research

highlights the inadequacy of relying on intuitive heuristics for bike lane planning, which can

lead to suboptimal outcomes in terms of cycling ridership and congestion. This emphasizes

the importance of a holistic and data-driven approach to urban infrastructure planning.

4



CHAPTER 2

Partnerships in Urban Mobility: Incentive Mechanisms

for Improving Public Transit Adoption

2.1 Introduction

The mission of the United States Federal Transit Administration (FTA) is to “enhance

citizens’ mobility, accessibility, and economic well-being through the development and man-

agement of public transport services”. However, over the last decade, the FTA’s mission has

become increasingly threatened by a prolonged decline in public transit ridership across the

United States. From 2008 to 2017, per capita ridership on buses, subways, and commuter

trains saw a 4% drop in San Francisco, a 5% drop in New York City, and over a 25% drop

in both the Los Angeles and Washington DC areas (The Economist 2019). Moreover, this

decline is nationwide: bus ridership has decreased from 5.6 billion trips in 2008 to 4.7 billion

trips in 2018 (Kamp 2020). The widespread decline in public transit ridership is believed

to be driven by multiple factors, including lower gasoline prices, changing demographic pat-

terns within cities, and the rise of alternative modes of transportation, such as ride-hailing

(Mallett 2018). As a result of declining fare revenue, over 98% of the 2,200 public transit

agencies in the U.S. are in financial crisis (Federal Transit Administration 2017). Covering

these losses is challenging for many municipalities due to limited funding, as well as other

competing priorities, such as public safety, education, and affordable housing.

To combat declining ridership and revenue, cities can certainly scale back public transit

services. However, doing so would undermine the mission of the FTA for the following rea-
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sons. Reducing access to public transit can hinder mobility, especially for those who cannot

afford alternative modes of transportation (e.g., private vehicles, ride-hailing services, and

taxis). Moreover, the American Public Transit Association (APTA) has found evidence sug-

gesting that investments in public transit can generate economic returns by lifting business

sales and promoting job growth (APTA 2019c). In addition to the economic benefits, pub-

lic transit plays a vital role in reducing carbon emissions and alleviating traffic congestion

(APTA 2019c).1 Some cities have offered free bus rides to increase ridership (e.g., in 2019,

Lawrence, Massachusetts and Olympia, Washington began offering free bus rides to improve

mobility for the poor and the elderly (Kamp 2020)); however, the long-term financial via-

bility of fully subsidizing bus fares is questionable. Therefore, there is an urgent need for

municipalities to develop cost effective – ideally, budget neutral2 – solutions for increasing

transit ridership.

A major barrier to increasing public transit utilization is the “last mile” problem –

a challenge caused by the lack of convenient and affordable transit services between an

individual’s home and a transit station (APTA 2019b, LA Metro 2016). Despite increased

investments in public transit – total inflation-adjusted funding in the U.S. increased from

$60 to $72 billion between 2007 and 2017 (APTA 2019a) – commuters continue to eschew

public transit in favor of personal vehicles, in part due to the last mile problem. Indeed,

in 2017, over 85% of US workers used personal vehicles to commute, with less than 6%

relying on public transit (Bureau of Transportation Statistics 2018). Further, while offering

subsidized parking near transit stations may appear to be an attractive solution to address

the last mile problem, such programs are unlikely to be feasible on a large scale due to

limited parking near transit stations, as well as the high cost of building, maintaining, and

1Single-occupancy vehicles emit 1.5 times the CO2 emissions of buses, and four times the emissions of
subways (Hodges et al. 2010). With respect to traffic, public transit has been found to be critical in reducing
congestion during peak hours (Anderson 2014).

2The notion of delivering public services in a budget neutral manner has recently been proposed by the
Centers for Medicare and Medicaid Services; the reader is referred to CMS (2018) for details.
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subsidizing parking spaces. For example, in Los Angeles County, only 24,000 subsidized

parking spaces are available, to support approximately 3.6 million daily commuters (Linton

2016, US Census Bureau 2018a).

To address the last mile problem, various municipal governments are forming partnerships

with private transportation companies. For example, in 2019, Los Angeles partnered with

the ride-hailing platform Via to launch a pilot project that offers commuters subsidized rides

to and from public transit stations. The subsidy is supported by a grant from the Federal

Transit Administration (Los Angeles County Metropolitan Transportation Authority 2019).

Several other major cities (e.g., Atlanta, Austin, Detroit, Philadelphia, and Tampa) have

also begun testing the use of ride-hailing subsidies as a potential solution to closing the

last mile gap (Schwieterman and Livingston 2018, APTA 2019e). These subsidy programs

have only recently become possible due to advances in information technology, which now

enable on-demand ride-hailing, real time tracking of passenger locations, and online/mobile

fare payments.3 More generally, the integration between public transit systems and ride-

hailing is accelerating – for example, in early 2020, Uber announced a new in-app feature

that coordinates trip drop-off times with train schedules (Uber 2020). This novel integration

between private transportation services and public transit opens the door to new forms of

mutually beneficial partnerships.4

In this paper, we investigate two incentive mechanisms that aim to increase public tran-

sit ridership by addressing the last mile problem. Both mechanisms exhibit the following

characteristics:

3Information technology has been successfully leveraged to help commuters plan and pay for multi-modal
trips within a mobile app; examples include Whim in Helsinki, Citymapper in London, Moovel in Germany,
UbiGo in Gothenburg, TAP in Los Angeles, Clipper in San Francisco, and Opal in Sydney (Goodall et al.
2017, Cole 2017).

4There is also evidence to suggest that ride-hailing may be contributing to the decline in public transit
ridership, and adding to traffic congestion in city centers (Brown 2020). Partnerships between public transit
agencies and private ride-hailing platforms may facilitate cooperation instead of competition, which can
be beneficial to both parties (i.e., increased transit ridership in the city center and increased demand for
ride-hailing in suburban areas).
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1. Both mechanisms have a common feature. Both mechanisms rely on a strate-

gic partnership between a public transit agency and a private ride-hailing platform.

Specifically, in both mechanisms, commuters receive a subsidy for adopting a mixed

mode of transportation, in which commuters use the ride-hailing service to travel the

last mile distance (“x”) between their homes and a transit station, and use public

transit to travel between the transit station and a final destination (e.g. city center).

In this setting, x can be interpreted as a measure of the coverage5 of the public transit

system: the last mile x is small (large) if commuters have convenient (inconvenient)

access to transit stations from their homes.

2. Both mechanisms share a common goal. Both mechanisms are intended to in-

crease the adoption of the mixed mode by a constant factor (“β”).

The key differences between the mechanisms are: (a) the role of the local government;

and (b) the source of funding for the ride-hailing subsidy. To elaborate, the first incentive

program we consider is direct in the sense that the the government offers a subsidy (“s”)

directly to each commuter as an incentive for adopting the mixed mode. To defray the cost

associated with the subsidy, the government charges a congestion fee (“e”) to commuters

who instead choose to drive a personal vehicle into the city.6 Therefore, under the “direct

mechanism” (denoted by [D]), the government uses two levers to entice commuters to adopt

the mixed mode: the ride-hailing subsidy s, and the congestion fee e.

5In the context of public transit, “coverage” broadly refers to the accessibility of transit stations by the
general population (i.e., commuters in our context) (Tomer et al. 2011).

6Congestion fees have been adopted by many municipal governments, including Singapore, Hong Kong,
London, Milan, and Stockholm. Singapore was the first to introduce congestion pricing as a tool to control
traffic volume, where citizens pay for fees when they enter city center areas (Development Asia 2018). London
introduced congestion fees in 2003, where there is a charge for entering London’s congestion charging zone (13
square miles) between 7 a.m. and 6 p.m. on weekdays (Transport for London 2019). Since the introduction
of congestion fees, traffic congestion and private vehicle usage in London has dropped by 25% and 39%,
respectively (Badstuber 2018). Similarly, in Milan, public ridership increased 12.5% from 2007 to 2013
(Croci 2016).
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Unlike the direct mechanism [D] that relies on congestion fees collected from commuters

who drive, the local government secures funding for the subsidy (“z”) from the private

sector in the second mechanism. This mechanism is indirect because the government’s role

is restricted to facilitating the transfer of the subsidy from a private enterprise to commuters.

This scheme is motivated by the fact that many municipalities may not have sufficient funds

to further subsidize public transit. To relieve this financial burden, Cole (2017) proposes

the following partnership between a municipal government and a private enterprise. The

government and public transit agency develop a mobile app to process different transactions,

including fares collected from the commuters and subsidies provided by the private enterprise.

The private enterprise benefits from higher transit ridership through an expanded customer

base. Here, the customer base may represent foot traffic at stores near the transit station

(e.g., coffee shops, bakeries, health clinics, spas, hair salons), or number of views on an

in-app advertisement. Under this arrangement, the private enterprise can recover the cost

associated with the subsidy from the extra revenue derived from the increased demand. In

contrast to the direct mechanism, this “indirect mechanism” (denoted by [I]) involves just a

single lever: the subsidy z, provided by the private enterprise.

Mechanism [I] is motivated by a growing interest among transit agencies in leveraging

private sector partnerships to subsidize public transit trips. For example, since early 2020,

commuters in Miami-Dade County can earn loyalty points (i.e., subsidies) by taking public

transit, which can be redeemed for discounts on future trips through the transit agency’s

mobile app (known as “Go Miami-Dade Transit”) (Corselli 2020). These loyalty points

are funded by local businesses who post in-app video ads within the mobile app. The

National Hockey League (NHL) and the Seattle Monorail formed a partnership in which

NHL will subsidize rides on the Monorail for fans attending hockey games (Condor 2020).

Both of partnerships can be viewed as a private enterprise (i.e., a single aggregate entity)

subsidizing public transit trips in exchange for an expanded audience, which capture the

main characteristics of mechanism [I].
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2.1.1 Outline and contributions

Our intent is to investigate the impact of both subsidy mechanisms on multiple stakeholders:

a municipal government, suburban commuters, city dwellers, a public transit agency, a ride-

hailing platform, and a private enterprise. To do so, we examine the following questions:

1. How does each mechanism perform in terms of: (a) operating cost (borne by the

government); (b) commuter welfare; (c) the public transit agency’s revenue; (d) the

ride-hailing platform’s revenue; and (e) the private enterprise’s profit?

2. How does the last mile distance (or coverage) x and the mixed mode adoption target

β affect: (a) the optimal direct subsidy s∗ and congestion fee e∗ in mechanism [D], and

(b) the optimal indirect subsidy z∗ in mechanism [I] ?

3. Under what conditions, if any, should the municipal government adopt mechanism [I]

over mechanism [D]?

We examine the above questions by developing a game-theoretic model that captures the

interactions among all stakeholders. Specifically, in mechanism [D], we identify the optimal

subsidy level s∗ and congestion fee e∗ that minimizes the government’s net spending (subsidy

cost less the revenue generated by the congestion fee), subject to improving adoption of the

mixed mode by a factor of at least β. In addition, we restrict the set of feasible subsidies and

congestion fees to those that satisfy participation constraints associated with commuters,

the ride-hailing platform, the public transit agency, and the private enterprise. We also

determine the optimal subsidy z∗ under mechanism [I], subject to the same set of stakeholder

participation constraints.

Our key findings are summarized as follows:

1. The optimal incentive under mechanism [D] depends on the last mile dis-

tance x. Specifically, the optimal incentive entails a large congestion fee and a small
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ride-hailing subsidy when the transit coverage is high (i.e. when the last mile distance

x is small). Conversely, when transit coverage is low (i.e., x is large), this prescription

is reversed: the optimal incentive relies on aggressive ride-hailing subsidies and rela-

tively smaller congestion fees. Moreover, we find that whether the optimal subsidy s∗

increases or decreases in the last mile distance x depends on the commuter’s relative

preference between driving and taking public transit.

2. Budget neutrality is not attainable under mechanism [D]: It is not possible for

the government to fully recoup the cost of the subsidy through congestion fees without

decreasing total commuter welfare.

3. Mechanism [I] can dominate mechanism [D] under certain conditions. De-

spite the government having access to two levers in mechanism [D] (the subsidy s and

the congestion fee e) and only a single lever in mechanism [I] (the subsidy z), mecha-

nism [I] can dominate mechanism [D], but only when the adoption target β is modest.

Specifically, when β is modest, the commuters, city dwellers, public transit agency,

ride-hailing platform, and private enterprise are all better off under mechanism [I].

The remainder of the chapter is organized as follows. In Section 2.1.2, we discuss related

literature. In Section 2.2, we present a general model for analyzing both mechanisms. In

Section 2.3, we present mechanism [D] and analyze the optimal incentive scheme (e∗, s∗).

In Section 2.4, we present mechanism [I], analyze the optimal subsidy z∗, and compare the

performance of both mechanisms. In Section 2.5, we consider variants of mechanisms [D]

and [I] that address the trade-off between operating cost and commuter welfare. In Section

2.6, we conclude and discuss potential future research directions.

2.1.2 Related literature

This chapter is related to three streams of literature: government subsidy programs, public-

private partnerships, and budget neutral mechanisms.
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Government subsidy programs. Within the operations literature, there is a growing

focus on subsidy programs that promote the production or adoption of socially beneficial

goods or services. This study can be categorized into subsidies for producers (e.g., farmers,

manufacturers, healthcare providers) and consumers. Subsidies for producers have been

studied in the context of healthcare (Taylor and Xiao 2014, Levi et al. 2017, Aswani et al.

2019), green technology (Ma et al. 2019, Bansal and Gangopadhyay 2003, Alizamir et al.

2016), and agriculture (Alizamir et al. 2019, Akkaya et al. 2019). This chapter is closer to the

literature on consumer-facing subsidies. In the home appliances industry, Yu et al. (2018)

determine whether the government should subsidize consumers only, manufacturers only, or

both, where the goals of the government are to improve manufacturer profit and consumer

welfare in rural areas. Xiao et al. (2019) examine the impact of the same home appliance

subsidy program, which they conclude improves both affordability and accessibility for rural

customers. In the context of solar energy technology, Chemama et al. (2019) compare the

effectiveness of static and dynamic consumer subsidies on supplier behavior. This study

differs from this existing literature in that we investigate whether the subsidy program can

be budget neutral from the perspective of the subsidy provider.

Previous work in the operations literature on public transit subsidies is sparse. Lodi et al.

(2016) consider a setting where operation of the public transit system is outsourced to the

private sector, and the government provides a subsidy to offset the operating cost. Yang

and Lim (2018) use a field experiment to show that temporarily subsidizing public transit

can lead to long-term changes in commuter behavior. The paper that is most similar to ours

in this line of research is by Xiao and Zhang (2014), who also consider congestion fees and

transit subsidies simultaneously. They focus on the impact that commuter heterogeneity in

value-of-time has on the optimal design of congestion fees, and show that transit subsidies

can offset the loss in commuter welfare due to the congestion fee. Our work is different in

that we focus on the role that congestion fees and transit subsidies can play in improving

public transit ridership.
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Public-private partnerships. Our work contributes to the modeling of public-private

partnerships (PPP), which refers to a private sector partner “financing, constructing, and

managing a project in return for a promised stream of payments directly from government

or indirectly from users over the projected life of the project or some other specified period”

(Weimer and Vining 2017). This study belongs to the stream of PPP literature where

the government has all of the bargaining power. In the existing literature, this is often

modeled as either a principal-agent problem or a Stackelberg game, where the government

is the principal/leader and the firm is the agent/follower; applications include healthcare

(So and Tang 2000, Lee and Zenios 2012, Gupta and Mehrotra 2015, Guo et al. 2019,

Aswani et al. 2019), disaster management (Guan and Zhuang 2015, Guan et al. 2018) and

risk management (Bakshi and Gans 2010). With respect to transportation, existing work

on public-private partnerships has primarily focused on infrastructure. Lodi et al. (2016)

address the government’s incentive design problem when management of the public transit

service is outsourced to private operators. Gagnepain and Ivaldi (2002) examine the effect

on social welfare under different types of contracts between the regulator and the public

transit operator. Hansson (2010) considers a multi-principal setting, where the local, regional

and county governments interact to regulate public transit procurement. In contrast to

these papers, the private partners play a different role in our work, namely, they provide a

complementary transportation service (in the case of the ride-hailing platform) and funding

for subsidies (in the case of the partner enterprise).

Previous work has also considered settings where the public-private partnership is formed

through negotiation. In the transportation context, Kang et al. (2013) investigate royalty

bargaining associated with underground railway station construction, and Wang and Zhang

(2016) examine road pricing of transportation networks with both public and private roads.

Other application areas include natural resource development (Anandalingam 1987), public

procurement (Gur et al. 2017, Saban and Weintraub 2019) and global supply chain manage-

ment (Cohen et al. 2018, Cho et al. 2019, Cohen and Lee 2020).
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Budget neutral mechanisms. This study also contributes to the literature on budget

neutral policies. This study has primarily appeared in the public policy literature, and has

addressed issues such as social security reform (Burkhauser and Smeeding 1994), environ-

mental taxation (Goulder 1995, Murray and Rivers 2015), and fiscal policy (Correia et al.

2013, D’Acunto et al. 2016). Within the operations management literature, previous work on

budget neutral policies is scarce. Guo et al. (2014) optimize a two-tier queuing system with

both a free server and fee-based server, in the setting where the system is self-financed by

the costly server. Arifoglu and Tang (2019) develop a budget neutral incentive mechanism

for coordinating a decentralized influenza vaccine supply chain.

With respect to transportation settings, most existing papers that focus on budget neu-

trality are based on schemes under which subsidies/rebates are funded by congestion fees,

similar to mechanism [D] in our work (see, e.g., Guo and Yang (2010), Nie and Liu (2010),

Chen and Yang (2012), Xiao and Zhang (2014)). Our work differs in that we also consider

an indirect mechanism [I], where the government attains budget neutrality by obtaining

funding from a private enterprise, instead of imposing congestion fees. Further, we compare

mechanisms [D] and [I] in terms of their impact on the relevant stakeholders.

2.2 Model Preliminaries

A unit mass of commuters are located a (last mile) distance x > 0 from a transit station.

All commuters must travel to a city center that is located an additional distance of 1 beyond

the transit station. For tractability, we consider a parsimonious model where commuters

choose between two modes of travel:7 driving or a mixed mode. As depicted in Figure

7We focus on suburban commuters for whom walking to the transit station is prohibitively costly. Ac-
cordingly, we exclude the mixed mode that combines walking and public transit. Similarly, we exclude the
case where commuters combine electric scooters or bicycles and public transit because (a) commuters’ com-
fortable biking distance is limited (Rastogi and Krishna Rao 2003) and (b) less than 4% of commuters use
scooters or bicycles to get to/from transit stations (Federal Highway Administration 2017)). We also exclude
the mixed mode that combines driving and public transit, due to limited parking spaces near transit stations
in the U.S. Commuters who exclusively use ride-hailing to commute are also not considered here(only 0.2%
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2.1, x represents the length of the “last mile” that is not covered by public transit. Hence,

commuters who choose the driving mode will drive a personal vehicle for a distance of 1+x to

the city center. However, commuters who choose the mixed mode will first travel a distance

of x to the transit station via a ride-hailing service, and then travel the remaining distance

of 1 by public transit.

Figure 2.1: Travel distance of a commuter.

2.2.1 Base Model

We first describe our base model in the absence of any subsidies or congestion fees. In later

sections, we extend our base model to incorporate the two incentive schemes. We note here

that our focus throughout the chapter is on daily commuters who live in suburban areas

outside the coverage area of the public transit system; therefore, all aspects of the model

(e.g., transit ridership, operating cost, ride-hailing platform revenue) are defined with respect

to this group of commuters only.

Commuter utility. Each commuter obtains a “base” utility M for commuting to the city

center. A commuter has valuation (or willingness-to-pay) V per unit distance traveled via

ride-hailing or public transit, or δV if she drives.8 We assume δ > 1 to reflect a higher

of suburban residents commute via taxi or ride-hailing services (Federal Highway Administration 2017)).

8Empirical evidence suggests that a commuter’s willingness-to-pay for transportation is increasing in the
travel distance (Van Ommeren et al. 2000, Jou et al. 2012). For tractability, we assume a linear relationship
between willingness-to-pay and distance, given by the parameter V .
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intrinsic utility for driving.9 To capture heterogeneity among commuters, we assume V ∼

U [0, 1].10 (In Appendix A.3, we consider an alternative setting in which V is deterministic

and identical for all commuters. Instead, we consider commuter heterogeneity in terms of x

by assuming that x (i.e., the distance between a commuter’s home and the transit station)

is uniformly distributed. For this alternative setting, we obtain the same structural result.)

A commuter will travel a distance of 1+x if she chooses the driving mode of transporta-

tion. Similarly, under the mixed mode, the commuter will first travel a distance of x via

ride-hailing and the remaining distance of 1 via public transit. In our model, we assume a

commuter’s cost (or fare) for driving, ride-hailing, and taking public transit are denoted by

d, r, and p, respectively. We assume throughout that r > d > p > 0, which is supported

empirically.11 Therefore, the utilities associated with driving and the mixed mode in the

absence of any incentives, denoted by U0
d and U0

m, respectively, are given by

U0
d =M + (x+ 1)δV − (x+ 1)d, (2.1a)

U0
m =M + (x+ 1)V − (rx+ p). (2.1b)

Travel mode demand. It follows from (2.1) that a commuter will adopt the mixed mode

if and only if U0
m ≥ U0

d . We assume the base value M is large enough such that U0
d ≥ 0 and

U0
m ≥ 0. Therefore, U0

m ≥ U0
d if and only if:

V ≤ v0 ≡ (d− p)− (r − d)x
(δ − 1)(x+ 1)

. (2.2)

9Recent survey data has shown that commuters generally prefer driving to public transit and ride-hailing
services (Zhu and Fan 2018). Our main results also persist in a model where commuters prefer ride-hailing
to public transit, so that the additional value associated with ride-hailing is l · V , where δ > ℓ ≥ 1. For ease
of exposition, we assume ℓ = 1 throughout.

10Commuter valuation for each travel mode can vary based on demographic features such as age, income
level, or health conditions (Zhu and Fan 2018). For simplicity, we assume the valuation V ∼ U [0, 1].

11The cost of driving is estimated to be $0.76/mile, assuming a mileage of 10,000 miles per year (American
Automobile Association 2018). Ride-hailing is estimated to cost more than $1.07/mile (Lyft 2021). The cost
of commuting by public transit is typically much lower; for example, the cost of public transit in Los Angeles
is estimated to be $0.2/mile, assuming an average commute distance of 16 miles (Leonard 2019).
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Let D0
d and D0

m denote the demand for driving and the mixed mode, respectively. Because

V ∼ U [0, 1], we can apply (2.2) to show that:

D0
d =

∫ 1

v0
1 · dV = 1− (d− p)− (r − d)x

(δ − 1)(x+ 1)
, (2.3a)

D0
m =

∫ v0

0

1 · dV =
(d− p)− (r − d)x
(δ − 1)(x+ 1)

. (2.3b)

Note that D0
m represents the additional public transit ridership generated by the mixed mode

commuters. Because r > d > p > 0, it is straightforward to verify that D0
m is decreasing

in x, which implies that commuters that live far from the transit station are more likely to

drive and less likely to adopt the mixed mode. Further, D0
m also measures the “reduction”

in traffic congestion, because D0
m = 1−D0

d.

Let [a]+ = max{a, 0}. To exclude the degenerate cases where all commuters adopt

the same travel mode, we assume that x ∈ (x, x̄), so that D0
m > 0 and D0

d > 0, where

x =
[
(d−p)−(δ−1)
(δ−1)+(r−d)

]+
and x̄ = d−p

r−d . We also assume that the public transit and the ride-hailing

platform have sufficient capacity to accommodate demand for the mixed mode.12

Commuter welfare. Because V ∼ U [0, 1], the commuter welfare in the base model is given

by

W 0 =

∫ v0

0

U0
mdV +

∫ 1

v0
U0
ddV. (2.4)

Transit agency revenue. By noting that the unit fare of public transit is p, the revenue

generated by the public transit agency from these commuters under the mixed mode demand

D0
m is:

Π0
p = p ·D0

m. (2.5)

Ride-hailing platform revenue. Recall that each mixed mode commuter will travel a

distance of x via ride-hailing to the transit station, at a unit fare of r. The revenue generated

12The average vehicle occupancy rate of public transit in 2017 was less than 30% (APTA 2019d). Ride-
hailing services also have ample capacity: the average idle rate of Uber drivers is 30-40% (Currie 2018, Brown
2020).
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by the ride-hailing platform from these commuters under the mixed mode demand D0
m is:

Π0
r = r · x ·D0

m. (2.6)

Private enterprise profit. Consider a private enterprise who sells to public transit com-

muters. This private enterprise may be a business that sells goods or services to passengers

that pass through a transit station, or one that places advertisements within a transit sys-

tem’s mobile app or physical walkways. We model the enterprise profit as (k−c)[1−kα]+D0
m,

where k and c represent the unit price and cost, respectively, and [1 − kα]+ represents the

proportion of mixed mode commuters that purchase the product. Note that α > 0 is the

commuters’ price sensitivity. To avoid the trivial case where the enterprise’s optimal profit

is non-positive, we assume αc < 1.13 Then, for any given mixed mode demand D0
m, the

optimal retail price in the base model is kb =
αc+1
2α

so that the corresponding optimal profit

is equal to (kb − c)[1− kbα]+D0
m = (1−αc)2

4α
D0
m. For ease of exposition, we let K ≡ (1−αc)2

4α
to

denote the profit margin so that the corresponding total profit can be expressed as:

Π0
s = K ·D0

m. (2.7)

2.2.2 A Generalized Mechanism: Government Subsidy, Congestion Fees and

Private Subsidy

By using the quantities as defined above, we now present our model that incorporate the

aforementioned incentives. To avoid repetition, we shall present a generalized mechanism

that combines three interventions: (1) a congestion fee e charged to each commuter who

travels by a personal vehicle; (2) a subsidy s for each commuter who takes the mixed mode,

paid for by the government; and (3) a subsidy z for each commuter who takes the mixed

mode, paid for by the private enterprise. We denote this generalized mechanism by (e, s, z).

When z = 0, this mechanism reduces to mechanism [D]. Also, when e = s = 0, the mecha-

nism simplifies to mechanism [I]. To isolate the effect of (e, s) under mechanisms [D] and the

13Note that if αc ≥ 1, then (k − c)[1− kα]+D0
m ≤ 0 for any D0

m ≥ 0 and k ≥ 0.
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effect of s under mechanism [I], we shall analyze mechanism [D] in Section 2.3 and mecha-

nism [I] in Section 2.4 as two separate mechanisms. (Based on our knowledge, most transit

agencies adopt either mechanism [D] or [I], but no both. However, we shall analyze the

hybrid mechanism that combines both mechanisms [D] and [I] in Appendix A.1 (i.e., when

(e, s) and z are permitted to be non-zero) and show that the structural results continue to

hold.)

The sequence of events is as follows. First, the government chooses whether to adopt

mechanism [D] or mechanism [I]. Second, the government sets the incentives that correspond

to the chosen mechanism. Specifically, the government sets the congestion fee e and govern-

ment subsidy s if mechanism [D] is chosen, or the private subsidy z if mechanism [I] is chosen.

Next, once (e, s) or z is set, the private enterprise selects the unit price k to maximize its

profit. Finally, each commuter chooses to commute by either driving or adopting the mixed

mode.

By considering (2.1) along with the incentive (e, s, z), commuter utilities associated with

different modes of transportation can be written as:

Ud(e, s, z) = U0
d − e, (2.8a)

Um(e, s, z) = U0
m + s+ z, (2.8b)

where U0
d and U0

m are given in (2.1).14

Hence, a commuter will adopt the mixed mode under incentive (e, s, z) if and only if

Um(e, s, z) ≥ Ud(e, s, z), or equivalently, if her valuation V satisfies:

V ≤ v(e, s, z) ≡ min

{
1,

(d− p)− (r − d)x+ e+ s+ z

(δ − 1)(x+ 1)

}
. (2.9)

Akin to the base case without incentives, the demand for each transportation mode under

14 Observe from (2.1) that the utilities U0
d and U0

m are based on parameters x, d, r and p. Hence the
lump-sum congestion fee e and subsidy s and z in (2.8) can also be expressed as a percentage fee and subsidy
through an appropriate scaling of those parameters.
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the incentive (e, s, z) is given by

Dd(e, s, z) =

[
1− (d− p)− (r − d)x+ e+ s+ z

(δ − 1)(x+ 1)

]+
, (2.10a)

Dm(e, s, z) = 1−
[
1− (d− p)− (r − d)x+ e+ s+ z

(δ − 1)(x+ 1)

]+
. (2.10b)

Note that if (e, s, z) = (0, 0, 0), then v(e, s, z), Dd(e, s, z), and Dm(e, s, z) reduce to their

base values v0, D0
d, and D

0
m as stated in Section 2.2.1, respectively.

Performance metrics. Next, we define the metrics by which we evaluate the performance

associated with the incentive (e, s, z). Because the government offers a subsidy s to each

of the Dm(e, s, z) mixed mode commuters and collects a fee e from each of the Dd(e, s, z)

commuters who drive, and meanwhile the government passes on a subsidy z from the partner

enterprise to each mixed mode commuter, the total cost for the government to operationalize

the incentive (e, s, z) is:

C(e, s, z) = (s+ z)Dm(e, s, z)− eDd(e, s, z)− zDm(e, s, z)

= sDm(e, s, z)− eDd(e, s, z). (2.11)

Note that when e = s = 0, there is no operating cost C(0, 0, z) = 0. Similar to the base

case, the total welfare accrued to all commuters is:

W (e, s, z) =

∫ v(e,s,z)

0

Um(e, s, z)dV +

∫ 1

v(e,s,z)

Ud(e, s, z)dV, (2.12)

the public transit agency’s revenue generated from these commuters is:

Πp(e, s, z) = p ·Dm(e, s, z), (2.13)

and the ride-hailing platform’s revenue generated from these commuters is:

Πr(e, s, z) = r · x ·Dm(e, s, z). (2.14)

Lastly, the private enterprise’s profit generated from these commuters is ((k− c)[1−kα]+−

z)Dm(e, s, z). Observe that the optimal price kg =
αc+1
2α

so that the corresponding optimal
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profit is (K − z)Dm(e, s, z), where K is the enterprise’s profit margin in the base model

as defined in Section 2.2.1. We assume the profit margin of a participating enterprise K

satisfies K > K throughout the chapter, where K = (d− p)− (r − d)x, because enterprises

with low profit margin would not opt in the subsidy program. Hence, the enterprise’s total

profit under incentives (e, s, z) is

Πs(e, s, z) = (K − z) ·Dm(e, s, z). (2.15)

Note that when (e, s, z) = (0, 0, 0), the metrics W (e, s, z), Πp(e, s, z), Πr(e, s, z), and

Πs(e, s, z) reduce to the base values W 0, Π0
p, Π0

r, and Π0
s (defined in Section 2.2.1), re-

spectively.

Next, we present the evaluation criteria for the incentive program (e, s, z). In particular,

we assume that (e, s, z) is set according to the following criteria:

I Minimum operating cost. Because most municipalities in the U.S. and around

the world are budget constrained with respect to public transit,15 we assume that the

government has a strong desire to minimize the total operating cost of the incentive

program, but not profit from it, where the government’s operating cost is given by

[C(e, s, z)]+.

II Increase transit ridership. The intent of the incentive (e, s, z) is to increase public

transit ridership among commuters by a factor of β > 0. We assume throughout that

β is an exogenous adoption target, and that the incentive (e, s, z) must satisfy:

Dm(e, s, z)−D0
m ≥ βD0

m,

where D0
m is the baseline mixed mode adoption without any intervention as stated

in Section 2.2.1. Note that the increase β is equivalent to a decrease in demand for

15Due to an anticipated budget deficit through 2026, the U.S. Department of Transportation is likely to
further reduce transfers to states and transit agencies (Kirk and Mallett 2020). Similarly, Transport for
London faces a grant cut from the government of £700m a year (Edwards 2018).
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driving; therefore, β may be equivalently interpreted as the target reduction in traffic

congestion. For this reason, the constraint above can also be interpreted as improving

the well-being of city dwellers. Analogous to the assumption that x ∈ (x, x̄) in the

base model, we assume throughout that the target β is restricted to the non-degenerate

case where Dd(e, s, z) > 0 and Dm(e, s, z) > 0. To enforce the preceding inequalities,

it suffices to assume that β < τ̄(x) ≡ (δ−1)(x+1)
(d−p)−(r−d)x − 1. Note that if β ≥ τ̄(x), then

upon implementation of incentive (e, s, z), no commuters will drive (Dd(e, s, z) = 0),

which is unlikely to occur in practice.

III Commuter participation. To generate public support for the incentive program,

commuters should not be worse off collectively: W (e, s, z) ≥ W 0.

IV Ride-hailing platform participation. To form a viable partnership with the ride-

hailing platform, the platform’s revenue generated from daily commuters should not

decrease: Πr(e, s, z) ≥ Π0
r.

V Public-transit participation. To ensure that the public transit agency is not neg-

atively impacted, its revenue generated from the mixed mode should not decrease:

Πp(e, s, z) ≥ Π0
p.

16

VI Enterprise participation. Lastly, to prevent adverse effects on the local economy, it

is desirable to ensure that the incentive (e, s, z) does not reduce the private enterprise’s

profit: Πs(e, s, z) ≥ Π0
s. Further, in mechanism [I] in particular, to entice participation

of the private enterprise, the private subsidy z is set to maximize the private enterprise’s

profit: z = argmaxz Πs(e, s, z).

Observe from criterion II that a feasible incentive program (e, s, z) must satisfyDm(e, s, z) ≥

D0
m. Combine this observation with (2.13) and (2.14), criteria IV and V are satisfied (and

16Note that although transit agencies receive funding from local governments, they operate under sepa-
rate budgets (Federal Transit Administration 2020). Therefore, we model the transit agency as a distinct
stakeholder from the local government.
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hence, redundant) immediately if Dm(e, s, z) ≥ D0
m. This result is intuitive: when the gov-

ernment increases the mixed mode adoption, both the ride-hailing company and the transit

agency will be better off. Therefore, we shall omit criteria IV and V from the incentive

design problems in the remainder of the chapter for conciseness.

2.3 Direct Mechanism: Commuter Subsidies and Congestion Fees

In the direct mechanism [D], the local government directly offers a subsidy s to each mixed

mode commuter, and charges a congestion fee e to each commuter who drives. Hence, by

letting z = 0 in the general formulation presented in Section 2.2.2, we can determine the

commuter utility and the market demand associated with the driving mode and the mixed

mode, along with all the performances metrics under mechanism [D]. Figure 2.2 depicts the

relationship among the various stakeholders in this case.

Figure 2.2: Strategic interactions among stakeholders under the indirect mechanism [D].

Based on the evaluation criteria I ∼ VI (with IV and V being omitted for conciseness),
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the optimal incentives e∗ and s∗ are the solution to the following problem:

min
e,s≥0

[C(e, s, 0)]+ (2.16a)

s.t. Dm(e, s, 0)−D0
m ≥ βD0

m (2.16b)

Mechanism [D]: W (e, s, 0) ≥ W 0 (2.16c)

Πs(e, s, 0) ≥ Π0
s. (2.16d)

2.3.1 Direct Mechanism: Optimal Incentive (e∗, s∗)

By solving problem (2.16), we obtain the optimal incentive (e∗, s∗) under mechanism [D].

