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Abstract

Bitmap indexes are known as the most effective indexing methods for range queries on append-only

data, especially for low cardinality attributes. Recently, bitmap indexes were also shown to be just as

effective for high cardinality attributes when certain compression methods are applied. There are many

different bitmap indexes in the literature but no definite comparison among them has been made, largely

because there is no accurate prediction of their index sizes and search time. This paper presents a sys-

tematic evaluation of two large subsets of compressed bitmap indexes that use multi-component and

multi-level encodings. We combine extensive analyses with ample experimental results to confirm them,

whereas earlier studies of these indexes are either empirical or for uncompressed indexes only. Our

analyses provide highly accurate predictions that agree with test measurements. These analyses not only

identify the best methods in terms of index size and query processing cost, but also reveal new ways of

using multi-level methods that significantly improve their performance. Using the best parameters ob-

tained through analyses, we produce three two-level indexes with the optimal computational complexity.

Furthermore, the fastest two-level indexes are predicted and observed to be 5 to 10 times faster than other

well-known indexes.

1 Introduction

Various bitmap indexes have been demonstrated to significantly speed up searching operations in data ware-

housing, On-Line Analytical Processing (OLAP), and many scientific data management tasks [4, 8, 12, 16,

17, 23, 25, 33]. This has led a number of commercial database management systems (DBMS) to support

bitmap indexes [2, 17]. However, most of the bitmap index implementations in commercial DBMS are

relatively simple, such as the basic bitmap index [20] or the bit-sliced index [21]. There is a significant

number of promising techniques proposed in the research literature that have not gained wide acceptance

yet. We believe that a poor understanding of their performance characteristics is the most important reason

for this lack of implementation. For example, many of these bitmap indexes are analyzed without consider-

ing compression, even though compression is critical to ensure good performance in practice. In this paper,

we conduct a thorough performance evaluation to account for the effects of compression, with the goal of

finding the best bitmap indexing method.

All known strategies to improve the basic bitmap index may be divided into three categories called

binning, encoding and compression [28]. Among the three, encoding is by far the largest category, however

their impacts on the overall index performance are less studied than those of binning or compression. For

this reason, studying the encoding methods is more likely to lead to the best bitmap index method.

All encoding methods proposed in the past ten years can be categorized as either a multi-component

encoding or a multi-level encoding. So far, most of the encoding methods are either studied without com-

pression, or with a limited number of empirical observations. In this paper, we plan to remedy this situation

by performing an extensive analytical study of all encoding methods. In order for the study to be realistic,

we always use the most powerful compression method found in literature. Under this compression, we are
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able to obtain precise analytical formulas for both the index sizes and the query processing costs for all

multi-component and multi-level encodings. We also provide extensive tests to show that the formulas are

indeed accurate for a variety of data and queries.

Through our analyses, we also identify a number of encoding methods that produce compact indexes

and require low query processing costs. Among these methods, a new two-level interval-equality encoding

appears to be the winner. It requires much less query response time on average than the bit-sliced index and

the basic bitmap index (with compression), at the cost of using somewhat more space. However, it still uses

less space than a typical B-Tree index from a commercial DBMS system.

In the remaining of this paper, we first present in Section 2 a review of different bitmap indexes and

point out how this paper goes beyond what is in literature. We discuss the multi-component and multi-level

indexes along with their performance characteristics without compression in Section 3 and Section 4. The

analyses of the compressed bitmap indexes span three sections, from Section 5 to 7. In Section 5, we analyze

three basic one-component encodings; in Section 6, the multi-component encodings; and in Section 7, the

multi-level encodings. As a summary of these analyses, we discuss the optimality of these compressed

indexes in Section 8. In Section 8, we also identify five indexing methods for an empirical performance

study. These indexes all take less disk space than commonly used B-Tree indexes, and have lower query

processing costs. The empirical study is presented in Section 9. A brief summary and discussion on future

directions are given in Section 10.

2 Review

Following the publication of O’Neil’s seminal paper on bitmap indexes [20], there has been a number of

publications on the subject [5, 6, 7, 15, 18, 22, 21, 26, 32, 39, 38, 37]. In addition, there are a number

of techniques from closely related indexing techniques which can be easily adapted to bitmap indexes as

well, such as inverted files [31] and signature files [11, 40]. In this section, we briefly review known bitmap

indexes based on how they are constructed. We use this review to help us identify the largest groups of

methods that can be analytically studied. We also discuss the distinctions between this work and related

ones.

We regard an indexing technique to be a bitmap index if the bulk of the index data is stored as sequences

of bits and these bit sequences are primarily used in bitwise logical operations to answer queries. Typically,

each sequence of bits has as many bits as the number of rows in the data table. Each such sequence is called

a bitmap, which gives rise to the name of bitmap index. Following the taxonomy outlined in [28], we divide

the bitmap indexing techniques into three categories, namely, binning [15, 32, 39], encoding [6, 7, 21] and

compression [1, 5, 34]. A bitmap index typically uses a combination of these three types of techniques,

though it is common to omit one or two. For example, the first commercial implementation of a bitmap in

Model 204 uses equality encoding without binning or compression [20].

Binning: Given a set of arbitrary values, the objective of the binning step is to produce a set of identifiers

(e.g., bin numbers) to be used in later steps of bitmap index construction. The example shown in Figure 1

illustrates how a set of floating-point values are divided into three bins. In a more general case, the values

may be divided into an arbitrary number of bins, and a bin may contain disjoint ranges of values. A basic

binning strategy is to have each distinct value in a single bin which effectively implies no binning. On a

digital computer, all values are discrete and therefore it is always possible to build a bitmap index with no

binning, regardless whether the values are strings, integers or floating-point numbers.

The cardinality C of an attribute in a dataset is defined to be the number of distinct values it has. With no

binning, we can think of it as using C bins. A typical binning strategy will use less bins. The key advantage

of binning is that it may reduce index sizes; however, the disadvantage is that the index is no longer able to

fully resolve all queries. For example, the range condition “A< 0.3” can not be resolved with the bins shown

in Figure 1 because the query boundary (0.3) does not fall on a bin boundary. The bin a query boundary

falls in is known as an edge bin. One has to examine all values in the edge bin in order to accurately answer

the query. This step of checking all values in the edge bins called candidate check can dominate the total
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Figure 1: An illustration of the first two steps of the bitmap index construction process.

query processing time [29, 30, 26].

In later analyses, we choose to consider only no binning to avoid the candidate check. Additionally, with

no binning, the compressed bitmap indexes can have reasonable sizes and good performance.

Encoding: Conceptually, the encoding step takes the bin identifier for each row and translates it to a set

of bits. Usually, each bit is appended to a bitmap. This results in a series of bitmaps with as many bits as the

number of rows. In the simplest encoding, a bitmap corresponds to exactly one bin. This encoding is known

as equality encoding [6] (which was also called 1-of-N and unary encoding in [31]), where a bit is set to 1 if

the value of a row falls in the bin corresponding to the bitmap. An illustration of this is shown in Figure 1,

where each bitmap (a column in the illustration) represents a single bin. Note that equality encoding is well

suited for a type of queries called equality queries, such as, “A = 3.” We use the term basic bitmap index to

denote an equality encoded index with no binning.

Other common encoding schemes include range encoding and interval encoding. In these encodings, an

ordering among the bin identifiers is needed. Since bins are typically identified with integers, this require-

ment is easily satisfied. For range encoding, a bit corresponding to a row is set to 1 if the bin identifier is

less than or equals to the identifier associated with the bitmap. This encoding is well suited for one-sided

range queries such as “A < 5.”

Each bitmap under interval encoding corresponds to a set of the bins. In the example shown in Figure 1,

the first bitmap corresponds to bins 0 and 1, while the second bitmap corresponds to bins 1 and 2. In general,

each bitmap under interval encoding corresponds to about half the bins and the number of bitmaps is about

half the number of bins [7]. In addition to reducing the number of bitmaps compared with equality encoding

and range encoding, this encoding was also shown to be well suited for two-sided range queries such as

“5 ≤ A < 8.”

More sophisticated encoding schemes can be generated from the above three basic encoding schemes,

equality encoding, range encoding and interval encoding. One approach is to decompose the bin number

into several components (described in Section 3) and encode each component using a basic encoding scheme

[6, 7]. We call them multi-component encodings. The best known example of such an encoding is the binary

encoding [31], which is also known as the bit-sliced index [21]. Another strategy of extending the basic

encoding schemes is the multi-level encoding (described in Section 4), which can be viewed as using a

hierarchy of bins of different resolutions [35, 27].

If we allow the multi-component encodings to include the one-component variants, then the classes of

multi-component and multi-level encodings cover almost all known encoding methods. Other encoding

methods, such as the K-of-N encoding [31] and the superimposed encoding [14], are not actively used for
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bitmap indexes.

Compression: To reduce the storage requirement, each bitmap generated from the encoding step may be

compressed. Any lossless compression method can be used for this purpose, but they may have drastically

different query processing cost. For example, most generic text compression methods, such as LZ77, are ef-

fective in reducing the index size on disk, but they can also significantly increase the time required to answer

a query, because the compressed bitmaps have to decompressed before being used in logical operations. To

reduce the query response time, specialized compression methods are usually used. One such method is

the Byte-Aligned Bitmap Code (BBC) [1, 13]. It can compress bitmaps as well as the best generic text

compression methods, and at the same time it also reduces the query response time. The BBC compressed

basic bitmap index is implemented in ORACLE DBMS.

Recently, another compression method called the Word-Aligned Hybrid (WAH) code has been shown

to outperform BBC in most cases [29, 37, 34]. This method trades some space for more efficient CPU

operations. In one set of tests, it was shown to use about 50% more space than BBC, but answered queries

10 times faster on average [36]. WAH compressed indexes are efficient because they particularly simple (see

[37] for a contrast with BBC). This simplicity also makes it amenable to analysis as demonstrated in [34].

Existing literature involving WAH compression mostly concentrate on demonstrating the effectiveness of

this compression method using one index, the basic bitmap index. In fact, a WAH compressed basic bitmap

index can answer a range query in O(h) time, where h is the number of hits. In terms of computational

complexity theory, it is an optimal indexing method, an exclusive club including some of the best B-Tree

indexes such B+Tree and B∗-Tree [9]. Because of these reasons, we regard WAH as the best compression

for our study and choose to use it to limit the scope of this paper.

In summary, among all possible combinations of bitmap indexes, we plan to analyze those with WAH

compression and no binning. This significantly extends earlier work on WAH compression, which only con-

sidered the basic bitmap index [29, 34]. It also significantly extends the earlier work on different encoding

methods [6, 7], which did not thoroughly consider the effects of compression. Even though some authors did

consider compression in their performance studies [35, 27], they presented only a small number of empirical

measurements. In this paper, we present extensive analyses of all encoding methods proposed in the last ten

years and support the analytical study with careful performance measurements. Furthermore, the analytical

results also lead to new and more efficient encoding methods that were not previously considered.