Proposition 1. The optimal congestion fee e∗ and the optimal subsidy s∗ under mechanism

[D] are given by:

e∗ =
β(β + 2)((d− p)− (r − d)x)2

2(δ − 1)(x+ 1)
,

s∗ =
β((d− p)− (r − d)x)(2(δ − 1)(x+ 1)− (β + 2)((d− p)− (r − d)x))

2(δ − 1)(x+ 1)
. (2.17)

Further,

(i) The optimal congestion fee e∗ strictly increases in β and strictly decreases in x.

(ii) The optimal subsidy s∗ strictly increases in β. If δ is large, s∗ strictly decreases in x.

However, if δ is small, there exists x̃ such that s∗ increases on x < x̃ and decreases on

x ≥ x̃.

Statements (i) and (ii) of Proposition 1 imply that, as the mixed mode adoption target

β becomes more aggressive, the commuter subsidy s∗ and congestion fee e∗ also increase to

meet the adoption target, as expected. Additionally, as the last mile distance x increases,

the demand for driving also increases, and hence the congestion fee e∗ decreases to maintain

commuter welfare.
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In contrast to the congestion fee e∗, the behavior of the optimal subsidy s∗ is not mono-

tonic in the last mile distance x. To see why, let us consider the impact on mechanism [D]

when x increases. As x increases, the mixed mode adoption (before any government inter-

vention) D0
m (as stated in (2.3)) decreases, which generates two competing effects. First, note

that the transit ridership constraint can be rewritten as Dm(e, s, 0) ≥ (β+1)D0
m. Therefore,

as D0
m decreases, the requirement for the mixed mode commuters Dm(e, s, 0) becomes less

stringent. Consequently, the government can afford to reduce s, which we refer to as the

“adoption effect.” Second, as D0
m decreases, commuter welfare decreases, due to fewer com-

muters receiving the subsidy. To ensure commuters are not worse off, the government needs

to increase s, which we refer to as the “welfare effect.” Hence, whether the optimal subsidy

s∗ increases or decreases in x depends on which of these two effects dominate.

To examine when one effect dominates the other, first consider the case when commuters

strongly prefer driving over transit and ride-hailing (i.e., when δ is large). In this case,

the welfare effect is weak (because the mixed mode adoption D0
m is already low before any

intervention), and the adoption effect dominates – leading s∗ to decrease in x. However,

when commuters are relatively indifferent between the two modes (i.e., when δ is small),

the mixed mode adoption D0
m is highly sensitive to small changes in x. As a result, as

x increases, demand for the mixed mode drops sharply, which makes the welfare effect

dominates – leading s∗ to increase in x.17

Corollary 1. There exists a threshold x̂ such that e∗ ≥ s∗ in mechanism [D] if and only if

x ≤ x̂. Further, there exists a threshold δ̄ > 1 such that s∗ > e∗ in mechanism [D] for all

x ∈ (x, x̄) if and only if δ ≥ δ̄.

Corollary 1 states that for any adoption target β, the optimal congestion fee e∗ is compara-

tively larger than the optimal subsidy s∗ when the last mile distance x is small. To see why,

observe that when x is small, the mixed mode is already attractive to commuters, which

17Note that even when δ is small, the welfare effect ceases to dominate the adoption target effect when
the last mile distance is large (x ≥ x̃), due to low demand for the mixed mode.
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makes providing a subsidy (per commuter) relatively costly; in this setting, the congestion

fee e is the preferred lever for promoting the adoption of the mixed mode, due to its cost

efficiency. Conversely, when the last mile distance x is large, more aggressive subsidies are

required to meet the mixed mode adoption target. Corollary 1 also implies that if δ is large,

then x̂ < x, which yields s∗ > e∗ for all x ∈ (x, x̄). This occurs because when δ is large,

most commuters prefer to drive, and so it is sub-optimal for the government to set a high

congestion fee, due to its degradation of commuter welfare.

Next, we examine whether the government can attain budget neutrality (or positive

revenue) by using congestion fees to offset commuter subsidies under mechanism [D].

Corollary 2. It is impossible for mechanism [D] to be budget neutral, i.e., C(e∗, s∗, 0) > 0.

Further, the minimal operating cost C(e∗, s∗, 0) is higher when β is large or when x is small.

The intuition behind Corollary 2 is as follows. For any budget neutral incentive (e, s) (i.e.,

where the congestion fee e is selected to fully cover the cost of the subsidy s), it can be shown

that the utility loss to drivers exceeds the utility gain to transit riders. In other words, for

any subsidy s, there is no congestion fee e that can achieve budget neutrality without a net

decrease in total commuter welfare. As a result, the requirement that commuter welfare

be non-decreasing in mechanism [D] can only be satisfied through a positive operating cost.

Next, to see why C(e∗, s∗, 0) is higher when β is large or when x is small, observe that, in

this case, the mixed mode adoption target βD0
m on the right hand side of constraint (2.16b)

is large, which requires the mixed mode adoption Dm(e, s, 0) to also be large. Therefore, as

more mixed mode commuters receive the subsidy, mechanism [D] incurs a greater cost to the

government. We can now summarize our main finding from mechanism [D] as follows.

Remark 1. The direct mechanism [D] can enable the government to meet the public tran-

sit adoption target β. However, this mechanism is costly: attaining budget neutrality is

impossible without undermining commuter welfare.
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Note that our commuter utility function implies that commuters are equally sensitive to

the subsidy and congestion fee; that is, |∂Um(e, s, 0)/∂s| = |∂Ud(e, s, 0)/∂e|. Note that this

symmetry may not hold if commuters are loss averse. However, we find that the structure

of our main results continues to hold under loss aversion as well. Intuitively, if commuters

perceive losses from congestion fees more strongly than gains from subsidies, then the gov-

ernment would need to increase the subsidy and decrease the congestion fee to satisfy the

non-decreasing commuter welfare constraint, resulting in a higher total operating cost.18

Remark 1 naturally raises the following question: Does there exist an alternate mechanism

that can enable the government to attain budget neutrality, without negatively impacting

commuter welfare? In the next section, we address this question by examining an alternative

incentive program under which the subsidy is funded by a private enterprise, instead of

congestion fees.

2.4 Indirect Mechanism: Funding Subsidies Through a Private

Enterprise

Because most municipalities are financially constrained, self-funded or budget neutral projects

are preferred. In this section, we present the indirect mechanism [I], where the local gov-

ernment secures funding for the subsidy entirely from a private enterprise,19 and does not

charge congestion fees. Note that the indirect mechanism is budget neutral by design. We

will therefore focus on the performance of mechanism [I] on the remaining evaluation criteria.

18Similar to Homonoff (2018), we can extend our model to capture one aspect of loss aversion by defining the
commuter utilities associated with the mixed mode and driving as Um(e, s, z) = U0

m+ s+ z and Ud(e, s, z) =
U0
d − ρ · e, respectively, where ρ ≥ 1 captures the strength of the commuter’s aversion to the congestion

fee. The evaluation criteria I – VI can be re-defined accordingly. Using a parallel argument to the proof of
Corollary 2, it is straightforward to verify that the optimal operating cost is strictly positive for all ρ ≥ 1.

19As explained in Section 2.1, the transit agency can generate revenue from private companies who post
in-app video ads via mobile apps, and the indirect mechanism can be operationalized through a mobile app
that allows the government to collect fares from riders and subsidies from the private sector.
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By using the same approach as in Section 2.3, we now present our model associated

with mechanism [I], which corresponds to the special case of the general model framework

presented in Section 2.2.2 when we set (e, s) = (0, 0). In other words, by replacing (e, s, z)

in the general formulation with (0, 0, z), we can determine the performance metrics under

mechanism [I]. The interactions among all stakeholders are depicted in Figure 2.3.

Figure 2.3: Strategic interactions among stakeholders under the indirect mechanism [I].

Because the viability of mechanism [I] depends on participation from the private enter-

prise, we assume the private subsidy z is set to maximize the enterprise’s total profit. Based

on the evaluation criteria I – VI, the government’s incentive design problem associated with

subsidy z under mechanism [I] can be formulated as the following optimization problem:

min
z≥0

[C(0, 0, z)]+ (2.18a)

s.t. Dm(0, 0, z)−D0
m ≥ βD0

m (2.18b)

Mechanism [I]: W (0, 0, z) ≥ W 0 (2.18c)

Πs(0, 0, z) ≥ Π0
s (2.18d)

z = argmax
z

Πs(0, 0, z) (2.18e)

Note that C(0, 0, z) = 0 for all z, by the definition of C(e, s, z) as given in (2.11). Therefore,

under mechanism [I], the government attains budget neutrality as long as problem (2.18)
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is feasible (in other words, mechanism [I] is budget neutral by design). Note also that

formulation (2.18) may be infeasible if β is large, for the following reason. If β is large, then

the private enterprise must issue a large subsidy to reach the adoption target. However, if

the cost of providing a large subsidy exceeds the extra revenue earned by the enterprise (due

to increased demand), then the participation constraint (2.18d) may be violated. Formally,

let τ(x) = min{ K
((d−p)−x(r−d)) − 1, τ̄(x)}, where τ̄(x) = (δ−1)(x+1)

(d−p)−(r−d)x − 1 as defined in Section

2.2.2. Note that 0 < τ(x) ≤ τ̄(x).

2.4.1 Indirect Mechanism: Optimal Subsidy z∗

By solving problem (2.18), we obtain the optimal subsidy z∗ in the following proposition.

Proposition 2. Mechanism [I] is feasible if and only if β ≤ τ(x). If β ≤ τ(x), then the

optimal subsidy is given by:

z∗ = min{max{z, ẑ}, z̄}, (2.19)

where z = β((d− p)−x(r− d)), ẑ = 1
2
(K− ((d− p)−x(r− d))) and z̄ = min{K, (δ− 1)(x+

1)} − ((d− p)− x(r − d)). The minimal cost is 0, C(0, 0, z∗) = 0. Further,

(i) If the enterprise’s profit margin K is high, the optimal subsidy z∗ strictly increases in

x.

(ii) If the enterprise’s profit margin K is low, there exists x̃ such that the optimal subsidy

z∗ strictly decreases on x < x̃ and strictly increases on x ≥ x̃.

The intuition behind Proposition 2 is similar to that of Proposition 1. To elaborate, note

that as the last mile distance x increases, the mixed mode adoption (before any government

intervention) D0
m decreases, which generates two competing effects. First, the “adoption

effect” (as described in Section 2.3.1) continues to play a role here, meaning the requirement

for the corresponding mixed mode commuters Dm(0, 0, z) becomes less stringent as D0
m
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decreases. Consequently, the private enterprise can afford to reduce the subsidy z. Second,

as D0
m decreases, the private enterprise has incentive to increase z, so that it can recoup the

subsidy cost by increasing demand (i.e, a higher Dm(0, 0, z)). We shall refer to the latter

effect as the “customer effect.” Note that the customer effect plays a role in mechanism [I]

– because the subsidy z is paid by the private enterprise – but is absent in mechanism [D].

Hence, whether the optimal subsidy z∗ increases or decreases in x depends on which effect

dominates.

To examine which effect dominates, let us consider the case where the enterprise’s profit

margin K is high. In this case, the enterprise’s profit is highly sensitive to changes in D0
m.

Therefore, the private enterprise has a stronger incentive to offer a higher subsidy to boost

the customer base Dm(0, 0, z), which makes the customer effect dominate the adoption effect.

As a result, the subsidy z∗ increases in x when K is large. The intuition behind the decrease

in z∗ when K is small is similar, which we omit for conciseness.

2.4.2 Comparison: Direct Mechanism [D] versus Indirect Mechanism [I]

By considering Proposition 1 and Proposition 2 presented in Section 2.3.1 and Section 2.4.1,

we can compare the performance of the direct and indirect mechanisms according to each

of the six metrics discussed in Section 2.2.2. For ease of reference, we shall use superscript

D and I to denote quantities obtained at optimal solutions in mechanisms [D] and [I],

respectively. Also, in preparation, let τ̃(x) = ẑ2−(z∗−ẑ)2
K((d−p)−(r−d)x) . The following result compares

the performance of the two mechanisms assuming β ≤ τ(x).

Theorem 1. Mechanism [I] outperforms mechanism [D] in terms of operating cost (CI =

0 < CD), mixed mode adoption (DI
m ≥ DD

m), commuter welfare (W I > WD), ride-hailing

platform profit (ΠI
r ≥ ΠD

r ), and transit agency revenue (ΠI
p ≥ ΠD

p ). Further,

(i) if β ≤ τ̃(x), mechanism [I] outperforms mechanism [D] on enterprise profit (ΠI
s ≥ ΠD

s ),

(ii) if β ∈ (τ̃(x), τ(x)], mechanism [D] outperforms mechanism [I] on enterprise profit
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(ΠI
s < ΠD

s ).

Theorem 1 states that the indirect mechanism [I] dominates the direct mechanism [D]

in all performance metrics when the adoption target is not too large, β ≤ τ̃(x). However,

in the intermediate case where τ̃(x) < β ≤ τ(x), the direct mechanism [D] will enable the

private enterprise to generate a higher profit.

Recall that the main difference between mechanisms [I] and [D] is the funding source for

the commuter subsidy. In mechanism [D], the government funds the subsidy by imposing

congestion fees on drivers; in mechanism [I], the government simply coordinates the funding

from the private sector partner, and is otherwise passive and budget neutral. Theorem 1

highlights the benefits of a public-private partnership over congestion fees: in addition to

achieving budget neutrality, the government can both improve commuter welfare (by avoiding

congestion fees on drivers) and support the private sector partner (by boosting demand). As

a result, all stakeholders are left better off under mechanism [I] compared to [D], assuming

the adoption target β is not too large. Moreover, note that mechanism [I] can dominate

mechanism [D] despite containing only a single lever (the subsidy z). This result highlights

that the gains from mechanism [I] are due to the coordination with the private enterprise.

Also, recall from Proposition 2 that when the adoption target is high β > τ(x), formula-

tion (2.18) is infeasible, meaning there is no subsidy level z that can satisfy all of the criteria

I – VI in Section 2.2.2. This observation enables us to make the following summarizing

remark:

Remark 2. If the public transit adoption target is aggressive, β > τ(x), then the government

should adopt mechanism [D] over mechanism [I]. If the adoption target is conservative, β ≤

τ(x), the government should adopt mechanism [I] over mechanism [D] (even though the

private enterprise can earn higher profit under mechanism [D] when β satisfies τ̃(x) < β ≤

τ(x)).

The above remark has the following implications. When the municipal government has a
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very tight or no budget, the government should set a conservative adoption target β ≤

τ(x). In this case, the government should adopt the indirect mechanism [I], which leaves

all parties better off, and critically, does not require increased spending by the government.

However, if the local government has ample funding, then it is feasible to set an aggressive

transit adoption target level β ≥ τ(x), in which case the government should adopt and fund

mechanism [D].

2.5 Alternative Formulation: Maximizing Commuter Welfare Un-

der Budget Neutrality

In Section 2.3 and Section 2.4, we analyse the optimal incentive schemes under mechanisms

[D] and [I] by minimizing operating cost C(e, s, z). In this section, we analyze mechanisms

[D] and [I] by considering an alternative objective: maximizing commuter welfare while

maintaining budget neutrality. (In Appendix A.2, we consider a different alternative model

formulation for the case when the transit agency has an exogenous given earmark budget

B that is reserved for supporting various schemes for increasing public transit ridership.

Specifically, we consider two different incentive design problems associated with mechanisms

[D] and [I] by maximizing public transit adoption subject to a budget constraint. As shown

in Appendix A.2, we obtain the same structural results under both mechanisms.)

2.5.1 Alternative Direct Mechanism [D-A]

Recall from Remark 1 in Section 2.3.1 that it is not possible to implement the direct mech-

anism [D] in a budget neutral manner without undermining commuter welfare. However,

when a financially constrained municipality finds it too costly to implement mechanism [D],

some loss in commuter welfare may be tolerated (especially if there is public support for

policies that lower carbon emissions and traffic congestion). This observation motivates

us to modify the original incentive design problem (2.16) by maximizing commuter welfare
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subject to a budget neutrality constraint (2.20c). Specifically, the modified problem can be

formulated as:

max
e,s≥0

(W (e, s, 0)−W 0) (2.20a)

s.t. Dm(e, s, 0)−D0
m ≥ βD0

m (2.20b)

Mechanism [D-A]: C(e, s, 0) = 0 (2.20c)

Πs(e, s, 0) ≥ Π0
s, (2.20d)

where D0
m, W

0 and Π0
s are the demand for the mixed mode, commuter welfare and profit

of the private enterprise in the base model as defined in (2.3), (2.4) and (2.7), respectively.

Analogous to Proposition 1, the next result characterizes the optimal incentive scheme under

mechanism [D-A].

Proposition 3. The optimal congestion fee e∗ and the optimal subsidy s∗ under the alter-

native direct mechanism [D-A] are given by:

e∗ =
β(β + 1)((d− p)− (r − d)x)2

(δ − 1)(x+ 1)

s∗ =
β((d− p)− (r − d)x)((δ − 1)(x+ 1)− (β + 1)((d− p)− (r − d)x))

(δ − 1)(x+ 1)

Further,

(i) The optimal congestion fee e∗ increases in β and decreases in x.

(ii) If δ is large, s∗ strictly decreases in x. However, if δ is small, there exists x̃ such that

s∗ increases on x < x̃ and decreases on x ≥ x̃.

(iii) There exists β̃ such that s∗ increases on β < β̃ and decreases on β ≥ β̃.

The above results resemble Proposition 1, except that the optimal subsidy s∗ under the

alternate mechanism [D-A] is no longer always increasing in β. Instead, the optimal subsidy

s∗ decreases β when the adoption target β is large. This difference is driven by the budget
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neutrality constraint (2.20c). To elaborate, consider the case when β is large. In this case,

the right hand side of (2.20b) is large, which requires the mixed mode demand Dm(e, s, 0)

to be large. As more mixed mode commuters collect the subsidy, the government must

reduce the subsidy s in order to maintain budget neutrality, which leads s∗ to decrease in

the adoption target β.

Next, similar to Corollary 1, we compare the relative size of the optimal congestion fee

and subsidy.

Corollary 3. There exists x̂ such that e∗ ≥ s∗ in mechanism [D-A] if and only if x ≤ x̂.

Further, there exists δ̄ > 1 such that s∗ > e∗ in mechanism [D-A] for all x ∈ (x, x̄) if and

only if δ ≥ δ̄.

Corollary 3 is analogous to Corollary 1: for any β, the government should set a higher

congestion fee and a lower subsidy when the last mile distance x is small, and vice versa

when x is large.

Recall from Corollary 2 in Section 2.3.1 that the direct mechanism [D] is costly (i.e.,

C (e∗, s∗, 0) > 0) due to the commuter welfare constraint (2.16c). Next, we present a coun-

terpart to Corollary 2: to maintain budget neutrality, commuter welfare degradation is

unavoidable under the alternative direct mechanism [D-A].

Corollary 4. The alternative direct mechanism [D-A] will always result in commuter welfare

degradation; i.e., W (e∗, s∗, 0) < W 0. Further, the reduction in commuter welfare, W 0 −

W (e∗, s∗, 0), under mechanism [D-A] is higher when the adoption target β is large and when

the last mile distance x is small.

Corollary 4 reveals that mechanism [D-A] degrades commuter welfare more severely when

the adoption target β is large. To elaborate, consider the case when the adoption target β

is large. In this case, the corresponding mixed mode demand Dm(e, s, 0) has to be large in

order to meet the adoption target. As more mixed mode commuters collect the subsidy, the
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government must reduce the subsidy in order to maintain budget neutrality, which causes

the commuter welfare to deteriorate. Next, we consider why commuter welfare reduction

is higher when x is small. In this case, the mixed mode adoption (before any government

intervention) D0
m as stated in (2.3) is large, which makes the requirement for the mixed mode

adoption Dm(e, s, 0) also large. Similar to the large β case, as more mixed mode commuters

receive the subsidy, the government must increase the congestion fee e in order to maintain

budget neutrality, which reduces commuter welfare.

2.5.2 Alternative Indirect Mechanism [I-A]

In the same spirit as Section 2.5.1, we now consider a variation of mechanism [I], which we

shall refer to as mechanism [I-A], where the objective is to maximize commuter welfare while

maintaining budget neutrality. To do so, we modify our original program (2.18) presented

in Section 2.4 as follows:

max
z≥0

(W (0, 0, z)−W 0) (2.21a)

s.t. Dm(0, 0, z)−D0
m ≥ βD0

m (2.21b)

Mechanism [I-A]: C(0, 0, z) = 0 (2.21c)

Πs(0, 0, z) ≥ Π0
s (2.21d)

z = argmax
z

Πs(0, 0, z) (2.21e)

In parallel with Proposition 2, the following proposition characterizes the optimal subsidy

under the alternative indirect mechanism [I-A].

Proposition 4. The alternative indirect mechanism [I-A] is feasible if and only if β ≤ τ(x).

When β ≤ τ(x), the optimal subsidy is given by

z∗ = min{max{z, ẑ}, z̄},

where τ(x) is defined in Section 2.4 and z, ẑ, z̄ are defined in Proposition 2. The maximal

welfare increment is strictly positive so that W (0, 0, z∗) > W 0.
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Note the optimal subsidy z∗ under mechanism [I-A] is equal to that under mechanism [I], as

presented in Proposition 2. This is because constraints (2.21b), (2.21d) and (2.21e), which

are the same as constraints (2.18b), (2.18d) and (2.18e), uniquely determine feasible private

subsidy z∗ and C(0, 0, z∗) = 0 by definition in (2.11). Thus z∗ is feasible and thus optimal to

both problems (2.18) and (2.21). Also, unlike mechanism [D-A] with deteriorating commuter

welfare as stated in Corollary 4, Proposition 4 exerts that, when β ≤ τ(x), mechanism [I-A]

will always enhance commuter welfare.

2.5.3 Comparison: Two Alternative Mechanisms [D-A] and [I-A]

We now compare the performance of the two alternative mechanisms [D-A] and [I-A]. Using

the same approach as presented in Section 2.4.2, we can retrieve the relevant performance

metrics from (2.10)– (2.15) by substituting (e, s, z) with (e∗, s∗, 0) and (0, 0, z∗).

Theorem 2. The alternative indirect mechanism [I-A] and the alternative direct mechanism

[D-A] both attain budget neutrality (CI = CD = 0). However, alternative indirect mecha-

nism [I-A] outperforms alternative direct mechanism [D-A] in terms of mixed mode adoption

(DI
m ≥ DD

m), commuter welfare (W I > W 0 > WD), ride-hailing platform profit (ΠI
r ≥ ΠD

r ),

and transit agency revenue (ΠI
p ≥ ΠD

p ). Further,

(i) if β ≤ τ̃(x), mechanism [I-A] outperforms mechanism [D-A] in terms of enterprise

profit (ΠI
s ≥ ΠD

s ),

(ii) if β ∈ (τ̃(x), τ(x)], mechanism [D-A] outperforms mechanism [I-A] in terms of enter-

prise profit (ΠI
s < ΠD

s ),

where τ(x) and τ̃(x) are defined in Section 2.4 and Section 2.2.2, respectively.

Using the above proposition, we summarize our observations in the following remark.

Remark 3. Suppose in addition to budget neutrality, the government prioritizes commuter

welfare. Then the government should adopt the alternative direct mechanism [D-A] when the
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adoption target satisfies β > τ(x), and adopt the alternative indirect mechanism [I-A] when

β ≤ τ(x).

Remark 2 and Remark 3 imply that the dominance of the indirect mechanism [I] is robust,

regardless of whether the goal is to maximize commuter welfare or to minimize operating

cost. Therefore, when the municipal government is financially constrained, it is advisable for

the government to set a conservative transit adoption target β ≤ τ(x), and adopt the indirect

mechanism [I]. However, if the government has sufficient funding, or if the commuters are

willing to accept lower welfare (e.g., in support of a reduction in carbon emissions and traffic

congestion), then the government can afford to set an aggressive adoption target β > τ(x)

and adopt the direct mechanism [D].

2.6 Conclusion

Motivated by the increased focus on public transit and urban mobility by municipal gov-

ernments, we have analyzed two mechanisms for improving public transit ridership. Both

mechanisms are intended to address the “last mile gap” by providing subsidies to commuters

who adopt a mixed mode of transportation that combines ride-hailing with public transit.

The main differences between the two mechanisms are the role of the municipal government

and the source of funding for the subsidy. In the direct mechanism [D], the government

provides a ride-hailing subsidy to commuters that adopt the mixed mode, and charges a

congestion fee to commuters who travel by personal vehicle. The congestion fee is used to

offset the cost of the subsidy, and also serves as an additional incentive for transit adoption

(by making driving more costly). In the indirect mechanism [I], the government partners

with a private enterprise that provides the funding for the subsidy, and does not charge a

congestion fee. We present analytical results that characterize the optimal incentives under

these two mechanisms, as well as the impact on all involved stakeholders.

Our findings offer several prescriptions for policy makers who are interested in increasing
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public transit ridership through partnerships with the private sector. First, in the direct

mechanism, it’s advisable to set large congestion fee and small subsidy when public transit

coverage is high (i.e. when the last mile distance is small), and conversely, when the public

transit coverage is low, the optimal incentive requires more aggressive subsidies. This result

is driven by the opposing effects that subsidies and congestion fees have on commuter welfare

and operating cost. We also find that the dependence of the optimal subsidy on the transit

coverage level depends on the relative preference between driving and taking public transit.

In particular, we find that when commuters strongly prefer driving, jurisdictions with larger

last mile distances should set lower subsidies, but this behavior can be reversed if commuters

only slightly prefer driving over public transit.

Second, we find that the government cannot fully recover the cost of providing subsidies

by collecting congestion fees. Specifically, we show that the direct mechanism cannot be

budget neutral unless the government is willing to accept a decrease in commuter welfare.

This suggests that attempting to implement commuter subsidies and congestion fees in a

budget neutral manner may be ill-advised if the government is sensitive to commuter wel-

fare. However, in the event that the government can obtain subsidy funding from a private

enterprise (who benefits from increased foot traffic at the transit station or increased views

of an advertisement on a mobile app) in lieu of charging congestion fees (as in the indirect

mechanism), we show that public transit ridership can be increased without degrading com-

muter welfare. However, because the implementation of an indirect mechanism requires the

participation of the private enterprise, we find that this indirect mechanism is only viable if

the mixed mode adoption target is modest. In other words, only the direct mechanism can

enable the government to achieve an ambitious adoption target, and the implementation of

the direct mechanism is not budget neutral: it will require extra funding.

Third, although the government has one less “lever” in the indirect mechanism [I] (due to

the absence of the congestion fee), it can dominate the direct mechanism [D] if the adoption

target is modest. Specifically, when the adoption target is modest, the indirect mechanism

38



can benefit all stakeholders: the government, commuters, the public transit agency, the ride-

hailing platform, and the private enterprise. This finding suggests that, for jurisdictions that

wish to increase transit ridership, but are severely budget constrained, it may be more fruitful

to fund ride-hailing subsidies through partnerships with the private sector than by charging

congestion fees. Moreover, this dominance result is robust to an alternate specification

of mechanism [I] (namely, when the objective is to maximize commuter welfare instead of

enterprise profit).

As an initial attempt to explore different incentive mechanisms for improving public

transit ridership, our model has several limitations that we wish to highlight. First, for

tractability, we restrict attention to two modes of travel – driving and the mixed mode.

Although other means of commuting are less common (such as commuting by ride-hailing),

including them as travel modes may affect our results. Second, subsidies for ride-hailing

trips may cause commuters to switch from other last-mile travel modes, such as walking,

biking, or bussing, which may have consequences not discussed in this chapter. Further, to

focus on the economic viability of different incentive mechanisms, we have abstracted away

from operational issues such as capacity, traffic congestion, and the spatial nature of public

transit infrastructure. Considering these features may yield additional insight into the design

of incentive mechanisms for improving transit ridership. We shall defer these issues to future

research.
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CHAPTER 3

Planning Bike Lanes: Ridership, Congestion, and Path

Selection

3.1 Introduction

Urbanization is accelerating globally. By 2050, an estimated 68% of the world’s population

is expected to live in cities, up from 55% in 2018 (UN 2019). Urbanization brings numer-

ous benefits, including improved access to employment opportunities, education, and social

services. However, these benefits are typically accompanied by increased traffic congestion,

which threatens the sustainability of cities (Bertinelli and Black 2004, Çolak et al. 2016). In

addition to its negative effects on the environment and health, congestion is estimated to

incur economic losses of $85 billion annually across U.S. cities (US DOT 2009).

Alleviating traffic congestion is likely to require a multi-faceted solution, including in-

creased adoption of sustainable travel modes (e.g., walking, cycling, public transit) and

associated investments in urban infrastructure (US DOT 2017). In alignment with these

goals, in 2021 the U.S. Congress enacted the Infrastructure Investment and Jobs Act (IIJA),

a $1.2 trillion spending package that, among other priorities, allocates funding to promote

sustainable transportation and invest in the necessary infrastructure (The White House 2021,

117th Congress 2021). Urban infrastructure is also a concern globally – one of the 17 Sus-

tainable Development Goals proposed by the United Nations is to make cities “inclusive,

safe, resilient and sustainable”, which requires a robust transportation infrastructure (UN

2015).
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Increasing cycling ridership has been proposed as a solution to reducing traffic conges-

tion (Thorsten and Rudolph 2016, Hamilton and Wichman 2018). Cycling is one of the

most sustainable modes of urban transport – it causes minimal environmental damage, is

cost effective compared to car ownership, and promotes health through physical activity.

Widespread cycling ridership is also associated with substantially increased road safety for

all users, with fatal crash rates being estimated to be 44% lower than the US average in

cities with abundant bike lanes (Marshall and Ferenchak 2019). Demand for cycling is also

growing rapidly – from 2001 to 2017, the number of cycling trips in the US is estimated

to have doubled from 1.7 billion to 3.6 billion (National Household Travel Survey 2017),

and U.S. cities saw a 21% surge in cycling trips during the COVID-19 pandemic (LA Times

2020).

To meet growing demand and promote cycling adoption, municipal governments have

recently made major investments into installing new bike lanes.1 For example, between 2014

to 2019, New York City increased total bike lane mileage from 900 to 1,240 (DOT 2019),

and in 2021 Chicago announced a plan to expand their bike lane network by 100 miles

over the following two years (Chicago DOT 2021). The U.S. federal government has also

committed to improving cycling infrastructure nationwide – the Transportation Alternatives

Program, which receives federal funding for bike lanes and pedestrian paths, has seen its

budget increase from $850 million to $1.44 billion annually under the IIJA (Mills 2021).

Despite the benefits of boosting cycling ridership, the expansion of bike lane networks

remains contentious because it necessarily reduces road capacity for automotive vehicles.

Intuition suggests this re-allocation may have the undesirable effect of amplifying congestion

(BBC 2021), making bike lane planning a thorny issue for city planners (Khany 2022).

Despite major investments in bike lanes and the related controversy, few previous studies

have attempted to rigorously model or estimate the effect of bike lanes on congestion. Doing

1There is evidence that installing bike lanes increases cycling adoption (Parks et al. 2012, Strauss and
Miranda-Moreno 2013, Monsere et al. 2014, Mitra et al. 2017, Khany 2022).
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so is non-trivial due to the opposing forces alluded to above: While bike lanes may increase

the attractiveness of cycling and take cars off the road, they also risk exacerbating congestion

by reducing capacity in critical segments of the road network. As a result, modeling the net

impact of bike lanes on congestion requires careful accounting of both of these effects.

The effect of bike lanes on congestion and cycling ridership also depends on planning

decisions. Although bike lanes may not necessarily worsen congestion (Johnson and Johnson

2014), they may only have a minimal effect on cycling ridership if the locations are poorly

chosen. However, data-driven models for bike lane planning remain scarce, leading city

planners to rely primarily on ad-hoc approaches that do not rigorously account for impacts

on ridership (Khany 2022).

3.1.1 Contributions

Where should bike lanes be built to promote cycling ridership while mitigating congestion

effects? We address this question by developing an estimation procedure for quantifying the

effect of bike lanes on cycling ridership and congestion, which we extend to a prescriptive

model that generates recommendations for bike lane expansion. Our modeling approach is

informed by discussions with city planners,2 and is illustrated through an extensive empirical

study using data from the City of Chicago3.

Our main methodological contribution is a new estimation technique for uncovering pa-

rameters of a traffic equilibrium model from observational data. Specifically, we aim to

estimate a congestion (i.e., driving time) function from features of the road network and

observed vehicle flows. While there is a rich literature on traffic equilibrium models (fol-

lowing the work of Wardrop (1952), Beckmann et al. (1956), and Dafermos (1980)), few

previous studies attempt to estimate the congestion functions that lie at the foundation of

2Department of Transportation, City of Chicago, and Transportation Planning Division, City of Vancou-
ver, British Columbia.

3The readers are referred to Chapter 4 for more details
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such models.

Specifically, our method estimates parameters of a congestion function by assuming the

traffic data are noisy observations of Wardrop equilibrium network flows. We show that

the estimator is asymptotically optimal in that it provably recovers the ground-truth model

as the size of the network grows large (under appropriate conditions). The main computa-

tional hurdle is that enforcing the Wardrop equilibrium conditions makes the estimator a

challenging non-convex optimization problem. To obtain solutions, we show that an approx-

imation based on Lagrangian relaxation admits a multi-convex structure, which allows us

to generate reliable estimates through an iterative solution procedure. We then estimate a

multinomial logit mode choice model in which driving and cycling utilities depend on both

network structure and predicted equilibrium travel times.

Next, we embed the estimated congestion and mode choice parameters into a prescriptive

path selection model that identifies road segments for bike lane installation. The model

endogenizes the mode choice of all commuters, the route choice of drivers, and driving travel

times, making it a mixed-integer nonlinear program. To obtain solutions, we employ a

piecewise linear approximation technique that yields a mixed-integer linear program, and we

show that the suboptimality due to the linearization is bounded as a function of network

and demand parameters.

The remainder of the chapter is organized as follows. Section 3.1.2 reviews related liter-

ature. Section 3.2 outlines model fundamentals, including the traffic equilibrium and mode

choice models. Section 3.3 develops an estimator for learning parameters of the traffic model

from network features and observed vehicle flows. Section 3.4 presents a prescriptive model

for bike lane expansion, an approximation scheme, and a bound on the approximation error.
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3.1.2 Related Literature

This work contributes to the literature on inverse optimization, transportation network de-

sign, and cycling infrastructure planning. Each of these topics has a large extant literature,

so we focus here on the most closely related work.

Inverse optimization on networks. Inverse optimization methods aim to learn pa-

rameters of an optimization model from observations of its optimal solutions. Many inverse

optimization methods take a statistical learning perspective, where the model to be fit to

observational data is itself a constrained optimization model (e.g., Bertsimas et al. (2015),

Aswani et al. (2018), Esfahani et al. (2018), Chan et al. (2019)). Our estimator takes the

form of an inverse optimization problem because we interpret vehicle traffic data to be noisy

observations of equilibrium network flows, which can be posed as the solution to a convex

optimization problem (Beckmann et al. 1956). Below, we focus on prior work in inverse op-

timization in the context of traffic equilibria and network problems, and refer the reader to

Chan et al. (2021b) for a comprehensive review of the broader inverse optimization literature.