3 Multi-Component Indexes

The multi-component indexes include most of the common encoding methods, such as the basic bitmap

index [20] and the bit-sliced index [17, 21]. They are constructed from the three basic encoding schemes by

decomposing the bin numbers into several components. For example, the bin numbers (0, . . . ,999) for 1000

bins may be broken into three components of basis size 10 each. Each of these components would be a digit

of the three-digit decimal numbers. Let i denote the bin number, i1, i2 and i3 denote the values of the three

components, the relation among them can be written as i = 100i1 + 10i2 + i3. In general, each component

may be a different size. Such a three-component index can be viewed as composed of three separate bitmap

indexes on i1, i2 and i3; and each component could be encoded independently with one of the three basic

encoding methods.

The multi-component encoding defined above mostly follows the definition given in reference [6]. How-

ever, this encoding was also described earlier by Wong at al. [31].

A multi-component encoding is usually constructed with some user input parameters. For example, if

the user chooses the number of components, then it is possible to automatically decide the size of each

component to minimize the number of bitmaps generated. For instance, if a user specified to use a two-

component encoding for 100 bins, then having each component of size 10 is a reasonable choice. One

objective of analyzing this type of multi-component encoding is to find the optimal strategies to decide the

number of components to use. In an earlier study, Chan and Ioannidis [6] suggested that the optimal number

of components to use is 2. Their analysis only considered bitmap indexes without compression. With WAH
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compression, the optimal number may be different.

An alternative to fixing the number of components is fixing the base size of each component and use as

many components as necessary to represent all the bin numbers. For example, we may fix the component

base size to be always 2. In the above example of 100 bins, it requires 7 components (27 > 100). In this

special case, we only need to store one bitmap for each component. This is true no matter which of the three

basic encoding schemes is used. We call this special case the binary encoding [31]. The binary encoded

bitmap index is also known as the bit-sliced index [21]. Among all possible choices of fixed base sizes, this

base size 2 is very unique because it produces the least number of bitmaps. In our performance study, we

only consider this binary encoding as the representative of fixing base sizes for multi-component encodings.

Let B denote the number of bins. The binary encoding uses ⌈log2 B⌉ bitmaps. For ease of comparisons,

we will neglect the ceiling operator (⌈⌉) and simply write the number of bitmaps as log2 B. Because nearly

every bitmap is needed to answer a query when using a binary encoded index, we always read in all the

bitmaps from disk when a binary encoded index is needed. This decreases the number of I/O operations and

reduces the I/O overhead. In terms of operations on the bitmaps to answer a query, a majority of bitmaps

needs to participate in more than one bitwise operation. Therefore, answering a query using a binary encoded

index may take more CPU time than other indexes mentioned above. Next, we briefly recapitulate the key

performance characteristics of other multi-component indexes without compression.

Let C1, C2, . . . , Ck denote the sizes of a k-component encoding, or basis sizes. Using equality encoding,

the ith component has Ci bitmaps. The total number of bitmaps is DE ≡ ∑k
i=1Ci. The values C1, C2, . . . , Ck

satisfy the condition ∏k
i=1Ci ≥ B. Chan and Ioannidis [6] proposed the following choice of basis sizes to

minimize DE ,

C1 = C2 = . . . =
k
√

B. (1)

Note that C1, C2, . . . , Ck have to be integers and the above expression is close to the true integer solution

only if B is relatively large. One practical way of assigning values of Ci is to assign some of them ⌈ k
√

B⌉ and

some of them ⌊ k
√

B⌋ so that ∏k
i=1Ci is no less than B but close to B. However, to make it easier to compare

different indexing methods, we drop the floor and ceiling operators, and assume ∏k
i=1Ci = B. Under the

above choice, the minimal number of bitmaps is given by the following formula,

DE
min = k

k
√

B. (2)

Similarly, for a component of size Ci, there are Ci −1 bitmaps under range encoding and (Ci−⌈Ci/2⌉+1(∼
Ci/2) bitmaps under the interval encoding [6, 7]. Let DR

min and DI
min denote the minimal number of bitmaps

under these encodings respectively, then they are given by the following formulas,

DR
min = k

k
√

B− k, (3)

DI
min =

k

2

k
√

B (4)

Without compression, each bitmap is always the same size. In this case, minimizing the number of bitmaps

also minimizes the index size. Next, we consider the query processing cost by counting the maximum

number of bitmaps needed to answer a query.

A multi-component index with a base size greater than 2 uses more space than the binary encoded index,

however, it only accesses some of the bitmaps in order to answer a query. Therefore, it is possible that a

multi-component index may actually require less I/O time than a binary encoded index. To make the analysis

of query processing cost concrete, we consider the cost to answer three types of range queries: the equality

query (EQ), e.g., “A = 3,” the one-sided range query (1RQ), e.g., “A < 3,” and the two-sided range query

(2RQ), e.g., “1 ≤ A < 3”. In later discussion, we call the constants in these range expressions as query

boundaries because they mark the boundaries of the ranges.

To understand the query processing cost, we give an illustration of how a multi-component index is used

to answer a range query. Complete algorithms for query evaluation have been published elsewhere [6, 7].

Let attribute A be an integer ranging from 0 to 99. We build a two-component equality encoded index where
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Encoding

Equality Range Interval

EQ k 2k 2k

1RQ k
2

k
√

B 2k−1 3k−1

2RQ k
2

k
√

B 4k−2 5k−2

Table 1: The maximum number of bitmaps used to answer an equality query (EQ), a one-sided range query

(1RQ), and a two-sided range query (2RQ) using a k-component bitmap index with the three basic encoding

schemes.

both components have the same size of 10. In this case, each component can be viewed as a decimal digit

of the two-digit numbers representing attribute A. Let the first component be the first digit and the second

component be the second digit. The first bitmap of the first component marks all the records with the first

digit being 0, i.e., all values between 0 and 9. Similarly, the third bitmap of the second component marks

the position of all records with the second digit being 2.

To find all values less than or equal to 45, we proceed as follows. The first four bitmaps of the first

component corresponds to records where the values of A is less than 40, therefore they are hits. We need to

read these bitmaps into memory and perform bitwise OR operations on them. Some records represented by

the fifth bitmap (containing records with values between 40 and 49) of the first component may satisfy the

query condition as well, but we need to examine the second component to identify which records actually

satisfy the query condition. The condition on the second component is i2 ≤ 5, which can be processed either

as the result of ORing the first six bitmaps from the second component or the complement of ORing the

last four bitmaps. A bitwise AND operation between the result produced from the second component and

the fifth bitmap from the first component produces all records whose values are between 40 and 45. The

result of this bitwise AND operation is then ORed with the result of ORing the first four bitmaps of the first

component. This produces a bitmap representing all records satisfying the query condition. To answer a

typical query, all components of a multi-component index are accessed. This is true no matter what basic

encoding methods are used for the components. Table 1 shows the maximum number of bitmaps needed to

answer the three types of queries. Notice that the number of components k is prominent in all cases.

Without compression, each bitmap requires the same amount of storage, the same amount of time to

read and the same amount of time to perform a bitwise logical operation. Therefore, the number of bitmaps

needed to answer a query is a good proxy of the query response time. However, because Table 1 only shows

the maximum number of bitmaps used, not the actual number of bitmaps used, how an encoding scheme

actually performs still requires direct timing measurements. As shown in [7], interval encoding actually

performs better than range encoding even though it requires more bitmaps in the worst case.

With compression, the number of bitmaps required to answer a query does not change, however, the

sizes of the bitmaps do change. This changes the I/O time as well as the CPU time required to perform

bitwise logical operations. Chan and Ioannidis [7] have conducted some timing measurements using the

Byte-Aligned Bitmap Code (BBC). However, their tests were conducted on low cardinality attributes so that

the uncompressed indexes could be manageable. In this paper, we target high-cardinality attributes where

uncompressed indexes would be too large to be practically useful. Hence, compression is essential in this

case.

4 Multi-Level Indexes

From Table 1 it is clear that an equality encoded index may need to access a large number of bitmaps in

order to answer a range query. Clearly, it is worthwhile to reduce the number of bitmaps needed to answer a

query. Range and interval encoding access less bitmaps, but they produce bitmaps that are hard to compress.

Therefore, it is worthwhile to study other alternatives. One such alternative is the multi-level encoding
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Figure 2: An illustration of a two-level equality-equality encoding of four bins.

[35, 27]. In these studies, the multi-level encoding was used with binning methods that require candidate

checks, which resulted in performance measurements that do not truly represent the characteristics of the

encoding schemes. In this paper, we study the multi-level encoding with no binning, which removes the

need for candidate checks. This allows a better understanding of the performance characteristics of these

multi-level encodings.

Conceptually, we can think of a multi-level encoding as binning the data with progressively finer bins

as illustrated in Figure 2. Since each level can be encoded separately using any of the three basic encoding

schemes, we can have arbitrary combinations of them. The example shown in Figure 2 is a two-level

encoding with equality encoding on both levels.

In practice, we bin the data once at the finest level and determine the bitmaps at the coarser levels with

bitwise logical operations. In experiments, we have found this option to be much more efficient than the

alternative of performing repeated binning.

The two-level equality-equality encoding contains two separate 1-component equality encoded indexes.

To answer a query, we could first use the coarse level index to produce an approximate solution and then

use the fine level index to produce the precise solution. Let Bc denote the number of coarse bins. Using the

coarse index to answer a range query may involve up to Bc/2 bitmaps. If the query boundaries fall inside

some coarse bins, it would be necessary to use the fine level indexes in those coarse bins to produce the

precise answer. We may need to use two such fine level indexes for a two-sided range condition. Since each

fine index may have B/Bc bitmaps, if we need to access half of them in each coarse bin on average, we

access a total of B/Bc fine level bitmaps. The total number of coarse level and fine level bitmaps accessed

is therefore Bc/2 + B/Bc. Given the number of bins B, the value of Bc that minimizes this total number of

bitmaps is

Bc =
√

2B. (5)

5 Analysis of Basic Encoding Methods

Our analyses of encoding methods are split into three sections. In this section, we give the definitions

and analyze the basic encoding methods. In the next two sections, we analyze the more complex versions

of multi-component and multi-level encodings. We present a summary of analysis results in Section 8 to

identify the most effective methods. For the most part, our analyses concentrate on the average performance
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of an encoding method on random queries, instead of the cost of answering a single query using a specific

bitmap index as in [34].

The bulk of this section is on analyzing the three basic encoding methods, equality encoding (Sec-

tion 5.3), range encoding (Section 5.4) and interval encoding (Section 5.5). Before these analyses, we first

introduce the model data and queries used in the analyses (Section 5.1), and give the formulas for computing

the sizes of compressed bitmaps (Section 5.2), which are the building blocks of all further analyses.