Given a network with a set of origin-destination (OD) demands and a known congestion

function on each edge, a traffic assignment model describes the flow of traffic through the

network (Patriksson 2015). The standard equilibrium concept in traffic models is Wardrop

equilibrium, which states that no user can unilaterally decrease their travel time by taking

an alternative route (Wardrop 1952). While there is an extensive literature on traffic mod-

eling dating back to Wardrop (1952), the inverse problem of estimating traffic models from

observational data has only recently been considered (Chow et al. 2014, Bertsimas et al.

2015, Thai et al. 2015, Zhang and Paschalidis 2017, Zhang et al. 2018, Allen et al. 2021).

Among this work, this chapter is closest to Bertsimas et al. (2015) and Thai et al.

(2015), who also propose methods for estimating congestion functions on a network from

observed traffic flows. Our method differs from Bertsimas et al. (2015) primarily in the

specification of the loss function – Bertsimas et al. (2015) assume that the observed flows
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approximately satisfy Wardrop equilibrium, and minimize a loss function that measures the

degree to which equilibrium conditions are violated. In contrast, we enforce the Wardrop

equilibrium conditions exactly, and assume that traffic flows are noisy observations of true

(unobserved) equilibrium flows, resulting in a loss function that measures the error between

the observed and true vehicle flows. The main consequence of these differing loss functions

is that Bertsimas et al. (2015) obtain an estimation problem that is convex (due to relaxing

the equilibrium conditions), whereas our estimator is non-convex. However, we show in this

chapter that our estimator is statistically consistent, which (as shown by Aswani et al. (2018))

is not the case for the convex approach in Bertsimas et al. (2015). In other words, in the

trade-off between computational tractability and optimality, the method of Bertsimas et al.

(2015) prioritizes tractability of the estimator, whereas we pursue asymptotic optimality of

the estimates.

Our estimation procedure also has similarities to Thai et al. (2015) – we highlight two

key differences. First, we estimate a congestion function that can depend on an arbitrary

number of road features (e.g., length, width, number of lanes, location), whereas Thai et al.

(2015) estimate a single road capacity parameter. Second, Thai et al. (2015) use a link-flow

formulation of traffic assignment, whereas we use a path-flow formulation, which restricts

the number of possible paths users can take between each OD pair (Patriksson 2015). Our

approach yields far fewer decision variables in the resulting inverse optimization problem,

which allows it scale more gracefully to realistically sized road networks.

This chapter also contributes to a broader literature on inverse network flow problems

(Burton and Toint 1992, Xu and Zhang 1995, Zhang et al. 1995, Zhang and Ma 1996, Zhang

and Cai 1998, Ahuja and Orlin 2001, Zhao et al. 2015, Chan et al. 2021a). To the best of

our knowledge, ours is the first inverse optimization method specifically for network flow

problems that provably recovers ground-truth, data-generating parameters.

Transportation network planning. The design of transportation networks is a fun-

damental area of research in the transportation literature. Seminal papers include Dantzig
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et al. (1979), Abdulaal and LeBlanc (1979) and Magnanti and Wong (1984); we refer the

reader to Farahani et al. (2013) for a comprehensive review. Our work is closest to the subset

of literature that considers multiple travel modes, which often introduces a discrete choice

component to the traffic assignment problem (Lee and Vuchic 2005, Fan and Machemehl

2006, Cipriani et al. 2006, Beltran et al. 2009, Szeto et al. 2010, Gallo et al. 2011, Mian-

doabchi et al. 2012, Bertsimas et al. 2020).

Our work differs from the majority of the multi-modal network design literature in two

ways. First, demand endogeneity plays a significant role in our work – we assume the

addition of bike lanes increases cycling utility, and can either increase or decrease driving

utility depending on the net impact on congestion. In contrast, few previous papers consider

a setting where a central planner modifies network topology and the modal-split depends

on the constructed network (Lee and Vuchic (2005) and Cipriani et al. (2006) are notable

exceptions). A related paper in this regard is by Wei et al. (2021), who consider the impact

of adjusting transit schedules on both traffic congestion and demand. The main difference is

we focus on altering network structure (i.e., bike lane locations), whereas Wei et al. (2021)

address scheduling of transit times on a given network.

Second, because network design problems are usually non-convex, they are often solved

using fast heuristics that return local optimal solutions, such as genetic algorithms (Farahani

et al. 2013). In contrast, our solution technique is based on a mixed-integer linear program-

ming (MILP) approximation of the network design problem. The advantage of our approach

is that it allows us to bound the approximation error and obtain provably near-optimal

solutions.

Cycling infrastructure planning. Cycling infrastructure planning has gained at-

tention due to the worldwide adoption of bike-share systems and increased emphasis on

sustainability by municipal governments. In particular, operational data made available by

bike-share systems enables a better understanding of biking demand and travel patterns

(Singhvi et al. 2015, Scott et al. 2021) and improved design of bike-share station networks
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(Kabra et al. 2020, He et al. 2021). However, in the field of bike lane planning, where the

computational challenges are prominent and different heuristic methods have been explored

(Mauttone et al. 2017, Liu et al. 2019), few papers integrate real world data sets into the

planning models. Bao et al. (2017) develop a bike lane planning model built on bike tra-

jectory data, in which an exponential scoring function is used to guide bike lane planning.

Recently, Liu et al. (2021) propose an integer optimization model to combine cycling de-

mand data with bike lane network design in a way that balances demand coverage and lane

continuity. However, both papers ignore the endogeneity of cycling demand and congestion

effects. Our work presents a systematic method for bike lane planning that brings together

travel-time estimation and network optimization to rigorously account for the interaction

between vehicle traffic and bike lane construction.

3.2 Model

This section outlines a traffic model where congestion and travel mode choice both depend

on the presence of bike lanes in the road network. Specifically, Section 3.2.1 describes the

road network, Section 3.2.2 presents a model of traffic congestion, and Section 3.2.3 describes

how commuters choose among alternative travel modes (e.g., driving vs. cycling) based on

driving travel times and the bike lane network.

3.2.1 Road and Bike Lane Network

Let I be a set of nodes, each of which can be an origin, destination, or both. LetW index

the set of all origin-destination (OD) pairs. Each OD pair is a pair of nodes (i, j) such

that i ̸= j that commuters wish to travel between; following the literature, for conciseness

we index all pairs using w ∈ W . Let S be the set of segments, where each segment s ∈ S

connects two nodes. Let M = {C,D,O} be the set of travel modes, where C, D, and O

represent cycling, driving, or an outside option capturing all other modes (e.g., walking
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and public transit). We call a concatenation of adjacent segments a path; let PDw be the

set of possible driving paths that connect OD pair w. For tractability, we assume there is a

single cycling path pCw that connects OD pair w. Let SDp be the set of all segments that lie on

driving path p ∈ Pw, w ∈ W and SCw be the segments on cycling path p = pCw , w ∈ W . For

ease of reference, we use PD = ∪w∈W {PDw } and PC = ∪w∈W {pCw} to denote all possible

driving and cycling paths, and SD =∪p∈PD {SDp } and SC =∪w∈W {SCw } to denote all road

segments used for driving and cycling, respectively.

Let x ∈ {0, 1}|S| be a binary vector denoting the existence of bike lanes on each segment

of the network, where xs = 1 if and only if segment s contains a bike lane. We let x̃

denote the status quo bike lane. We assume each commuter is infinitesimal throughout. Let

dD ∈ R|W|, dC ∈ R|W| and dO ∈ R|W| be the demand for each mode over all OD pairs,

and let d = (dC ,dD,dO). Next, we consider how a fixed driving demand vector dD induces

vehicle traffic through the network.

3.2.2 Route Selection and Traffic Congestion

Commuters who travel by driving for OD pair w choose among the paths in PDw ⊆ PD.

Accordingly, let ϕp be the mass of commuters who choose path p ∈ PD, and let vs be mass

of commuters on segment s ∈ SD. We refer to ϕp and vs as path and segment flows,

respectively. For conciseness, let ϕ ∈ R|PD| and v ∈ R|S| be the vectors of ϕp and vs,

respectively. Then for fixed dD, we say (ϕ,v) are feasible flows if they satisfy∑
p∈PDw

ϕp = dDw , w ∈ W , (3.1a)

vs =
∑

{p∈PD|s∈SDp }

ϕp, s ∈ S, (3.1b)

(ϕ,v) ≥ 0. (3.1c)

For convenience, we define

Ω
(
dD
)
= {(ϕ,v) | (ϕ,v) satisfies (3.1)} (3.2)
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to be the set of all feasible flows given driving demand dD. The equations in (3.1) assume

a restricted set of candidate driving paths PDw for each OD pair w, meaning drivers cannot

travel along an arbitrary sequence of segments. This path-flow formulation is widely used

in the literature to improve tractability (e.g., Fisk (1980), Dafermos (1980, 1982)).4

Next, we describe how driving travel times depend on vehicle flows, the road network,

and the presence of bike lanes. With a slight abuse of notation, let qs(x) be a vector of

features on the road segment s (e.g., the road’s length, width, number of vehicle lanes, or

location), where the features may depend on the presence of bike lanes. We define for each

segment a congestion function αs, which depends linearly on segment features:

αs (x,θ) = θ
⊤qs (x) . (3.3)

We refer to θ as the congestion parameter that influences travel times. The travel time on

segment s is then given by

ts(x,θ, vs) = αs (x,θ) · vs + Ts, (3.4)

where Ts is the free-flow travel time. We impose the mild assumption that αs (x,θ) > 0,

which implies driving times strictly increase in traffic flow vs.
5 The total travel time along

each path p ∈ PD is then given by

tp (x,θ,v) =
∑
s∈SDp

ts (x,θ, vs) . (3.5)

Next, we consider how drivers on OD pair w select among the paths in PDw . Following

Wardrop’s first principle, we assume that drivers select paths such that no driver on any OD

4An alternative approach is the link-flow formulation, which requires variables for each segment and OD
pair in the network – see Beckmann et al. (1956), Nguyen (1974), Patriksson (2015). However, the link-flow
representation leads to a less tractable estimation problem in large networks as a result of using |W| · |S|
variables to represent traffic flows, whereas the path-flow formulation leads to |P|+ |S| variables.

5The most well-known congestion function takes the form of ts (x, vs) = Ts · (1 + α(vs/ms)
4), where

typically α = 0.15 (United States Bureau of Public Roads 1964). Our use of a linear congestion function is
primarily to improve the tractability of the estimator. Linear congestion functions have appeared elsewhere
in the literature (Roughgarden and Tardos 2002, Lin et al. 2011, Swamy 2012).
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pair w can reduce their travel time by unilaterally selecting an alternative path (Wardrop

1952). To capture this equilibrium condition, let v∗(x,θ) and ϕ∗(x,θ) denote equilibrium

segment and path flows, respectively, and let tw(x,θ) denote the equilibrium travel time on

OD pair w. Then Wardrop’s first principle is equivalent to the following set of conditions:

tw (x,θ)− tp (x,θ,v∗(θ))

 = 0, if ϕ∗
p(x,θ) > 0

≤ 0, if ϕ∗
p(x,θ) = 0

 , p ∈ Pw, w ∈ W . (3.6)

For ease of exposition in the remainder of the chapter, we define

Ψ(x,dD,θ) = {(ϕ,v)|(ϕ,v) ∈ Ω
(
dD
)
and (ϕ,v) satisfies (3.6)} (3.7)

to be the set of feasible flows that satisfy Wardrop’s first principle. That is, (ϕ,v) are

equilibrium flows if and only if (ϕ,v) ∈ Ψ(x,dD,θ). Note that Ψ(x,dD,θ) depends on the

observable road segment features qs(x) and the parameters θ via the congestion functions

αs(x,θ).

3.2.3 Travel Mode Choice

We now describe how commuters select among alternate travel modes. Following the litera-

ture (e.g., Domencich and McFadden (1975), Abdulaal and LeBlanc (1979)), we assume the

mode-specific demands dmw are determined by a multinomial logit (MNL) choice model. Let

umw (x,θ) be the disutility of traveling by mode m on OD pair w. Note that the equilibrium

conditions (3.6) imply for each w ∈ W , the driving time is equal for all p ∈ PDw . Accordingly,

we assume all drivers on OD pair w share the same disutility regardless of their selected path,

which depends primarily on the travel time:6

uDw (x,θ) = βD0 + βD1 · tw(x,θ). (3.8)

6Travel time is typically the key determinant of utility in mode choice models (Ben-Akiva and Bierlaire
1999). Our method can be extended to accommodate other route features (e.g., number of turns) provided
sufficient data is available.
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We define the disutility of cycling next. For tractability, we assume that for each OD pair

w ∈ W , all cyclists travel along the same path pCw . We assume cycling disutility depends on

both cycling distance and bike lane coverage (i.e., the proportion of the path that is covered

by a bike lane), which have both been observed to be significant factors for cycling adoption

(Hood et al. 2011, Broach et al. 2012).7 To that end, let ℓs be the length of segment s, and

let SCw be the set of segments that lie on cycling path pCw . The cycling distance for OD pair

w is then given by

Lw =
∑
s∈SCw

ℓs, (3.9)

and the bike lane coverage for OD pair w is given by

ρw (x) =
1

Lw

∑
s∈SCw

ℓs · xs. (3.10)

The disutility of cycling for each w is then

uCw(x) = βC0 + βC1 · ρw (x) + βC2 · Lw. (3.11)

Note that cycling disutility does not depend on the congestion parameter θ, which influence

driving times only. Without loss of generality, we normalize the disutility of the outside

option to uOw = 0 for all w ∈ W .

Let d̃w be the total demand across all travel modes for OD pair w; following the literature,

we assume d̃w is exogenous and does not depend on x or θ. The demand for mode m on OD

pair w is then given by

dmw (x,θ) = d̃w ·
e−u

m
w (x,θ)

e−uCw(x) + e−uDw (x,θ) + e−uOw
, (3.12)

Note that the MNL model (3.12) implies d̃w =
∑

m∈M dmw (x,θ). Next, having defined how

the equilibrium traffic assignment depends on x, θ and β, we now consider how to estimate

the parameters (θ,β) from observational data.

7Cycling traffic has not yet been found to be a significant factor in cycling utility (Hood et al. 2011,
Broach et al. 2012), so we assume cycling is free from congestion effects.
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3.3 Estimation

Our estimation method consists of two steps. In the first step, we estimate the congestion

parameter θ from observed road network features and associated traffic flows. In the second

step, we use the estimate of θ and the status quo bike lane network x̃ as inputs for estimating

the mode choice parameters β. Our primary methodological contribution is in the first step;

given θ, the second step follows from well-known methods.

In Section 3.3.1, we present an estimator for θ and provide conditions under which it

asymptotically recovers the ground-truth model. In Section 3.3.2, we first show the estimator

can be expressed as a non-convex optimization problem, and then develop a corresponding

solution technique. In Section 3.3.3, we describe how the estimated θ can be used as an

input to estimating the mode choice parameters β.

3.3.1 Estimator for Congestion Parameter

The estimator for θ takes input data of the form

(qs, zs), s = 1, . . . , n, (3.13)

where qs are the features of road segment s, zs is the associated flow on segment s, and n

is the number of segments in the network (equivalently, |S|). Additionally, the estimator

takes as input the observed driving demand dD and the path sets PDw , w ∈ W . Because our

goal is to fit a structural model of traffic congestion to observational data, we assume there

exists a true, unknown congestion parameter θ0 such that the observed flows zs are noisy

measurements of equilibrium segment flows v∗(θ0). Additionally, because our focus here is

on estimating the congestion parameter θ for a given road and bike lane network, we assume

x and d are fixed and suppress dependence on them throughout this section.
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We first define the following loss function:

Ln(θ) =minimize
ϕ,v

∥v− z∥22 (3.14a)

subject to (ϕ,v) ∈ Ψ(θ), (3.14b)

where ∥ · ∥2 is the ℓ2-norm. Intuitively, the loss Ln(θ) measures the error between the

observed flows z and the flows v, where the constraint (ϕ,v) ∈ Ψ(θ) forces v to satisfy

Wardrop equilibrium under θ. In other words, the loss Ln(θ) is a measure of distance

between the observed traffic flows and the equilibrium flows implied by θ. The estimate is

then obtained by minimizing of the loss function over a parameter set Θ:

θ̂n ∈ argmin
θ∈Θ

Ln(θ). (3.15)

An important property of any estimator is statistical consistency, which refers to the asymp-

totic recovery of unknown model parameters (Bickel and Doksum 2015). If the observed flows

z are generated by a true, unknown parameter θ0, then estimator consistency implies that

the sequence of estimates θ̂n converges to the true parameter θ0. Our main result in this

section is to provide conditions under which the estimator (3.15) is indeed consistent:

Theorem 3 (Estimator consistency). Suppose the following conditions hold: (i) zs =

v∗s(θ0) + εs for s = 1, . . . , n, where the errors εs are drawn i.i.d. from a distribution with

E[ε] = 0 and unknown variance σ2 > 0, (ii) the parameter set Θ is finite and compact, and

(iii) lim
n→∞

∑n
s=1(v

∗(θ)− v∗(θ0))
2 =∞ for all θ ̸= θ0. Then θ̂n

p−→ θ0 as n −→∞.

Theorem 3 provides conditions under which the sequence of estimates θ̂n converges in

probability to the true parameter θ0. Conditions (i) and (ii) are standard assumption

imposed on the data and parameter set in non-linear least squares estimation. Condition

(iii) is an identifiability condition, which ensures that the ground truth model can be learned

from data. Intuitively, the identifiability condition states that as the size of the network grows

large, any two distinct values of θ should lead to two distinct equilbrium flows v∗(θ). In
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the absence of model identifiability, two different parameters θ may induce the exact same

equilibrium flows over the network, in which case consistency cannot be attained by any

estimator, because the observed data is insufficient for pinpointing the true parameter θ0.

The estimation problem (3.15) can be viewed as an analog to non-linear least squares

regression (Jennrich (1969), Wu (1981)). The main distinction between the estimator (3.15)

and traditional non-linear least squares regression is that the response variables zs are not

observations of a non-linear function in closed form, but are instead noisy observations of

equilibrium segment flows v∗(θ) which are implicitly defined. Further, as we discuss in

Section 3.3.2 below, the equilibrium flows (ϕ∗(θ),v∗(θ)) can be attained at the solution to a

convex optimization problem, which allows (3.15) to be expressed as an inverse optimization

problem, which refers to the the estimation of an optimization model’s parameters from

observations of its optimal solutions.

Statistical consistency in inverse optimization was first addressed by Aswani et al. (2018).

The main difference with our approach is that Aswani et al. (2018) assume the feature and

response data are independent draws of a common joint distribution across all n observations.

However, independence fails to hold in our setting because each observation corresponds to

a road segment in a network, which have correlated traffic flows. As a result, the sufficient

conditions for consistency presented in Theorem 3 differ from those given in Aswani et al.

(2018).

3.3.2 Solution Procedure

Next, we present a procedure for solving the estimation problem (3.15). We first express

(3.15) as a mathematical program by developing an explicit representation of the equilibrium

condition (ϕ,v) ∈ Ψ(dD,θ). To that end, consider the following “Wardrop least-squares”
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formulation:

minimize
θ,ϕ,v,b

∥v − z∥22 (3.16a)

subject to ∇ϕg (ϕ,θ)⊤ϕ−
(
dD
)⊤

b = 0, (3.16b)∑
{w∈W|p∈PDw }

bw ≤ ∇ϕpg (ϕ,θ) , p ∈ P , (3.16c)

(WLS)
∑
p∈PDw

ϕp = dDw , w ∈ W , (3.16d)

vs =
∑

{p∈PD|s∈SDp }

ϕp, s ∈ S, (3.16e)

θ ∈ Θ, (3.16f)

where

g(ϕ,θ) =
∑
s∈S

1

2
· αs(x) ·

 ∑
{p∈PD|s∈SDp }

ϕp

2

+ Ts ·

 ∑
{p∈PD|s∈SDp }

ϕp

 . (3.17)

The following result establishes an equivalence between the estimator given in (3.15) and

the optimization problem WLS:

Proposition 5. Let θ∗ be attained at an optimal solution to WLS. Then θ∗ ∈ argminθ∈ΘLn(θ).

At a high level, Proposition 5 relies on a well-known result which shows that equilibrium

network flows (ϕ,v) ∈ Ψ(dD,θ) correspond to the solution to a convex optimization problem

(Beckmann et al. 1956). Expressing the optimality conditions of that convex program as a

variational inequality and invoking linear programming duality8 then yields the constraints

(3.16b) and (3.16c), which are together equivalent to the Wardrop equilibrium conditions

(3.6). This implies that a solution (θ,ϕ,v,b) that satisfies (3.16b)-(3.16e) must also satisfy

(ϕ,v) ∈ Ψ(dD,θ), which allows us to express the estimator WLS explicitly as (3.16).

8We refer the reader to Aghassi et al. (2006) for details on the on the reformulation of variational
inequalities using linear programming duality.
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One challenge in obtaining solutions to (3.16) is that constraint (3.16b) is a non-linear

equality constraint, which are known to pose numerical difficulties with respect to finding

feasible solutions (Hearn and Ramana 1998). To overcome this, we dualize constraint (3.16b)

by introducing a penalty parameter λ > 0 and the auxiliary variable ϵ, which yields the

following approximation of WLS:

minimize
θ,ϕ,v,b,ϵ

∥v− z∥22 + λ · ϵ (3.18a)

(WLS-A) subject to ∇ϕg (ϕ,θ)⊤ϕ−
(
dD
)⊤

b ≤ ϵ, (3.18b)

(3.16c)− (3.16f).

The loss (3.18a) can be interpreted as a linear combination of the “flow error” ∥v− z∥22 and

the “Wardrop error” ϵ.9

In addition to circumventing the numerical issues of the exact estimatorWLS, the approx-

imate estimator WLS-A has the advantage of being a multi-convex optimization problem,

meaning the decision variables can be partitioned into separate blocks such that the opti-

mization problem is convex in one block of variables when the others are held fixed (Xu

and Yin 2013). Specifically, using (3.17), it can be shown that fixing (θ,b) in WLS-A yields

a convex subproblem in (ϕ,v), and vice versa. As a result, locally optimal solutions can

be obtained using an iterative block coordinate descent method, which is the standard ap-

proach to solving multi-convex optimization problems (see e.g., Bertsekas (1997), Xu and

Yin (2013), and Hong et al. (2017)). Details on our implementation of block coordinate

descent on the approximate estimator WLS-A are provided in Appendix B.1.2.

3.3.3 Travel Mode Choice Estimation

It is straightforward to estimate the parameter β that defines the mode choice model out-

lined in Section 3.2.3. Specifically, let θ̃ be the estimate from solving WLS-A. Then the

9Note that multiplying both sides of (3.16c) by ϕ yields ∇ϕg (ϕ,θ)
⊤
ϕ−

(
dD
)⊤

b ≥ 0, which implies the
Wardrop error ϵ is always non-negative.
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corresponding equilibrium segment flows v∗(θ̃) are given by solving a convex optimization

problem (see formulation (B.20) in the proof of Proposition 5). Let x̃ encode the status quo

bike lane network under which the observed mode shares dmw are generated. It follows from

(3.6) that the equilibrium travel time for each OD pair w ∈ W is given by

tw

(
x̃, θ̃

)
= min

p∈PDw

{
tp

(
x̃, θ̃,v∗(θ̃)

)}
. (3.19)

Therefore, the status quo bike lane network x̃ and the estimate θ̃ together pin down the travel

times tw

(
x̃, θ̃

)
, and thus the driving disutilities uDw (x̃, θ̃). Similarly, the cycling disutility

under the existing bike lane network is given by uCw(x̃), where the coverage ρw(x̃) and cycling

distance Lw are determined by (3.9) and (3.10).10

Given the functions uDw (x̃, θ̃) and u
C
w(x̃, θ̃), as well as observed mode shares dCw , d

D
w and

d0w for w ∈ W , the parameters β in the mode choice model (3.12) are then readily estimable

by standard MNL estimation methods (McFadden et al. 1973).

3.4 Bike Lane Path Selection with Ridership and Congestion Ef-

fects

Equipped with estimates of θ and β, we now present a prescriptive model for planning a bike

lane network x (i.e., from the perspective of a city planner). We assume θ are the estimates

returned by WLS-A, and generally suppress dependence on it for brevity.

3.4.1 Model

Continuity. Continuity of bike lanes is often a priority of city planners (Federal Highway

Administration (FHA) 2006, Bao et al. 2017). To that end, we consider bike lane design

10In practice, estimating the mode choice model requires us to specify, for each w ∈ W, the set of possible
driving paths PD

w and the cycling path pCw . This can be done by querying route planning software such as
Google Maps, which we do in Chapter 4.
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decisions at the path level: let y ∈ {0, 1}|W| represent binary decision variables where yw = 1

if and only if a bike lane is constructed on cycling path pCw . For notational convenience, let

SCw be the set of segments that lie on path pCw . Because xs = 1 if a bike lane is located on

segment s, we enforce coherence between x and y using the constraints

xs ≥ yw, s ∈ SCw , w ∈ W , (3.20a)

xs ≤
∑

{w∈W|s∈SCw }

yw, s ∈ S. (3.20b)

Bike lane budget. Let L =
∑

s∈S ℓs be the total length of all road segments eligible for

bike lane construction. We assume the city planner can expand the bike lane network by at

most B miles where B ∈ [0, L]. This bike lane budget may be due to financial, scheduling,

or other logistical constraints – we abstract away from those specifics and focus on total

mileage, which yields the constraint ∑
s∈S

ℓs · xs ≤ B. (3.21)

Mode choice and congestion. For ease of exposition, let d = (dC ,dD,dO) represent all

mode-specific demands, and define

Γ(x) = {(d,ϕ,v) | d satisfies (3.12) and (ϕ,v) ∈ Ψ(x,dD,θ)}. (3.22)

We call the tuple (d,ϕ,v) a traffic assignment. The set Γ(x) represents all equilibrium

traffic assignments under the bike lane network x (and congestion parameter θ). We can

then capture the effect of a candidate bike lane plan x on the ensuing commuter mode choice

and congestion by enforcing the equilibrium condition

(d,ϕ,v) ∈ Γ(x). (3.23)

Cycling ridership. Lastly, we assume the city planner’s goal is to maximize total cycling

ridership (alternative objectives are discussed in Section 4.7). This is consistent with the

strategic goals of several municipal transportation planning agencies – for example, Chicago’s
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DOT states that “ridership is the key criterion for evaluating the success of bicycle infras-

tructure” (Chicago DOT 2020), and New York City aims to have “1 out of every 10 trips in

NYC be taken by bicycle by 2050” (DOT 2019). Noting that total cycling ridership is given

by
∑

w∈W dCw(x), the model for bike lane path selection (BLP) can now be written as

maximize
x,y,d,ϕ,v

∑
w∈W

dCw (3.24a)

subject to xs ≥ yw, s ∈ SCw , w ∈ W , (3.24b)

xs ≤
∑

{w∈W|s∈SCw }

yw, s ∈ S, (3.24c)

(BLP)
∑
s∈S

ℓs · xs ≤ B, (3.24d)

(d,ϕ,v) ∈ Γ(x), (3.24e)

x ∈ {0, 1}|S|, (3.24f)

y ∈ {0, 1}|W|. (3.24g)

The formulation above is computationally challenging because the cycling ridership objective

(3.24a) and the traffic equilibrium condition (3.24e) are both non-convex as a result of

depending on multinomial logit choice probabilities (see (3.12)). In the next section, we show

that BLP can be approximated as a mixed-integer linear program (MILP), which yields a

formulation that is amenable to commercial optimization solvers, and we characterize the

approximation error explicitly.

3.4.2 Linear Approximation and Suboptimality Bound

The approximation of BLP consists of two steps: First, we reformulate (3.24) exactly by

leveraging an equivalence between the equilibrium condition (3.24e) and a related convex

optimization problem. Second, we present a linearization technique to approximate the

remaining non-convex terms as piecewise linear functions, which yields a MILP.

Reformulation of equilibrium conditions. The following theorem establishes that the
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set of equilibrium traffic assignments Γ(x) is equivalent to the set of optimal solutions to a

convex optimization problem.

Proposition 6 (User equilibrium). For any bike lane network x, (d,ϕ,v) ∈ Γ(x) if and

only if (d,ϕ,v) solves the convex optimization problem

minimize
d,ϕ,v

S(x,θ,d, v) (3.25a)

subject to d̃w =
∑
m∈M

dmw , w ∈ W , (3.25b)

(ϕ, v) ∈ Ω
(
dD
)
, (3.25c)

where

S (x,θ,d, v) =
∑
w∈W

 ∑
m∈{O,C}

∫ dmw

0

umw (x) · dd+
∫ dDw

0

βD0 · dd

+ βD1
∑
s∈S

(∫ vs

0

ts (x,θ, v) · dv
)

(3.26a)

+
∑
w∈W

∑
m∈M

dmw · log (dmw ) . (3.26b)

Further, the equilibrium mode demands d and traffic flows v attained at a solution to (3.25)

are unique.

For ease of reference, we suppress the dependence of function S (·) on θ throughout

this section. Proposition 6 follows closely from Abdulaal and LeBlanc (1979), Dafermos

(1982) and Fisk (1980).11 Following the literature, we refer to formulation (3.25) as the

user equilibrium problem because it specifies equilibrium mode choices and driving routes.

The objective S (x,d,v) is composed of two parts: a system-wide generalized cost term

(3.26a), which is the sum of disutilites of all commuters, and an entropy term (3.26b). Note

that S (x,d,v) is related to the observable road segment features q(x) and traffic flow v

11Our formulation differs in that (1) Abdulaal and LeBlanc (1979) only considers two modes, public
transit and driving, without specifying mode-split functions, (2) Dafermos (1982) assumes consumers adopt
the travel mode with the lowest cost, and (3) Fisk (1980) focuses on the mode of driving only.
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via the driving time function ts (x,θ, v). Further, because ts (x,θ, v) strictly increases in v,

S (x,d,v) is strictly convex in (d, v).

Proposition 6 allows us to replace the equilibrium condition (3.24e) in the path selection

model with the equivalent condition

(d,ϕ,v) ∈ argmin
d,(ϕ,v)∈Ω(dD)

S(x,d,v), (3.27)

and transform problem (BLP) into a bi-level optimization problem (Dempe 2002). At a

high level, the advantage of this substitution is that it allows us to sidestep use of the non-

convex function (3.12) in the path selection model and instead work with the convex problem

(3.27), which is more tractable with respect to linearization. Further, as discussed below,

the linearization of (3.27) yields a bi-level program with a linear lower level problem, which

can be reformulated exactly as a mixed-integer linear program (Fortuny-Amat and McCarl

1981).

The uniqueness result in Proposition 6 is important in that it ensures that the equilibrium

mode shares (i.e., cycling ridership) are identified from the bike lane network x alone. This

uniqueness allows us to address the network design problem without requiring additional

assumptions on the ensuing equilibrium.

Linearization and MILP reformulation. Next, we describe a linearization technique

that approximates BLP as a MILP. Note that the upper-level objective function and con-

straints (3.24a)-(3.24d) and (3.24f), (3.24g) are all linear, so we focus on approximating

the user equilibrium problem (3.25). First, note that by evaluating each term in S (x,d,v)

defined in (3.26), it can be written as∑
w∈W

(
uOwd

O
w + uCwd

C
w + βD0 d

D
w

)
+ βD1

∑
s∈S

(Ts · vs) + βD1
∑
s∈S

1

2
αs (x) · v2s︸ ︷︷ ︸
ξs(vs)

+
∑
w∈W

∑
m∈M

dmw log (dmw )︸ ︷︷ ︸
ψ(dmw )

,

(3.28)

where ξs (vs) and ψ (dmw ) are both (convex) non-linear terms to be approximated via piecewise

linear functions. To linearize S(x,d,v), we approximate ξs (vs) with a piecewise linear
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function, where

ξrs (vs) = αs (x) · vrs · vs −
1

2
· αs (x) · (vrs)

2 (3.29)

is the rth line segment and vrs is the r
th sample point. We choose each sample point vrs such

that the slopes αs(x) · vrs are equidistant in the interval αs (x) · [v, v̄], where v̄ = maxs∈S {vs}

and v = mins∈S {vs}. Note that linearity of αs(x) implies ξrs(x, vs) is also linear in x,

is important for approximating BLP as a MILP. Similarly, we approximate ψ (dmw ) with a

piecewise linear function, where

ψrw (d
m
w ) = [1 + log (drw)] · dmw − drw (3.30)

is the rth line segment and dr is the rth sample point. We choose each sample point drw

such that the slopes are equidistant in the interval
[
1 + log (dw) , 1 + log

(
d̄w
)]
, where d̄w =

maxm∈M {dmw } and dw = minm∈M {dmw } . Next, let Rξ and Rψ index the linear segments

used to approximate ξs(vs) and ψ(d
w
m), respectively. Then using (3.29) and (3.30), the linear

approximation of the user equilibrium problem (3.25) can be written as

minimize
d,ϕ,v,ψ,ξ

SL(x,d,v,ψ, ξ) (3.31a)

subject to d̃w =
∑
m∈M

dmw , w ∈ W , (3.31b)

(ϕ,v) ∈ Ω(dD), (3.31c)

ξs ≥ ξrs(x, vs), r ∈ Rξ, s ∈ S, (3.31d)

ψmw ≥ ψrw (d
m
w ) , r ∈ Rψ, w ∈ W ,m ∈M, (3.31e)

where

SL(x,d,v,ψ, ξ) =
∑
w∈W

(
uOwd

O
w + uCwd

C
w + βD0 d

D
w

)
+ βD1

∑
s∈S

Ts · vs + βD1
∑
s∈S

ξs +
∑
w∈W

∑
m∈M

ψmw .

(3.32)
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The linear approximation of BLP is then

maximize
x,y,d,ϕ,v,ψ,ξ

∑
w∈W

dCw (3.33a)

(BLP-A) subject to (3.24b)− (3.24d), (3.33b)

(d,ϕ,v,ψ, ξ) = argmin
d,ϕ,v,ψ,ξ

SL(x,d,v,ψ, ξ), (3.33c)

subject to (3.31b)− (3.31e).

Theorem 4 presents our main result of this section. Let C(x) =
∑

w∈W dCw(x) be the

cycling ridership under bike lane plan x, i.e., the objective of BLP. Further, define α =

mins∈S,x∈{0,1}|S| {αs (x)}, d = minw∈W {dw}, and d̄ = maxw∈W {dw}.

Theorem 4 (Suboptimality bound). Let x∗ and x̄ be optimal solutions to the exact bike

lane planning formulation BLP and the approximation BLP-A, respectively. Then

C (x∗)− C(x̄) ≤ 2 · µ1 ·
√
|W|

(
µ2 ·

√
|S|

|Rξ| − 1
+ µ3 ·

√
3 · |W|
|Rψ| − 1

)
, (3.34)

where µ1 = max
{
d̄, 1

βD1 ·α

}
, µ2 = βD1 · αs(x) · (v̄ − v), and µ3 = log

(
d̄
)
− log (d).