Among the three basic encodings, without compression, interval encoding produces the smallest in-

dexes; equality encoding is the most efficient for equality queries in term of query processing cost, range

encoding is the most efficient for one-sided range queries and interval encoding is the most efficient for two-

sided range queries. However, with compression, equality encoding produces the most compact indexes.

Even though range encoding and interval encoding are still more efficient in answering one-sided and two-

sided range queries than equality encoding, their index sizes grow linearly with the attribute cardinality for

a large variety of data, which makes them unsuitable for high-cardinality attributes.

5.1 Model data and queries

For our analyses, we need to have data and queries that can be easily characterized. In general, each attribute

of our synthetic data is generated by a separate random process and the ith value generated by this process

will be placed in the ith row. The synthetic data we use are always integer values, though the indexing

methods can just as easily index floating-point values and string values. Because sizes of bitmaps can be

computed the same way, we use integer values as examples in the analyses.

The simplest synthetic data is the uniform random data, where each value is randomly taken from the

range [1, . . . , C] with probability 1/C. In the main body of this article, the analysis mainly concentrates

on this uniform random data. Many of the standard benchmarks including TPC1 use this type of synthetic

data. It is simple to describe but relatively hard to compress. In particular, it is the hardest type of data to

compress. Therefore, it represents the worst-case scenario for WAH compressed bitmap indexes. However,

we also use two other types of synthetic data that are considered as more realistic than the uniform random

data, the Zipfian data [?] and the Markovian data [3]. Due to space limitations, the derivation of index sizes

for these two types of data are given in the appendix.

To keep the analysis concise, we only consider bitmap indexes with no binning, therefore the number of

bins B is equal to the attribute cardinality C. Throughout this paper, we use N to denote the number of rows

in a dataset. The uniform random data can be fully described with two parameters N and C. For Zipfian

data, we need another parameter known as the Zipf exponent z. A typical value for z is 1. When z is 0, the

Zipfian data degenerates to uniform random data. As the Zipf exponent increases, the Zipfian data is said

to be more skewed. The Zipfian data with a z = 2 is considered as high-skewed. For Markovian data, the

additional parameter we use is called the clustering factor f , which measures the average number of time

a value appears consecutively. For example, if the values of an attribute always appear twice together in a

dataset, such as, 1, 1, 2, 2, 1, 1, 2, 2, . . . , its clustering factor is 2. The uniform random data has a clustering

factor of about 1 (C/(C− 1) to be exact). It is common to see a set of application data to have f between

2 and 4. We say that data with large f are more clustered. For the purpose of our discussion, a clustering

factor f of less than 10 is considered moderate.

Earlier, we defined three types of queries, equality (EQ), one-sided range (1RQ), and two-sided range

(2RQ) queries. To simplify the discussion, we restrict the query boundaries and the operators used to define

the range conditions. To distinguish them from arbitrary queries, we call our restricted forms the canonical

forms of queries, or simply canonical queries. A canonical query only uses query boundaries that have

appeared in the actual data records. Let ai denote the ith distinct values of attribute A. Each canonical query

such as “A ≤ ai”is the representative of all queries with query boundaries between ai (inclusive) and ai+1

(exclusive). One important characteristics of these canonical queries is that there is only finite number of

them. For example, for an attribute with cardinality C, there are exactly C canonical equality queries.

1TPC benchmark is defined by the TPC council, more information available at http://tpc.org.

8
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For the range queries, the canonical queries only use the less than or equal to operator (≤) to define range

conditions. Let ai and a j be the ith and jth distinct values of an attribute A. A canonical one-sided range

query is “A ≤ ai” and a canonical two-sided range query is “ai ≤ A ≤ a j.” We note that an arbitrary query

either has no hit or can be transformed into a canonical query that produces the same answer. For example,

if attribute A has integer values, and 2 is an observed value but 3 is not, then “A > 3” can be translated to

“not A ≤ 2.” The similar transformation can be done for floating-point values as well. Interested readers

may consult IEEE Standard 754 on floating-point numbers.

In the following analyses, we count query processing cost as the I/O cost, more specifically the number

of words accessed. This gives us a machine-independent measure for comparing different indexing methods.

It is a good proxy of the query response time because earlier analyses and performance measurements have

established that the total query response time is dominated by the cost of I/O operations [29]. Based on this

definition of query processing cost, transforming an arbitrary query into its canonical form does not reduce

the query processing cost. In the above example, the answer to a query is the complement of an answer to

a canonical query. In this process, we need to compute the complement of a bitmap. Since computing the

complement can be carried out in memory, this operation has an I/O cost of 0.

To compute the average query processing cost, we assume that all observed values are equally likely

to be used as the query boundaries of an equality query or a one-sided range query. For an attribute with

cardinality C, there are C instances of the canonical equality query and the canonical one-sided range query.

The average query processing cost is the average cost to answer the C queries. For the two-sided range

queries, we construct C2 instances as follows. Take two values with equal probability from C observed

values, use the smaller one as the lower bound of the query range and use the larger one as the upper bound.

If the two values are the same, the two-sided range query degenerates to an equality query. If one of the

values is the minimal or maximal value, the two-sided range is equivalent to a one-sided range. Thus, the

two-sided range query is the most general form of the three types of queries. When comparing different

encoding methods, we compare the cost of answering an average two-sided range query. However, we also

study the performance of equality queries and one-sided range queries because these queries are simpler

and studying their performance characteristics helps us better understand the performance characteristics of

two-sided range queries.

5.2 Size of compressed bitmap

Since we use WAH compression, the bulk of a bitmap index is a set of WAH compressed bitmaps. In this

subsection, we give definitions and summarize the key results on the size of a WAH compressed bitmap

[34].

For random data, each bitmap in a bitmap index is a random bitmap. Such a random bitmap can be

described by two parameters, the number of bits N and the bit density d that is the fraction of bits that are 1.

A bitmap in a bitmap index typically corresponds to some values in a dataset, and the density of the bitmap

is the same as the total frequency of these values. Given enough records in the dataset, this total frequency

is same as the total probability of the values if the data is generated following a probability distribution. In

our analyses, we assume N is very large and the observed frequency of a value is the same as the prescribed

probability for the value.

Following the notation used in [34], a sequence of consecutive 1s is called a 1-fill. The clustering factor

f of a bitmap is the average number of bits in all 1-fills. Since WAH is based on the run-length encoding,

a bitmap with larger f will likely require less space to store. A sequence of consecutive 0s is a 0-fill. Let

w denote the number of bits in a computer word, WAH divides a bitmap into groups of (w− 1) bits each.

A literal word in WAH stores one such group and a count word in WAH represents a fill spanning multiple

such groups.

It takes ⌊ N
w−1

⌋+ 2 words if every word is a literal word, where ⌊ N
w−1

⌋ are regular literal words, one

additional word to store the remaining N%(w−1) leftover bits and one to store the value N%(w−1), where

% denotes the modulo operator. This is the maximum number of words needed. If there are two consecutive

9
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C: The attribute cardinality, the number of distinct values of the attribute in a

dataset.

d: The bit density, the fraction of bits that are 1.

f : Clustering factor of a bitmap, the average number of bits in 1-fills.

m: The number of regular words in a WAH compressed bitmap, mr(d) is the

expected number words for a random bitmap and mM(d, f ) is the expected

number of words for a bitmap generated from a two-state Markov model.

We also use mi to indicate the size of the ith bitmap.

N: The number of rows in a dataset, also the number of bits in a bitmap of a

bitmap index.

s: Expected size of a compressed bitmap index, for example, sE
U is the index

size for a uniform random attribute using equality encoding. In general,

the superscript E is used for equality encoding, R for range encoding, and

I for interval encoding. The subscript U is for uniform random data, z for

Zipfian data and M for Markovian data.

ti: The query processing cost (a proxy of query response time) to answer the

ith canonical query. Used only during the derivation of the average cost.

T : The average query processing cost. We use a superscript to denote the

encoding method (E, R, and I) and a subscript to denote the type of queries,

EQ for equality queries, 1RQ for one-sided range queries and 2RQ for two-

sided range queries. For example, T E
EQ for the average query processing

cost to answer equality queries using equality encoded indexes and T R
1RQ

for the average query processing cost to answer one-sided range queries

using range encoded indexes.

w: Word size, the number of bits in a word, typically, 32 or 64.

Table 2: List of frequently used symbols.

literal words that actually store the same 0-fill or 1-fill, they could be combined into one count word and

reduce the storage requirement by one word. There are ⌊ N
w−1

⌋− 1 such two-word groups. In a random

bitmap, each bit is independent from another and each has probability d to be 1, therefore the probability

for all 2w− 2 bits in a two-word group to be 1 is d2w−2. Similarly, the probability for all of them to be

0 is (1− d)2w−2. This leads to the following expressions for the number of words required by a WAH

compressed random bitmap,

mr(d) =

⌊

N

w−1

⌋

+2−
(⌊

N

w−1

⌋

−1

)

(

(1−d)2w−2 +d2w−2
)

≈ N

w−1

(

1− (1−d)2w−2 −d2w−2
)

. (6)

5.3 Equality encoding

We now consider the expected performance of a one-component equality encoded bitmap index. We first

compute the index sizes and then the average query processing costs.

5.3.1 Index sizes

The uniform random dataset is the simplest to evaluate. In this case, the bitmap index for an attribute with

C distinct values contains C bitmaps. Each of these C bitmaps is a random bitmap with bit density d = 1/C.

10
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Based on Equation 6, which gives the sizes of each such random bitmap, the total size of bitmaps in an index

is

sE
U = C ∗mr(1/C) ≈ CN

w−1
(1− (1−1/C)2w−2 −1/C2w−2) (7)

For a range of attribute cardinality C, where 1 ≪ C ≪ N, 1/C2w−2 ≈ 0, and by Taylor expansion we

have (1−1/C)2w−2 ≈ 1− (2w−2)/C, the above expression for sE
U can be approximated as

sE
U ≈ 2N. (8)

This indicates that for a large range of attribute cardinalities, a WAH compressed, equality encoded bitmap

index takes about 2N words for uniform random data [37, 34]. If C is very small, the bitmaps cannot be

compressed by WAH and each of them takes about N/(w− 1) words. If C is close to N, the overhead of

WAH compression starts to dominate the total index size. We refer interested readers to [37, 34] for more

details about this case.

5.3.2 Query processing cost

Given above index sizes, we can now compute the I/O cost of answering the three types of queries. In our

evaluations, we include only the cost of accessing the necessary bitmaps, but not the metadata required to

locate these bitmaps. Given a large data set, the metadata is typically much smaller than the bitmaps, as we

observe from the actual measurements shown in Section 9. Next, we consider the cost of answering three

types of queries in turn.

Equality query To evaluate the average cost to answer an equality query, we assume that each observed

value is equally likely to be used as the query boundary. There are C canonical equality queries for an

attribute with cardinality C. Since the cost of answering an equality query is to read one bitmap, the average

query processing cost is therefore the average size of a bitmap,

T E
EQ = s/C. (9)

In this case, the total size s can be any of sE
U , sE

z or sE
M.

One-sided range query There are C instances of canonical one-sided range queries. If the ith observed

value is used as the query boundary, the first i bitmaps may be used to answer the query as b1 | . . .bi, where

bi denotes the ith bitmap (corresponding to ai) and | denotes the bitwise OR operation. In later discussion,

we also shorten this expression as ∑i
j=1 b j.

Since we can compute the complement of a bitmap fast, if more than a half of the bitmaps are to be

accessed, our query evaluation procedure will evaluate the complement of the query, which accesses less

bitmaps, and then compute the complement of the resulting bitmap to produce the final answer for the query.

We denote the complement option as computing ∼ ∑C
j=i+1 b j, where ∼ denotes the bitwise complement

operation.

Let mi denote the size of the ith bitmap, the straightforward evaluation strategy accesses ∑i
j=1 m j words,

while the alternative strategy accesses ∑C
j=i+1 m j words. We always choose the less expensive option, which

leads to the following expression for the query processing cost, ti = min(∑i
j=1 m j,∑

C
j=i+1 m j). Knowing

the size of each bitmap m j, we can compute the average query processing cost using the following double

summation,

T E
1RQ =

1

C

C

∑
i=1

min

(

i

∑
j=1

m j,
C

∑
j=i+1

m j

)

. (10)

For attributes following uniform distribution, where all m j are the same, we can give a much more

concise formula for the average query processing cost. Let m denote the size of a bitmap, the cost of

11
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processing a query involving the ith value as the query boundary is ti = ∑i
j=1 m = mi if i ≤ ⌊C/2⌋, and

ti = ∑C
j=i+1 m = m(C − i) otherwise. The total cost of evaluating all C instances of one-sided canonical

queries can be split into two parts following the two different formulas for ti. Furthermore, we know that

∑
⌊C/2⌋
i=1 i = (1 + ⌊C/2⌋)⌊C/2⌋/2, and ∑C

i=⌊C/2⌋+1(C− i) = (C−⌊C/2⌋)(C−⌊C/2⌋− 1)/2. Taken together,

the expression for T E
1RQ can be rewritten as follows,

T E
1RQ =

1

C

C

∑
i=1

ti

=
m

C

(

1

2

(

1+

⌊

C

2

⌋)⌊

C

2

⌋

+
1

2

(

C−
⌊

C

2

⌋)(

C−
⌊

C

2

⌋

−1

))

=
m

2C

(

2

⌊

C

2

⌋2

+(C−1)

(

C−2

⌊

C

2

⌋)

)

≈ m

C

⌊

C

2

⌋2

≈ mC2

4C
=

mC

4
=

s

4
. (11)

We note that the above approximation is based on ⌊C/2⌋ ≈C/2, which is accurate when C is large. Because

we assumed that the bitmaps are of the same size, the variable s in the above formula can be either sE
U or sE

M.

For non-uniform data distributions, we cannot derive such compact formula for the query processing

cost, but can directly evaluate the summation defined in Equation 10. Generally, the average average cost is

a smaller fraction of the total index sizes than in the case of uniform random data. For example, for Zipfian

data with C = 100 and z = 1, this average is about 0.22sE
z=1, which is about 12% less than 1

4
sE

z=1 for uniform

data (Equation 11).

Two-sided range query Given that ai and a j are two observed values of A (where i may be the same as

j), an instance of the canonical two-sided range query is “min(ai,a j) ≤ A ≤ max(ai,a j).” There are a total

of C2 instances of such queries. To evaluate one instance, we could either work with bitmaps between i and

j, or outside the range, similar to the case of one-sided range queries. Let bi denote the ith bitmap, the direct

option computes ∑
j

k=i bk and the complement option computes ∼ (∑i−1
k=1 bk +∑C

k= j+1 bk). Note that we have

replaced operator | with + for consistency. Let mi denote the size of the ith bitmap, the query processing

cost can be expressed as

ti j = min

(

max(i, j)

∑
l=min(i, j)

ml ,
min(i, j)−1

∑
l=1

ml +
C

∑
l=max(i, j)+1

ml

)

.

Assuming that all C2 instances of two-sided range queries have equal probability of being used, the average

query processing cost is

T E
2RQ =

1

C2

C

∑
i=1

C

∑
j=1

ti j. (12)

This summation can be significantly simplified if all mi are the same, say m. In this case, ti j is strictly a

function of difference between i and j, ti, j = min(m(|i− j|+ 1),m(C−|i− j|− 1)). We can rearrange the

double summation over i and j into a summation over |i− j|. Define |i− j|+1 to be the width of the query,

there are C query instances with width 1, 2(C−1) instances with width 2, 2(C−2) instances with width 3,

. . . , and 2 instances with width C. Therefore, the average query processing cost can be rewritten as

T E
2RQ =

1

C2

(

Cm+
C

∑
l=2

2(C +1− l)min(ml,m(C− l))

)

.

If l ≤ ⌊C/2⌋, then l ≤ C − l. We can remove the function min, by splitting the above summation in two

parts, the first part with l less than or equal to ⌊C/2⌋, where the query processing cost is ml, and the second
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part with l greater than ⌊C/2⌋, where the query processing cost is m(C− l). Moreover, the first part of the

summation is ∑
⌊C/2⌋
l=2 2(C + 1− l)ml = m(2 + 3C− 2⌊C/2⌋)(1 + ⌊C/2⌋)⌊C/2⌋/3− 2mC ≈ mC3/6, and the

second part of the summation is ∑C
l=⌊C/2⌋+1 2(C + 1− l)m(C− l) = 2((C−⌊C/2⌋+ 1)(C −⌊C/2⌋2)(C −

⌊C/2⌋2 − 1))/3 ≈ mC3/12. The preceding approximations rely on the fact that ⌊C/2⌋ ≈ C/2, which is

accurate for large C. Furthermore, only the highest order terms of C are kept, which is again accurate for

large C. Therefore, for uniform data with high attribute cardinalities, say C ≥ 100, the average cost to

process a two-sided range query is

T E
2RQ ≈ mC/4 = s/4. (13)

where s can be either sE
U or sE

M. Note that this is the same as the average cost T E
1RQ for one-sided queries.

For non-uniform data, the average query processing cost is expected to be less than that of uniform

data. For example, for a random attribute following Zipf distribution with z = 1 and C = 100, the average

cost computed through Equation 12 is 0.23sE
z=1, which is about 10% less than 1

4
sE

z=1. Note also that as C

increases, the average cost of querying Zipfian data becomes a smaller fraction of the total index size.

5.4 Range encoding

The bitmaps produced using the one-component range encoding are effectively the precomputed answers

to one-sided range queries. A key advantage of this encoding is that it can answer range queries quickly,

but the bitmaps are not amenable to compression. In this subsection, we quantify the index size and query

processing cost to see if it offers a good space-time trade-off.

5.4.1 Index size

As indicated previously, the critical first step in analyzing the performance of a WAH compressed bitmap

index is to compute the bit density and the clustering factor of the bitmaps. Based on the definition of

range encoding, the bit density of the ith bitmap in an index on a uniform random attribute is di = i/C,

i = 1,2, . . . ,C − 1. Note that the last bitmap with all bits set to 1 is dropped by convention. The same

formula also applies to the Markovian data.

Given the above formula for the bit densities, we can compute the total number of words of all bitmaps

in a range encoded index on uniform random data as follows,

sR
U =

C−1

∑
i=1

mr(di)

≈ N

w−1

C−1

∑
i=1

(

1−
(

1− i

C

)2w−2

−
(

i

C

)2w−2
)

. (14)

This formula defines the total size of bitmaps as a Power Sum2. Special functions can be used to express

the results of Power Sums. However, for implementation in computer software, directly evaluating the sums

may be just as efficient as evaluating those special functions. To get a better sense of how large sR
U is, we

seek to produce an approximation that is more compact.

For a majority of the bitmaps, the bit densities di are between 0.05 and 0.95 as shown in Figure 3.

For these bitmaps, WAH compressed versions are nearly the same size as uncompressed ones, where each

bitmap takes about N/(w−1) words. Therefore, the expression

sR
U ≈ N(C−1)/(w−1) (15)

should have no more than 10% error for uniform random data (shown as z = 0 in Figure 3). In many cases,

the observed errors are less than 3%. Previously, we showed that sE
U approaches 2N words (in Equation 8)

as C increases, however, sR
U increases linearly as C increases. This means that the size of a range encoded

index could be arbitrarily larger than an equality encoded one.

2Eric W. Weisstein. “Power Sum.” From MathWorld. http://mathworld.wolfram.com/PowerSum.html.

13



LBNL-60891

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

d
i

 

 

z=0

z=1

z=2

Figure 3: The bit density di of bitmaps from a range encoded index on Zipfian data (C = 100). WAH is only

able to compress random bitmaps with bit density less than 0.05 or more than 0.95.

5.4.2 Query processing cost

Equality query To answer an equality query such as “A = ai” using a range encoded bitmap index, we

access bitmap bi−1 and bitmap bi, and perform bi −bi−1 ≡ bi& ∼ bi−1, where & denotes the bitwise AND

operation and ∼ denotes the bitwise complement operation. As before, because the cost of performing

bitwise logical operation in memory is small compared to the I/O cost, we count the cost of reading the

bitmaps from disk as the proxy of the total query processing cost. In this case, to answer a canonical

equality query, we need to access two adjacent bitmaps, except the cases involving a1 and aC as the query

boundaries, where only one bitmap (b1 and bC−1 respectively) needs to be read. Let mi denote the size of

bitmap bi, the cost of processing a query, ti, is usually mi + mi−1, except the two special cases mentioned

above. The average query processing cost is

T R
EQ =

1

C

(

m1 +mC−1 +
C−1

∑
i=2

(mi +mi−1

)

=
2

C

C−1

∑
i=1

mi =
2s

C
. (16)

Note that s in the above equation can be any of sR
U , sR

z or sR
M. For uniform data with moderate clustering

factor ( f < 10) and for Zipf data with z ≤ 1, each WAH compressed bitmap takes about N/(w− 1) words

and the query processing cost is approximately 2N/(w− 1). Because answering an equality query using

an equality encoded index requires only one bitmap, while two bitmaps are required using a range encoded

index, T R
EQ is at least twice as large as T E

EQ. Similar performance differences between equality encoding and

range encoding were also observed without compression [6].