From Theorem 4, it can be seen that the error bound depends on the size of the road

network (via |S| and |W|), variation in traffic flows (µ2) and variation in mode demands

(µ3), and that the dependence on the number of linear segments is O

(
1

|Rξ| +
1

|Rψ|

)
. For

practically-sized road networks, the optimality gap in Theorem 4 can be made small using

a modest number of linear segments. For example, in our empirical study in Chapter 4, we

use |Rψ| = |Rξ| = 12, which yields an upper bound on the optimality gap of 1.25% (see

Appendix B.3.1).

Finally, to solve BLP-A, we leverage the fact that a bi-level program with a linear lower-

level problem can be expressed exactly as a MILP (Fortuny-Amat and McCarl 1981). The

complete formulation and additional technical details are contained in Appendix B.3.
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3.4.3 Limiting Congestion

In practice, city planners are sensitive to the effect of bike lanes on increasing congestion

(Khany 2022). Our model can accommodate these considerations via additional constraints

on the increase in driving times. While there does not exist a universal measure of traffic

congestion, we provide two possible examples of how congestion may be limited within our

framework. The first approach is to ensure that the total demand-weighted driving time is

increased by at most a factor of τ , which can be enforced by adding the following constraint

to BLP-A: ∑
w∈W

dDw · tw (x,v) ≤ (1 + τ)
∑
w∈W

d̃Dw · tw (x̃, ṽ) ,

where d̃Dw , x̃ and ṽ are the current driving demand, bike lane network and traffic flows, prior

to the addition of any new bike lanes.

Alternatively, we may require that the worst case increase in driving times over all possible

routes is at most a factor of τ . This can be enforced via the following constraints:

tp (x,v) ≤ (1 + τ) · tp (x̃, ṽ) , p ∈ PD. (3.35)

The choice of congestion control depends on the priorities of city planners. In particular,

constraint (3.35) may be especially useful if planners wish to avoid sharp spikes in congestion

in any part of the network, which can generate backlash and erode public support for bike

lanes. In our empirical study in Chapter 4, we adopt this latter set of constraints, which

allows for more granular control of congestion effects.
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CHAPTER 4

Empirical Study: Expanding Chicago’s Cycling

Infrastructure

4.1 Introduction

In the preceding chapter, we have developed a framework to model the traffic equilibrium

and mode choices of commuters for designing bike lanes, estimate the parameters of the

equilibrium model, and optimize the bike lane expansion plan. In this chapter, we build

upon the theoretical foundation by conducting an empirical study of bike lane expansion in

the City of Chicago and examining its policy implications.

We select Chicago for our study because it is the one of the most congested cities in

the United States (Inrix 2020), and also because expanding cycling infrastructure is a major

policy priority in Chicago, which in 2021 announced plans to add 100 miles of bike lanes in

the following two years (Chicago DOT 2021). Chicago is also experiencing rapid growth in

the demand for cycling – from 2000 to 2018, the share of daily commuters that cycled more

than tripled from 0.5% to 1.8% (US Census Bureau 2020).

New bike lines are typically planned based on current ridership and population density,

without accounting for potential congestion effects (Chicago DOT 2020). Further, there are

few extant methods for estimating the effect of changes to urban infrastructure on traffic

congestion. To that end, the goal of our empirical study is two-fold: (1) to estimate the effect

of expanding Chicago’s cycling infrastructure on cycling ridership and traffic congestion,

and (2) to compare the performance of our recommended bike lane network with alternative
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methods that ignore ridership and congestion effects.

Our study combines seven detailed datasets: i) Chicago’s road network, ii) the existing

bike lane network, iii) observed traffic flows, iv) travel mode choices, v) bike share trips, vi)

driving and cycling routes, and vii) taxi trips. We estimate that adding 25 miles of bike lanes

as prescribed by our model can increase cycling ridership from 3.9% to 6.9% in downtown

Chicago, without increasing the travel time of any driving route by more than 8%.

We evaluate our method by benchmarking against three intuitive heuristics for bike lane

planning. In particular, we quantify the value of endogenizing congestion effects by compar-

ing against a “traffic-agnostic” model, and find that ignoring traffic dynamics when designing

bike lanes can needlessly worsen congestion. We also quantify the value of optimization in our

setting by evaluating two heuristics that discard the network structure of the problem, and

find that they can lead to smaller gains in cycling ridership with worse congestion outcomes.

The remainder of this chapter is organized as follows: Section 4.3 summarizes the datasets

used in the study, Section 4.4 specifies the model for traffic congestion and mode choice and

presents the associated estimation results for (θ,β), Section 4.5 estimates the impact of

several of our model’s prescriptions on cycling ridership and traffic congestion, and Section

4.6 validates our method through a comparison with three intuitive benchmark methods for

bike lane planning. Section 4.7 discusses policy implications and concludes.

4.2 Study Region

Our study focuses on a contiguous region of downtown Chicago, depicted as the shaded area

in Figure 4.1. We select this region due to the avaiability of detailed cycling demand data

which we use to estimate the mode choice parameters β. When estimating the congestion

parameter θ, we make use of vehicle traffic flow data from the entire City of Chicago (larger

area in Figure 4.1), so to maximize the data available to our estimator.
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4.3 Data Description and Sources

Here we provide an overview of the datasets and sources of data used in our empirical study,

which is summarized in Table 4.1. Our study makes use of the following seven datasets:

1. Road network topology and features. To construct the road network, we first

retrieve the the locations of 798 census tracts within the City of Chicago from 2010 U.S.

census data (Chicago Data Portal 2010). We construct the node set I by assuming a node

exists at the geometric centroid of each census tract. We construct the set of road segments S

by querying OpenStreetMap (OSM 2021), which resulted in a total of 31,815 road segments

within Chicago’s city boundaries.

In addition to network structure, we also obtained data on three road features at the

segment level: length (ℓs), number of lanes (ns), and lane width (ws). Segment length and

number of lanes were extracted from OpenStreetMap. Lane widths are imputed based on

guidelines from the Illinois Department of Transportation Bureau of Local Roads and Streets

Manual (Illinois DOT 2018), which provides recommendation of lane widths based on road

classification and traffic counts.

2. Bike lane network. We extract Chicago’s bike lane network as of 2018 (Chicago

Data Portal 2018). We match the segments of the bike lane network with the constructed

road network, which allows us to construct the status quo bike lane network x̃, representing

a total of length of 265 miles. We assume bike lanes have a width of 1.5 meters in accordance

with the Local Roads and Streets Manual (Illinois DOT 2018).

3. Vehicle traffic flows. We collect vehicle flow data through the network from

the Highway Performance Monitoring System (HPMS) (FHA 2018). This dataset contains

information on the Average Annual Daily Traffic (AADT) that flows through major road

segments. We focus on average traffic flows during the morning rush hour (6am-10am) in

the year 2018.1 We match the road segments in the HPMS dataset onto the OpenStreetMap

1We focus on morning rush hours because they represent a sizeable share of all traffic (24% of all ve-
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network using the ST-Matching algorithm proposed by Lou et al. (2009). Because HPMS

does not contain traffic data for low volume road segments, we obtain AADT data for a

subset of 12,447 segments in the network.

4. Travel mode choices. To construct the mode-specific demands, we first obtain

commuter flow data from the Origin-Destination Employment Statistics dataset maintained

by the Longitudinal Employer-Household Dynamics (LEHD) (US Census Bureau 2018b).

The dataset specifies commuting flows between pairs of census tracts. We only focus on OD

pairs with a strictly positive number of commuters and where the origin and destination

census tracts are distinct. This resulted in a total of 146,847 OD pairs in our study region.

We then retrieve census tract-level mode shares from the 2014 - 2019 benchmarking (ACS)

(US Census Bureau 2020), which specifies mode shares of driving, cycling, and all other

options for each census tract. Multiplying the mode shares with the total commuter flows

provides an estimate of the total demand for each mode of transport originating at each

census tract.2

5. Bike share trips. We computed the cycling demand dCw for each OD pair w using

detailed cycling trip data made available by Divvy, Chicago’s bike share system, which is

operated by Lyft (Divvy 2021). The Divvy trip data contains information on individual bike

rentals, including timestamps for the rental’s start and end, and the addresses of the Divvy

station that each bike was rented from and returned to. We first selected all trips taken in

2018 during the morning rush hour period (6am to 10am), resulting in a total of 487,632

cycling trips. We then geocoded the addresses of the Divvy stations and matched them to

Chicago’s census tracts to determine, for each origin census tract, the share of Divvy trips

that arrived at each destination tract. Finally, for each origin census tract, we combined

the computed destination trip-shares from Divvy with the total commuter flows and travel

hicle flows, Illinois Department of Transportation (2018)), and commuters are the main beneficiaries of
improvements to cycling infrastructure (Chicago DOT 2020).

2Because the data from US Census Bureau (2020) contains demand at the origins, it only partially defines
the driving demand dDw . In our study, we use this information to jointly estimate dDw along with θ.
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mode shares from the 2014 - 2019 ACS data to determine the cycling demand dCw .

6. Driving and cycling routes. For each OD pair w, we constructed the path sets

PDw and the cycling path pCw by querying the Google Direction Application Programming

Interface (API) (Google Maps 2021). Specifically, we constructed PDw by obtaining the top

three Google recommended driving routes for the given OD pair – using census tract centroids

for the start and end locations – and matching the returned routes to the road network. In

addition to providing routes, the Google Direction API also returns the travel time along

each route; we queried the API at 12am to obtain the free-flow driving time parameters Ts,

s ∈ S.

Similarly, for each w ∈ W , we constructed the cycling path pCw by retrieving the top-

most recommended cycling path by Google Maps. We then constructed SCw (the set of

segments that constitute the cycling path pCw) and the total biking distance Lw by matching

the recommended cycling route with the bike lane network x̃. This matching process also

allowed us to compute the bike lane coverage ρw(x̃) for each path pCw .

7. Taxi trips. We validate our estimates of the congestion parameter θ using taxi trip

data from Chicago. These records report the origin, destination, and duration of all taxi

trips made within city boundaries (Chicago Data Portal 2021). For consistency with the

traffic flow data used during estimation, we select all trips taken during morning rush hours

(6am to 10am) from 2018, resulting in 1,649,214 trips between 4,400 OD pairs. The taxi trip

data serves as an out-of-sample dataset for evaluating our model’s ability to predict driving

travel times in the network.
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Table 4.1: Data summary and sources.

Source Quantity Description Size

OSM (2021)

I Nodes 798

W Origin-destination (OD) pairs 146,847

S Road segments 31,815

ls Road segment length 31,815

ns Number of lanes 31,815

Google Maps (2021)

PD Driving paths 399,356

Ts Free-flow travel times 31,815

pCw Cycling paths 146,847

Divvy (2021)
– Individual cycling trips 487,632

dCw Cycling demand 5,272

Chicago Data Portal (2021)
Wtaxi OD pairs for taxi trips 4,400

N taxi
w Individual taxi trips 1,649,214

FHA (2018)
z Vehicle traffic flows (AADT) 12,447

Sobs Segments with AADT data 12,447

Chicago Data Portal (2018) x̃ Existing bike lane network 1,289

Illinois DOT (2018) ws Vehicle lane widths 31,815

US Census Bureau (2018b, 2020) dDw Driving demand 146,847
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Figure 4.1: Study region: City of Chicago.
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4.4 Model Estimation and Validation

We begin by specifying the congestion function. Traffic assignment models typically assume

the travel time on a road segment is inversely related to its capacity (Patriksson 2015).

To that end, for each segment s ∈ S we construct a feature vector related to the road’s

dimensions:

qs (xs) =


(
1, ℓs, ns · ws, ℓs

ns·ws

)
, if xs = 0,(

1, ℓs, ns · ws −∆w, ℓs
ns·ws−∆w

)
, if xs = 1,

(4.1)

where ℓs is the segment’s length, ns · ws is the total width, ℓs/(ns · ws) captures an inverse

relationship with capacity, and the 1 permits an intercept in the congestion function. Follow-

ing the Illinois Local Roads and Streets Manual (Illinois DOT 2018), we assume the presence

of a bike lane (xs = 1) narrows the road segment by 1.5 meters on each side, which implies

∆w = 3 meters. For each s ∈ S, the congestion function is then given by

αs(xs,θ) = θ
⊤qs(xs) = θ0 + θ1 · ℓs + θ2 (ns · ws −∆w · xs) + θ3

(
ℓs

ns · ws −∆w · xs

)
. (4.2)

The segment travel time is then

ts(xs,θ, vs) = αs(xs,θ) · vs + Ts, (4.3)

where θ = (θ0, θ1, θ2, θ3) is the parameter vector be estimated. As noted in Section 4.3, only

the driving demand at the origin of each OD pair is available from the American Community

Survey data. We therefore slightly modify the estimator WLS-A by jointly imputing the

driving demand dDw with the congestion parameter θ (see Appendix B.1 for details). In

Appendix B.5, we present numerical evidence that this modification of WLS-A continues to

produce reasonable estimates of θ.

Because AADT counts are not available for all possible road segments, we measure the

flow error ∥v − z∥22 only over the segments for which traffic flow data is available (|Sobs| =

12, 447), while assuming Wardrop equilibrium holds over the full network (|S| = 31, 815). To

evaluate the trade-off between the flow error ∥v− z∥22 and the Wardrop error ϵ, we re-solved
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the estimator for each value of the penalty parameter λ in {1.0, 1.5, 2.0, 2.5, 3.0} × 103. We

validate the model fit at each value of λ by measuring how well it predicts the the travel

times of a large number of taxi trips in Chicago (see Section 4.3).3 Among the values of λ

tested, we find λ = 2500 yields the minimal prediction error in taxi travel times, with an

average absolute error of 1.34 minutes and an average relative error weighted by number of

taxi trips of 14% (see Appendix B.1.3 for additional details on the selection of λ). Figure

4.2 depicts predictive performance on the taxi trip data. The correlation depicted in Figure

4.2(a) is 0.85, which suggests a sensible model fit. 4

Table 4.2 reports the estimates for congestion parameter θ under λ = 2500. The sign

of the estimates suggest that travel time increases in segment length and decreases in total

segment width (due to increased road capacity), which aligns with intuition.

Table 4.2: Congestion parameter estimates (×10−7).

Intercept ℓs ns · ws ℓs/(ns · ws)

θ0 θ1 θ2 θ3

6.51 2.53 −0.26 75.7

Next, we estimate the mode choice parameters β, using the estimated congestion param-

eter θ as input. Table 4.3 summarizes the data used. To estimate β, we restrict attention to

the sub-network for which Divvy trip data is available (shaded region of Figure 4.1), which

3The penalty λ is a user-specified tuning parameter, which are typically chosen through cross validation.
However, because cross-validation assumes independent observations, it is inapplicable in our setting due to
the data being generated by a single connected network. We therefore use taxi trip data as our out-of-sample
validation dataset.

4Our estimator’s out-of-sample performance is comparable to extant methods for travel time prediction
on road networks. For example, Zhan et al. (2013) present an MNL choice model for driving route selection,
which has mean relative errors ranging from 17% to 41% in predicting the travel times of taxis in New
York City. Furthermore, a naive prediction based on free-flow travel times from Google Maps yields an
out-of-sample error of 27%, which underscores the value of accounting for traffic congestion in travel time
prediction.
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Figure 4.2: Driving time prediction errors on out-of-sample taxi trip data.

corresponds to in 5,272 OD pairs, 6,101 road segments, and 14,632 driving paths. Table 4.4

shows the estimation results, which show all parameter estimates to be statistically signif-

icant (p < 0.05). The signs of the estimates agree with intuition: The positive coefficient

for driving time (βD1 ) indicates shorter travel times increase the attractiveness of driving.

For cycling, the negative coefficient for bike lane coverage (βC1 ) implies the attractiveness of

cycling increases in bike lane coverage; similarly, the positive coefficient for cycling distance

(βC2 ) indicates cycling demand decreases in distance. Lastly, the estimated mode choice

model yields R2 = 0.54, which suggests a reasonable fit to the data.
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Table 4.4: Estimates (and standard errors) of mode choice parameters.

Driving, uDw Cycling, uCw

intercept tw intercept ρw Lw R2

βD0 βD1 βC0 βC1 βC2

-3.341** 0.250** 0.263* −1.172** 0.691**
0.54

(0.075) (0.005) (0.131) (0.194) (0.014)

Note: *p < 0.05; **p < 0.01.

4.5 Bike Lane Expansion: Impact on Cycling Ridership and Traf-

fic Congestion

Using the estimates (θ,β), we use our model to develop bike lane plans for downtown Chicago

and estimate the associated increase to cycling ridership and congestion. Our study focuses

on expanding the existing bike lane network instead of redesigning the entire network, which

aligns with the city’s plan (Chicago DOT 2021). For tractability, we solve the path selection

model over the largest OD pairs capturing 80% of commute demand in the study region

(shaded area of Figure 4.1). This resulted in 887 candidate paths for bike lane installation,

representing 4,127 road segments.

We consider 12 combinations of the bike lane budget B and the congestion tolerance

τ : (B, τ) ∈ {10, 25, 50, 75} × {0.05, 0.1, 0.15}. For each combination of (B, τ), we add the

congestion tolerance constraint (3.35) to the path selection model BLP-A given in (3.33),

which is solved to obtain a recommended network x∗. We then evaluate the model’s recom-

mendation by solving the (exact) user equilibrium problem (3.25) under x∗ and computing

the relative increase in cycling ridership over the status quo network x̃:∑
w∈W dCw( x∗)− dCw(x̃)∑

w∈W dCw(x̃)
. (4.4)

76



Consistent with the model BLP-A, we evaluate congestion using the worst-case increase in

driving times over all driving paths:

max
p∈PD

{
tp( x∗)− tp(x̃)

tp(x̃)

}
. (4.5)

Our choice of the congestion constraint (3.35) (and the corresponding performance metric

(4.5)) is motivated by discussions with city planners, who are sensitive to public perceptions

regarding the installation of bike lanes and their effect on congestion (Khany 2022). Accord-

ingly, to avoid “spikes” in driving times throughout the network, we focus on limiting the

worst-case increase in driving times over all paths. As an alternative measure of congestion,

we also estimate the impact of the recommended bike lane plans on the total system-wide

driving time in Appendix B.4.

As an illustrative example, Figure 4.3 visualizes the model’s recommended bike lane

plan and the estimated effects on driving times for the case where (B, τ) = (25, 10%).

Figure 4.3a depicts existing and recommended bike lanes. Interestingly, we observe that

the recommended bike lanes tend to close gaps in the existing bike lane network (e.g., (1) in

Figure 4.3a) and also bridge distant parallel bike lanes (e.g., (2)), both of which are priorities

for the Chicago DOT, even though we do not explicitly enforce these requirements.

Figure 4.3b shows the change in driving time on each road segment as compared to the

status quo. We make the following observations. First, among the 25 miles for which new

bike lanes are recommended, 77.6% have longer driving times and 8.2% have shorter driving

times (no change is observed in the remaining 14.2% of segments). The intuition is as follows.

Building bike lanes reduces road width and thus increases the driving time, which we refer

to as the road effect. On the other hand, building bike lanes increases cycling utility and

thus boosts biking adoption, which reduces driving demand and thus alleviates congestion,

which we refer to as the demand effect. Figure 4.3b visualizes the segments where the road

effect dominates the demand effect (red) and vice versa (green).

We also observe spillover effects of new bike lanes to the entire network. Specifically,
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Figure 4.3: Recommended bike lane expansion and congestion effects in downtown Chicago

for (B, τ) = (25, 10%).

among the road segments on which no new bike lanes are built, 11.8% have longer driving

times and 40.0% have shorter driving times. Because the demand effect spills over to the rest

of the network, the driving time reduction is expected. The congestion-increasing road effect

on some segments is due to the fact that adding bike lanes causes drivers to adopt alter-

native paths in equilibrium, which increases driving times elsewhere in the network. These

spillover effects are contingent on network structure and traffic dynamics, which highlights

the necessity of a system-wide approach to bike lane planning.

Figure 4.4 summarizes model performance under each of the 12 combinations of (B, τ).

In general, we estimate notable increases to cycling ridership even when the congestion

tolerance and the budget are minimal – for example, under (B, τ) = (10, 5%), cycling shares
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Figure 4.4: Increase in cycling ridership and worst-case driving travel times under 12 com-

binations of (B, τ).

increase by 36% (from 3.9% to 5.3%). Further, our results suggest diminishing returns on

increasing the congestion tolerance τ – increasing τ from 5% to 10% boosts cycling ridership

by 22% to 34%, depending on the bike lane mileage budget B, wheres increasing τ from 10%

to 15% is associated with at most a 2% relative increase in cycling ridership. We observe a

similar behavior as B increases, with most of the gains to cycling ridership occurring within

the first 50 miles of bike lane expansion.

4.6 Comparison with Alternative Bike Lane Planning Methods

To further evaluate the performance of the bike lane plans recommended by our model, we

benchmark its performance against three alternative methods for bike lane expansion.

Fixed-time model. In this approach, we assume driving times are unaffected by the

addition of bike lanes. Specifically, we assume segment driving times remained fixed at their

status quo values, ts(x̃), which are returned by the congestion parameter estimator described
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in Section 3.3. We then solve a variant of the path selection model BLP-A with fixed driving

times. The precise formulation for the fixed-time model is given in Appendix B.4.1.

Greedy heuristic. We also present a greedy heuristic for solving BLP-A, which is based

on selecting promising OD pairs between which the city planner should build bike lanes

while satisfying the congestion tolerance constraints. The greedy heuristic can be viewed as

a congestion-aware bike lane planning method that does not take a system-wide perspective.

Intuitively, the greedy heuristic consists of three components. First, the OD pairs are sorted

from highest to lowest based on their potential for improving cycling ridership per unit

of new bike lane built. Second, we screen the OD pairs by their anticipated increase in

travel times due to bike lane construction, and then greedily select OD pairs such that

the budget constraint is not violated. Third, the algorithm verifies whether the congestion

constraint for the selected OD pairs is satisfied; if not, the heuristic is repeated with a more

conservative selection (with respect to travel time increase) of OD pairs in the second step.

Implementation details for the greedy heuristic are presented in Appendix B.4.2.

Demand heuristic. The last benchmark we consider is a naive planning approach that

adds bike lanes on the paths for the OD pairs with the highest current commute demand,

which aligns with one of Chicago’s stated principles for building bike lanes (Chicago DOT

2020). Implementation details for the demand heuristic are presented in Appendix B.4.3.

Comparison results. We again vary B ∈ {10, 25, 50, 75} and τ ∈ {5%, 10%, 15%} to

obtain 12 combinations of (B, τ) for comparing BLP-A with the three benchmark methods.

For brevity, we present detailed results for B = 25 miles in Figure 4.5, and defer the cases

for for B ∈ {10, 50, 75} to Appendix B.4.4. Note that the fixed-time model and demand

heuristic are not parameterized by τ , so they each correspond to only one point in Figure

4.5. We start interpreting the results by comparing our model’s prescriptions (blue ‘o’)

with the demand heuristic’s bike lane plan (red ‘+’). As expected, because the demand

heuristic places bike lanes between OD pairs with the most commuters, it obtains substantial

growth in bike demand (increased by 59%), although the resulting increase in congestion
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Figure 4.5: Increase in ridership and worst-case driving time for bike lane path selection

model BLP-A and three benchmark methods (B = 25 miles).

is relatively high (13.2% increase in worst-case driving time). In particular, the demand

heuristic is dominated by the recommendations from BLP-A when τ = 10% or τ = 15%.

With respect to the fixed-time model (green ‘□’), it increases cycling ridership by 78%

(from 3.9% to 7.0%), which is comparable to our model’s recommended bike lane expansion

under τ = 10% or 15%. However, the increase in congestion under the fixed-time model is

significantly higher than under our approach (13.9% vs. 8.7%). This difference underscores

the importance of endogenizing congestion effects in bike lane planning, which permits city

planners to manage driving times throughout the network. Finally, we examine the greedy

approach that considers congestion effects (orange ‘×’) but discards the network structure

of the problem. We find that our model’s prescriptions achieve significantly higher bike

demand across all values of τ ∈ {5%, 10%, 15%}. Specifically, when τ = 15%, the relative

gain in cycling ridership under our method is more than twice that of the greedy heuristic

(76% vs. 33%), while achieving lower increases in driving times as well (12.3% vs 8.7%).

Taken together, these results demonstrate the value of endogenizing congestion and ridership
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effects, as well as taking a holistic (i.e., network) perspective to urban bike lane planning.

4.7 Policy Implications and Conclusion

The expansion of cycling infrastructure has become a priority for municipal governments

seeking to promote urban sustainability. While the addition of bike lanes has generated

controversy due to their perceived effects on traffic congestion, few previous studies have

attempted to rigorously estimate the impact of bike lane expansion on congestion from a

system-wide perspective. Our findings suggest that adding bike lanes does not necessarily

worsen congestion if done mindfully: We estimate that adding 25 miles of bike lanes to

downtown Chicago as prescribed by our model can increase cycling ridership from 3.9% to

6.9%, while increasing driving times by at most 7.5% over all routes. We obtain qualitatively

similar results for different bike lane budgets and congestion tolerances. Further, our results

suggest that congestion may in fact be alleviated in many segments of the network following

the addition of bike lanes. Taken together, our results cast doubt on the perception that

bike lanes dramatically increase traffic congestion.

We also find that alternative planning methods that ignore congestion effects can amplify

congestion without necessarily improving cycling ridership beyond what is attained under

our model’s prescriptions. To the extent that city planners wish to expand bike lane net-

works while mitigating congestion and the associated consequences, prescriptive models like

ours that take a system-wide perspective may be useful. Our framework may be especially

valuable for financially-constrained municipalities that wish to maximize the benefits of bike

lane expansion under a limited budget, or in cities where the cycling infrastructure has ma-

tured past the point of “low hanging fruit” and would benefit from more rigorous planning

methods. We also note that while sophisticated simulation models for traffic modeling are

widely adopted by city planners, there is a scarcity of models for bike planning, which makes

it challenging for city planners to systematically leverage traffic data when developing bike
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lane plans (Khany 2022). As a result, data-driven methods like ours have the potential to

improve the modeling support available to city planners.

There are many additional considerations to bike lane planning that are not captured

by our model, including safety, implementation cost, closing gaps in the existing network,

meeting needs of underserved communities, and land use. There may also be on-the-ground

constraints that make some aspects of our model’s recommendations impractical. To that

end, our method should be viewed as a complement and not a substitute to existing ap-

proaches used by city planners for bike lane planning.

This study has limitations. First, although our method can be applied to other cities

where similar data is available, our empirical findings may not generalize beyond Chicago due

to differences in road network topology, commuters’ preferences, and traffic patterns. Second,

due to limitations in data availability, our analysis relies on demand data that is aggregated

at the census-tract level – future analyses using more fine-grained data may yield different

results. Our estimates of driving times are based on observable road segment features, such

as length and width, and under the assumption of Wardrop equilibrium. In practice, traffic

flows may also be influenced by additional factors such as traffic signal timing, permissibility

of left and right turns, speed limits, and zone type (e.g. commercial vs. residential), all

of which are unaccounted for in our study. Lastly, other factors that may influence cycling

utility that we do not consider include safety, continuity of the bike lane network, and access

to shops, services, green space, and public transit.
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CHAPTER 5

Conclusions

In this thesis, we shed light on practical problems public sector face in smart city operations

and urban mobility, using economic modeling, optimization, and data analytics as our guid-

ing tools. Our primary focus is on the problems in promoting the adoption of public transit

and cycling. Below we conclude each chapter and list potential future research directions.

Chapter 2 scrutinizes two mechanisms existing in practice aimed at promoting public

transit ridership. The direct mechanism involves the government providing a ride-hailing

subsidy to commuters who use a mix of ride-hailing and public transit, while also charg-

ing a congestion fee to those who drive personal vehicles. The direct mechanism involves

partnering with a private enterprise to provide subsidies without charging a congestion fee.

We show that the optimal incentives under these mechanisms depend on the level of public

transit coverage, commuter preferences, and the adoption target. We also find that the direct

mechanism is not budget neutral without undermining commuter welfare, while the indirect

mechanism leaves all stakeholders better off and is only viable for modest adoption targets.

As one of the pioneering research studies in the literature investigating this issue, we offer

several potential directions for future work. First, it may be fruitful to examine other forms

of partnership between the transit agency, ride-hailing platform, and the private enterprise.

For example, because the ride-hailing platform benefits from the commuter subsidy (due

to increased demand), it may be worthwhile to examine partnerships where the cost of the

subsidy is shared between the municipal government and the ride-hailing platform. Second,

our study is relevant to other settings where two firms with “complementary capacity”
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engage in a mutually beneficial partnership. For example, FedEx offers a “SmartPost”

delivery service in which FedEx maintains responsibility for the long haul transportation of

goods, while the United States Postal Service (USPS) handles the last mile delivery between

a USPS center and a customer’s home. Our study can serve as a springboard for analyzing

partnerships of this nature. Third, we have modeled commuter welfare at an aggregate

level; it may also be worthwhile to investigate mechanisms that can improve welfare for all

commuters (e.g., by reducing traffic congestion for drivers). Lastly, budget neutral incentive

mechanisms have received relatively little attention in the operations literature, but may

be valuable in other settings where government funds are limited. Our findings suggest

that an appropriately designed public-private partnership may be a cost-effective solution

for governments that wish to improve adoption of other socially beneficial goods or services

(e.g. electric vehicles).

Chapter 3 and 4 focus on the bike lane planning problem considering endogenous trans-

portation mode demand and travel times. Our study provides rigorous estimate for the

impact of bike lane expansion on congestion from a system-wide perspective. We find that

adding 25 miles of bike lanes to downtown Chicago as prescribed by our model can increase

cycling ridership from 3.9% to 6.9%, while increasing driving times by at most 7.5% over all

routes. Our study demonstrates that careful implementation of bike lanes does not inevitably

lead to worsened traffic congestion, and in many segments of the network, congestion may

actually be alleviated.

We list potential directions for future work below. First, our method can be extended to

other considerations such as the effect of bike lanes on greenhouse gas emissions or safety. It

may also be worth examining how bike lane expansion affects different populations, such as

low-income and underserved neighborhoods, or groups for whom cycling may not feasible,

including seniors or people with disabilities. Finally, our modeling framework may also be

useful in planning other types of transportation infrastructure where congestion impacts are

a salient concern, such as the addition of dedicated bus or carpool lanes.
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As sustainable urban mobility continues to receive increased attention, a plethora of

research questions arise, such as inquiries into the design of transportation systems to enhance

fairness and accessibility, as well as into the nature of public-private partnerships in pursuit

of sustainability goals. Our proposed methodologies, which incorporate modeling and data

analytics, offer a promising avenue for addressing these research questions.
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APPENDIX A

Partnerships in Urban Mobility: Incentive Mechanisms

for Improving Public Transit Adoption

A.1 General Hybrid Mechanism: Optimal Incentive (e∗, s∗, z∗)

In the previous sections, we find that mechanisms [D] and [I] capture two types of incentives

that have already been implemented in practice: the funding of transit subsidies through

congestion fees and partnerships with a private enterprise, respectively. By comparing both

mechanisms, we found that mechanism [D] is costly to implement, but is capable of achieving

higher public transit adoption target. Conversely, mechanism [I] is budget neutral, but only

viable for small β. This raises a natural question: Is it possible to maintain budget neutrality

while achieving a higher adoption target by combining both mechanisms?

In this section, we propose a general mechanism – denoted by [G] – that combines mech-

anisms [D] and [I]. In mechanism [G], all three levers, namely, the congestion fees e, the

government subsidy s and the private subsidy z, are available. In other words, we allow

e ≥ 0, s ≥ 0 and z ≥ 0 in the general formulation presented in §2.2.2. Figure A.1 depicts

the relationships among the various stakeholders under the general mechanism [G].

Based on criteria I – VI, the optimal incentive (e∗, s∗, z∗) under mechanism [G] is thus

given by the solution to the following optimization problem. Note that similar to mechanism

[I], because mechanism [G] requires the participation of the private enterprise, the subsidy
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Figure A.1: Strategic interactions among stakeholders under the general mechanism [G].

z is set to be profit maximizing.

min
e,s,z≥0

[C(e, s, z)]+ (A.1a)

s.t. Dm(e, s, z)−D0
m ≥ βD0

m (A.1b)

Mechanism [G]: W (e, s, z) ≥ W 0 (A.1c)

Πs(e, s, z) ≥ Π0
s (A.1d)

z = argmax
z

Πs(e, s, z). (A.1e)

We now characterize the optimal incentive (e∗, s∗, z∗) attained at a solution to (A.1). For

ease of exposition, let γ1 ≡ (δ − 1)(x + 1), γ2 ≡ (d− p)− x(r − d), x̆ ≡ (d−p)−(δ−1)+2K
(r−d)+(δ−1)

, and

β1(x) ≡
2γ1−3γ2−

√
(2γ1−γ2)2−8γ1K

2γ2
< τ̄(x), β̄(x) ≡ 2K

γ2
, where β̄(x) < τ̄(x) if and only if x > x̆.

Proposition 7. (i) If the last mile distance is small, x ≤ x̆, then for any β ∈ (0, τ̄(x)),

there exists an optimal incentive program (e∗, s∗, z∗) that incurs no operating cost for

the government, [C(e∗, s∗, z∗)]+ = 0. Further,

(a) if 0 ≤ β ≤ τ(x), then e∗ ≥ 0, s∗ ≥ 0, and z∗ > 0;

(b) if τ(x) < β < τ̄(x), then e∗ > 0, s∗ ≥ 0, and z∗ > 0.

(ii) Suppose the last mile distance is large, x > x̆. Then
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(a) if 0 ≤ β ≤ β̄(x), there exists an optimal incentive program (e∗, s∗, z∗) that incurs

no operating cost for the government, [C(e∗, s∗, z∗)]+ = 0. Further,

i. if 0 ≤ β ≤ τ(x), then e∗ ≥ 0, s∗ ≥ 0, and z∗ > 0;

ii. if τ(x) < β ≤ β1(x), then e
∗ > 0, s∗ ≥ 0 and z∗ > 0;

iii. if β1(x) < β ≤ β̄(x), then e∗ > 0, s∗ > 0, and z∗ > 0.

(b) if β̄(x) < β < τ̄(x), then the optimal incentive program (e∗, s∗, z∗) incurs a positive

operating cost for the government, [C(e∗, s∗, z∗)]+ > 0. Further, e∗ > 0, s∗ > 0,

and z∗ > 0.

We offer a few remarks on Proposition 7. First, under mechanism [G], when the adoption

target is modest, β ≤ β̄(x), budget neutrality is attainable; when the adoption target is

aggressive, β > β̄(x), the government has to bear a positive operating cost. Therefore,

analogous to Remark 2, we can conclude that when adopting mechanism [G], a financially

strained government should conservatively set the adoption target β to attain budget neu-

trality, while a sufficiently funded government can set a more aggressive target and further

improve public transit adoption. Second, because τ(x) < β̄(x) for any fixed x, it follows

that mechanism [G] allows the government to remain budget neutral while achieving higher

transit adoption target β than mechanism [I] and leaving all stakeholders (weakly) better

off. Third, because the optimal private subsidy is always strictly positive, namely, z∗ > 0

for all β > 0, we conclude that it is essential for the municipal government to partner with

the private sector if the objective is to minimize operating cost. In addition, as β increases,

to achieve more a ambitious adoption target, more interventions should be utilized, that is,

e∗ > 0 and s∗ > 0.