One-sided range query To answer a one-sided range query using a range encoded index, we only need

to read one bitmap. Therefore the cost of processing most instances of the one-sided range query is ti = mi,

except the query involving aC as the query boundary, where every record satisfying the condition, which

requires no data from disk to produce the answer. The average query processing cost is the average bitmap

size,

T R
1RQ =

1

C

C−1

∑
i=1

mi ≈
s

C
. (17)

Note that s in above equation can be the size of any range encoded bitmap index.
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Since a one-sided query can be answered with one range encoded bitmap, range encoding is still the

most efficient at answering one-sided range queries on average. Take the uniform random data as example,

the average cost of processing a one-sided range query using an equality encoded index is sE
U/4 as shown

in Equation 11. If the attribute cardinality is large then this average cost is approximate 2N/4 = N/2 words

because SE
U ≈ 2N (see Equation 8). The average cost under range encoding is about N/(w − 1) words

because sR
U ≈ N(C−1)/(w−1) (see Equation 15). Therefore, using a range encoded index to answer a one-

sided range query could be (w−1)/2 times faster than using an equality encoded index. This difference is

smaller for data with skewed distribution or clustering.

Two-sided range query To answer a two-sided range query, we need to access two bitmaps as in the

equality query case. The difference is that the two bitmaps may no longer be adjacent. In practice, because

the two bitmaps are not adjacent, they require two separate read operations, while two adjacent bitmaps could

usually be read in one operation. Even when the same number of bytes are read, using two read operations

is likely to take more time than using one because of the extra function call overhead and possibly additional

disk seek time. However, when the number of rows in the data set is large, this time difference could be

only a small part of the overall I/O time. For this reason, we continue to count query processing cost as the

number of words accessed to answer a query.

To answer a two-sided range query involving ai and a j as query boundaries, we access bitmaps bmin(i, j)−1

and bmax(i, j), and compute bmax(i, j)& ∼ bmin(i, j)−1 as the answer. Range encoding only defines b1, . . . ,bC−1.

To make the above expression valid, we assume that b0 is a bitmap containing only 0s and bC is a bitmap

containing only 1s. Since b0 and bC can be generated in memory, the I/O cost for producing them are 0, i.e.,

m0 = mC = 0. Using this definition, we express the query processing cost ti j as ti j = mmin(i, j)−1 +mmax(i, j).

We assume that every i and j between 1 and C are equally likely to be used in a two-sided range query, the

average query processing cost is

T R
2RQ =

1

C2

C

∑
i=1

C

∑
j=1

ti j =
1

C2

C−1

∑
i=1

2Cmi =
2s

C
. (18)

For uniform random data, the average cost of processing a two-sided range query using an equality

encoded index is sE
U/4 as shown in Equation 13. If the attribute cardinality is large, say C ≥ 100, then this

average cost is approximate 2N/4 = N/2 words based on the index size given in Equation 8. The average

cost under range encoding is about 2N/(w − 1) words based on the formula for sR
U from Equation 15.

Therefore, using a range encoded index to answer a two-sided range query could be (w−1)/4 times faster

than using an equality encoded index. On a 32-bit system where w = 32, we may say that range encoding

is about 8 times faster than equality encoding. However, because sR
U can be arbitrarily larger than sE

U , we do

not believe the range encoded indexes have a good space-time trade-off compared with the equality encoded

ones.

5.5 Interval encoding

Interval encoding produces about half as many bitmaps as equality encoding and range encoding. It can

answer the queries just as efficient as range encoding. Next, we quantify these performance characteristics

for the basic one-component interval encoded index to see whether it presents a better space-time trade-off

than the range encoded index.

5.5.1 Index size

Under the (one-component) interval encoding, each bitmap represents about half of the values, ⌈C/2⌉ to be

exact. Therefore, the bit density of a bitmap in an index on a uniform random attribute is d = ⌈C/2⌉/C ≈
1/2. This type of bitmaps are not compressible with WAH compression. Since there are C−⌈C/2⌉+1 such
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bitmaps, the total size of the bitmaps is

sI
U ≈ N(C−⌈C/2⌉+1)/(w−1) ≈ NC

2(w−1)
. (19)

5.5.2 Query processing cost

Equality query To process an equality query, such as “A = ai,” using an interval encoded index, we

need to access two bitmaps [7]. For example, if i < ⌈C/2⌉, the answer can be computed with bi − bi+1. If

i > ⌈C/2⌉, the answer is obtained from bi+1−⌈C/2⌉−bi−⌈C/2⌉. These two cases encompass all instances of our

C canonical equality queries except one. Though this exceptional case can also be answered by accessing

two bitmaps, we can neglect it without adversely affecting the average query processing cost.

In short, the query processing cost to answer an equality query is either mi + mi+1 if i < ⌈C/2⌉ or

mi+1−⌈C/2⌉ + mi−⌈C/2⌉ if i > ⌈C/2⌉. We use the average query processing cost of these C− 1 instances as

the average of all C instances, and this average can be expressed as follows,

T I
EQ =

1

C−1

(⌈C/2⌉−1

∑
i=1

(mi +mi+1)+
C

∑
i=⌈C/2⌉+1

(mi+1−⌈C/2⌉ +mi−⌈C/2⌉)

)

≈ 1

C

C−⌈C/2⌉+1

∑
i=1

4mi =
4s

C
. (20)

Under interval encoding, each bitmap bi represents a range of values from ai to ai+⌈C/2⌉−1. To answer an

equality query, each bitmap under interval encoding is used four times on average, in queries with boundaries

ai−1, ai, ai+⌈C/2⌉−1, and ai+⌈C/2⌉. This explains the average query processing cost being four times the

average bitmap size. In contrast, the average cost of processing an equality query using a range encoded

index is twice the average size of the bitmaps. This difference is due to the fact that there are less bitmaps

under the interval encoding and therefore each bitmap is used more often than in the range encoded index.

If all the bitmaps are not compressible as in the case of uniform data, where s ≈ CN
2(w−1) , the average cost

is approximately 4CN
2(w−1)C = 2N/(w−1). This average cost is the same as with range encoding, which is at

least twice as expensive as answering the same equality queries with equality encoding.

One-sided range query To answer a one-sided range query using an interval encoded index, we need

bitmap b1 plus one additional bitmap depending on the query boundary ai. If i < ⌈C/2⌉− 1, the answer

is b1 − bi+1; if i = ⌈C/2⌉− 1, the answer is simply b1; otherwise, the answer is b1 | bi−⌈C/2⌉+1, where |
denotes the bitwise OR operation. This means the cost of query processing ti = m1 +mi+1 if i < ⌈C/2⌉−1,

t⌈C/2⌉−1 = m1, if i = ⌈C/2⌉−1, and ti = m1 +mi−⌈C/2⌉+1 if i ≥ ⌈C/2⌉. We can compute the average cost as

follows,

T I
1RQ =

1

C

(

⌈C/2⌉−2

∑
i=1

(m1 +mi+1)+m1 +
C

∑
i=⌈C/2⌉

(m1 +mi−⌈C/2⌉+1)

)

≈ 1

C

(

Cm1 +2

C−⌈C/2⌉+1

∑
i=2

mi

)

≈ m1 +
2s

C
. (21)

To answer the C queries, we always need b1 and we need one additional bitmap in most cases. Since there

are only C/2 bitmaps, most bitmaps are used twice. When none of the bitmaps are compressible, such as

for uniform random data, Markovian data with moderate clustering factors, or Zipfian data with z ≤ 1, this

average cost is about twice as expensive as using range encoding.
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Two-sided range query The procedure to answer a two-sided range query is somewhat similar to that

for a one-sided range query. One key difference is that the bitmap b1 may be replaced with another one

according the smaller one of the query boundaries. Instead of going through an exhaustive account of the

cost of every query, we observe that each bitmap in the index is used when one of the four query boundaries,

ai−1, ai, ai+⌈C/2⌉−1, or ai+⌈C/2⌉, appears in a query. This leads to an average query processing cost of

T I
2RQ ≈ 4s

C
. (22)

This average cost is the same as that for the equality queries. On uniform data and Zipfian data with z ≤ 1,

this average cost is the same as T R
2RQ for range encoding. This implies that interval encoding is also about

8 times faster in answering two-sided range queries on uniform random data than equality encoding. On

nearly uniform data, a interval encoded index is about half the size of a range encoded one, therefore, interval

encoding is preferred over range range encoding. However, because an interval encoded index can still be

arbitrarily larger than an equality encoded one, we need a way to reduce the index size to make it competitive

against the equality encoded index.

6 Analysis of Multi-component Encodings

From the analyses in the previous section we see that range encoding and interval encoding can answer range

queries fast, but they require too much space for high-cardinality attributes. Multi-component encodings

were proposed to reduce their index sizes at the expense of increased query processing costs. In this section,

we compute the index sizes and query processing cost of multi-component encodings to quantify the space-

time trade-off. Our basic strategy is to treat each component as a simple encoding analyzed in the previous

section.

Let C1, C2, . . . , Ck denote the basis sizes of a k-component encoding. To simplify the discussions and

for the same reasons given in the discussion of Equation 1, we assume ∏k
i=1Ci = C. Furthermore, we use

the same encoding for all components of an multi-component index. This limits our analysis to three multi-

component encoding methods based on equality encoding, range encoding, and interval encoding. It will

become clear that mixing different encodings for different components does not generate more efficient

alternatives than the three discussed.

Without compression, the index sizes monotonically decrease with the number of components k used in

a multi-component encoding and the query processing cost monotonically increases as shown in Section 3.

Chan and Ioannidis [6] proposed that two-component encodings provide a good balance between the index

size and the query processing cost. With compression, the index sizes no longer monotonically decrease

with k, though the query processing cost still increases with k. We observe that the best encoding methods

have either the minimum number of components (k = 1) or the maximum number of components (the binary

encoding).

6.1 Multi-component equality encoding

Given a value ai, the multi-component encoding translates i into a set of integers (i1, . . . , ik), where i =

∑k
j=1 i j ∏k

l= j+1Cl . Note that ∏k
l=k+1 Cl defaults to 1. Under the k-component equality encoding, for each

record, a bitmap from each component is set to 1. In particular, for value ai, the i jth bitmap in the jth

component is set to 1. To compute the bit density and clustering factor of a bitmap in the jth component,

we observe that the i jth bitmap in the jth component is set to 1 as long as j component is i j, no matter what

the values of the other components are.
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Figure 4: The index sizes (relative to the base data size) of two-component equality encoded indexes for an

attribute with C = 106. The lines marked with ’z=x’ are for Zipf attributes and the line marked ’f=2’ is for a

Markovian data with clustering factor f = 2. The horizontal axis C1 is the basis size of the first component.

6.1.1 Index size

For uniform random data, each value i appears with probability of 1/C. The probability that the jth compo-

nent is a particular value i j is

C1

∑
i1=1

. . .
C j−1

∑
i j−1=1

C j+1

∑
i j+1=1

. . .
Ck

∑
ik=1

1

C
=

1

C
∏
l 6= j

Cl =
1

C j

.

This is the same as saying that each value in a component j is equally likely to appear. Therefore, we treat

each component as a uniform random attribute, and express the total index size as follows (see Equation 6

for definition of mr).

sEk
U =

k

∑
j=1

C jmr(1/C j)

≈ N

w−1

k

∑
j=1

C j

(

1− (1−1/C j)
2w−2 −1/C2w−2

j

)

(23)

For very large C, where each C j is also large (1 ≪C j ≪ N), following the same approximation that lead to

Equation 8, we can approximate sEk
U as 2kN. For relatively small k, the above assumption about C j is valid,

in which case, the total index size increases as the number of components increases. This trend is different

from the uncompressed multi-component indexes.

As k becomes larger, the values of C j become smaller, the total size of bitmaps in each component will

be less than 2N words, and the total index size will likely decrease as k increases. This suggests that the

minimal index sizes are achieved with either the minimal number of components or the maximum number

of components.

Figure 4 shows the index sizes for a set of two-component equality encoded indexes. The indexes for

four different attributes are plotted, and the lines are labeled with the Zipf exponents for Zipfian data, or

the clustering factor for the Markovian data. All of them have an attribute cardinality of 1 million. The

horizontal axis in this figure is the basis size of the first component C1. The values of C1 varies from 1 to 1
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million. In the two extreme cases where C1 = 1 and C1 = 106, we effectively have one-component equality

encoded indexes. In this figure, the index sizes are measured relative to the base data size assuming that

each element of the base data requires one word of storage. For a one-component equality encoded index,

the index size is about twice the size of the base data. The above analysis indicates that a two-component

equality encoded index could be twice as large as a one-component index for uniform data. From Figure 4,

we see that the two-component index sizes are indeed about twice that of the one-component versions for a

number of different C1 values, for both uniform random data (z = 0) and Markovian data ( f = 2).

As the Zipf exponent increases, the index sizes decrease. The index on the Markovian data with f = 2

is nearly half the size of that of the uniform random data (z = 0). Another trend we observe is that as the

Zipf exponent increases, the variation of index sizes becomes smaller as expected. As the Zipf exponent

increases, the minimal index size is not achieved with C1 = 1 or C1 = 106. Since bitmaps for the first

component are generally more compressible than those for the later components, making C1 larger tends

to decrease the total index size. Indeed, we see that the minimal index sizes are achieved with large C1

values. In the case of z = 1, the optimal C1 is 125,000 (C/8), and for z = 2, the optimal C1 is 250,000 (C/4).

However, in either case, the optimal index sizes are only slightly smaller than the one-component indexes,

3% and 10%, respectively, for z = 1 and z = 2. Since the indexes on uniform data are significantly smaller

with the one-component equality encoding than with the two-component equality encoding, we prefer to

use the one-component equality encoding over the two-component one.

6.1.2 Query processing cost

Equality query To answer an equality query, such as “A = ai,” we decompose i into k components

(i1, . . . , ik), retrieve bi j
from component j, and then perform bitwise AND on these k bitmaps. We again

count the cost of answering this query as the total size of the k bitmaps that have to be read into memory.

Since a bitmap from each component is needed, the average query processing cost is the sum of the average

size of bitmaps in each component. The following is the expression for uniform random data.

T Ek
EQ =

k

∑
j=1

mr(1/C j) ≈
N

w−1

k

∑
j=1

(1− (1−1/C j)
2w−2 −1/C2w−2

j ).

A similar expression can be written for Markovian data and Zipfian data. Because the value of C j decreases

as k increases, the cost of query processing increases faster than a linear function of k. However, as k

further increases, most bitmaps become incompressible and the average size of bitmaps approaches N
w−1

,

the average query processing cost ultimately becomes a linear function of k.

One-sided range query In Section 3, we describe the procedure for evaluating a one-sided range query

using the multi-component equality encoding. In terms of I/O cost, we see that the procedure is similar

to answering a one-sided range query on each component. From the analysis of one-component equality

encoding, we know the average I/O cost to answer a one-sided range query is equivalent to reading a quarter

of all bitmaps for uniform data. Therefore, the average query processing cost of a one-sided range query is

also equivalent to reading one quarter of the bitmaps.

T Ek
1RQ ≈ s/4.

In the above expression, s can be either sEk
U or sEk

M . Since the index sizes are larger for multi-component

index than the one-component version, we expect using a multi-component equality encoded index to take

longer than using a one-component equality encoded index.

Two-sided range query A two-sided range query can be answered as the difference between two one-

sided range queries. More clever algorithms exist, however, their costs are still close to that of answering

two one-sided range queries. For simplicity, we regard the average query processing cost for a two-sided

range query to be twice of that for the one-sided range query.
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(a) Equality queries (b) One-sided Range queries

Figure 5: The expected query processing cost (relative to the base data size) of two-component equality

encoded indexes.

Examples and discussion Figure 5 plots the above formulas of the average query processing costs for

a set of two-component equality encoded indexes. We measure the I/O cost relative to the base data size

the same way we measure the index sizes in Figure 4. This I/O cost is the vertical axis in Figure 5. The

horizontal axis is the basis size of the first component C1. As in Figure 4, all attributes used have attribute

cardinality of 1 million. Comparing the I/O cost with the base data size is equivalent to comparing against

the projection index that reads a projection of the base data to answer a query. The projection index is known

to be efficient for answering ad hoc queries on large datasets [21], so it serves as a good reference method.

Alternatively, we may compare with the more commonly used B-Tree indexes. In a number of popular

database systems, a B-tree index is observed to take 3 – 4 times more space of the base data. To answer

an average one-sided range query, one needs to access about half of the leaves in a B-tree. This translates

to a value of 1.5 to 2 in our plot, which is larger than the average query processing cost using a projection

index, which is exactly 1. In Figure 4, the average query processing cost of using a two-component equality

encoded index is always less than 1.

In Figure 5(a), we show the average cost to answer an equality query. In this case, all curves show a

dramatic change in the cost near the two ends of the horizontal axis. Recall that at the two ends, the indexes

have effectively only one-component. This indicates that the one-component equality encoded indexes are

much more efficient in answering equality queries, which is known to be true without compression. It is not

surprising that this remains true with WAH compression, however, what is a surprise is that the differences

are almost four orders of magnitude.

In Figure 5(b), we show the average cost of answering a one-sided range query. For uniform data, such as

the uniform random data and Markovian data, on average, a quarter of all the bitmaps are read into memory.

For uniform random data, which is the most expensive case, using a one-component equality encoded index

is equivalent to reading about half of the base data; the line for z = 0 in Figure 5(b) ends at 0.5 when C1 = 1

and C1 = 106.

In Figure 5(b), we again observe that the minimal values on each line are at the end of the horizontal axis

where C1 = 1 or C1 = 106. This indicates the one-component equality encoded index is also more efficient

in answering one-sided range queries than two-component equality encoded indexes. This is very different

from the uncompressed case studied in earlier literature [6, 7] that predicted the minimum at C1 =
√

C =
1000.
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Figure 6: The index sizes (relative to the base data size) of two-component range encoded indexes for an

attribute with C = 106. A value of 10 or larger should be considered impractical to use.

6.2 Multi-component range encoding

After decomposing a value into k components, the bitmaps produced for the multi-component equality

encoding could be cumulated one component at a time to produce a multi-component range encoding. This

process is similar to how a one-component equality encoding could be turned into a one-component range

encoding. Since the last bitmap after the cumulation contains only 1s, we typically discard it to save space.

Similar to the multi-component equality encoding, each component of the multi-component range encoding

could be treated like a separate index.

Previously, we described how the bit densities and the clustering factors can be computed for the multi-

component equality encoding. Since the i jth bitmap in the jth component under range encoding is a cumu-

lation (i.e., bitwise OR) of the first i j bitmaps under the equality encoding. It is straightforward to follow the

process used in Section 5.4 to compute bit densities and clustering factors of bitmaps under range encoding.

As in the one-component range encoding case, most of the bitmaps in a multi-component range en-

coded index are incompressible, if the data is uniform or nearly uniform. However, because the multi-

component versions use significantly less bitmaps, the index sizes should be considerably less than in the

one-component case. Figure 6 shows the sizes of a series of two-component range encoded indexes. As

in Figure 4, we measure the index sizes relative to the base data size, and use the basis size of the first

component (C1) as the horizontal axis. We observe that the two uniform data (z = 0 and f = 2) and the

Zipfian data with z = 1 have nearly identical index sizes. As in Figure 4, the sample attributes have attribute

cardinality of 1 million. When C1 = 1 or C1 = 106, i.e., at the left and right ends of the horizontal axis,

the two-component indexes degenerate to one-component ones. Clearly, using two components reduces the

index sizes. For the three nearly uniform attributes, the minimal is achieved when C1 = C2 as predicted by

Equation 1. However, even at their minimal sizes, the indexes contain 2000 incompressible bitmaps, and are

more than 60 times the size of the base data. For the highly non-uniform data, z = 2, WAH compression is

effective in reducing the index sizes. However, the minimal size shown in Figure 6 (about 1) is still much

larger than the minimal size (about 0.3) for the two-component equality encoded indexes shown in Figure 4.

Based on the analysis of index sizes, WAH compressed multi-component range encoding behaves very

much like its uncompressed counterpart, therefore we omit the analysis of the query processing cost. Recall

that the query processing cost increases as the number of components increases as shown in Table 1.
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Figure 7: The index sizes (relative to the base data size) of two-component interval encoded indexes for an

attribute with C = 106. A value of 10 or larger should be considered impractical to use.

6.3 Multi-component interval encoding

We can construct a multi-component interval encoded index from a multi-component equality encoded

index. Following the same process that was used in Section 5.5 to compute the bit densities and clustering

factors for the interval encoded bitmaps from their equality encoded counterparts, we can compute the index

sizes. However, since the formulas are long set of summations that cannot be simplified, we choose to plot

the expected sizes instead of giving these formulas. In most cases, WAH compression is unable to reduce

the size of bitmaps, therefore WAH compressed indexes behave very close to their uncompressed versions.

For this reason, we only briefly examine the sizes of the WAH compressed indexes. Since the bitmaps are

usually incompressible, the cost of query processing are same as uncompressed indexes studied in Section 3.

Figure 7 shows the index sizes of a series of two-component interval encoded indexes. As in Figures 4

and 6, the vertical axis is the index size relative to the base data size and horizontal axis is the basis size

of the first component C1. Because the attribute cardinality is 1 million, at the left-most end (C1 = 1) and

the right-most end (C1 = 106) of the figure, a two-component index effectively becomes a one-component

interval encoded index. Since each bitmap under interval encoding is a bitwise OR of about half of the

bitmaps from the same component in an equality encoded index, for nearly uniform data, z = 0, z = 1 and

f = 2, these bitmaps cannot be compressed by WAH compression. Their minimal index sizes are more than

30 times the base data size. Only the index on the highly non-uniform attribute (z = 2) can be compressed.

Even in this case, the minimal index size (about 0.8) is still considerably larger than the minimal index size

(about 0.3) under equality encoding as shown in Figure 4.