Using the optimal solutions to mechanism [G], we are able to compare the optimal cost

with mechanisms [D] and [I], which is summarized in Corollary 5.

Corollary 5. For any adoption target β ∈ (0, τ̄(x)), the government should always adopt

mechanism [G] over mechanisms [D] and [I]. Further, the minimal operating cost [C(e∗, s∗, z∗)]+
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is higher when β is large.

The above corollary is driven by the fact that the optimal government cost under mechanism

[G] is always less than (or equal to) mechanisms [D] and [I]. Intuitively, this occurs because

the government can fund the commuter subsidy from both congestion fees and the private

enterprise, instead of from just a single source. Specifically, when the adoption target is

conservative, β ≤ τ(x), both mechanisms [G] and [I] are budget neutral; when the target

is ambitious, τ(x) < β < τ̄(x), the optimal cost under mechanism [G] is strictly less than

that of mechanism [D]. The reason why the minimal operating cost under mechanism [G]

increases in β is similar to intuition for mechanism [D], which we omit for conciseness.

To summarize, we find that when combining both mechanisms, mechanism [G] attains

budget neutrality when β is modest, and incurs a strictly positive cost when β is aggressive.

Specifically, in the budget neutral regime, mechanism [G] can satisfy a higher adoption target

β than mechanism [I], and in the positive cost regime, mechanism [G] is less costly than

mechanism [D]. To the best of our knowledge, there is no incentive mechanism that exists

in practice that resembles mechanism [G]. Therefore, it may be worthwhile for municipal

governments to investigate incentive programs that combine multiple sources of funding for

last-mile subsidies (e.g., both congestion fees and private sector partnerships).

A.2 Alternative Formulation: Maximizing Public Transit Adop-

tion as Objective Function

In addition to minimizing operating cost and maximizing commuter welfare, some munici-

pal governments may have an earmarked budget for incentivizing public transit usage. To

address this, in this section, we consider the incentive design problem of maximizing public

transit adoption with a strictly positive budget B > 0, under both mechanisms [D] and [I].
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A.2.1 Mechanism [D-O] with Transit Adoption Objective

In this section, we consider a variation of mechanism [D] where the objective is to maximize

public transit adoption with a budget constraint, which we refer to as mechanism [D-O]. We

then modify the original incentive design problem (2.16) as follows:

min
e,s≥0

Dm(e, s, 0)−D0
m (A.2a)

s.t. C(e, s, 0) ≤ B (A.2b)

Mechanism [D-O]: W (e, s, 0) ≥ W 0 (A.2c)

Πs(e, s, 0) ≥ Π0
s. (A.2d)

Note that when the budget B is very large, the government can induce all commuters to

adopt the mixed mode by simply setting a high subsidy and not charging a congestion fee. To

avoid this degenerate case, we assume B < B̄, where B̄ ≡ (δ−1)(x+1)−((d−p)−x(r−d)).

Then by solving problem (A.2), we obtain the optimal incentives e∗ and s∗ under Mechanism

[D-O], given in Proposition 8 below. In preparation, let B̃ = ((δ−1)(x+1)−((d−p)−x(r−d)))2
2(δ−1)(x+1)

. It is

straightforward to verify that B̃ < B̄.

Proposition 8. For fixed x, the optimal incentives (e∗, s∗) under mechanism [D-O] depends

on the size of the budget B. In particular,

(i) When the budget is small, B ≤ B̃, there exists a unique solution

e∗ =

√
2B((d− p)− x(r − d))√

(δ − 1)(x+ 1)
+B,

s∗ = B

(√
2((δ − 1)(x+ 1)− ((d− p)− x(r − d)))√

B(δ − 1)(x+ 1)
− 1

)
. (A.3)

Upon implementation of the incentive program (e∗, s∗, 0), mixed mode demand will

increase to Dm(e
∗, s∗, 0) =

√
2B(δ−1)(x+1)+(d−p)−x(r−d)

(δ−1)(x+1)
.
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(ii) When the budget is large, B > B̃, the optimal subsidy is in the interval s∗ ∈ [B̃, B].

Further, for every s∗ ∈ [B̃, B], the corresponding optimal congestion fee satisfies e∗ ≥

B̄ − s∗, and all commuters take the mixed mode, Dm(e
∗, s∗, 0) = 1.

Note that the mixed mode demand under the optimal incentive program is non-decreasing

in the government budget B. This result is intuitive - as the government’s budget increases,

so does the size of the subsidy, which increases transit adoption. Because the number of

commuters are limited, when the budget B is sufficiently large, it enables the government to

provide a large enough subsidy such that all the commuters choose public transit, in which

case the mixed mode demand is constant at Dm(e
∗, s∗, 0) = 1.

A.2.2 Mechanism [I-O] with Transit Adoption Objective

Next, we consider a variant of mechanism [I] with the objective of maximizing public transit

adoption, which we call mechanism [I-O]. The optimal incentive z∗ under mechanism [I-O]

is given by the solution to the following optimization problem:

max
z≥0

Dm(0, 0, z)−D0
m (A.4a)

s.t. C(0, 0, z) ≤ B (A.4b)

Mechanism [I-O]: W (0, 0, z) ≥ W 0 (A.4c)

Πs(0, 0, z) ≥ Π0
s (A.4d)

z = argmax
z

Πs(0, 0, z) (A.4e)

By solving problem (A.4), we obtain the optimal subsidy z∗ under mechanism [I] as

follows.

Proposition 9. The optimal subsidy z∗ under mechanism [I-O] is given by

z∗ = min {ẑ, (δ − 1)(x+ 1)− ((d− p)− x(r − d))} ,
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where ẑ = 1
2
(K − ((d − p) − x(r − d))) as defined in Proposition (2). The resulting mixed

mode demand is Dm(0, 0, z
∗) =

min{ 1
2
(K+((d−p)−x(r−d))),(δ−1)(x+1)}

(δ−1)(x+1)
.

Proposition 9 reveals that the resulting transit demand under the optimal private subsidy

program z∗ is non-decreasing in the partner enterprise’s unit profit K. To see why, note that

when the enterprise’s profit margin K is high, the enterprise’s profit is highly sensitive to

changes in D0
m, so the private enterprise has a stronger incentive to boost the customer base

Dm(0, 0, z). As a result, the optimal transit demand Dm(0, 0, z
∗) is non-decreasing in K.

However, when the profit margin K is sufficiently large, the enterprise sets a large enough

subsidy z such that all commuters adopt the mixed mode, in which case the mixed mode

demand is constant, Dm(0, 0, z
∗) = 1.

To summarize, the optimal mixed mode adoption under mechanism [D-O] (where the

private enterprise is passive) depends on the government’s budget B, and the optimal mixed

mode adoption under mechanism [I-O] (where the government is passive) depends on the

enterprise’s profit margin K. Note that due to the additional budget parameter B, it is

difficult to compare the relative effectiveness of mechanism [D-O] and mechanism [I-O] with

respect to the government’s operating cost and commuter welfare.

A.3 Commuter Heterogeneity Captured by Last Mile Length x

In the main mode, we capture commuter heterogeneity by assuming that commuters’ unit

valuation for the mixed mode V is uniformly distributed between 0 and 1, for any fixed

last mile distance x. In this section, we assume V is deterministic and identical for all

commuters, and instead the last mile x distance is uniformly distributed. Specifically, we

assume commuters are uniformly located in the suburban area of length σ with density 11,

so the mass of commuters is σ and their last-mile distance is x ∼ U [0, σ]. In this case, we

1Our results also persist when the commuter density is generalized to be a constant λ. We assume the
commuter density to be 1 for ease of exposition and in parallel with the original model.
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also aim to find the optimal incentives under both mechanisms [D] and [I] based on criteria

I – VI as defined in §2.2. The related metrics are defined as follows.

Note that in this case, commuter utilities for the mixed mode and driving are the same

as defined in (2.8). Using (2.8), we have that under the incentive (e, s, z), a commuter will

adopt the mixed mode if and only if Um(e, s, z) ≥ Ud(e, s, z), or equivalently, if her last mile

distance x satisfies:

x ≤ x1(e, s, z) ≡ min

{
σ,

(d− p)− (δ − 1)V + e+ s+ z

(r − d) + (δ − 1)V

}
. (A.5)

The demand for each mode is then derived as:

Dd(e, s, z) =

[
σ − (d− p)− (δ − 1)V + e+ s+ z

(r − d) + (δ − 1)V

]+
, (A.6a)

Dm(e, s, z) = σ −
[
σ − (d− p)− (δ − 1)V + e+ s+ z

(r − d) + (δ − 1)V

]+
. (A.6b)

Let D0
d = Dd(0, 0, 0) and D0

m = Dm(0, 0, 0). To exclude the degenerate cases where all

commuters adopt the same travel mode, we assume that V ∈ (V , V̄ ), so that D0
m > 0

and D0
d > 0, where V = max{0, d−p−(r−d)σ

(δ−1)(σ+1)
} and V̄ = d−p

δ−1
. Analogously, based on the

transit adoption criterion II, we also assume throughout that the target β is restricted to

the non-degenerate case where Dd(e, s, z) > 0 and Dm(e, s, z) > 0. To enforce the preceding

inequalities, it suffices to assume that β < τ̄(x) ≡ σ((r−d)+(δ−1)V )
(d−p)−(δ−1)V

− 1.

Next, we define the performance metrics to evaluate incentive (e, s, z) in the same fashion

as §2.2.2. The total welfare accrued to all commuters is:

W (e, s, z) =

∫ x1(e,s,z)

0

Um(e, s, z)dV +

∫ σ

x1(e,s,z)

Ud(e, s, z)dV, (A.7)

and the operating cost of the government, public transit agency’s revenue, ride-hailing

platform’s revenue and the total profit of the partner enterprise are the same as defined

in (2.11), (2.13), (2.14), and (2.15). We denote the various metrics in the absence of any

incentives (i.e., when (e, s, z) = 0) in the same way as in §2.2, namely by using superscript

0: W (0, 0, 0) = W 0, Πp(0, 0, 0) = Π0
p, Πr(0, 0, 0) = Π0

r, and Πs(0, 0, 0) = Π0
s.
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A.3.1 Mechanism [D-H] with Heterogeneous x

In this section, we investigate the optimal congestion fees and government subsidies under

mechanism [D] when assuming last mile distance x ∼ U [0, σ], which we shall refer to as

mechanism [D-H]. Based on the same criteria given in I – VI, the optimal incentives e∗ and

s∗ are given by the solution to the following problem:

min
e,s≥0

[C(e, s, 0)]+ (A.8a)

s.t. Dm(e, s, 0)−D0
m ≥ βD0

m (A.8b)

Mechanism [D-H]: W (e, s, 0) ≥ W 0 (A.8c)

Πs(e, s, 0) ≥ Π0
s. (A.8d)

Proposition 10. The optimal congestion fee e∗ and the optimal subsidy s∗ under mechanism

[D-H] are given by:

e∗ =
β(β + 2)((d− p)− (δ − 1)V )2

2σ((r − d) + (δ − 1)V )
,

s∗ = β((d− p)− (δ − 1)V )− β(β + 2)((d− p)− (δ − 1)V )2

2σ((r − d) + (δ − 1)V )
. (A.9)

Further, the government incurs positive operating cost: C(e∗, s∗, 0) = β2((d−p)−(δ−1)V )2

2((r−d)+(δ−1)V )
> 0.

The above proposition resembles the results given in §2.3.1. Similar to mechanism [D],

mechanism [D-H] enables the government to achieve the public transit adoption target β, but

it takes a positive cost to implement, and the minimal operating cost C(e∗, s∗, 0) increases

in the adoption target β.

A.3.2 Mechanism [I-H] with Heterogeneous x

Analogous to §A.3.1, when assuming x ∼ U [0, σ], we denote mechanism [I] as mechanism

[I-H]. Similar to the previous sections, we assume the participating enterprise has sufficient

profit margin K > K = (d− p)− (δ− 1)V . The optimal incentive z∗ under mechanism [I-H]
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is then given by the solution of the following optimization problem:

max
z≥0

[C(0, 0, z)]+ (A.10a)

s.t. Dm(0, 0, z)−D0
m ≥ βD0

m (A.10b)

Mechanism [I-H]: W (0, 0, z) ≥ W 0 (A.10c)

Πs(0, 0, z) ≥ Π0
s (A.10d)

z = argmax
z

Πs(0, 0, z) (A.10e)

Similar to formulation (2.18), the optimization problem (A.10) may be infeasible if β is

large. The intuition is presented in §2.4, which we omit for conciseness. Define τ(x) =

min{ K
(d−p)−(δ−1)V

− 1, τ̄(x)}, where τ̄(x) = σ((r−d)+(δ−1)V )
(d−p)−(δ−1)V

− 1. Note that 0 < τ(x) ≤ τ̄(x).

Proposition 11. Mechanism [I-H] is feasible if and only if β ≤ τ(x). When β ≤ τ(x), then

the optimal subsidy z∗ is given by:

z∗ = min{max{z, ẑ}, z̄}, (A.11)

where z = β((d− p)− (δ − 1)V ), ẑ = 1
2
(K − ((d− p)− (δ − 1)V )) and z̄ = min{K, σ((r −

d) + (δ − 1)V )} − ((d − p) − (δ − 1)V ). Further, the government incurs no operating cost:

C(0, 0, z∗) = 0.

Analogous to §2.4.2, using the optimal incentives under mechanisms [D-H] and [I-H], we

can compare the the performance of these two mechanisms. We use superscript D and I to

denote quantities obtained at optimal solutions in mechanisms [D-H] and [I-H], respectively.

In preparation, define τ̃(x) = ẑ2−(ẑ−z∗)2
K((d−p)−(δ−1)V )

.

Theorem 5. The indirect mechanism [I-H] outperforms the alternative direct mechanism

[D-H] on operating cost (CI = 0 < CD), mixed mode adoption (DI
m ≥ DD

m), commuter

welfare (W I > WD), ride-hailing platform profit (ΠI
r ≥ ΠD

r ), and transit agency revenue

(ΠI
p ≥ ΠD

p ). Further,
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(i) if β ≤ τ̃(x), mechanism [I-H] outperforms mechanism [D-H] on enterprise profit (ΠI
s ≥

ΠD
s ),

(ii) if β ∈ (τ̃(x), τ(x)], mechanism [D-H] outperforms mechanism [I-H] on enterprise profit

(ΠI
s < ΠD

s ),

Comparing Theorem 5 to Theorem 1, we find that the dominance of the indirect mech-

anism is robust, regardless of whether the commuters heterogeneity is captured by random

unit utility V or random last mile distance x. We draw the following conclusions in parallel

with §2.4.2: When the adoption target is conservative, β ≤ τ(x), the government should

adopt the indirect mechanism [I-H]; when the adoption target is aggressive, β > τ(x), the

government should adopt the direct mechanism [D-H].

A.4 Proofs

Lemma 1. In mechanism [D], the following inequality holds for all (e, s) such that Dm(e, s, 0) =

(d−p)−(r−d)x+e+s
(δ−1)(x+1)

, or equivalently, e+ s ≤ (δ − 1)(x+ 1)− ((d− p)− (r − d)x):

[C(e, s, 0)]+ ≥ C(e, s, 0) ≥ (β((d− p)− (r − d)x))2

2(δ − 1)(x+ 1)
.

Proof Note that when requiring Dm(e, s, 0) =
(d−p)−(r−d)x+e+s

(δ−1)(x+1)
, constraint (2.16b) implies

Dm(e, s, 0)−D0
m =

e+ s

(δ − 1)(x+ 1)
≥ βD0

m = β
(d− p)− (r − d)x
(δ − 1)(x+ 1)

.

Because δ > 1 and x > 0, it follows that

e+ s ≥ β((d− p)− (r − d)x), (A.12)

which holds with equality only if constraint (2.16b) is binding. Next, using (2.11), the

operational cost is given by

C(e, s, 0) = sDm(e, s, 0)− eDd(e, s, 0)

=
e((d− p)− (r − d)x− (δ − 1)(x+ 1)) + s((d− p)− (r − d)x)

(δ − 1)(x+ 1)
+

(e+ s)2

(δ − 1)(x+ 1)
.
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Further, replacing (e, s, z) with (e, s, 0) in (2.8) and (2.12), we obtain Ud(e, s, 0), Um(e, s, 0)

and W (e, s, 0). Then the welfare increment is given by

W (e, s, 0)−W 0 =

[∫ v(e,s,0)

0

Um(e, s, 0)dV +

∫ 1

v(e,s,0)

Ud(e, s, 0)dV

]
−

[∫ v0

0

U0
mdV +

∫ 1

v

U0
ddV

]
(A.13)

=
e((d− p)− (r − d)x− (δ − 1)(x+ 1)) + s((d− p)− (r − d)x)

(δ − 1)(x+ 1)

+
(e+ s)2

2(δ − 1)(x+ 1)
. (A.14)

It follows that for all (e, s) such that Dm(e, s, 0) =
(d−p)−(r−d)x+e+s

(δ−1)(x+1)
, it holds that

C(e, s, 0) = (W (e, s, 0)−W 0) +
(e+ s)2

2(δ − 1)(x+ 1)
. (A.15)

Because constraint (2.16c) impliesW (e, s, 0)−W 0 ≥ 0, it follows from (A.15) that C(e, s, 0) ≥
(e+s)2

2(δ−1)(x+1)
, which holds with equality only when constraint (2.16c) is binding. Further, be-

cause x < x̄, (d− p)− (r − d)x > 0. It follows from (A.12) that for all (e, s),

[C(e, s, 0)]+ ≥ C(e, s, 0) ≥ (e+ s)2

2(δ − 1)(x+ 1)
≥ (β((d− p)− (r − d)x))2

2(δ − 1)(x+ 1)
, (A.16)

Because (β((d−p)−(r−d)x))2
2(δ−1)(x+1)

≥ 0, it follows that (A.16) holds with equality if and only if both

constraints (2.16b) and (2.16c) are binding. □

Proof of Proposition 1. The proof proceeds in two steps. In Step 1, we find the optimal

solution (e∗, s∗). In Step 2, we prove statements (i) and (ii).

Step 1. To solve for (e∗, s∗), we consider two cases based on the definition of Dm(e, s, 0) in

(2.10), which impliesDm(e, s, 0) = min
{
1, (d−p)−(r−d)x+e+s

(δ−1)(x+1)

}
: where (e, s) satisfiesDm(e, s, 0) =

(d−p)−(r−d)x+e+s
(δ−1)(x+1)

, and where (e, s) satisfies Dm(e, s, 0) = 1. Then, we show that the optimal

cost in is lower in the first case.
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Case 1: Suppose Dm(e, s, 0) =
(d−p)−(r−d)x+e+s

(δ−1)(x+1)
. This condition is equivalent to

e+ s ≤ (δ − 1)(x+ 1)− ((d− p)− (r − d)x), (A.17)

which we add to problem (2.16) as an additional constraint in this case. Because the objective

is to minimize [C(e, s, z)]+, to find an optimal solution it suffices to construct a feasible

solution (e1, s1) that attains the lower bound in Lemma 1. Let (e1, s1) be given by the

unique solution to the equations

Dm(e, s, 0)−D0
m = βD0

m,

W (e, s, 0) = W 0,

which correspond to constraints (2.16b) and (2.16c). Solving for (e, s) yields the following

unique solution:

e1 =
β(β + 2)((d− p)− (r − d)x)2

2(δ − 1)(x+ 1)

s1 =
β((d− p)− (r − d)x)(2(δ − 1)(x+ 1)− (β + 2)((d− p)− (r − d)x))

2(δ − 1)(x+ 1)
.

Next, we show that (e1, s1) is feasible. By construction, (e1,s1) satisfies constraints (2.16b)

and (2.16c) with equality. Note that e1 + s1 = β((d− p)− (r− d)x). Because 0 < β < τ̄(x),

(e1, s1) satisfies constraint (A.17). Next, because δ > 1 and x > x, we have e1 > 0. In

addition, because 0 < β < τ̄(x), we also have s1 > 0. Further, for any (e, s), the revenue

increment of nearby merchants is given by Πs(e, s, 0) − Π0
s = K e+s

(δ−1)(x+1)
, which follows

from (2.15). Because e1 > 0 and s1 > 0, it follows that Πs(e, s, 0) − Π0
s > 0, and thus

(e1, s1) satisfies constraint (2.16d). Hence, (e1, s1) is feasible to (2.16). Because formulation

(2.16) minimizes [C(e, s, 0)]+, and (e1, s1) achieves the lower bound of [C(e, s, 0)]+ presented

in Lemma 1, it follows that (e1, s1) is optimal to (2.16) when restricting (e, s) to satisfy

Dm(e, s, 0) =
(d−p)−(r−d)x+e+s

(δ−1)(x+1)
.

Case 2: Suppose Dm(e, s, 0) = 1. It follows that Dd(e, s, 0) = 0 and v(e, s, 0) = 1.
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Constraint (2.16c) can then be rewritten as

W (e, s, 0)−W 0 =

∫ 1

0

Um(e, s, 0)dV −

[∫ v0

0

U0
mdV +

∫ 1

v0
U0
ddV

]
(A.18)

= s− ((δ − 1)(x+ 1)− ((d− p)− x(r − d)))2

2(δ − 1)(x+ 1)
. (A.19)

Let ϕ = ((δ−1)(x+1)−((d−p)−x(r−d)))2
2(δ−1)(x+1)

. Then constraint (2.16c) requires that (e, s) satisfies

s ≥ ϕ. Using (2.11) and the fact that Dm(e, s, 0) = 1, we have C(e, s, 0) = s ≥ 0. There-

fore, [C(e, s, 0)]+ = C(e, s, 0) ≥ ϕ. Because 0 < β < τ̄(x), it is straightforward to verify

that ϕ > C(e1, s1, 0) = [C(e1, s1, 0)]
+. Hence, for all (e, s) that satisfies Dm(e, s, 0) = 1,

[C(e, s, 0)]+ > [C(e1, s1, 0)]
+. Therefore, the optimal solution to (2.16), denoted by (e∗, s∗),

must satisfy Dm(e
∗, s∗, 0) = (d−p)−(r−d)x+e∗+s∗

(δ−1)(x+1)
. It follows that (e∗, s∗) = (e1, s1).

Step 2. Next, we prove statements (i) and (ii). (i). It is straightforward to verify that

∂e∗

∂β
= (β+1)((d−p)−(r−d)x)2

(δ−1)(x+1)
> 0. Next, by taking the first derivative of e∗ with respect to x, we

have ∂e∗

∂x
=

β(β+2)((x+1)2(r−d)2−(r−p)2)
2(δ−1)(x+1)2

. Because x ∈ (x, x̄) and r > d > p > 0, it follows that

(x + 1)2(r − d)2 < (r − d + d − p)2 = (r − p)2, and thus ∂e∗

∂x
< 0. (ii). Note that ∂s∗

∂β
=

((d−p)−(r−d)x)((δ−1)(x+1)−(β+1)((d−p)−(r−d)x))
(δ−1)(x+1)

. Because δ > 1, β < τ̄(x) and x ∈ (x, x̄), it follows

that ∂s∗

∂β
> 0. To compute ∂s∗

∂x
, first note that ∂2s∗

∂x2
= −β(β+2)(r−p)2

(δ−1)(x+1)3
< 0, meaning s∗ is strictly

concave in x and ∂s∗

∂x
decreases in x. We next check the first derivatives at the boundaries, i.e.

∂s∗

∂x

∣∣
x=x̄

and ∂s∗

∂x

∣∣
x=x

. Note ∂s∗

∂x

∣∣
x=x̄

= −β(r−d) < 0. If δ < δ1 = 1+d−p, then x = (d−p)−(δ−1)
(δ−1)+(r−d) ,

and thus ∂s∗

∂x

∣∣
x=x

= 1
2
β((β + 2)(δ − 1) + 2(β + 1)(r − d)) > 0; if δ ≥ δ1, then x = 0, and

thus ∂s∗

∂x

∣∣
x=x

= −β(2(δ−1)(r−d)−(β+2)(d−p)(2r−d−p))
2(δ−1)

. Similarly, if δ < δ2 = (β+2)(d−p)(2r−d−p)
2(r−d) + 1,

∂s∗

∂x

∣∣
x=0

> 0; if δ ≥ δ2,
∂s∗

∂x

∣∣
x=0
≤ 0. Because δ2 − δ1 = β(d−p)(2r−d−p)+2(d−p)(r−p)

2(r−d) > 0, we have

δ2 > δ1. Therefore, if δ ≥ δ2,
∂s∗

∂x

∣∣
x=x
≤ 0, and if 1 < δ < δ2,

∂s∗

∂x

∣∣
x=x

> 0. Therefore, by

continuity of ∂s∗

∂x
, if δ ≥ δ2, then s∗ strictly decreases in x ∈ (x, x̄). If δ < δ2, then there

exists x̃ ∈ (x, x̄) such that s∗ strictly increases in x on (x, x̃) and strictly decreases in x on

[x̃, x̄). □
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Proof of Corollary 1. Using the expressions for (e∗, s∗) in Proposition 1, we have

e∗ − s∗ = β((d− p)− (r − d)x)
(
(β + 2)((d− p)− (r − d)x)

(δ − 1)(x+ 1)
− 1

)
.

Because x ∈ (x, x̄), (d−p)−(r−d)x > 0. Further, because δ > 1, we have e∗ ≥ s∗ if and only

if x ≤ x̄− (δ−1)(r−p)
(r−d)((β+2)(r−d)+δ−1)

. The result follows by setting x̂ = x̄− (δ−1)(r−p)
(r−d)((β+2)(r−d)+δ−1)

. Next,

note that because δ > 1, r > p and r > d, it follows that x̂ < x̄. Define δ̄ = (β+2)(d−p)+1,

which satisfies δ̄ > 1. It remains to show that x ≤ x̂ if and only if δ ≥ δ̄. From the def-

inition of x, if δ < 1 + d − p, then x = (d−p)−(δ−1)
(δ−1)+(r−d) . It is straightforward to check that

x̂ ∈ (x, x̄). If δ ≥ 1 + d− p, then x = 0, and thus x̂ ≤ x only if δ ≥ δ̄, where δ̄ > 1 + d− p.

Therefore, s∗ > e∗ holds for all x ∈ (x, x̄) if and only if x̂ ≤ x, which holds if and only if δ ≥ δ̄.

Proof of Corollary 2. Using the expressions for e∗ and s∗ from Proposition 1 and the

cost function given in (2.11), the total cost under (e∗, s∗) is C(e∗, s∗, 0) = β2((d−p)−(r−d)x)2
2(δ−1)(x+1)

.

Because x < x̄ and δ > 1, C(e∗, s∗, 0) > 0. By noting that ∂C(e∗,s∗,0)
∂β

= β((d−p)−x(r−d))2
(δ−1)(x+1)

> 0,

we conclude that C(e∗, s∗, 0) increases in β. Next, note ∂C(e∗,s∗,0)
∂x

=
β2((x+1)2(r−d)2−(r−p)2)

2(δ−1)(x+1)2
.

Because x ∈ (x, x̄), we have 0 < (x+ 1)(r − d) < (r − p). It follows that ∂C(e∗,s∗,0)
∂x

< 0. □

Proof of Proposition 2. From the definition in (2.11), we have [C(0, 0, z)]+ = C(0, 0, z) =

0. Thus, under mechanism [I], the operating cost is always 0. It follows that any feasible

solution to problem (2.18) is optimal. Therefore, solving for the optimal subsidy z∗ is

equivalent to finding the optimal solution to the following problem:

max
z≥0

Πs(0, 0, z) (A.20a)

s.t. Dm(0, 0, z)−D0
m ≥ βD0

m (A.20b)

W (0, 0, z) ≥ W 0 (A.20c)

Πs(0, 0, z) ≥ Π0
s (A.20d)

The proof is composed of three steps. In Step 1, we prove (A.20) is feasible if and only
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if β ≤ τ(x), which is also a sufficient and necessary condition for formulation (2.18) to be

feasible. Next, in Step 2, we solve for the optimal solution z∗ to (A.20), which is also optimal

to (2.18). Finally, in Step 3, we conduct the comparative statics analysis of z∗.

Step 1. To construct the sufficient and necessary condition for problem (A.20) to be

feasible, we establish the conditions under which the feasible solution set is non-empty. Let

us first define the feasible set. Let z̃ = (δ−1)(x+1)−((d−p)−(r−d)x). To find all the feasible

solutions to problem (A.20), we consider two cases based on the definition of Dm(0, 0, z)

in (2.10), which implies Dm(0, 0, z) = min
{
1, (d−p)−(r−d)x+z

(δ−1)(x+1)

}
: Dm(0, 0, z) = (d−p)−(r−d)x+z

(δ−1)(x+1)

and Dm(0, 0, z) = 1. In preparation, note that because x < x < x̄ and δ > 1, we have

(δ − 1)(x+ 1) > ((d− p)− x(r − d)) > 0.

Case 1: Suppose Dm(0, 0, z) =
(d−p)−(r−d)x+z

(δ−1)(x+1)
, which is equivalent to z ≤ z̃. In this case,

we first show that any z ≥ 0 satisfies constraint (A.20c). Using the welfare expression given

in (2.12), the commuter welfare increment is W (0, 0, z)−W 0 = z(2(d−p)−2(r−d)x+z)
2(δ−1)(x+1)

. Because

δ > 1 and x ∈ (x, x̄), we have W (0, 0, z) −W 0 ≥ 0 if z ≥ 0. Therefore, constraint (A.20c)

is satisfied for all z ≥ 0. Next, we show that when restricting z ≤ z̃, the feasible region of

problem (A.20) is [z, z̄], where z = β((d− p)− x(r − d)) and z̄ = min{K, (δ − 1)(x+ 1)} −

((d−p)−x(r−d)). To do so, we prove that constraint (A.20b) is satisfied if and only if z ≥ z,

and constraint (A.20d) is satisfied if and only if 0 ≤ z ≤ K−((d−p)−x(r−d)). First, using

the definition of D0
m in (2.3), it is straightforward to verify that constraint (A.20b) holds

if and only if z
(δ−1)(x+1)

≥ β (d−p)−(r−d)x
(δ−1)(x+1)

. Because δ > 1, it follows that constraint (A.20b)

holds if and only if z ≥ z = β((d − p) − x(r − d)). Because x ≤ x̄, it follows that z > 0.

Next, using the revenue expression in (2.15), when restricting z ≤ z̃, it is straightforward

to verify that constraint (A.20d) holds if and only if 0 ≤ z ≤ K − ((d − p) − x(r − d)).

Therefore, when adding the additional constraint z ≤ z̃ to problem (A.20), the feasible

region is [z,min{z̃, K − ((d− p)− x(r − d))}], or equivalently, [z, z̄].

Case 2: SupposeDm(0, 0, z) = 1, which is equivalent to z ≥ z̃. Let ż = K(1− (d−p)−(r−d)x
(δ−1)(x+1)

).
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It is straightforward to verify that constraint (A.20d) is satisfied if and only if z ≤ ż. Next,

we show that constraints (A.20b) and (A.20c) are satisfied if z ≥ z̃. First, note that

Dm(0, 0, z)−D0
m = 1− (d− p)− (r − d)x

(δ − 1)(x+ 1)
≥ β

(d− p)− (r − d)x
(δ − 1)(x+ 1)

holds for z ≥ z̃ because β < τ̄(x); thus constraint (A.20b) is satisfied for all z ≥ z̃. Next,

from the definition in (2.10), if z ≥ z̃, then

W (0, 0, z)−W 0 =
(δ − 1)(x+ 1)((x+ 1)(2d− δ)− 2p− 2rx+ 2z + x+ 1)− (−d(x+ 1) + p+ rx)2

2((δ − 1)(x+ 1))

>
(δ − 1)2(x+ 1)2 − ((d− p)− x(r − d))2

2((δ − 1)(x+ 1))

≥ 0,

which implies constraint (A.20c) is satisfied for all z ≥ z̃. Therefore, constraint (A.20d) is

satisfied if and only if z ≤ ż, and constraints (A.20b) and (A.20c) are satisfied if z ≥ z̃.

To summarize Case 1 and Case 2, note that z̄ ≤ z̃, and thus the feasible region of prob-

lem (A.20) is [z, z̄] ∪ [z̃, ż]. Now that we have constructed the feasible set, next we prove

[z, z̄] ∪ [z̃, ż] is non-empty if and only if β ≤ τ(x). The derivation consists of two cases:

K < (δ − 1)(x + 1) and K ≥ (δ − 1)(x + 1). If K < (δ − 1)(x + 1), it is straightforward

to verify that ż < z̃, in which case the feasible region is [z, z̄]; note that this interval is

non-empty if and only if z ≤ z̄, or equivalently, β ≤ K
((d−p)−(r−d)x) − 1. If K ≥ (δ− 1)(x+1),

then z̄ = z̃ ≤ ż, in which case the feasible region is [z, ż]; note that this interval is non-

empty if and only if z ≤ ż, or equivalently, β ≤ K
(δ−1)(x+1)

τ̄(x). Further, in this case where

K ≥ (δ − 1)(x + 1), it holds that τ̄(x) ≤ K
(δ−1)(x+1)

τ̄(x). To summarize, because β < τ̄(x),

the feasible region [z, z̄]∪ [z̃, ż] is non-empty if and only if β ≤ min{ K
((d−p)−(r−d)x) − 1, τ̄(x)}.

By definition, τ(x) = min{ K
((d−p)−(r−d)x)−1, τ̄(x)}. Because K > K, it follows that τ(x) > 0.

Therefore, (A.20) is feasible if and only if β ≤ τ(x), which is also sufficient and necessary

for formulation (2.18) to be feasible.
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Step 2. In this step, we solve for the optimal solution z∗. To do so, we first show that

problem (A.20) is equivalent to the following problem:

max Πs(0, 0, z) s.t. z ∈ [z, z̄]. (A.21)

To do so, we consider two cases: K < (δ − 1)(x + 1) and K ≥ (δ − 1)(x + 1). If K <

(δ − 1)(x + 1), we have showed in Step 1 that the optimal solution z∗ lies in the feasible

region and satisfies z∗ ∈ [z,K − ((d− p)− x(r − d))]. If K ≥ (δ − 1)(x + 1), it follows

from Step 1 that for any β that satisfies 0 < β ≤ τ(x), the feasible region is [z, ż], where

ż = K
(
1− (d−p)−(r−d)x

(δ−1)(x+1)

)
≥ z̃. Note that when z ∈ [z̃, ż], from the definition in (2.15), we

have Πs(0, 0, z) = K − z, which decreases in z. It follows that Πs(0, 0, z̃) > Πs(0, 0, z) for all

z > z̃. Therefore, when K ≥ (δ − 1)(x + 1), to maximize Πs(0, 0, z), the optimal solution

z∗ should satisfy z∗ ∈ [z, z̃], where z̃ = (δ − 1)(x + 1) − ((d − p) − (r − d)x). To conclude,

z∗ must satisfy z∗ ∈ [z,min{K, (δ − 1)(x + 1)} − ((d − p) − x(r − d))], or equivalently,

z∗ ∈ [z, z̄]. Thus formulation (A.20) is equivalent to formulation (A.21). Next, we solve

problem (A.21). Using the profit expression given in (2.15), and the fact that δ > 1, we have

∂2Πs(0,0,z)
∂z2

= − 2
(δ−1)(x+1)

< 0. Hence, Πs(0, 0, z) is strictly concave in z. The solution to the

first order condition ∂Πs(0,0,z)
∂z

= 0 is ẑ = K
2
− 1

2
((d − p) − (r − d)x). Therefore, the unique

optimal subsidy z∗ is given by

z∗ =


z if ẑ < z,

ẑ if z ≤ ẑ ≤ z̄,

z̄ if z̄ < ẑ,

or, equivalently, z∗ = min{max{z, ẑ}, z̄}. Note that z∗ is the unique optimal solution to

problem (A.21), so z∗ is the unique feasible, and thus optimal, solution to (2.18).

Step 3. Because z̄ = min {K, (δ − 1)(x+ 1)} − ((d − p) − x(r − d)), we can rewrite z∗ as

z∗ = min{max{z, ẑ}, z̄1, z̄2}, where z̄1 = K − ((d − p) − x(r − d)) and z̄2 = (δ − 1)(x +
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1) − ((d − p) − x(r − d)). Note ∂z
∂x

= −β(r − d) < 0, ∂ẑ
∂x

= r−d
2

> 0, ∂z̄1
∂x

= r − d > 0

and ∂z̄2
∂x

= (δ − 1) + (r − d) > 0. Because z, ẑ, z̄1, and z̄2 are all continuous in x, z∗ is

continuous in x. Therefore, if z∗ = z, z∗ decreases in x; otherwise, z∗ increases in x. It

remains to show the conditions under which z∗ = z. In preparation, let x̃ = x̄ − K
(2β+1)(r−d)

and K1 = (x̄− x)(2β + 1)(r− d), and note that x̃ < x̄ by definition of x̃ and because r > d.

Note that z∗ = z if and only if ẑ ≤ z, which holds if and only if x ≤ x̃. Because x ∈ (x, x̄),

x ≤ x̃ can hold only if x̃ > x. It can be verified that x̃ > x if and only if K < K1. Note that

K1 = (x̄− x)(2β + 1)(r − d) ≥ (d− p)− (r − d)x > (d− p)− (r − d)x = K. Therefore, (i)

if K ≥ K1, z
∗ increases in x on (x, x̄); (ii) if K < K < K1, z

∗ = z decreases in x on (x, x̃]

and increases in x on (x̃, x̄). The result follows. □

Proof of Theorem 1. First, we compare the performances of the two mechanisms in

metrics I – V. By Corollary 2, we have CD = C(e∗, s∗, 0) > 0, and under mechanism

[I], CI = C(0, 0, z∗) = 0. Hence, CI = 0 < CD. Next, using the expressions for e∗

and s∗ given in Proposition 1, and the expression for z∗ given in Proposition 2, it can be

shown that Dm(0, 0, z
∗) − D0

m ≥ βD0
m = Dm(e

∗, s∗, 0) − D0
m, or equivalently, DI

m ≥ DD
m.

Because DI
m ≥ DD

m, from (2.13) and (2.14) we immediately obtain ΠI
p ≥ ΠD

p and ΠI
r ≥ ΠD

r ,

respectively. To compare the commuter welfare in mechanism [D] and mechanism [I], it is

easy to check that WD = W 0, because constraint (2.16c) is binding in equilibrium. Further,

W I −W 0 = W (0, 0, z∗) −W 0 = z∗(2(d−p)−2(r−d)x+z∗)
2(δ−1)(x+1)

, which satisfies W I −W 0 > 0 if and

only if z∗ > 0. To see that z∗ > 0 holds, let us first define γ1 = (δ − 1)(x + 1) > 0 and

γ2 = (d − p) − x(r − d) > 0. Then z = βγ2 > 0, ẑ = K−γ2
2

, z̄ = min{K − γ2, γ1 − γ2}

and τ(x) = min{K
γ2
− 1, γ1

γ2
− 1}. Because K > K = γ2, it follows ẑ = K−γ2

2
> 0 and

z̄ = min{K − γ2, γ1 − γ2} > 0. Therefore, z∗ = min{max{z, ẑ}, z̄} > 0, and thus W I >

W 0 = WD.

For the enterprise’s profit, using the definition in (2.15), we have ΠI
s−ΠD

s = ẑ2+Kγ2−(z∗−ẑ)2
γ1

−
Kγ2(β+1)

γ1
. Define τ̃(x) = ẑ2−(ẑ−z∗)2

Kγ2
. Then ΠI

s < ΠD
s holds if and only if β > τ̃(x). Note mech-
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anism [I] is feasible if and only if β ∈ (0, τ(x)], by Proposition 2. To see there exists β such

that both β > τ̃(x) holds and mechanism [I] is feasible, it suffices to show 0 ≤ τ̃(x) ≤ τ(x)

for all x. Because z∗ = min{max{z, ẑ}, z̄} ∈ {z, ẑ, z̄}, we shall prove 0 ≤ τ̃(x) ≤ τ(x) for all

x by considering three cases: z∗ = z, z∗ = ẑ and z∗ = z̄. Because 0 < β ≤ τ(x), it follows

that z ≤ z̄, and thus the three cases correspond to ẑ ≤ z, z < ẑ ≤ z̄, and z̄ < ẑ.

Case 1: Suppose ẑ ≤ z. Then z∗ = z. It follows that τ̃(x) = ẑ2−(ẑ−z)2
Kγ2

= 2zẑ−z2
Kγ2

≤ z2

Kγ2
≤

z̄2

Kγ2
= (min{K,γ1}−γ2)2

Kγ2
< (min{K,γ1}−γ2)min{K,γ1}

Kγ2
= τ(x)min{1, γ1

K
} ≤ τ(x). Further, because

β ≤ τ(x) = min
{
K
γ2
− 1, γ1

γ2
− 1
}
, it follows that βγ2 ≤ K−γ2, or equivalently, z∗ = z ≤ 2ẑ.

Thus τ̃(x) = ẑ2−(z−ẑ)2
γ1γ2

≥ 0. Therefore, in this case, 0 ≤ τ̃(x) ≤ τ(x) holds for all x.

Case 2: Suppose z < ẑ ≤ z̄. Then z∗ = ẑ and τ̃(x) = ẑ2

Kγ2
≤ z̄2

Kγ2
. In Case 1 we show

that τ̃(x) ≤ z̄2

Kγ2
< τ(x). Further, it is straightforward to verify that τ̃(x) > 0. Therefore,

0 ≤ τ̃(x) ≤ τ(x) holds for all x.

Case 3: Suppose z̄ < ẑ. Then z∗ = z̄. Because z̄ = min {γ1 − γ2, K − γ2} and ẑ =

K−γ2
2

< K − γ2, z̄ ≤ ẑ implies z̄ = γ1 − γ2 < K − γ2, or equivalently, γ1 < K. It follows

that τ(x) = γ1
γ2
− 1, and thus τ̃(x) = 2z̄ẑ−z̄2

Kγ2
=

2(γ1−γ2)K−γ2
2

−(γ1−γ2)2

Kγ2
= τ(x)(1− γ1

K
) < τ(x). It

is straightforward to verify that τ̃(x) > 0. Therefore, 0 ≤ τ̃(x) ≤ τ(x) holds for all x.

To summarize the three cases above, (i) if β ≤ τ̃(x), then ΠI
s ≥ ΠD

s ; (ii) if β ∈ (τ̃(x), τ(x)],

then ΠI
s < ΠD

s . The result follows.

Proof of Proposition 3. Similar to the proof of Proposition 1, the proof proceeds in two

steps. In Step 1, we find the optimal solutions (e∗, s∗). In Step 2, we prove the comparative

statics results.

Step 1. To solve for (e∗, s∗) , we consider two cases: (Dm(e, s, 0) = (d−p)−(r−d)x+e+s
(δ−1)(x+1)

) and

(Dm(e, s, 0) = 1). We then show that the optimal commuter welfare is higher in the latter

case.
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Case 1: Suppose Dm(e, s, 0) =
(d−p)−(r−d)x+e+s

(δ−1)(x+1)
, which is equivalent to

e+ s ≤ (δ − 1)(x+ 1)− ((d− p)− (r − d)x). (A.22)

The proof proceeds in two steps. First, we construct an upper bound for the optimal value

of the objective function (2.20a) when adding (A.22) as an additional constraint to problem

(2.20); second, to show optimality, we construct a feasible solution that attains this bound.

First, because Dm(e, s, 0) = (d−p)−(r−d)x+e+s
(δ−1)(x+1)

, we can apply (A.15) and rewrite constraint

(2.20c) as

C(e, s, 0) = (W (e, s, 0)−W 0) +
(e+ s)2

2(δ − 1)(x+ 1)
= 0,

which implies any feasible (e, s) should satisfy W (e, s, 0) −W 0 = − (e+s)2

2(δ−1)(x+1)
. Next, con-

straint (2.20b) can be rewritten as e+s ≥ β((d−p)−(r−d)x). Note β((d−p)−(r−d)x) > 0

because x ∈ (x, x̄). Therefore,

W (e, s, 0)−W 0 = − (e+ s)2

2(δ − 1)(x+ 1)
≤ −(β((d− p)− x(r − d)))2

2(δ − 1)(x+ 1)
,

which holds with equality if and only if constraint (2.20b) is binding. Next, we prove that

the upper bound is attainable. We first solve for (e, s) such that constraint (2.20b) is binding

and constraint (2.20c) is satisfied:

Dm(e, s, 0)−D0
m = βD0

m

C(e, s, 0) = 0.
(A.23)

Solving the above set of equations yields the unique solution

e2 =
β(β + 1)((d− p)− (r − d)x)2

(δ − 1)(x+ 1)

s2 =
β((d− p)− (r − d)x)((δ − 1)(x+ 1)− (β + 1)((d− p)− (r − d)x))

(δ − 1)(x+ 1)
.

Using similar arguments in proof of Proposition 1, it is plain to verify that (e2, s2) satisfies

the additional constraint (A.22) and it’s feasible to problem (2.20), so (e2, s2) is the unique

optimal solution to formulation (2.20) when restricting Dm(e, s, 0) =
(d−p)−(r−d)x+e+s

(δ−1)(x+1)
. The

corresponding optimal commuter welfare increment is ∆W (e2, s2, 0) = − (β((d−p)−x(r−d)))2
2(δ−1)(x+1)

.
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Case 2: Suppose Dm(e, s, 0) = 1, which is equivalent to e + s ≥ (δ − 1)(x + 1) − ((d −

p)− (r− d)x). It follows that Dd(e, s, 0) = 0. Then the budget neutrality constraint (2.20c)

can be rewritten as

C(e, s, 0) = sDm(e, s, 0)− eDd(e, s, 0) = s = 0. (A.24)

From Dm(e, s, 0) = 1, it follows that e ≥ (δ − 1)(x + 1) − ((d − p) − (r − d)x). From the

definition in (2.12), the commuter welfare increment is

∆W (e, s, 0) = −((δ − 1)(x+ 1)− ((d− p)− x(r − d)))2

2(δ − 1)(x+ 1)
. (A.25)

Because 0 < β < τ̄(x), it can be verified that for all (e, s) that satisfies Dm(e, s, 0) = 1,

∆W (e, s, 0) < ∆W (e2, s2, 0). Therefore, the unique optimal solution to (2.20), denoted by

(e∗, s∗) , must satisfy Dm (e∗, s∗, 0) = (d−p)−(r−d)x+e∗+s∗
(δ−1)(x+1)

and (e∗, s∗) = (e2, s2).

Step 2. Next, we prove statements (i)-(iii) in order. (i). We first take the first deriva-

tive of e∗ with respect to x and β. Because δ > 1, 0 < x < x̄ and r > d > p > 0,

it follows that ∂e∗

∂β
= (2β+1)((d−p)−(r−d)x)2

(δ−1)(x+1)
> 0. Next, ∂e∗

∂x
=

β(β+1)((x+1)2(r−d)2−(r−p)2)
(δ−1)(x+1)2

. Be-

cause r − p = (d − p) + (r − d) > (r − d)(x + 1), it follows that ∂e∗

∂x
< 0. Therefore, e∗

strictly increases in in β and strictly decreases in x. (ii). First, note that s∗ is concave in

x: ∂2s∗

∂x2
= −2β(β+1)(p−r)2

(δ−1)(x+1)3
< 0. Then, to show the result, it suffices to check the first deriva-

tives at the boundaries: ∂s∗

∂x

∣∣
x=x̄

and ∂s∗

∂x

∣∣
x=x

. If δ < δ1 = 1 + d − p, then x = (d−p)−(δ−1)
(δ−1)+(r−d) ,

and ∂s∗

∂x

∣∣
x=x

= β((β + 1)(δ − 1) + (2β + 1)(r − d)) > 0; if δ ≥ δ1, then x = 0, and

∂s∗

∂x

∣∣
x=x

= β((β+1)(d−p)(2r−d−p)−(δ−1)(r−d))
δ−1

. If δ < δ3 = (β+1)(d−p)(2r−d−p)
r−d + 1, ∂s∗

∂x

∣∣
x=x

> 0;

if δ ≥ δ3,
∂s∗

∂x

∣∣
x=x
≤ 0. Notice δ3 − δ1 = (d−p)(β(2r−d−p)+r−p)

r−d > 0, or δ3 > δ1. We conclude

that if δ ≥ δ3,
∂s∗

∂x

∣∣
x=x
≤ 0, and if 1 < δ < δ3,

∂s∗

∂x

∣∣
x=x

> 0. Therefore, by continuity of ∂s∗

∂x
in

x, it follows that if δ ≥ δ3, s
∗ decreases in x ∈ (x, x̄), and if δ < δ3, there exists x̃ ∈ (x, x̄)

such that s∗ strictly increases in x on (x, x̃) and strictly decreases in x on [x̃, x̄). (iii). Note

∂s⋆

∂β
= 1

(δ−1)(x+1)
(((d − p) − (r − d)x)((δ − 1)(x + 1) − (2β + 1)((d − p) − (r − d)x))). Then

if β < (δ−1)(x+1)
2((d−p)−(r−d)x) −

1
2
= τ̄(x)

2
, ∂s∗

∂β
> 0, and if β ≥ τ̄(x)

2
, ∂s

∗

∂β
≤ 0. Therefore, s∗ increases in
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β ∈ (0, τ̄(x)
2
) and decreases in β ∈ [ τ̄(x)

2
, τ̄(x)). □

Proof of Corollary 3. Note e∗−s∗ = β((d−p)−(r−d)x)
(

2(β+1)((d−p)−(r−d)x)
(δ−1)(x+1)

− 1
)
. Because

x ∈ (x, x̄), (d−p)− (r−d)x > 0. Therefore, e∗ ≥ s∗ if and only if 2(β+1)((d−p)−(r−d)x)
(δ−1)(x+1)

−1 ≥ 0.

It follows that e∗ ≥ s∗ if and only if x ≤ x̄ − (δ−1)(r−p)
(r−d)(2(β+1)(r−d)+δ−1)

. Defining x̂ = x̄ −
(δ−1)(r−p)

(r−d)(2(β+1)(r−d)+δ−1)
yields the main result. Following a parallel argument to the proof of

Corollary 1, define δ̄ = 2(β + 1)(d− p) + 1, which satisfies δ̄ > 1. It can then be shown that

s∗ > e∗ for all x ∈ (x, x̄) if and only if x̂ ≤ x, which holds if and only if δ ≥ δ̄. □

Proof of Corollary 4. By plugging in the optimal solutions (e∗, s∗) in Proposition 3, the

change in commuter welfare is given by

∆W (e∗, s∗, 0) = W (e∗, s∗, 0)−W 0 = −β
2((d− p)− (r − d)x)2

2(δ − 1)(x+ 1)
< 0.

Note ∂∆W (e∗,s∗,0)
∂β

= −β((d−p)−x(r−d))2
(δ−1)(x+1)

< 0, and thus ∆W (e∗, s∗, 0) strictly decreases in β.

Next, note ∂∆W (e∗,s∗,0)
∂x

=
β2((r−p)2−(x+1)2(r−d)2)

2(δ−1)(x+1)2
. Because x ∈ (x, x̄), 0 < (x+1)(r−d) < (r−p).

It follows that ∂∆W (e∗,s∗,0)
∂x

> 0, and thus ∆W (e∗, s∗, 0) strictly increases in x. □

Proof of Proposition 4. Based on the proof of Proposition 2, constraints (2.18b), (2.18d)

and (2.18e), which are equivalent to constraints (2.21b), (2.21d) and (2.21e), uniquely define

a feasible and thus optimal solution z∗ = min{max{z, ẑ}, z̄}. Because C(0, 0, z∗) = 0, it

follows that z∗ is also the unique feasible and thus optimal solution to formulation (2.21).

To show that W (0, 0, z) > W 0, note that because z∗ > 0, using the definition in (2.12), we

have W (0, 0, z)−W 0 = z(2(d−p)−2(r−d)x+z)
2(δ−1)(x+1)

> 0. □

Proof of Theorem 2. First, we compare the performance of mechanisms [D-A] and [I-A]

in metrics I – V. By constraints (2.20c) and (2.21c), we have CI = CD = 0. Next, using the

expressions for e∗ and s∗ given in Proposition 3, and the expression for z∗ given in Proposi-
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tion 4, it can be shown that Dm(0, 0, z
∗)−D0

m ≥ βD0
m = Dm(e

∗, s∗, 0)−D0
m, or equivalently,

DI
m ≥ DD

m. Because D
I
m ≥ DD

m, from (2.13) and (2.14) we immediately obtain ΠI
p ≥ ΠD

p and

ΠI
r ≥ ΠD

r , respectively. Recall from Corollary 4 and Proposition 4 that,W (e∗, s∗, 0)−W 0 < 0

and W (0, 0, z∗) −W 0 > 0, and thus WD < W 0 < W I . For metric VI, using definition in

(2.15), we have ΠI
s − ΠD

s = ẑ2+K((d−p)−x(r−d))−(z∗−z̃)2
(δ−1)(x+1)

− K((d−p)−x(r−d))(β+1)
(δ−1)(x+1)

, which is equal

to the enterprise’s profit difference between mechanisms [D] and [I]. Following the proof of

Theorem 1, if β ≤ τ̃(x), then ΠI
s ≥ ΠD

s , and if β ∈ (τ̃(x), τ(x)], then ΠI
s < ΠD

s . The result

follows. □

Before proving Proposition 7, we introduce two supporting results: Lemma 2 and Lemma 3.

For ease of exposition, let γ1 = (δ − 1)(x+ 1) and γ2 = (d− p)− x(r − d), and note γ1 > 0

and γ2 > 0.

Lemma 2. Suppose the constraint Dm(e, s, z) =
γ2+e+s+z

γ1
, or equivalently, e+s+z ≤ γ1−γ2,

is added to formulation (A.1). Then formulation (A.1) is equivalent to

min
e,s,z≥0

[C(e, s, z)]+ (A.26a)

s.t. z = min{max{z1(e, s), z2(e, s), z3(e, s), 0}, z4(e, s), z5(e, s)} (A.26b)

e ≤ γ21 − γ22
2γ1

(A.26c)

e+ s ≥ γ2
2 + 2γ1e+ γ2K√

γ22 + 2γ1e
− (γ2 +K) (A.26d)

e+ s ≤ γ1 − γ2 (A.26e)

e+ s ≥ β((β + 1)γ2 −K)

β + 1
, (A.26f)

where z1(e, s) = 1
2
(K − (γ2 + (e + s))), z2(e, s) = βγ2 − (e + s), z3(e, s) =

√
γ22 + 2γ1e −

(γ2 + e+ s), z4(e, s) = γ1−γ2−(e+s), and z5(e, s) =
√(

K
2
− 1

2
(γ2 + (e+ s))

)2
+K(e+ s)+

K
2
− 1

2
(γ2 + (e+ s)).

Proof. Note that formulations (A.1) and (A.26) have the same objective functions. There-
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fore, to establish the equivalence between the two formulations, it suffices to prove that

the feasible regions are equivalent. First, we show that when adding an additional con-

straint e + s + z ≤ γ1 − γ2, which is equivalent to z ≤ z4(e, s), the feasible region of

problem (A.1) is P1 = {(e, s, z)|max {z2(e, s), z3(e, s), 0} ≤ z ≤ min {z4(e, s), z5(e, s)} , z =

min{max {z1(e, s), z2(e, s), z3(e, s), 0} , z4(e, s), z5(e, s)}, e, s, z ≥ 0}. Because we assume

(e, s, z) satisfies Dm(e, s, z) =
γ2+e+s+z

γ1
, it follows that Dm(e, s, z) − D0

m = e+s+z
γ1

, and thus

constraint (A.1b) is equivalent to z ≥ z2(e, s). Using the definition of W (e, s, z) in (2.12), we

obtain that W (e, s, z) −W 0 =
(γ2+e+s+z)2−γ22

2γ1
− e, and thus constraint (A.1c) is equivalent

to z ≥ z3(e, s). Using the definition of Πs(e, s, z) in (2.15), we obtain that Πs(e, s, z)−Π0
s =

(K−z)(e+s+z)
γ1

− γ2z
γ1
, and thus constraint (A.1d) is equivalent to z′5(e, s) ≤ z ≤ z5(e, s), where

z′5(e, s) = −
√(

K
2
− 1

2
(γ2 + (e+ s))

)2
+K(e+ s) + K

2
− 1

2
(γ2 + (e+ s)) ≤ 0. Thus, con-

straints (A.1b), (A.1c) and (A.1d) along with constraints z ≥ 0 and e+ s+ z ≤ γ1 − γ2 are

equivalent to

z ∈ [max{z2(e, s), z3(e, s), 0},min{z4(e, s), z5(e, s)}]. (A.27)

For constraint (A.1e), note that when fixing e and s, Πs(e, s, z) = (K − z) e+s+z+γ2
γ1

is

concave in z. By solving the first order condition ∂Πs(e,s,z)
∂z

= 0, and denoting the so-

lution as z1(e, s), we obtain z1(e, s) = 1
2
(K − (γ2 + (e + s))). It is straightforward to

show that z1(e, s) ≤ z5(e, s). Then for any (e, s, z) that satisfies (A.27), constraint (A.1e)

is equivalent to z = min{max{z1(e, s), z2(e, s), z3(e, s), 0}, z4(e, s), z5(e, s)}. Therefore, if

e+s+z ≤ γ1−γ2, the feasible region of (A.1) is P1 = {(e, s, z)|max {z2(e, s), z3(e, s), 0} ≤ z ≤

min {z4(e, s), z5(e, s)} , z = min {max {z1(e, s), z2(e, s), z3(e, s), 0} , z4(e, s), z5(e, s)} , e, s, z ≥

0}.

Next, from the definitions of zi(e, s), i ∈ {1, 2, . . . , 5} in Lemma 2, it is straightforward to

show that the feasible region of problem (A.26) is P2 = {(e, s, z)|max {z2(e, s), z3(e, s), 0} ≤

min {z4(e, s), z5(e, s)} , z = min {max {z1(e, s), z2(e, s), z3(e, s), 0} , z4(e, s), z5(e, s)} , e, s, z ≥

0}.

It’s plain to show that for any (e′, s′, z′) ∈ P1, it holds that (e′, s′, z′) ∈ P2, and for
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any (e′′, s′′, z′′) ∈ P2, we have (e′′, s′′, z′′) ∈ P1. It follows that P1 is equivalent to P2. The

equivalence between the two problems then follows. □

For use in Lemma 3 below, let x̆ = (d−p)−(δ−1)+2K
(r−d)+(δ−1)

, β̄(x) = 2K
γ2
, and β1(x) =

2γ1−3γ2−
√

(2γ1−γ2)2−8γ1K

2γ2
.

Lemma 3. Suppose K < γ1 and β ∈ (τ(x), τ̄(x)). Further, suppose the constraint Dm(e, s, z) =

γ2+e+s+z
γ1

, or equivalently, e+s+z ≤ γ1−γ2, is added to formulation (A.1). Then the following

statements hold:

(i) If x ≤ x̆, then e∗ > 0, s∗ ≥ 0, and z∗ > 0 and [C(e∗, s∗, z∗)]+ = 0.

(ii) If x > x̆, and

(a) if τ(x) < β ≤ β1(x), then e
∗ > 0, s∗ ≥ 0 and z∗ > 0 and [C(e∗, s∗, z∗)]+ = 0.

(b) if β1(x) < β ≤ β̄(x), then e∗ > 0, s∗ > 0, and z∗ > 0 and [C(e∗, s∗, z∗)]+ = 0.

(c) if β̄(x) < β < τ̄(x), then e∗ > 0, s∗ > 0, and z∗ > 0 and [C(e∗, s∗, z∗)]+ > 0.

Further, the optimal objective value is [C(e∗, s∗, z∗)]+ = max
{
0, βγ2(βγ2−2K)

2γ1

}
.

Proof. Note that τ̄(x) = γ1
γ2
− 1 and τ(x) = min

{
K
γ2
− 1, γ1

γ2
− 1
}
. Therefore, K < γ1

implies that (τ(x), τ̄(x)) is non-empty, and that τ(x) = K
γ2
− 1. Note that in Lemma 2, we

showed that when imposing the additional constraint e + s + z ≤ γ1 − γ2, solving prob-

lem (A.1) is equivalent to solving problem (A.26); therefore, we will identify the optimal

solution (e∗, s∗, z∗) to (A.1) by solving (A.26). The proof proceeds in three steps. In Step

1, we show that any feasible z to problem (A.26) must satisfy one of the following five

equations: z = z1(e, s), z = z2(e, s), z = 0, z = z3(e, s), z = z4(e, s). In Step 2, we solve

for the optimal solutions to problem (A.26) by imposing each of these five equations as an

additional constraint. In Step 3, we identify the optimal solution (e∗, s∗, z∗) in formulation

(A.26) by comparing the optimal objective function values for each of these five subproblems.
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Step 1. To solve formulation (A.26), let us first consider constraint (A.26b), which requires

z = z̆(e, s), where z̆(e, s) = min{max{z1(e, s), z2(e, s), z3(e, s), 0}, z4(e, s), z5(e, s)} for sim-

plicity. Note that z̆(e, s) ̸= z5(e, s). To see why this holds, note that from the proof of

Lemma 2, z1(e, s) < z5(e, s); in addition, constraints (A.26c) – (A.26f) are equivalent to

max {z2(e, s), z3(e, s), 0} ≤ min {z4(e, s), z5(e, s)}. Therefore, z̆(e, s) must satisfy one of the

following five conditions: z̆(e, s) = z1(e, s), z̆(e, s) = z2(e, s), z̆(e, s) = 0, z̆(e, s) = z3(e, s), or

z̆(e, s) = z4(e, s).

Step 2. We include each one of the five conditions listed above as additional constraint in

problem (A.26), and solve the corresponding subproblem.

Case 1: Suppose z̆(e, s) = z1(e, s). We show this case is infeasible. Specifically, if z̆(e, s) =

z1(e, s), then

z1(e, s) ≥ z2(e, s) if and only if e+ s ≥ 2(β + 1)γ2 − (γ2 +K), (A.28a)

z1(e, s) ≥ z3(e, s) if and only if e+ s ≥ 2
√
γ22 + 2γ1e− (γ2 +K), (A.28b)

z1(e, s) ≥ 0 if and only if e+ s ≤ K − γ2, (A.28c)

z1(e, s) ≤ z4(e, s) if and only if e+ s ≤ 2γ1 − γ2 −K, (A.28d)

and it is trivial to prove z1(e, s) ≤ z5(e, s). Define y1 ≡ γ22+2γ1e+γ2K√
γ22+2γ1e

− (γ2 + K), y2 ≡

2(β + 1)γ2 − (γ2 + K), y3 ≡ 2
√
γ22 + 2γ1e − (γ2 + K) and y4 ≡ β((β+1)γ2−K)

β+1
. Combining

constraints (A.28) with problem (A.26), then a feasible (e, s) must satisfy

e ≤ γ21 − γ22
2γ1

,max {e, y1, y2, y3} ≤ e+ s ≤ K − γ2. (A.29)

Because β > K
γ2
− 1, it follows that max {e, y1, y2, y3} ≥ y2 = 2(β + 1)γ2 − (γ2 +K) >

K − γ2, which contradicts (A.29). Therefore, a feasible solution(e, s, z) to problem (A.1)

never satisfies z = z̆(e, s) = z1(e, s).

Case 2: Suppose z̆(e, s) = z2(e, s). Similar to Case 1, the condition implies s+e ≤ 2βγ2+

γ2−K, e ≤ β(β+2)γ22
2γ1

and s+e ≤ βγ2. Note that e ≤ β(β+2)γ22
2γ1

implies max{y1, y4} = y4 < βγ2,
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where y1 and y4 are defined in Case 1. By plugging z = z2(e, s) into the objective, we obtain

the cost function as C(e, s, z2(e, s)) =
(β+1)γ2

γ1
(e+s)−e. Then given the additional constraint

z̆(e, s) = z2(e, s), problem (A.26) is equivalent to the following linear program:

min
y≥e≥0

[
(β + 1)γ2

γ1
(e+ s)− e

]+
(A.30a)

s.t. e ≤ β(β + 2)γ22
2γ1

(A.30b)

max{y4, e} ≤ e+ s ≤ βγ2, (A.30c)

By solving the above linear program, it follows that if
β(β+2)γ22

2γ1
≥ y4, the optimal solution

(e∗, s∗, z∗) must satisfy e∗ > 0, s∗ ≥ 0, z∗ > 0 and [C (e∗, s∗, z∗)]+ = 0; if
β(β+2)γ22

2γ1
< y4 and

β ≤ 2K
γ2
, then e∗ > 0, s∗ > 0, z∗ > 0 and [C (e∗, s∗, z∗)]+ = 0; if

β(β+2)γ22
2γ1

< y4 and β > 2K
γ2
,

then e∗ > 0,s∗ > 0,z∗ > 0 and [C (e∗, s∗, z∗)]+ = βγ2(βγ2−2K)
2γ1

> 0. Note that
β(β+2)γ22

2γ1
< y4 if

and only if (γ1, β) ∈
{
γ1, β | γ22 +K +

√
K (γ2 +K) < γ1 ≤ 2K + γ2, β ∈ (β1, β2)

}
∪{γ1, β |

γ1 > 2K + γ2, β ∈ (β1, τ̄(x))}, where β2 =
2γ1−3γ2+

√
(2γ1−γ2)2−8γ1K

2γ2
.

Case 3: Suppose z̆(e, s) = z3(e, s). Using a similar argument to Case 2, by letting

Y = (e+s)
√
γ22 + 2γ1e and t =

√
γ22 + 2γ1e, and rewriting the cost function as as C3(Y, t) =

C(e, s, z3(e, s)) =
2Y−t2+γ22

2γ1
, we can show that with the additional constraint z̆(e, s) = z3(e, s),

problem (A.26) is equivalent to the following:

min
Y,t≥0

[C3(Y, t)]
+ (A.31a)

s.t. (β + 1)γ2 ≤ t ≤ γ1 (A.31b)

max

{
t2 − (γ2 +K) t+Kγ2,

t (t2 − γ22)
2γ1

}
≤ Y ≤ t2 − γ2t (A.31c)

Let Y1(t) = t2−(γ2 +K) t+Kγ2 and Y2(t) =
t(t2−γ22)

2γ1
for simplicity. Then constraint (A.31c)

becomes {Y1(t), Y2(t)} ≤ Y ≤ t2 − γ2t. Next, we consider two cases according to constraint

(A.31c): Y1(t) ≤ Y2(t) and Y1(t) > Y2(t). In preparation, let B1 = {γ1, β | γ1 ≤ 2K + γ2} ∪{
γ1, β | γ1 > 2K + γ2, β ∈

(
K
γ2
− 1, β1

]}
and B2 = {γ1, β | γ1 > 2K + γ2, β ∈ (β1, τ̄(x))}; then
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we have if (γ1, β) ∈ B1, there exist a t satisfying constraint (A.31b) such that Y1(t) ≤ Y2(t);

if (γ1, β) ∈ B2, for all t satisfying constraint (A.31b), it holds that Y1(t) > Y2(t).

First, suppose Y1(t) ≤ Y2(t). We only focus on the regime where (γ1, β) ∈ B1. It is

straightforward to verify that in this case, e∗ ≥ 0, s∗ ≥ 0, z∗ > 0 and [C(e∗, s∗, z∗)]+ = 0.

Next, when restricting Y1(t) > Y2(t), note that we have already proved that when (γ1, β) ∈

B1, (e∗, s∗, z∗) satisfy e∗ > 0, s∗ ≥ 0 and z∗ > 0, so we only need to consider the regime

where (γ1, β) ∈ B2. In this case, it is straightforward to show that if 2K + γ2 ≥ (β + 1)γ2,

or equivalently β ≤ 2K
γ2
, then e∗, s∗, z∗ > 0 and [C (e∗, s∗, z∗)]+ = 0; if 2K + γ2 < (β + 1)γ2,

or equivalently β > 2K
γ2
, then e∗, s∗, z∗ > 0 and [C (e∗, s∗, z∗)]+ = βγ2(βγ2−2K)

2γ1
> 0.

Case 4: Suppose z̆(e, s) = 0. We show that this case is dominated by Case 3. Specifi-

cally, when restricting z̆(e, s) = 0, it is easy to show that problem (A.26) reduces to (2.16).

Thus the minimal cost in this case must be no less than that of mechanism [D], namely,

C(e∗, s∗, z∗) ≥ β2γ22
2γ1

> 0. Comparing the minimal objective value in this case with that

in Case 3, which is given by max
{
0, βγ2(βγ2−2K)

2γ1

}
, we can show that [C(e∗, s∗, z∗)]+ =

C(e∗, s∗, z∗) ≥ β2γ22
2γ1

> max
{
0, βγ2(βγ2−2K)

2γ1

}
, which implies this case is dominated by Case 3.