6.4 Binary encoding

From the discussions on multi-component indexes, we observe that as the number of components increases,

the size of a multi-component index will eventually decrease. The one with the largest number of component

is the binary encoding. Because of its unique construction, it is the most compact multi-component index.

Assuming that we can map the values of an attribute to an integer starting from 0 to C − 1, for example,

through binning and then number the bins from 0 to C− 1, the bit density of jth bitmap is the probability

that the jth binary digits of the bin number is 1. The clustering factor can be evaluated by estimating the

probability of a binary digit changing from 1 to 0. After obtaining these two parameters, we can evaluate
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the index sizes and the query processing cost as before.

6.4.1 Index size

The simplest case is the uniform random data, in which case, the probability of each binary digits have

equal probability of being 0 or 1 (assuming that log2C is an integer). Since bitmaps with density 0.5 are not

compressible with WAH in general, we expect the index size to be

sBN
U =

Nlog2C

w−1
. (24)

Based on the experience with interval encoding (where most bitmaps has a density of 1/2), we expect that the

indexes on mildly non-uniform Zipf data (z ≤ 1) and Markovian data with relative small clustering factors

( f ≤ 10) to have the same sizes as the uniform random data.

6.4.2 Query processing cost

To answer an equality query, every bitmap of a binary encoding must be accessed, therefore,

T BN
EQ = s. (25)

To answer a one-sided range query, nearly every bitmap is needed. For example, the last bitmap, corre-

sponding to the least significant binary digit, is not needed if the query boundary ai has an odd number as

its index i. The second to the last bitmap, corresponding to the second least significant binary digit, is not

needed if the query boundary ai has an index i that can be expressed as 4 j−1, where j is an integer. This

can be generalized to the following expression for the average cost of one-sided range queries,

T BN
1RQ =

log2C

∑
i=1

mi(1−2i−log2C−1) ≈ N

w−1
(log2C−1+

1

C
) ≈ N(log2C−1)

w−1
(26)

In practice, we always read all bitmaps to simplify the software implementation. The cost of answering a

two-sided range query requires more computations on the bitmaps than answering a one-sided range query,

and it is more likely that every bitmap is needed. Therefore we simply state that cost of processing a two-side

range query as reading the whole index

T BN
2RQ = s. (27)

6.4.3 Examples and discussion

Figure 8 shows the sizes of some binary encoded indexes and the cost of processing queries using these

indexes. In both graphs, the horizontal axes are the attribute cardinality. The index sizes for the three

nearly uniform attributes, z = 0, z = 1 and f = 2, are about the same. The bitmaps in these indexes are

not compressible. As attribute cardinality approaches 1 million, it takes about 20 bitmaps under binary

encoding. Assuming each word contains 32 bits, the binary encoded index size is about 0.65 (= 20/31) of

the base data size. The indexes for the highly non-uniform attribute, z = 2, can be compressed. As attribute

cardinality increases, it approaches about 0.2 times the base data size.

In Figure 8(b), we plotted the average query processing cost to answer a one-sided range query. Because

nearly all of the bitmaps are needed, the query processing cost is about the same as the index size. The

average I/O cost of answering an equality query or a two-sided query is even closer to the index size, we did

not plot them.

For a high cardinality attribute with C = 106, the average cost of answering a one-sided range query

is about 0.65 using a binary encoded index. The same cost is 0.5 for the basic bitmap index (i.e., a one-

component equality encoded index). For such high-cardinality attributes, the basic bitmap index is larger
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(a) Index size (b) One-sided range query cost

Figure 8: Performance information about binary encoded indexes. Both index size and the query processing

cost are measured as the fraction of base data. Processing an equality query requires all bitmaps in an index.

in size but it can answer a range query with lower I/O cost. If the attribute cardinality is less than lower

(C < 32768,w = 32), the binary encoded index has both lower space requirement and lower I/O cost to

answer a range query. Often, the binary encoding is recommended for high-cardinality attributes; however,

our analysis here shows that it is actually more efficient for lower cardinality attributes.

7 Analysis of Multi-level Encodings

We now explore some variations of the multi-level encodings. One feature we notice about these multi-level

encodings is that each level is its own one-component index, therefore the analyses of the basic encodings

can be easily applied for the analysis of the multi-level methods. Based on this observation, we identify

three of the two-level methods that are likely to perform well, namely the equality-equality (EE) encoding,

the range-equality (RE) encoding, and the interval-equality (IE) encoding. We only use equality encoding

at the finest level because this level typically contains many bitmaps and only equality encoding could keep

their total size modest. The reason for not considering more than two levels will become clear after we study

the two-level methods.

Because each level is an complete bitmap index, it can be used to answer a query. In particular, the

finest level can accurately answer any query that the multi-level index could. We can take advantage of

this to minimize the query processing cost. In particular, since the fine level is an equality encoded index,

we always use it to answer equality queries. Therefore the cost of answering an equality query is the same

as shown in Equation 9 in Section 5.3. The cost of answering range queries may be reduced by using the

coarser level index. To simplify the analysis of two-level encodings, we only consider the case of using both

levels. In the implementation used in timing measurements to be discussed in Section 9, we examine all

options and choose the most cost effective one.

In the remaining of this section, we first discuss how we propose to generate the coarse level bitmaps,

then discuss the three two-level encodings in turn. We conclude this section with a discussion on the optimal

number of coarse bins.
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7.1 Generating coarse bins

To generate a two-level encoding, we build the fine level first and then build the coarse level from the fine

level. This is a practical approach because the total size of fine level bitmaps (under equality encoding) is

relatively small. In addition, having the fine level bitmaps also enables us to make more intelligent decisions

on how to generate the coarse level bitmaps. Effectively, each coarse level bitmap is the result of bitwise

logical OR between a number of fine level bitmaps. To decide which fine level bitmaps to group together

is equivalent to placing the values corresponding to the fine level bitmaps into bins, hence the term coarse

level bins. Recall that Bc denotes the number of coarse bins.

Knowing that the fine level has C distinct values, a simple choice is to divide them into Bc bins so

that each bin has the same number of values. This choice was used in an earlier study [35]. It is easy to

implement, but may take much longer to answer some queries than others, if the base data is non-uniform.

For example, on Zipfian data with z = 2, the bitmaps in the first coarse bin would be much larger than those

in later bins. A query touching the first coarse bin is likely to take much longer to answer than the average.

To reduce the variations in query processing costs, we make the total size of fine level bitmaps in each

coarse bin to be the same. Because the decision on coarse bins is made after the fine level bitmaps are

available, we know the sizes of fine level bitmaps and can determine the bin boundaries in O(C) time.

Given C fine level bitmaps bi, i = 1, . . . ,C, let mi denote the size of each compressed bitmap. Compute

the average size to be allocated to Bc bins, M = ∑mi/Bc, and the cumulative sum of mi, li = ∑i
j=1 m j.

The cumulative sums that are closest to a multiple of M could be determined and their positions used as

boundaries for the coarse bins.

The above heuristics may place multiple bin boundaries at the same location, so we refine it by pro-

gressively locating the bin boundaries di. To start with, we compute the cumulative sum of the sizes of fine

level bitmaps and then look for the value d1 such that ∑
d1

j=1 mi ≈ ∑C
i=1 mi/Bc. From the remaining bitmaps,

we again look for a value d2 such that ∑
d2

j=d1+1 m j ≈ ∑C
j=d1+1 m j/(Bc −1). This process can be carried out

for all Bc −1 bin boundaries; the last bin boundary must be C to cover all C fine level bitmaps. This algo-

rithm can better accommodate the situation where some bitmaps are much larger than others. Note that the

summations can be computed from the cumulative sums and the total cost of this algorithm is O(C).
For uniform random data and Zipfian data, each coarse bin generated above would correspond to a set

of values whose total probability is close to 1/Bc. For an index on a high cardinality attribute, where C is

large and Bc is much smaller than C, this approximation is accurate.

7.2 Equality-equality encoding

7.2.1 Index size

The fine level of this encoding is a basic bitmap index, therefore the total size of bitmaps at this level is

given by Equations 7, 44 and 45 for uniform random data, Zipfian data and Markovian data respectively.

By construction, the coarse level for our synthetic data is effectively an basic index for uniform random

data because the values in each coarse bin have the same probability. Therefore, we can use Equation 7

to compute the total size of bitmaps at the coarse level. Next we give two specific examples, one for the

uniform random data and one for the Markovian data.

For uniform random data, the total size of an equality-equality encoded index can be expressed as

follows,

sEE
U = Cmr(1/C)+Bcmr(1/Bc) ≈ 2N +BcN/(w−1). (28)

Note the above approximation is for large C, C ≥ 100, but small Bc, Bc < 50.

For the Markovian data, each coarse level bin contains about C/Bc values. The clustering factor

of a coarse level bitmap is f (1− 1/C)/(1− 1/Bc)). The total size of coarse level bitmaps is given by

BcmM(1/Bc, f (C−1)Bc/(C(Bc −1))), which can be further expanded with Equation 40.
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7.2.2 Query processing cost

One-sided range query To answer a one-sided range query “A ≤ ai” using the equality-equality encoded

index, we first use the coarse level index. For C−Bc out of C canonical one-sided range queries, the coarse

level index is insufficient to resolve the query, and some fine level bitmaps are needed. Let bi denote a fine

level bitmap, the answer to our query can be expressed as ∑i
j=1 b j ≡ b1 | . . . | bi. Let k be the coarse bin that

ai falls in, i.e., dk−1 < i < dk. For completeness, we assume d0 = 0. We call the kth coarse bin the edge bin

of the query. Let ci denote the ith coarse level bitmap. The result of our canonical query can be expressed

as ∑k−1
j=1 c j +∑i

j=dk−1+1 b j ≡ c1 | . . . | ck−1 | bdk−1+1 . . . | bi.

There are a number of different ways to actually evaluate the above expression. For example, the bitwise

OR operations involving the coarse level bitmaps can be either directly evaluated as ∑k−1
j=1 c j, or computed

as the complement of bitwise OR of remaining coarse level bitmaps, 1−∑
Bc

j=k c j ≡∼ ∑
Bc

j=k c j. Note that the

symbol 1 denote the bitmap with all bits set to 1. As before, we call these two options as the direct option

and the complement option for using the coarse level bitmaps. Similarly, there are also a direct option and

a complement option involving the fine level bitmaps. Let mi denote the size of bi in number of words and

ni denote the size of ci. The following table lists all four options for computing the answer to a one-sided

range query using both levels of an equality-equality encoded index.

option computation I/O cost

1. ∑k−1
j=1 c j +∑i

j=dk−1+1 b j ∑k−1
j=1 n j +∑i

j=dk−1+1 m j

2. ∑k
j=1 c j −∑

dk

j=i+1 b j ∑k
j=1 n j +∑

dk

j=i+1 m j

3. 1−∑
Bc

j=k c j +∑i
j=dk−1+1 b j ∑

Bc

j=k n j +∑i
j=dk−1+1 m j

4. 1−∑
Bc

j=k+1 c j −∑
dk

j=i+1 b j ∑
Bc

j=k+1 n j +∑
dk

j=i+1 m j

When answering a query, sizes of bitmaps are known, therefore, we can determine which option requires

the least amount of I/O time and then use it for answering the query. This can be easily accomplished in

software by keeping the cumulative sizes, i.e., ∑m j and ∑n j separately. For our analytical evaluation, we

observe that if k < ⌊Bc/2⌋, options 1 and 2 are likely to be more competitive than options 3 or 4. Next, we

concentrate on computing the average cost for small k. The average value for k > ⌊Bc/2⌋ can be computed

the same way and the average is in fact the same for uniform data.