Case 5: Suppose z̆(e, s) = z4(e, s). We show this case is infeasible. Specifically, assuming

z̆(e, s) = z4(e, s), this is equivalent to

z1(e, s) ≥ z2(e, s) if and only if e+ s ≥ y2 = 2(β + 1)γ2 − (γ2 +K), (A.32a)

z1(e, s) ≥ z3(e, s) if and only if e+ s ≥ y3 = 2
√
γ22 + 2γ1e− (γ2 +K), (A.32b)

z1(e, s) ≥ 0 if and only if e+ s ≤ K − γ2, (A.32c)

z1(e, s) ≥ z4(e, s) if and only if e+ s ≥ 2γ1 − γ2 −K, (A.32d)

and max {z2(e, s), z3(e, s), 0} ≤ min {z4(e, s), z5(e, s)}. Combining with constraints (A.26b)–

(A.26f), because γ1 > K and thus 2γ1 − γ2 − K > γ1 − γ2, inequality (A.32d) contradicts

constraint (A.26e), which requires e + s ≤ γ1 − γ2. Therefore, z = z̆(e, s) = z4(e, s) cannot

hold.
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Step 3. We have established in Step 2 that the optimal private subsidy z must be equal

to either z2(e, s) or z3(e, s). Combining Case 2 and Case 3, we conclude that if (γ1, β) ∈

{γ1, β | γ1 ≤ 2K + γ2}∪
{
γ1, β | γ1 > 2K + γ2, β ∈

(
K
γ2
− 1, β1

]}
, the optimal solution (e∗, s∗, z∗)

must satisfy e∗ > 0, s∗ ≥ 0 and z∗ > 0; if (γ1, β) ∈ {γ1, β | γ1 > 2K + γ2, β ∈ (β1, τ̄(x))},

the optimal solution (e∗, s∗, z∗) must satisfy e∗, s∗, z∗ > 0. Moreover, [C (e∗, s∗, z∗)]+ =

max
{
0, βγ2(βγ2−2K)

2γ1

}
. Note that by plugging in γ1 = (δ−1)(x+1) and γ2 = (d−p)−x(r−d),

γ1 ≤ 2K + γ2 is equivalent to x ≤ x̆, where x̆ = (d−p)−(δ−1)+2K
(r−d)+(δ−1)

. The result follows. □

Proof of Proposition 7. Similar to the proofs of Propositions 1 and 2, the proof is

composed of two cases: Dm(e, s, z) = γ2+e+s+z
γ1

, or equivalently, e + s + z ≤ γ1 − γ2; and

Dm(e, s, z) = 1, or equivalently, e+ s+ z ≥ γ1 − γ2.

Case 1: Suppose (e, s, z) is restricted to the regime where Dm(e, s, z) =
γ2+e+s+z

γ1
, which

is equivalent to e+s+z ≤ γ1−γ2. We divide the analysis into two further cases with respect

to β: β ∈ (0, τ(x)] and β ∈ (τ(x), τ̄(x)).

0.6cm Case 1.1: Suppose β ∈ (0, τ(x)]. Because [C(e, s, z)]+ ≥ 0, if a feasible solu-

tion (e, s, z) satisfies C(e, s, z) ≤ 0, it must be optimal. Note that the minimal cost of

mechanism [I] is 0, so the optimal solution to problem (2.18) under mechanism [I] is also

optimal to (A.1) in the case when β ∈ (0, τ(x)]. Namely, there exists an optimal solu-

tion to (A.1) (e∗, s∗, z∗) = (0, 0,min{max{z, ẑ}, z̄}), where z, ẑ, z̄ are as defined in Propo-

sition 2. It can also be shown that (e∗, s∗, z∗) ∈ Q is optimal, where Q is defined as

Q =
{
(e∗, s∗, z∗)|e∗ = β(β+2)γ22

2γ1
, s∗ ∈

[
0, β(β+2)γ2(γ1−(β+1)γ2)

2(β+1)γ1

]
, z∗ = z2(e

∗, s∗)
}
, and the ob-

jective value is [C(e∗, s∗, z∗)]+ = 0. Note that the optimal private subsidy must be strictly

positive, z∗ > 0; otherwise, if z∗ = 0, the optimal cost should be no less than that of

mechanism [D] as presented in Corollary 2 and is thus strictly positive. To summarize,

when β ∈ (0, τ(x)], the optimal solutions (e∗, s∗, z∗) must satisfy e∗, s∗ ≥ 0 and z∗ > 0 and

[C(e∗, s∗, z∗)]+ = 0.

Case 1.2: When β ∈ (τ(x), τ̄(x)), the optimal solutions have been characterized in
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Lemma 3.

To summarize, when requiringDm(e, s, z) =
γ2+e+s+z

γ1
, the optimal objective value is [C (e∗, s∗, z∗)]+ =

max
{
0, βγ2(βγ2−2K)

2γ1

}
and the optimal solution (e∗, s∗, z∗) is characterized by the following:

(i) Suppose x ≤ x̆. Then [C(e∗, s∗, z∗)]+ = 0. Further,

(a) if 0 ≤ β ≤ τ(x), then e∗ ≥ 0, s∗ ≥ 0 and z∗ > 0;

(b) if τ(x) < β < τ̄(x), then e∗ > 0, s∗ ≥ 0, and z∗ > 0.

(ii) Suppose x > x̆. Then

(a) if 0 ≤ β ≤ β̄(x), [C(e∗, s∗, z∗)]+ = 0. Further,

i. if 0 ≤ β ≤ τ(x), then e∗ ≥ 0, s∗ ≥ 0, and z∗ > 0;

ii. if τ(x) < β ≤ β1(x), then e
∗ > 0, s∗ ≥ 0 and z∗ > 0;

iii. if β1(x) < β ≤ β̄(x), then e∗ > 0, s∗ > 0, and z∗ > 0

(b) if β̄(x) < β < τ̄(x), [C(e∗, s∗, z∗)]+ = βγ2(βγ2−2K)
2γ1

> 0. Further, e∗ > 0, s∗ > 0,

and z∗ > 0.

Case 2: Suppose Dm(e, s, z) = 1, which is equivalent to e + s + z ≥ γ1 − γ2. We show

this case is never optimal. Using the definition in (2.15), in this case, Πs(e, s, z) = (K − z) ·

Dm(e, s, z) = K − z. Then from constraint (A.1e), a feasible private subsidy z must satisfy

z = argmaxz Πs(e, s, z) = argmaxz(K − z) = 0. Using the definition in (2.12), constraint

(A.1c) can then be rewritten as

W (e, s, z)−W 0 = s+ z − (γ1 − γ2)2

2γ1
= s− (γ1 − γ2)2

2γ1
≥ 0, (A.33)

which implies feasible s must satisfy s ≥ (γ1−γ2)2
2γ1

. Recall from the proof of Proposi-

tion 1, when Dm(e, s, z) = 1, C(e, s, z) = s ≥ (γ1−γ2)2
2γ1

>
β2γ22
2γ1

, where
β2γ22
2γ1

is the mini-

mal cost under mechanism [D]. Further, because the optimal objective value in Case 1 is

max
{
0, βγ2(βγ2−2K)

2γ1

}
and it is straightforward to verify that the

β2γ22
2γ1

> max
{
0, βγ2(βγ2−2K)

2γ1

}
,
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it follows the optimal solution (e∗, s∗, z∗) must satisfyDm(e, s, z) =
γ2+e+s+z

γ1
. HenceDm(e

∗, s∗, z∗) =

1 cannot hold at optimality. □

Proof of Corollary 5. Using the optimal solutions to mechanism [G] presented in the proof

of Proposition 7, it follows the optimal objective value under mechanism [G] is

[C(e∗, s∗, z∗)]+ =


0 if β ≤ β̄(x),

βγ2(βγ2−2K)
2γ1

if β > β̄(x),

where β̄(x) = 2K
γ2

and γ1, γ2 are defined as in Proposition 7. Using the definition above, it

is straightforward to show that [C(e∗, s∗, z∗)]+ increases in β, and is weakly less than the

minimal costs of both mechanisms [D] and [I]. □

Proof of Proposition 8. The proof consists of two steps. In Step 1, we establish an

equivalent formulation to problem (A.2). In Step 2, we solve for the optimal solutions to the

equivalent problem and problem (A.2).

Step 1. We first prove problem (A.2) is equivalent to the following problem:

max
e,s≥0

min{e+ s, γ1 − γ2} (A.34a)

s.t. C(e, s, 0) ≤ B (A.34b)

W (e, s, 0) ≥ W 0. (A.34c)

To show the equivalence between the two problems, first note that from the definition of

Dm(e, s, z) in (2.10), we have Dm(e, s, 0) − D0
m = min{e+s,γ1−γ2}

γ1
, where γ1 = (δ − 1)(x + 1)

and γ2 = (d − p) − x(r − d). Because δ > 1 and x > 0, maximizing Dm(e, s, 0) − D0
m is

equivalent to maximizing min{e + s, γ1 − γ2}. Further, from the definition of Πs(e, s, z) in

(2.15), Πs(e, s, z) − Π0
s = (K − z)min{e+s,γ1−γ2}

γ1
. Because x < x < x̄, then γ1 − γ2 > 0.
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Therefore, e, s ≥ 0 implies Πs(e, s, z) ≥ Π0
s, which allows us to omit the corresponding con-

straint in (A.2) without changing the feasible region. Therefore, problem (A.2) is equivalent

to problem (A.34).

Step 2. To solve problem (A.34), we change variables by letting y = e+ s. Then using the

definitions of C(e, s, 0) in (2.11) andW (e, s, 0) in (2.12), formulation (A.34) can be rewritten

as

max
0≤s≤y

min{y, γ1 − γ2} (A.35a)

s.t. s ≤ B +

(
γ1−γ2

2

)2 − (min{y, γ1 − γ2} − γ1−γ2
2

)2
γ1

(A.35b)

s ≥ (γ1 − γ2)2 − (min{y, γ1 − γ2} − (γ1 − γ2))2

2γ1
. (A.35c)

Let us relax the non-negativity constraint 0 ≤ s ≤ y for now. Note that a feasible y must

satisfy

(γ1 − γ2)2 − (min{y, γ1 − γ2} − (γ1 − γ2))2

2γ1
≤ B +

(
γ1−γ2

2

)2 − (min{y, γ1 − γ2} − γ1−γ2
2

)2
γ1

,

(A.36)

or equivalently, B ≥ (min{y,γ1−γ2})2
2γ1

. Define B̃ = (γ1−γ2)2
2γ1

. We then decompose the analysis in

two cases: (i) when B ≤ B̃ and (ii) when B > B̃, which corresponds to statements (i) and

(ii) in the proposition.

1. If B ≤ B̃, a feasible y must satisfy (min{y,γ1−γ2})2
2γ1

≤ B̃ = (γ1−γ2)2
2γ1

, which implies y ≤ γ1−

γ2, and in this case, (A.36) is equivalent to y2 ≤ 2γ1B. Because min {y, γ1 − γ2} = y,

then the unique optimal solution is y∗ =
√
2γ1B ≤ γ1−γ2 and s∗ = B

(√
2(γ1−γ2)√
γ1B

− 1
)
.

It follows that e∗ = y∗ − s∗ =
√
2Bγ2√
γ1

+ B and Dm (e∗, s∗, 0) =
√
2Bγ1+γ2
γ1

. Because

y∗ ≥ s∗ ≥ 0, then (y∗, s∗) is optimal to problem (A.35) and thus (e∗, s∗) is optimal to

both problems (A.2) and (A.34).
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2. Suppose B > B̃. We consider two subproblems, that follow from imposing the addi-

tional constraints y ≥ γ1 − γ2 and y < γ1 − γ2. When y ≥ γ1 − γ2, then the optimal

solution (s∗, y∗) is such that s∗ ∈ [B̃, B] and y∗ ∈ [γ1 − γ2,∞). The optimal objective

value is γ1 − γ2. In this case, it must hold that e∗ ≥ γ1 − γ2 − s∗ and D(e∗, s∗, 0) = 1.

However, when y < γ1 − γ2, the optimal objective value is strictly less than γ1 − γ2,

which is dominated by the case when y ≥ γ1 − γ2. Because 0 ≤ s∗ ≤ y∗, (y∗, s∗) is

optimal to problem (A.35).

The result follows by plugging in γ1 = (δ − 1)(x+ 1) and γ2 = (d− p)− x(r − d). □

Proof of Proposition 9. Similar to the proof of Proposition 4, it is straightforward to show

that constraints (A.4d) and (A.4e) uniquely determines a solution z∗ = min {ẑ, (δ − 1)(x+ 1)− ((d− p)− x(r − d))},

where ẑ = 1
2
(K−((d−p)−x(r−d))). Using (2.11) and (2.12), we find z∗ satisfies constraints

(A.4b) and (A.4c). Therefore, z∗ is the unique feasible and thus optimal solution to problem

(A.4). □

Proof of Proposition 10. Similar to the proof of Proposition 1, to solve for the optimal so-

lution (e∗, s∗), we consider two cases using the definition of Dm(e, s, 0) in (A.6), which implies

Dm(e, s, 0) = min
{
σ, (d−p)−(δ−1)V+e+s

(r−d)+(δ−1)V

}
: Dm(e, s, 0) =

(d−p)−(δ−1)V+e+s
(r−d)+(δ−1)V

and Dm(e, s, 0) = σ.

Case 1: Suppose we addDm(e, s, 0) =
(d−p)−(δ−1)V+e+s

(r−d)+(δ−1)V
as an additional constraint. Using

a similar argument to the proof of Lemma 1, it can be shown that

[C(e, s, 0)]+ ≥ C(e, s, 0) ≥ β2((d− p)− (δ − 1)V )2

2((r − d) + (δ − 1)V )
,

which holds with equality if and only if both constraints (A.8b) and (A.8c) are binding. To

find the optimal solution, it suffices to construct a feasible solution (e1, s1) that attains the
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lower bound, where (e1, s1) is the unique solution to the equations

Dm(e, s, 0)−D0
m = βD0

m

W (e, s, 0) = W 0,

which correspond to constraints (A.8b) and (A.8c). Then (e1, s1) is given by:

e1 =
β(β + 2)((d− p)− (δ − 1)V )2

2σ((r − d) + (δ − 1)V )
,

s1 = β((d− p)− (δ − 1)V )− β(β + 2)((d− p)− (δ − 1)V )2

2σ((r − d) + (δ − 1)V )
.

Using a similar argument to the proof of Proposition 1, it can be verified that (e1, s1) satisfies

Dm(e, s, 0) = (d−p)−(δ−1)V+e+s
(r−d)+(δ−1)V

and is feasible to (A.8). Therefore, (e1, s1) is the unique

optimal solution to problem (A.8) when requiring Dm(e, s, 0) =
(d−p)−(δ−1)V+e+s

(r−d)+(δ−1)V
.

Case 2: Suppose Dm(e, s, 0) = σ. It follows that Dd(e, s, 0) = 0 and the operational cost

is C(e, s, 0) = sσ. In this case, constraint (A.8c) can be rewritten as

W (e, s, 0)−W 0 = sσ − ((d− p)− σ((r − d) + (δ − 1)V )− (δ − 1)V )2

2((r − d) + (δ − 1)V )
≥ 0. (A.37)

Let ϕ ≡ ((d−p)−σ((r−d)+(δ−1)V )−(δ−1)V )2

2((r−d)+(δ−1)V )
. Then constraint (A.8c) implies sσ ≥ ϕ ≥ 0 and

thus that [C(e, s, 0)]+ = C(e, s, 0) = sσ ≥ ϕ. It is straightforward to verify that ϕ >

C (e1, s1, 0) = [C (e1, s1, 0)]
+, where (e1, s1) is the optimal solution in Case 1, and it follows

that [C(e, s, 0)]+ ≥ ϕ > [C (e1, s1, 0)]
+. Therefore, the optimal solution to (A.8) is (e∗, s∗) =

(e1, s1), and the resulting minimal cost is strictly positive, C (e1, s1, 0) =
β2((d−p)−(δ−1)V )2

2((r−d)+(δ−1)V )
. □

Proof of Proposition 11. Using a parallel argument to the proof of Proposition 2, we

first note that [C(0, 0, z)]+ = C(0, 0, z) = 0. As such, any feasible solution to problem (A.8)

is optimal. Therefore, to find the feasible and thus optimal solution to problem (A.8), it
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suffices to find the optimal solution z∗ to the following problem:

max
z≥0

Πs(0, 0, z) (A.38a)

s.t. Dm(0, 0, z)−D0
m ≥ βD0

m, (A.38b)

W (0, 0, z) ≥ W 0, (A.38c)

Πs(0, 0, z) ≥ Π0
s. (A.38d)

Using a similar argument in the proof of Proposition 2, it is straightforward to show that the

feasible region of (A.38) is [z, z̄]∪ (z̃, ż], where z = β((d− p)− (δ− 1)V ), z̄ = min{K, σ((r−

d) + (δ− 1)V )}− ((d− p)− (δ− 1)V ), z̃ = σ((r− d) + (δ− 1)V )− ((d− p)− (δ− 1)V ) and

ż = K
(
1− (d−p)−(δ−1)V

σ((r−d)+(δ−1)V )

)
. Note (A.38) and (A.10) are feasible if and only if [z, z̄] ∪ (z̃, ż]

is non-empty, or equivalently, β ≤ τ(x), where τ(x) = min
{

K
(d−p)−(δ−1)V

− 1, τ̄(x)
}

and

τ̄(x) = σ((r−d)+(δ−1)V )
(d−p)−(δ−1)V

−1. We can now solve (A.38) assuming β ≤ τ(x). Similar to the proof

of Proposition 2, we can show it suffices to solve the following problem

maxΠs(0, 0, z) s.t. z ∈ [z, z̄].

Because ∂2Πs(0,0,z)
∂z2

= − 2
(r−d)+(δ−1)V

< 0, it follows that Πs(0, 0, z) is strictly concave in z.

The solution to the first order condition ∂Πs(0,0,z)
∂z

= 0 is ẑ = K
2
− 1

2
((r − d) + (δ − 1)V ).

Therefore, the unique optimal subsidy z∗ is given by

z∗ =


z if ẑ < z,

ẑ if z ≤ ẑ ≤ z̄,

z̄ if z̄ < ẑ,

or, equivalently, z∗ = min{max{z, ẑ}, z̄}. It follows that z∗ is the unique feasible and thus

optimal solution to (A.10). The result follows. □

Proof of Theorem 5. Similar to the proof of Theorem 1, using the optimal incentives under

mechanisms [D-H] and [D-I] presented in Propositions 10 and 11, it is straightforward to show
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that CI = 0 < CD and W I > W 0 = WD. Also, it can be shown that Dm (0, 0, z∗) −D0
m ≥

βD0
m = Dm (e∗, s∗, 0) −D0

m, or equivalently, D
I
m ≥ DD

m. Using the definitions in (2.13) and

(2.14), it then follows that ΠI
p ≥ ΠD

p and ΠI
r ≥ ΠD

r , respectively. With respect to the enter-

prise’s profit, from (2.15) we have ΠI − ΠD = (K−z∗)((d−p)−(δ−1)V+z∗)
(r−d)+(δ−1)V

− (β+1)K((d−p)−(δ−1)V )
(r−d)+(δ−1)V

.

Define τ̃(x) = ẑ2−(ẑ−z∗)2
K((d−p)−(δ−1)V )

. Then ΠI
s < ΠD

s holds if and only if β > τ̃(x). The results

follow. □
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APPENDIX B

Planning Bike Lanes with Data: Ridership,

Congestion, and Path Selection

B.1 Congestion Parameter Estimation

This section presents additional details on the data used to estimate and validate the con-

gestion parameter (B.1.1), the estimation procedure described in in §4.4 (B.1.2), and tuning

the penalty parameter λ (B.1.3).

B.1.1 Data and Summary Statistics

To make full use of the available data, we estimate θ using data from the entire City of

Chicago (larger area in Figure 4.1). The size of the network is given in Table 4.1 in §4.3.

Table B.1 presents summary statistics for the following variables: The annual average daily

traffic (AADT) during morning rush hours, which serve as the observed traffic flows zs; the

driving demand originating from each census tract, d
(o)
i ; total road segment width ns · ws;

segment length, ℓs; and path free-flow travel time
∑

s∈SDp
Ts. We note that although we

cannot observe the free-flow driving time at the segment-level, path-level free-flow times are

sufficient for the purpose of estimating θ. To validate model fit, we use detailed data on

1,649,214 taxi trips taken during weekday morning rush hours (6am to 10am) in 2018. We

match each taxi trip record to the road network to obtain average taxi travel times for 4,400

OD pairs. We drop records with trip times in the upper and lower 2.5% quantiles to remove

extreme observations. A summary of taxi trip times is presented in Table B.2.
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Table B.1: Summary of data for estimating congestion parameter θ.

AADT Origin demand Road width Road length Free-flow time

zs d
(o)
i ns · ws ℓs

∑
s∈SDp

Ts

Units 1 1 meters meters minutes

Mean 1,730 441 10.4 141 20

SD 2,698 272 4.3 127 9

Min 54 15 3.0 0.4 1

25% 837 236 7.2 99 13

50% 1,222 386 9.0 102 19

75% 1,671 575 13.6 201 25

Max 29,220 2,919 43.2 5,006 71

Table B.2: Summary of OD-level taxi trip times.

Units Mean SD Min 25% 50% 75% Max

Taxi travel time taxiw minutes 17.1 8.1 2.0 11.2 16.0 21.5 48.5
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B.1.2 Estimation Procedure

For ease of solving WLS-A, throughout this section we eliminate the variable ϵ, and focus on

the equivalent problem

minimize
θ,ϕ,v,b

∥v− z∥22 + λ ·
(
∇ϕg (ϕ,θ)⊤ϕ−

(
dD
)⊤

b
)

subject to (3.16c)− (3.16f).

Let d
(o)
i be the driving demand originating from each census tract i ∈ I. Then any vehicle

traffic pattern
(
dD,ϕ,v

)
should satisfy

∑
j ∈ I

j ̸= i

∑
(i, j) ∈ W

dDw = d
(o)
i , i ∈ I. (B.2)

Let Λ = {
(
dD,ϕ,v

)
|
(
dD,ϕ,v

)
satisfies (B.2) and (ϕ,v) ∈ Ω(dD)}. We can then jointly

impute the driving demands dD by solving a variation of WLS-A that also includes the

constraint
(
dD,ϕ,v

)
∈ Λ.

To ensure that driving times are non-decreasing in segment flows, we also impose the

constraint θ⊤qs(x̃) ≥ δ, where δ > 0 is a small constant. Then the modified form of

the estimator WLS-A for jointly estimating the driving demands dD and the congestion

parameter θ is

minimize
d,ϕ,v,θ,b

∥v − z∥22 + λ ·
(
∇ϕg (ϕ,θ)⊤ϕ−

(
dD
)⊤

b
)

(B.3a)

subject to
∑

{w∈W|p∈PDw }

bw ≤ ∇ϕpg (ϕ,θ) , p ∈ P , (B.3b)

(dD,ϕ,v) ∈ Λ, (B.3c)

θ⊤qs(x̃) ≥ δ, s ∈ S, (B.3d)

θ ∈ Θ. (B.3e)
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Formulation (B.3) is multi-convex in the sense that fixing
(
dD,ϕ,v

)
yields a convex sub-

problem in (θ,b) and vice versa. We obtain estimates using a block coordinate descent

(BCD) method that alternately minimizes the loss function over each block while fixing

the other block at their last updated values (see Xu and Yin (2013)). Specifically, let((
dD
)k
, (ϕ)k , (v)k

)
and

(
θk,bk

)
be the variable values after their kth update. The BCD

method then consists of iteratively solving the following two subproblems:
(
dD
)k

(ϕ)k

(v)k

 = argmin
dD,ϕ,v

∥v − z∥22 + λ ·
((
∇ϕg

(
ϕ,θk−1

))⊤
ϕ−

(
dD
)⊤

bk−1
)

+
1

2µk1

∥∥∥∥∥∥∥∥∥


dD

ϕ

v

−

(
dD
)k−1

(ϕ)k−1

(v)k−1


∥∥∥∥∥∥∥∥∥
2

(B.4a)

subject to
∑

{w∈W|p∈PDw }

bk−1
w ≤ ∇ϕpg

(
ϕ,θk−1

)
, p ∈ P (B.4b)

which is a quadratic program (QP), and θk
bk

 = argmin
θ,b

∥(v)k − z∥22 + λ ·
((
∇ϕg (ϕ,θ)|ϕ=(ϕ)k

)⊤
(ϕ)k − b⊤ (dD)k)

+
1

2µk2

∥∥∥∥∥∥
 θ

b

−
 θk−1

bk−1

∥∥∥∥∥∥
2

(B.5a)

subject to
∑

{w∈W|p∈Pw}

bw ≤ ∇ϕpg (ϕ,θ)
∣∣
ϕ=(ϕ)k

, p ∈ P (B.5b)

θ⊤qs(x̃) ≥ δ, s ∈ S, (B.5c)

θ ∈ Θ, (B.5d)

which is a linear program (LP). The sequences {µk1} and {µk2} are constants that are uni-

formly lower bounded from zero and uniformly upper bounded (Xu and Yin 2013). In

our implementation, we simply set µk1 = µk2 = 100 for all k. Let Gk = ∥v − z∥22 + λ ·
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(∇ϕg (ϕ,θ)⊤ϕ−
(
dD
)⊤

b) be the loss after solving (B.5) in the kth iteration. We terminate

the BCD algorithm after Gk−Gk+1

Gk
< 10−4 holds for three consecutive iterations or when

k = 50.

Because the BCD algorithm does not converge to a globally optimal solution, we aim to

improve the model fit by repeating the estimation procedure multiple times with random

initializations. We use 10 random starts, where each start consists of randomly drawing

the initial estimate θ0 from the uniform distribution, and then initialize the remaining pa-

rameters by solving (B.3) when λ = 0 and θ0 is held fixed (in which case (B.3) becomes a

quadratic program that is efficiently solved by commercial solvers). We observed that in-

creasing the number of random starts beyond 10 only minimally improves the loss function at

termination. For a wide range of λ values, we observed that the algorithm terminated after

approximately 35 iterations, with an average convergence time of 5 hours. The estimation

procedure was implemented using Python 3 and the optimization solver Gurobi, and run on

a desktop computer with an Intel Core i9-10900K 3.70GHz processor and 128 GB of RAM.

B.1.3 Selecting Wardrop Error Penalty λ

To identify a value of the Wardrop error penalty parameter λ that produces a reason-

able model fit, we repeat the estimation procedure using the BCD algorithm for each

λ ∈ {1000, 1500, 2000, 2500, 3000}. For each value of λ, we measure model fit according

to three error metrics: (1) flow error, (2) Wardrop error,1 and (3) out-of-sample error2. The

reason for evaluating model fit according to these three criteria is to balance the fit of the

1An alternative metric of evaluating how data comply with the Wardrop equilibrium is via the value of
ϵ in WLS-A. Intuitively, the closer ϵ is to 0, the better the data satisfy Wardrop equilibrium. However, for
ease of interpretation, here we measure the extent to which Wardrop equilibrium is violated as the relative
difference between the maximum and minimum driving times over the chosen paths, averaged over all OD
pairs.

2We use taxi trip number weighted average discrepancy between observed taxi time and predicted OD
driving time as a measure of out-of-sample error as we expect more used OD pairs are more representative
when measuring prediction errors.
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data to the underlying traffic equilibrium model (metrics 1 and 2) with how well the model

predicts driving travel times (metric 3). The three errors are computed as follows:

Flow error =
∥v̂− z∥22
∥z∥22

, (B.6a)

Wardrop error =
1

|W|
∑
w∈W

max{p∈Pw|ϕ̂p>0} tp (x̃, v̂)−minp∈Pw tp (x̃, v̂)

minp∈Pw tp (x̃, v̂)
, (B.6b)

Out-of-sample error =
1∑

w∈Wtaxi |N taxi
w |

∑
w∈Wtaxi

∣∣N taxi
w

∣∣ |tw (x̃, v̂)− taxiw|
taxiw

. (B.6c)

In the expressions above, (v̂, ϕ̂) represents the estimates of the equilibrium flows at ter-

mination of the estimation procedure, and x̃ is the status quo bike lane network. In the

computation of the out-of-sample error, N taxi
w is the total number of taxi trips for OD pair

w, Wtaxi ⊂ W is the set of OD pairs for which N taxi
w > 0, and taxiw is the average duration

of all taxi trips on OD pair w ∈ Wtaxi. Note that the out-of-sample error is computed only

using the taxi trip data (described in §4.3 and §B.1.1), which is not used during estimation.

Figure B.1 visualizes the performance of each value of λ according to the three error

metrics. Although there is no Pareto optimal value, we adopt λ = 2500 for our §4 empirical

study, which is the only value of λ that underperforms the other values on only one error

metric, and also has the lowest out-of-sample error. Under λ = 2500 the flow error is 22%,

the Wardrop error is 1.3%, and the out-of-sample error is 14.3%.

For completeness, Table B.3 presents the simple average error across OD pairs as an

alternative measure of out-of-sample error, which is given by setting |N taxi
w | = 1 in (B.6c).

The errors in Table B.3 are competitive with previously proposed methods for predicting

travel times in a network using taxi trip data (cf. Table 2 in Zhan et al. (2013)). Table

B.3 also reports the errors if the free-flow travel time from Google Maps is naively used

to predict taxi trip times. We observe that the error from using free-flow times alone is

significantly higher than our method regardless of which value of λ is selected; in the case

where λ = 2500, we obtain a weighted out-of-sample error of 14%, whereas the free-flow

travel times yield an error of 27%. This improvement in prediction errors can be interpreted
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Figure B.1: Estimation errors for varying values of penalty parameter λ.

as the value added by using a model of traffic congestion in addition to free-flow travel times

when making predictions.

Table B.3: Weighted and simple out-of-sample errors for varying λ and free-flow time.

λ 1000 1500 2000 2500 3000 Free-flow time

Out-of-sample error (Weighted) 16.0% 15.6% 14.7% 14.3% 15.2% 27.3%

Out of sample error (Simple) 19.7% 19.6% 19.1% 18.9% 19.1% 31.6%
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B.2 Map of Divvy Bike Share Stations for Mode Choice Estima-

tion

We use Divvy bike share trip data as a proxy for total cycling demand. Because not all

census tracts have Divvy stations, in estimating the mode choice parameters β we focus on a

contiguous region within Chicago, which we identify by selecting a subset of census tracts for

which a Divvy station exists in every adjacent census tract. Figure B.2 depicts locations of all

Divvy stations in Chicago, and the study region for estimating the mode choice parameters,

which approximately corresponds to downtown Chicago. The road network corresponding

to the study region area is summarized in Table B.4.

0 2.5 51.25 Miles

Divvy stations

0 2.5 51.25 Miles

Study region

Figure B.2: Locations of Divvy stations and study region for mode choice estimation.
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Table B.4: Network Size for Mode Choice Estimation.

Road segments Driving paths OD pairs

|S|
∣∣PD∣∣ |W|

Size 6,101 14,632 5,272

B.3 MILP Reformulation of Path Selection Model BLP-A

This section develops the MILP reformulation of the linearized bike lane path selection model

BLP-A given in (3.33). In preparation, we re-write the constraints (3.31d) and (3.31e) as

ξs ≥ ρrs (xs) · vs + ϵrs (xs) , r ∈ Rξ, s ∈ S, (B.7a)

ψmw ≥ arw · dmw + brw, r ∈ Rψ, w ∈ W ,m ∈M, (B.7b)

where

ρrs (xs) = αs (xs) · vrs r ∈ Rξ, s ∈ S, (B.8a)

ϵrs (xs) = −
1

2
· αs (xs) · (vrs)

2 , r ∈ Rξ, s ∈ S, (B.8b)

arw = [1 + log (dr)] , r ∈ Rψ, w ∈ W ,m ∈M, (B.8c)

brw = −dr, r ∈ Rψ, w ∈ W ,m ∈M. (B.8d)

The lower-level (i.e., user equilibrium) problem in in (3.33) is a linear program. As a result,

by leveraging linear programming duality, the bi-level optimization problem (3.33) can be

reformulated exactly as the following single-level mixed-integer program, where σ,π,µ,λ,γ
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are dual variables corresponding to each of the primal feasibility constraints:

maximize
x,y,d,ϕ,v, ξ,

ψ,µ,γ,λ,π,σ

∑
w∈W

dCw

subject to (3.24b)− (3.24d),
upper level

constraints

SL(x,d,v,ψ, ξ) =
∑
w∈W

µwdw +
∑
r∈Rψ

∑
m∈M

πmrw brw


+
∑
r∈Rξ

∑
s∈S

σrsϵ
r
s (xs) , strong duality

ξs ≥ ρrs (xs) · vs + ϵrs (xs) , r ∈ Rξ, s ∈ S,

ψmw ≥ arw · dmw + brw, r ∈ Rψ, w ∈ W ,m ∈M,

dOw + dCw + dDw = d̄w, w ∈ W ,∑
p∈PDw

ϕp = dDw , w ∈ W ,

vs =
∑

{p∈PD|s∈SDp } ϕp, s ∈ S,

ϕ ≥ 0,



primal

feasibility

µw −
∑

r∈Rψ
arw · πmrw ≤ umw , w ∈ W ,m ∈ {C,O} ,

µw + γw −
∑

r∈Rψ
arw · πDrw ≤ βD0 , w ∈ W ,

−
∑

{w∈W|p∈PDw } γw −
∑

s∈SDp
λs ≤ 0, p ∈ PD,

λs −
∑

r∈Rξ
ρrs (xs) · σrs ≤ βD1 · Ts, s ∈ S,∑

r∈Rψ
σrs = βD1 , s ∈ S,∑

n∈N πmnw = 1, w ∈ W ,m ∈M,

π,σ ≥ 0.



dual

feasibility
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The advantage of the formulation above is that it only contains linear and bi-linear terms,

and can therefore be transformed into a MILP via introduction of “big-M” constants, which

permits solution by commercial optimization software packages. Specifically, because ρrs (xs)

and ϵrs (xs) are functions of the bike lane decision x, we rewrite the bi-linear constraints

ξs ≥ ρrs (xs) · vs + ϵrs (xs) and λs −
∑

r∈Rξ
ρrs (xs) · σrs ≤ βD1 · Ts equivalently as

ξs ≥ρrs (1) · vs + ϵrs (1)−M1 · (1− xs) , r ∈ Rξ, s ∈ S, (B.10a)

ξs ≥ρrs (0) · vs + ϵrs (0)−M1 · xs, r ∈ Rξ, s ∈ S, (B.10b)

and

λs ≤βD1 · Ts +
∑
r∈Rξ

ρrs (1) · σrs +M2 · (1− xs) , s ∈ S, (B.11a)

λs ≤βD1 · Ts +
∑
r∈Rξ

ρrs (0) · σrs +M2 · xs, s ∈ S, (B.11b)

where M1 and M2 are large constants. For computational efficiency in solving the bike lane

path selection model BLP-A, we omit the OD pairs representing the smallest 20% of pairs

by demand within the study region (shaded area of Figure B.2). This yields a sub-network

that is still representative of commute patterns in the study region, but is significantly more

tractable. The resulting network is summarized in Table B.5.

Table B.5: Network Size in Bike Lane Planning

Road segment set Driving path set OD pair set

|S|
∣∣PD∣∣ |W|

Size 4,127 2,458 887

B.3.1 Sensitivity of Approximation Error to Number of Linear Segments

In our §4 empirical study, we set the number of piecewise linear segments in the approx-

imation BLP-A as |Rξ| = |Rψ| = 12. In this section, we investigate how the number of
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segments used in the linearization technique affects the approximation error between the ex-

act formulation BLP and the approximation BLP-A. To do so, we fix |Rξ| = |Rψ|, vary both

from 1 to 50, and compare the mode shares (dmw /d̄w) and driving times (tp) computed by

the linearized lower-level problem (3.31) to the true mode shares and driving times from the

exact lower-level problem (3.25). We assume the status quo bike lane network (i.e., x = x̃).

Note that the exact lower-level problem is a convex (quadratic) optimization problem and

can thus be solved to optimality.

Figure B.3 shows the relative errors in mode shares and driving times between the exact

and linearized user equilibrium problems. When |Rξ| = |Rψ| = 12, the relative errors for

cycling, driving and outside options shares are 1.25%, 0.42% and 0.27%, respectively, and

the average relative driving time error across all OD pairs is 1.21%. Note that because the

objective function of BLP is simply the total cycling demand
∑

w∈W dcw, the relative error in

cycling mode shares of 1.25% suggests the suboptimality bound in Theorem 4 is tight when

|Rξ| = |Rψ| = 12. In general, these results suggest that a modest number of linear segments

is sufficient for obtaining a good-quality MILP approximation of the exact path selection

model BLP.

B.3.2 Optimality Gaps at Termination of MILP Formulation

In solving the MILP reformulation of BLP-A with commercial solvers, we terminate solution

when either the optimality gap (MIP gap) is within 0.1% or the solution time reaches 6

hours. In Table B.6, we present the relative MIP gaps at termination for each of the 12

combinations of τ and B values used in the §4 study. The gaps are largest when both the

budget constraint B and the tolerance τ are small, with a maximum MIP gap of 23.4%

for the instance (B, τ) = (10, 5%). This magnitude of MIP gap is commonly observed for

computationally challenging bi-level programs (Dan and Marcotte 2019). Because BLP-A

is not solved to optimality, the estimated cycling ridership under the recommended bike

lane network presented in §4.5 and §4.6 are conservative estimates of the ridership under an
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(b) Path driving time errors.

Figure B.3: Approximation errors due to linearization of user equilibrium problem (3.25).

optimal solution to BLP-A.

Table B.6: Relative optimality gaps at termination when solving BLP-A as a MILP.

B = 10 B = 25 B = 50 B = 75

τ = 5% 23.59% 19.33% 12.83% 12.42%

τ = 10% 12.78% 5.02% 2.58% 0.90%

τ = 15% 12.72% 4.82% 1.76% 0.31%
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B.4 Comparison with Alternative Bike Lane Planning Methods

This section provides additional technical details and numerical results for the benchmark

methods discussed in §4.

B.4.1 Fixed-Time Model

The fixed-time model assumes that all driving times are unaffected by the addition of bike

lanes. The model is a variation of BLP-A, where the segment travel times ts are fixed to their

values under the status quo bike lane network x̃. Under this assumption, the total driving

disutility is

∑
w∈W

(∫ dDw (x)

0

uDw (x) · dd

)
=
∑
w∈W

βD0 · dDw (x) + βD1
∑
s∈S

ts(x̃) · vs. (B.12)

We then obtain the following fixed-time analog of S(x,d,v):

SFT (x,d,v) =
∑
w∈W

(
uCw(x) · dCw + βD0 · dDw

)
+ βD1

∑
s∈S

ts(x̃) · vs +
∑
w∈W

∑
m∈M

dmw · log (dmw ) .

(B.13)

Note that the dependence on the bike lane design variable x is now only via the cycling

utility uCw . The full fixed-time model is then given by

maximize
x,y,d,ϕ,v

∑
w∈W

dCw (B.14a)

subject to (3.24b)− (3.24d) (B.14b)

(d,ϕ,v) = argmin
d,(ϕ,v)∈Ω(dD)

SFT (x,d,v) . (B.14c)

As a result of the fixed-time assumption, congestion tolerance constraints such as (3.35) are

irrelevant in this model, and (B.14) does not permit control over driving times. The model

can be reformulated and linearized in the same manner as described in §3.4.2, which leads

to a MILP that can be solved using commercial optimization software. The termination

137



criteria are the same as in §B.3.2: the solver is terminated when the optimality gap (MIP

gap) is within 0.1% or the solution time reaches 6 hours. Table B.7 reports the optimality

gaps at termination for different values of B. We observe that the optimality gaps for the

fixed-time model (B.14) are comparable to the gaps for BLP-A presented in Table B.6.

Table B.7: Relative optimality gaps at termination when solving fixed-time model as a MILP.

B 10 25 50 75

Gap 15.74% 3.78% 0.83% 0.17%

B.4.2 Greedy Heuristic

Here we present detailed steps for the greedy heuristic discussed in §4.6. With a slight abuse

of notation, let d̃Cw be the cycling demand on OD pair w under the status quo bike lane

network x̃, and let dC,ww′ be the cycling demand on OD pair w′ if bike lanes are added to

path pCw . Similarly, let t̃p be the driving time on path p under x̃, and let twp be the driving

time on path p if a bike lane is added to path pCw . Define

τw = max
p∈PD

{
twp − t̃p
t̃p

}
(B.15)

to be the worst-case relative increase in driving times over all paths if a bike lane is added

to path pCw . Note that d
C,w
w′ and twp can be computed by modifying the network variable x to

contain the desired bike lanes and then solving the convex user equilibrium problem (3.25).

Next, define

Bw =
∑
s∈SCw

ℓs(1− x̃s), (B.16)

which represents the consumption of the budget B due to the addition of bike lanes to path

pCw . Lastly, define

δw =
1

Bw

∑
w′∈W

(
dC,ww′ − d̃Cw′

)
. (B.17)
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Intuitively, the parameter δw represents the average increase in system-wide cycling demand

per unit of bike lane added to path pCw . In other words, δw reflects the sensitivity (marginal

increase) of cycling ridership to the addition of bike lanes on path pCw . The pseudocode for

the greedy heuristic is presented below.

Greedy heuristic.

Input: Budget B, existing bike lane network x̃ and S̃, congestion tolerance τ ,

step parameter γ ∈ [0, 1], maximum of driving time increase σ = maxw∈W τw.

Output: New bike lane network xG.

1. Let Wk ⊆ W index the k largest values of δw. Let Wk
σ = {w ∈ Wk|τw ≤ σ} and

Skσ =∪w∈Wk
σ
SCw .

2. Set x̄ = x̃. Let G be the largest index in Wk
σ such that

∑
s∈SGσ

ℓs (1− x̃s) ≤ B.

Set x̄s = 1 for all s ∈ SGσ ∪ S̃.

3. If maxp∈PD{tp(x̄)/t̃p} > 1 + τ , update σ ← σ − γ and go to Step 1; else, set xG = x̄

and terminate.

B.4.3 Demand Heuristic

The demand heuristic greedily selects bike lane paths according the OD pairs with the highest

status-quo cycling demand. It differs from the greedy heuristic in that it ignores both the

congestion constraints and the network structure, but is still restricted to select from the

same set of candidate paths. The pseudocode is presented below.
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Demand heuristic.

Input: Budget B, existing bike lane network x̃ and S̃.

Output: New bike lane network xH .

1. Initialize xH = x̃. Let Wk ⊆ W index the k largest demands dCw and let Sk =∪w∈WkSCw .

2. Let H be the largest index such that
∑

s∈SH ℓs (1− x̃s) ≤ B.

3. Set xHs = 1 for all s ∈ SH ∪ S̃.

B.4.4 Results

Figure B.4 depicts the performance of BLP-A, the fixed-time model, the greedy heuristic,

and the demand heuristic for the full set of cases where B = {10, 25, 50, 75}. The results

are consistent with the findings discussed in §4.6 for the B = 25 case. First, the greedy

heuristic attains the lowest increase in cycling ridership. Second, although the fixed-time

model and demand heuristic both lead to substantial increases in cycling ridership, the

increase in congestion under those methods are comparable or worse than the prescriptions

from BLP-A.

In addition to the worst-case increase in driving time over all routes, as an alternative

measure of congestion we also evaluate the total system-wide driving time, which is computed

as ∑
w∈W dDw (x∗) · tw(x∗)−

∑
w∈W dDw (x̃) · tw(x̃)∑

w∈W dDw (x̃) · tw(x̃)
. (B.18)

Figure B.5 presents a comparison of all four methods according to the increase in cycling

ridership and total system-wide driving time. We note that the congestion-reducing demand

effect and congestion-increasing road effect discussed in §4.5 remain in effect here. Notably,

under most bike lane plans, the total system-wide driving time decreases compared to the

status quo. This is the result of the demand effect dominating the road effect, which also

explains why driving time is often decreasing in τ . Further, when the bike lane budget B is

small (B ∈ {10, 25, 50}), the recommended bike lane plan from BLP-A strictly dominates the
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greedy heuristic, and outperforms the fixed-time model and demand heuristic in at least one

criterion; when the budget is large (B = 75), all methods tend to perform similarly. This is

unsurprising because the bike lane plans produced by all methods less likely to differ under

a generous budget. Overall, these results suggest that the bike lane plans recommended by

our model continue to outperform the benchmark methods using the alternative congestion

metric of total system-wide driving time, and that our approach is particularly valuable

when the bike lane mileage budget is modest.
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(d) B = 75 miles.

Figure B.4: Comparison of BLP-A and benchmark methods on worst-case driving time and

cycling ridership.
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Figure B.5: Comparison of BLP-A and benchmark methods on system-wide driving time

and cycling ridership.

143



B.5 Validating WLS-A Estimator with Synthetic Data

We provide additional numerical results for validating our estimation procedure for θ. The

purpose of these experiments is two-fold: (1) to test the estimator’s ability to learn the true

parameter θ and the demand dD when demand data is incomplete (i.e., only observed at the

origins), and (2) to empirically verify the statistical consistency of the estimator (i.e., that

estimation error decreases in network size.)

B.5.1 Data and Setup

We consider four different sizes of networks, where |I| ∈ {250, 500, 750, 1000}. For each

network size, the underlying data-generation process is as follows. We first randomly generate

an undirected connected road network with |I| nodes, where the probability of any edge

(i.e., road segment) existing is 0.1. The length of each road segment ℓs is generated from the

uniform distribution with support [0, 100]. The free flow time Ts assumed to be 0.4 ·ℓs. Each

road segment has a total width ns ·ws uniformly distributed over the set {3, 3.3, 3.6}, which

are standard lane width values according to the Illinois Department of Transportation’s

Bureau of Local Roads and Streets Manual (Illinois DOT 2018).

Next, we randomly generate |W| = |I| different OD pairs from all possible OD combi-

nations. For each OD pair w ∈ W , the ground truth demand dDw is a random draw from

the uniform distribution with support [1, 101], and the path set PDw is constructed to be the

three shortest paths (in length) connecting the OD pair. We let d
(o)
w be the true total driving

demand at the origin for the pair w, and assume the observed demand at the origin of w is

given by d
(o)
w + εow, where ε

(o)
w ’s are drawn i.i.d. from the standard normal distribution.

We assume the congestion function αs(θ) is as given in (4.2). We generate a four-

dimensional ground-truth parameter vector θ0 by randomly generating each component from

the uniform distribution with support [0, 10−4]. The (unobserved) true equilibrium traffic

flow v∗(θ0) is then obtained by solving problem (B.20). The observed traffic flow is then
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assumed to be zs = v∗s(θ0) + εvs for s ∈ S, where εvs ’s are drawn i.i.d. from the standard

normal distribution.

For each randomly generated network, we repeat the estimation procedure for 50 different

randomly generated values of θ. To evaluate the performance of the estimator with and

without knowledge of demand destination data, we repeat the experiment assuming complete

knowledge of the demand vector dD for the case where |I| = |W| = 1000.

Let d̂D, θ̂ be the estimated OD demand and θ vectors. A summary of the experimental

setup is provided in Table B.8.

Table B.8: Summary of synthetic experiments.

Experiment |I| |W| |S| Observed Data Estimates Trials

O-250 250 250 201 d(o) + ε(o) d̂D, θ̂ 50

O-500 500 500 483 d(o) + ε(o) d̂D, θ̂ 50

O-750 750 750 1,107 d(o) + ε(o) d̂
D
, θ̂ 50

O-1000 1,000 1,000 1,630 d(o) + ε(o) d̂D, θ̂ 50

OD-1000 1,000 1,000 2,235 dD θ̂ 50

B.5.2 Estimation and Results

For each of the 50 trials, we apply the estimation procedure described in §B.1.2. In each trial,

we apply the BCD algorithm using 10 random starts of θ and varying λ ∈ {50, 100, 150, 200}.

The algorithm is terminated whenever the relative reduction in objective value is no more

than 10−4 from the previous iteration for three iterations in a row or the number of iterations

exceeds 50. For each value of λ, we identify the random start value for θ̂ that attains the

lowest loss according to the objective function of WLS-A. We then select λ as the value that
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minimizes the sum of three error terms:

∥d̂D − dD∥2
∥dD∥2︸ ︷︷ ︸
Err(d)

+
∥θ̂ − θ0∥2
∥θ0∥2︸ ︷︷ ︸
Err(θ)

+
∥α̂−α(θ0)∥2
∥α(θ0)∥2︸ ︷︷ ︸

Err(α)

, (B.19)

The first two terms are simply the normalized estimation errors for the true parameters dD

and θ0. Note that because the congestion functions αs(θ), s ∈ S depend on the unknown

parameter θ0, we can also measure how well the estimator recovers the true congestion

functions, i.e., αs(θ0). This error is captured by the third term in (B.19), where α̂ is the

estimate of the function value.

Figure B.6 visualizes the errors for all experiments, and Table B.9 reports average errors

over 50 trials. We offer a few remarks on the results. First, in the main setting where demand

data is incomplete (O-250 to O-1000), the estimation error for θ decreases from 0.22 to 0.066

as the size of the network grows from 250 to 1000 nodes (and the number of segments grows

from 201 to 2,235). This decrease in error aligns with the consistency result provided in

Theorem 3. However, we note that our experimental setting differs from what is assumed

by Theorem 3 in the following ways: 1) for tractability we solve the approximate estimator

WLS-A instead of the exact estimatorWLS, 2) the BCD algorithm is not guaranteed to return

a globally optimal solution to either WLS-A or WLS, and 3) we assume the demand data

is incomplete in that only aggregated origin-level demands are observed. Nevertheless, our

numerical results suggest that the proposed estimation procedure is reasonably accurate at

recovering the ground-truth congestion parameter, even when the assumptions of Theorem

3 are not strictly satisfied. Second, as expected, when demand data is incomplete (O-1000),

the estimation errors for θ is higher (0.066 vs. 0.044) than when complete demand data

is available (OD-1000). Taken together, these results provide empirical evidence in support

of Theorem 3 and suggest that solving the approximate estimator WLS-A using the block

coordinate descent algorithm described in §B.1.2 produces sound estimates on realistically

sized networks.
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Table B.9: Normalized estimation errors over 50 trials.

Experiment Err(d) Err(α) Err(θ)

O-250 0.0450 0.0263 0.2211

O-500 0.0351 0.0189 0.1043

O-750 0.0319 0.0153 0.0799

O-1000 0.0262 0.0130 0.0663

OD-1000 - 0.0057 0.0440
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Figure B.6: Normalized estimation errors of dD, θ, and α for varying network sizes and

demand data availability.
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B.6 Proofs

Proof of Proposition 5. First, for any fixed bike lane design x, driving demand dD, and

congestion parameter θ, it can be shown that (ϕ,v) ∈ Ψ(dD,θ) if and only if (ϕ,v) is an

optimal solution to the following convex program:

minimize
ϕ,v

∑
s∈S

(
1

2
· αs(x,θ) · v2s + Ts · vs

)
(B.20a)

subject to
∑
p∈PDw

ϕp = dDw , w ∈ W , (B.20b)

vs =
∑

{p∈PD|s∈SDp }

ϕp, s ∈ S, (B.20c)

ϕ, v ≥ 0. (B.20d)

This equivalence follows from a well-known result shown in Beckmann et al. (1956) [add

more here]. Next, we re-write formulation (B.20) by using a variable change based on the

equality in (B.20c). Substituting
∑

{p∈PD|s∈SDp } ϕp for vs allows us to take the constraint

(B.20c) into the objective (B.20a), which yields

g(ϕ,θ) =
∑
s∈S

1

2
· αs(x̃) ·

 ∑
{p∈PD|s∈SDp }

ϕp

2

+ Ts ·

 ∑
{p∈PD|s∈SDp }

ϕp

 (B.21)

It follows that (ϕ, v) ∈ Ψ(dD,θ) if and only if ϕ is an optimal solution to

minimize
ϕ

g (ϕ,θ) (B.22a)

subject to
∑
p∈PDw

ϕp = dDw , w ∈ W , (B.22b)

ϕ ≥ 0. (B.22c)
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Next, expressing optimality conditions as a variational inequality, a candidate solution ϕ is

optimal to (B.22) if and only if the following inequalities hold:

∇ϕg (ϕ,θ)⊤
(
ϕ̃− ϕ

)
≥ 0, (B.23a)∑

p∈PDw

ϕ̃p = dDw , w ∈ W , (B.23b)

ϕ̃ ≥ 0, (B.23c)

where ∇ is the gradient operator and the pth (for all p ∈ P) element in ∇ϕg (ϕ,θ) is

∂g(ϕ,θ)
∂ϕp

=
∑

s∈SDp
αs(x̃)vs +

∑
s∈SDp

Ts. Following Theorem 1 of Aghassi et al. (2006), it can

be shown using linear programming duality that a candidate solution ϕ solves (B.23) if and

only if there exists a vector b ∈ R|W| such that

∑
{w∈W|p∈PDw }

bw ≤ ∇ϕpg (ϕ,θ) , p ∈ P , (B.24a)

∇ϕg (ϕ,θ)⊤ϕ−
(
dD
)⊤

b = 0. (B.24b)

Therefore, (ϕ, v) ∈ Ψ(dD,θ) if and only if (ϕ, v, b) satisfies (B.20b), (B.20c), and (B.24).

The result follows because WLS also minimizes ∥ v − z∥22 over Θ in addition to satisfying

(ϕ, v) ∈ Ψ(dD,θ). □

Proof of Proposition 6. We assume x and θ are fixed and suppress dependence on them

throughout the proof. It is straightforward to verify that S(x,d, v) is strictly convex in

(d, v). Uniqueness of (d, v) them follows from standard arguments using strict convexity

of the optimization problem (3.25). In the remainder of the proof, we show that (d,ϕ, v) ∈

Γ(x) if and only if (d,ϕ, v) solves (3.25). Using vs =
∑
{p∈PD|s∈SDp } ϕp, s ∈ S from (3.1),
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the user equilibrium problem (3.25) can be rewritten as

minimize
ϕ≥0,d

S ′(d,ϕ) (B.25a)

subject to d̃w =
∑
m∈M

dmw , w ∈ W , (B.25b)

dDw −
∑
p∈Pw

ϕDp = 0, w ∈ W , (B.25c)

where

S ′(d,ϕ) =
∑
w∈W

(
uOwd

O
w + uCwd

C
w + βD0 d

D
w

)
+ βD1

∑
s∈S

(∫ ∑
{p∈PD |s∈SDp } ϕp

0

ts (v) · dv

)
(B.26a)

+
∑
w∈W

(
dDw log

(
dDw
)
+ dCw log

(
dCw
)
+ dOw log

(
dOw
))
. (B.26b)

Let λp, µw and γw be the Lagrangian multipliers for constraints ϕp ≥ 0, p ∈ PD, (B.25b)

and (B.25c), respectively. We can then write the Lagrangian as

L (d,ϕ) = S ′(d,ϕ)−
∑
p∈PD

λpϕp +
∑
w∈W

µw (dOw + dCw + dDw − d̃w
)
+ γw

dDw − ∑
p∈PDw

ϕDp

 .

(B.27)

It is straightforward to verify that S ′(d,ϕ) is convex in (d,ϕ) and that dmw > 0 for all

m ∈ M. It follows that a solution (d,ϕ,v) is optimal to problem (3.25) if and only if

there exist λ,µ,γ that satisfy the Karush-Kuhn Tucker conditions of (3.25), i.e., the primal

feasibility constraints ϕp ≥ 0, p ∈ PD, (B.25b) and (B.25c), the dual feasibility constraints

λp ≥ 0, p ∈ PD, complementary slackness conditions λpϕp = 0, p ∈ PD, and the stationarity

conditions

∂L
∂dOw

= uOw + log dOw + µw = 0, w ∈ W (B.28a)

∂L
∂dCw

= uCw + log dCw + µw = 0, w ∈ W , (B.28b)

∂L
∂dDw

= βD0 + log dDw + µw + γw = 0, w ∈ W , (B.28c)

∂L
∂ϕp

= βD1
∑
s∈SDp

ts (vs)−
∑

{w∈W|p∈PDW }

γw = λp, p ∈ PD. (B.28d)
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Using the definition given in (3.5) that tp(v) =
∑

s∈SDp
ts (vs), and using the dual feasibil-

ity and complementary slackness conditions, it is straightforward to show that (B.28d) is

equivalent to

∂L
∂ϕp

= βD1 · tp(v)−
∑

{w∈W|p∈PDW }

γw


= 0, if ϕp > 0,

≥ 0, if ϕp = 0,

p ∈ PD. (B.29)

Next, using (3.6), it can be shown that γw = β1 · tw for all w ∈ W satisfies (B.29). Then by

the definition of driving disutility uDw in (3.8), it follows that uDw = β0 + γw. Next, note that

solving (B.28a)–(B.28c) and (B.25b) yields the unique solution

dmw = d̃w
e−u

m
w

e−uCw + e−(β0+γw) + e−uOw
, m ∈ {C,O} , w ∈ W , (B.30a)

dDw = d̃w
e−(β0+γw)

e−uCw + e−(β0+γw) + e−uOw
, w ∈ W , (B.30b)

which implies

dmw = d̃w
e−u

m
w

e−uCw + e−uDw + e−uOw
, m ∈M, w ∈ W . (B.31)

Note that (d∗,ϕ∗) is optimal to (B.25) if and only if (d∗,ϕ∗,v∗) is optimal to (3.25), where

v∗s =
∑
{p∈PD|s∈SDp } ϕ

∗
p, for all s ∈ S from (3.1b). Then observing the equivalence between

(B.29) and (3.6), and between (B.31) and (3.12), we conclude that (d∗,ϕ∗, v∗) is an optimal

solution to problem (3.25) if and only if (d,ϕ,v) ∈ Γ(x). □

Proof of Theorem 3. The proof proceeds in two steps. First, we show that for any x,

Ln(θ) is a continuous function of θ. Second, we prove the main result. For conciseness,

we assume x to be fixed and suppress dependence on it throughout. Step 1. By definition,

Ln(θ) = ∥ v − z∥22 where v is an equilibrium segment flow under θ. Therefore, to show

continuity of Ln(θ), it suffices to show there is a unique equilibrium segment flow v∗(θ) that

is also continuous in θ. Uniqueness of v∗(θ) is a straightforward extension of a classical

result regarding Wardrop equilibrium (Hall 1978). Next, we prove continuity by following the

argument for Proposition 3.1 in Cominetti et al. (2021). First, define τs(θ) := ts( v∗(θ),θ)
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to be the equilibrium travel time on segment s, and let τ (θ) and t(θ) be the vectors of τs

and ts, respectively. Next, from the proof of Proposition 5, note that v∗(θ) is attained at

an optimal solution to the convex optimization problem (B.20). Let the objective function

of (B.20) be defined as:

f (·) :=
∑
s∈S

(
1

2
· αs(x,θ) · v2s + Ts · vs

)
(B.32)

Next, following Fukushima (1984), for any fixed θ, τ (θ) is the unique solution to the fol-

lowing strictly convex dual program:

min
t

f ∗ (t,θ)−
∑
w∈W

dDw · min
p∈Pw

∑
s∈SDp

ts(θ)

 (B.33)

where f ∗ (·) is the conjugate of f(·) and is strictly convex. By Berge’s maximum theorem,

because (B.33) is jointly continuous in (t,θ), it follows that τ (θ) is upper hemicontinuous

in θ (Charalambos and Aliprantis 2013). Because τ (θ) is unique, it is then continuous in

θ. Next, because ts (v) is strictly increasing and continuous in vs for all s ∈ S, the inverse

v∗ (θ) = t−1 (τ (θ)) is also continuous in θ. It follows that Ln(θ) is a continuous function of

θ. Step 2. Because Ln(θ), By Lemma 1 of Wu (1981), it suffices to show that for all θ ̸= θ0,

Ln(θ) − Ln(θ0) −→ ∞ as n −→ ∞. Note that we can write the loss function more simply

as Ln(θ) = ∥ v∗(θ)− z∥22. Further, note that for any θ ̸= θ0, we have

Ln(θ)− Ln(θ0) = ∥ v(θ)− z∥22 − ∥ v(θ0)− z∥22 (B.34a)

=
n∑
s=1

(vs(θ)− vs(θ0)− εs)2 −
n∑
s=1

(vs(θ0)− vs(θ0)− εs)2 (B.34b)

=
n∑
s=1

(vs(θ)− vs(θ0))2 − 2
n∑
s=1

εs(vs(θ)− vs(θ0)), (B.34c)

where the final inequality follows from algebraic simplification. Because the errors εs are

drawn i.i.d. from a distribution with E[ε] = 0, and vs(θ)−vs(θ0) is bounded from above and

below for all s = 1, . . . , n, it follows from the weak law of large numbers that
∑n

s=1 εs(vs(θ)−

vs(θ0)) −→ 0 as n −→ ∞. Next, because
∑n

s=1(vs(θ) − vs(θ0))
2 −→ ∞ as n −→ ∞ by
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condition (ii), it follows that Ln(θ)− Ln(θ0) −→∞. The result follows. □

Proof of Theorem 4. We first introduce some additional notation. Let

γ =

 d

v

 (B.35)

be the stacked vector of d and v. Further, for any x, let

γ∗(x) =

 d∗(x)

v∗(x)

 , γ̃(x) =

 d̃(x)

ṽ(x)

 , (B.36)

where (d∗(x),v∗(x)) and (d̃(x), ṽ(x)) are the optimal solutions of the exact user equilib-

rium problem (3.25) and the linearized user equilibrium problem (3.31), respectively. Let

Ŝ(x,γ) = S(x,d, v) and Ĉ(x,γ) = C(x,d, v). Finally, let

e = µ1

√
|W|

(
µ2

√
|S|

|Rξ| − 1
+ µ3

√
3|W|

|Rψ| − 1

)
, (B.37)

where µ1 = max
{
d̄, 1/(βD1 · α)

}
, µ2 = βD1 · αs(x) · (v̄ − v), and µ3 = log

(
d̄
)
− log (d). The

proof proceeds in three steps. First, we show that for any x, R (x,γ) is strongly monotone

of modulus µ1 = max
{
d̄, 1

βD1 ·α

}
in γ. Second, we show that for any x, |Ĉ (x,γ∗(x)) −

Ĉ(x, γ̃(x))| ≤ e. Lastly, we use the results from Step 1 and Step 2 to prove the main result.

Step 1. By definition of R (x,γ), we have

R (x,γ) = ∇γS (x,γ) = diag




log
(
dDw
)
+ βD0 + 1 : w ∈ W

log
(
dCw
)
+ uCw + 1 : w ∈ W

log
(
dOw
)
+ uOw + 1 : w ∈ W

βD1 (αs(x) · vs + Ts) : s ∈ S



 , (B.38)

where diag (k) is a diagonal matrix whose diagonal elements are vector k. It then follows

that

∇γR (x,γ) = diag

 1/dmw : w ∈ W ,m ∈M

βD1 αs(x) : s ∈ S

 . (B.39)
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Note that for any fixed x, because dmw ≤ d̄ ∇γR (x,γ) is a positive definite diagonal ma-

trix, with smallest possible eigenvalues min{1/d̄, βD1 ·α}. Therefore, R(x,γ) is strongly mono-

tone of modulus max
{
d̄, 1/

(
βD1 · α

)}
in γ (cf. Proposition 8, Dan and Marcotte (2019)).

Step 2. From (3.28), Ŝ(x,γ) can be written as

Ŝ (x,γ) = βD1
∑
s∈S

(Ts · vs) + βD1
∑
s∈S

ξs (vs)︸ ︷︷ ︸
S1(x,γ)

+
∑
w∈W

(
uOwd

O
w + uCwd

C
w + βD0 d

D
w

)
+
∑
w∈W

∑
m∈M

ψ (dmw )︸ ︷︷ ︸
S2(x,γ)

.

(B.40)

Let R1 (x,γ) = ∇γS1 (x,γ) and R2 (x,γ) = ∇γS2 (x,γ). Let S̃1, S̃2, and S̃ be the piece-

wise linear approximations of S1, S2 and Ŝ, respectively, and let R̃1(x,γ) = ∇γS̃1(x,γ),

R̃2(x,γ) = ∇γS̃2(x,γ), and R̃ (x,γ) = ∇γS̃ (x,γ). Because Ŝ (x,γ) and S̃ (x,γ) are both

convex in γ, it follows that

⟨−R (x,γ∗) ,γ∗ − γ̃⟩ ≥ 0, (B.41a)

⟨R̃ (x, γ̃) ,γ∗ − γ̃⟩ ≥ 0, (B.41b)

where ⟨·⟩ is the Euclidean inner product operator. By summing the two inequalities above,

we obtain

⟨R̃ (x, γ̃)−R (x,γ∗) ,γ∗ − γ̃⟩ ≥ 0. (B.42)

Next, by Step 1 and the definition of strong monotonicity, it follows that

⟨R (x,γ∗)−R (x, γ̃) ,γ∗ − γ̃⟩ ≥ 1

µ1

∥γ∗ − γ̃∥2 . (B.43)

Combining (B.42) and (B.43) yields

⟨R̃ (x, γ̃)−R (x, γ̃) ,γ∗ − γ̃⟩ ≥ 1

µ1

∥γ∗ − γ̃∥2. (B.44)

Applying the Cauchy-Schwarz inequality, we have

µ1∥R̃ (x, γ̃)−R (x, γ̃) ∥ ≥ ∥γ∗ − γ̃∥ . (B.45)
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Next, using the definition of Ĉ(x,γ) and the Cauchy–Schwarz inequality, we have∣∣∣Ĉ(x,γ∗)− Ĉ (x, γ̃)
∣∣∣ = ∣∣∣∣ ∑

w∈W

(dC∗
w (x)− d̃Cw(x))

∣∣∣∣ (B.46a)

≤
√
|W| · ∥γ∗ − γ̃∥. (B.46b)

It follows from (B.45) and (B.46b) and that

|C (x,γ∗)− C (x, γ̃)| ≤
√
|W| · ∥γ∗ − γ̃∥ (B.47a)

≤ µ1

√
|W| · ∥R̃ (x, γ̃)−R (x, γ̃) ∥. (B.47b)

Next, we bound the right hand side of (B.46b). We do so by first decomposing the term

∥R̃ (x, γ̃)−R (x, γ̃) ∥ using R1, R2, R̃1, and R̃1. Let ξ̃ and ψ̃ be the piecewise linear approx-

imations of ξ and ψ, respectively. Then

S̃1(x,γ) = βD1
∑
s∈S

(Ts · vs) + βD1
∑
s∈S

ξ̃s (vs) , (B.48a)

S̃2(x,γ) =
∑
w∈W

(
uOwd

O
w + uCwd

C
w + βD0 d

D
w

)
+
∑
w∈W

∑
m∈M

ψ̃ (dmw ) . (B.48b)

By differentiating, we obtain

R̃1(x,γ)−R1(x,γ) = diag

 03|W|

βD1

(
∂ξ̃s(vs)
∂vs

− αs(x) · vs
)
: s ∈ S

 , (B.49a)

R̃2(x,γ)−R2(x,γ) = diag

 ∂ψ̃(dmw )
∂dmw

− (log (dmw ) + 1) : w ∈ W ,m ∈M

0|S|

 , (B.49b)

where 0a is the a× 1 vector of zeros. By construction, the linear segments in the piecewise

linear function ξ̃s (·) have slopes that are equidistant in the interval αs (x) · [v, v̄], and the

difference between two consecutive slope values is (βD1 αs(x) · (v̄ − v) /(|Rξ| − 1). It follows

that ∣∣∣∣∣βD1
(
∂ξ̃s (vs)

∂vs
− αs(x) · vs

)∣∣∣∣∣ ≤ µ2 ·
1

|Rξ| − 1
(B.50)
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holds for all s ∈ S, which implies

∥R̃1(x,γ)−R1(x,γ)∥ =

√√√√∑
s∈S

(
βD1

(
∂ξ̃s (vs)

∂vs
− αs(x) · vs

))2

(B.51a)

≤ µ2 ·
√
|S|

|Rξ| − 1
. (B.51b)

Similarly, for any w ∈ W and m ∈ M, because the linear segments in the piecewise linear

function ψ̃ (·) have slopes that are equidistant in the interval
[
1 + log(d), 1 + log(d̄)

]
, the

difference between two consecutive slope values is (log
(
d̄
)
− log (d))/(|Rψ| − 1). It follows

that
∂ψ̃ (dmw )

∂dmw
− (log (dmw ) + 1) ≤ µ3 ·

1

|Rψ| − 1
(B.52)

holds for every w ∈ W and m ∈M, which implies

∥∥∥R̃2(x,γ)−R2(x,γ)
∥∥∥ =

√√√√∑
m∈M

∑
w∈W

(
∂ψ̃ (dmw )

∂dmw
− (log (dmw ) + 1)

)2

(B.53a)

≤ µ3 ·
√

3|W|
|Rψ| − 1

. (B.53b)

Combining inequalities (B.47b), (B.51b) and (B.53b), we obtain

|C (x,γ∗)− C (x, γ̃)| ≤ µ1

√
|W|

∥∥∥R̃ (x, γ̃)−R (x, γ̃)
∥∥∥ (B.54a)

≤ µ1

√
|W|

(∥∥∥R̃1(x, γ̃)−R1(x, γ̃)
∥∥∥+ ∥∥∥R̃2(x, γ̃)−R2(x, γ̃)

∥∥∥)
(B.54b)

≤ µ1

√
|W|

(
µ2 ·

√
|S|

|Rξ| − 1
+ µ3 ·

√
3|W|

|Rψ| − 1

)
(B.54c)

= e, (B.54d)

as desired. Step 2. We now show 0 ≤ C (x∗,d∗ (x∗) ,v∗ (x∗)) − C (x̃,d∗ (x̃) ,v∗ (x̃)) ≤ 2e.

Note that from (B.54d) and the definitions of γ∗ and γ̃, we have

C(x̃,d∗ (x̃) ,v∗(x̃) + e ≥ C(x̃, d̃ (x̃) , ṽ (x̃)), (B.55a)

C(x∗,d∗ (x∗) ,v∗ (x∗))− e ≤ C(x∗, d̃ (x∗) , ṽ (x∗)). (B.55b)
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Next, because x∗ and x̃ are the optimal solutions to BLP and BLP-A and C(x,d, v) is the

objective function of both BLP and BLP-A, it follows that

C(x∗, d̃ (x∗) , ṽ (x∗)) ≤ C(x̃, d̃ (x̃) , ṽ (x̃)), (B.56a)

C (x̃,d∗ (x̃) ,v∗ (x̃)) ≤ C (x∗,d∗ (x∗) ,v∗ (x∗)) . (B.56b)

Combining (B.55) and (B.56), we have

0 ≤ C (x∗,d∗ (x∗) ,v∗ (x∗))− C (x̃,d∗ (x̃) ,v∗ (x̃)) ≤ 2e, (B.57)

which concludes the proof. □
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Zhao, Qi, Arion Stettner, Ed Reznik, Daniel Segrè, Ioannis Ch Paschalidis. 2015. Learning cellular

174



objectives from fluxes by inverse optimization. 2015 54th IEEE Conference on Decision and

Control (CDC). IEEE, 1271–1276.

Zhu, Jing, Yingling Fan. 2018. Daily travel behavior and emotional well-being: Effects of trip

mode, duration, purpose, and companionship. Transportation Research Part A: Policy and

Practice 118 360–373.

175