Assume that C is an integer multiple of Bc, for uniform data, the size of a fine level bitmap is mi =
mr(1/C) and the size of a coarse level bitmap is ni = mr(1/Bc). We prefer option 1 if sumi

j=dk−1+1m j ≤ nk +

sum
dk

j=i+1m j. That is, if i ≤ (mr(1/Bc)
mr(1/C) +dk−1 +dk)/2 option 1 is preferred. Let β ≡ mr(1/Bc)/∑

dk

j=dk−1+1 m j,

we have

β =
mr(1/Bc)

(dk −dk−1)mr(1/C)
=

Bcmr(1/Bc)

Cmr(1/C)
.

We can rewrite the condition on i as i≤ (mr(1/Bc)/mr(1/C)+dk−1+dk)/2 = dk−1 +(1+β )(dk−dk−1)/2 =
(1+β )C/(2Bc). Define µ ≡ ⌊(1+β )C/(2Bc)⌋. The average cost involving the fine level bitmaps is

uEE
1RQ ≡ 1

dk −dk−1

(

dk−1+µ

∑
i=dk−1+1

i

∑
j=dk−1+1

m j +
dk

∑
i=dk−1+µ+1

(

nk +
dk

∑
j=i+1

m j

))

=
Bc

C

(

mr(
1

C
)

µ

∑
i=1

i+
C/Bc

∑
i=µ+1

(

mr(
1

Bc

)+

(

C

Bc

− i

)

mr(
1

C
)

)

)

=
Bc

2C

(

µ(µ +1)mr(
1

C
)+

(

C

Bc

−µ

)(

2mr(
1

Bc

)+

(

C

Bc

−µ −1

)

mr(
1

C
)

))

.

The corresponding average cost involving the coarse level bitmaps is

vEE
1RQ ≡ 1

⌊Bc/2⌋
⌊Bc/2⌋

∑
k=1

k−1

∑
j=1

c j =
⌊Bc/2⌋−1

2
mr(

1

Bc

).
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The overall cost of answering queries with ai, i < C/2, is given by uEE
1RQ + vEE

1RQ. For uniform data, the

average cost involving ai, i > C/2 (using option 3 an 4) should be the same as above. There are a small

number of queries involving query boundaries ai where i is close to C/2 and the costs of all four options

might be close to each other. Because more options are involved, they may contribute to reduce the overall

average cost. However, since there are only a few such cases, we simply take the overall average cost to be

tEE
1RQ = uEE

1RQ + vEE
1RQ. (29)

If Bc is large, such as one predicted by Equation 5, than mr(1/Bc)≈ 2N/Bc. In this case, we have β ≈ 1,

µ ≈ C/Bc, and uEE
1RQ ≈ 1

2
(µ + 1)mr(1/C) ≈ N(C/Bc + 1)/C. In other words, about a half of the fine level

bitmaps in a coarse bin are accessed to answer an average query. Therefore, the coarse level bitmaps are not

helpful in reducing the average query processing cost involving the fine level bitmaps.

The coarse level bitmaps can help reduce the cost involving the fine level bitmaps if Bc is small, say Bc ≤
50. In this case, we may assume the coarse level bitmaps are incompressible, e.g., mr(1/Bc) ≈ N/(w−1).

This leads to β = Bcmr(1/Bc)
Cmr(1/C) ≈ Bc

2(w−1) and µ = ⌊ C
2Bc

+ C
4(w−1)⌋. To further simplify the evaluation, we assume

that Bc > 5 and drop the floor operators in the expressions. With all these simplifications, we obtain the

following expression for the query processing cost.

uEE
1RQ ≈ N

2Bc

+
N

2(w−1)
− BcN(C−4(w−1))

8C(w−1)2
; (30)

vEE
1RQ ≈ Bc/2−1

2

N

w−1
=

(Bc −2)N

4(w−1)
;

tEE
1RQ ≈ N

2Bc

+
BN(C(2w−3)+4(w−1))

8C(w−1)2
. (31)

The optimal number of coarse bins that minimizes the average query processing cost is

Bc = 2(w−1)

√

C

C(2w−3)+4(w−1)
.

For Large C, the above expression can be approximated as Bc = 2(w− 1)/
√

2w−3. For the typical word

sizes w = 32 and w = 64, the corresponding Bc is 8 and 11. On a 32-bit system, using 8 coarse bins, the

average cost is 1937N/15376 + 4N/(31C). Compared with the projection index which always accesses N

words, the average cost of this encoding is about 8 times smaller for high cardinality attributes.

Two-sided range query In general, a two-sided range query will touch two edge bins instead of one as

for the one-sided range query. The introduces more options for evaluating the query. There are two ways

to evaluate each of the three sets of bitmaps, two set of fine level bitmap in two edge bins and one set of

coarse level bitmaps; altogether there are eight options. We observed that within each edge bin, each fine

bitmap is equally likely to be the end of our canonical two-sided range query. This means the previous

analysis of the cost involving fine level bitmaps in each edge bin is valid for the two-sided range queries. If

a two-sided range query involves two edge bins, the average cost involve the fine level bitmaps is twice as

in the one-sided case, uEE
2RQ = 2uEE

1RQ. One out of every Bc two-sided range queries has two query boundaries

in the same coarse bin. In these cases, the total query processing cost is uEE
1RQ. The overall average cost

involving the fine level bitmaps is

uEE
2RQ =

1

Bc

uEE
1RQ +

(

1− 1

Bc

)

2uEE
1RQ =

(

2− 1

Bc

)

uEE
1RQ.

To compute the cost associated with the coarse level bitmaps, we again divide the different case into

two major categories that are relatively straightforward to analyze and neglect a smaller number of cases

that are more complex. Given Bc coarse level bitmaps with equality encoding, we use these bitmaps to
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compute either ∑
k2−1
j=k1+1 c j or 1−∑

k1−1
j=1 c j −∑

Bc

j=k2+1 c j. The corresponding costs are either ∑
k2−1
j=k1+1 n j or

∑
k1−1
j=1 n j + ∑

Bc

j=k2+1 n j. By construction, we have n j = mr(1/Bc). This simplifies the two cost functions to

be (k2 − k1 −1)mr(1/Bc) and (Bc − k2 + k1 −1)mr(1/Bc). It is clear that if k2 − k1 ≤ ⌊Bc/2⌋, the first cost

function is smaller, otherwise the second one is smaller.

By our definition of the canonical two-sided range query, we can describe the values of k1 and k2 as

follows. Take two integers from between 1 and Bc, call the smaller one k1 and the larger one k2. Among B2
c

combinations of k1 and k2, there are Bc different possible values for k2 − k1, k2 − k1 = 0 appears Bc times,

k2 − k1 = 1 appears 2(Bc −1) times, k2 − k1 = 2 appears 2(Bc −2) times, . . . , and k2 − k1 = Bc −1 appears

2 times. The average cost involving the coarse level bitmaps is

vEE
2RQ ≡ 1

B2
c

(⌊Bc/2⌋

∑
k=1

2(Bc − k)(k−1)mr(
1

Bc

)

+
Bc−1

∑
k=⌊Bc/2⌋+1

2(Bc − k)(Bc − k−1)mr(
1

Bc

)

)

=
mr(1/Bc)

3B2
c

(⌊Bc/2⌋(⌊Bc/2⌋−1)(3Bc −2⌊Bc/2⌋−2)

+2(Bc −⌊Bc/2⌋)(Bc −⌊Bc/2⌋−1)(B−⌊Bc/2⌋−2))

The overall cost for an average two-sided query is

tEE
2RQ = uEE

2RQ + vEE
2RQ. (32)

Assuming that Bc is between 5 and 50 and C ≥ 100, we can use the same approximations that lead to

Equation 30 to obtain a simplified expression for the average query processing cost for two-sided range

queries as follows.

uEE
2RQ ≈

(

2− 1

Bc

)(

N

2Bc

+
N

2(w−1)
− BcN(C−4(w−1))

8C(w−1)2

)

;

vEE
2RQ ≈ (Bc −2)2N

4Bc(w−1)
;

tEE
2RQ ≈ (2Bc −1)N

(

1

2B2
c

+
1

8(w−1)2

)

+
4C +2Bc(Bc(4+C)−2)

8BcC(w−1)
N. (33)

Since Bc can only be integers between 5 and 50, it is easy to find the best values that minimize the query

processing cost either by computing the cost for all possible Bc or using symbolic computing tools such as

Mathematica or matlab. For w = 32, the optimal Bc is 11. For w = 64, the optimal Bc = 16. When C = 106

and Bc = 11, tEE
2RQ ≈ 0.174N, which is about 1/6th of the cost of using the projection index.

7.3 Range-equality encoding

The key difference between this encoding and the equality-equality encoding is that the coarse level bitmaps

are constructed using range encoding. As in the previous case, we can compute the index size by considering

the fine level and the coarse level separately.

7.3.1 Index size

This encoding can be thought of as constructed from equality-equality encoding. Let bi denote the bitmaps

from equality encoding. Range encoding computes a set of bitmaps by ORing bi progressively, where the

ith new bitmap is computed as ∑i
j=1 bi. The total size of coarse level bitmaps can be computed in the same

way as the total sizes of bitmaps are computed in Section 5.4.
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For the synthetic data we are considering, each coarse bin is assumed to have 1/Bc of the possible values.

Under this assumption, the total size of range encoded bitmaps is given by ∑
Bc−1
i=1 mr(i/Bc). As explained in

Section 5.4, because more than 90% of the bitmaps are incompressible, their total size can be approximated

with (Bc − 1)N/(w− 1). In fact, the same approximation is valid for the Markovian data if the clustering

factor f is modest, say f ≤ 10.

For uniform random data, the total size of a range-equality encoded index is

sRE
U = Cmr(1/C)+

Bc−1

∑
i=1

mr(i/Bc) ≈ 2N +(Bc −1)N/(w−1). (34)

Note that the above approximation is accurate for large C, say C ≥ 100.

7.3.2 Query processing cost

One-sided range query As with the equality-equality encoding, we can evaluate the cost involving the

coarse level and the fine level separately. Following the analysis given in Section 5.4, we only need one

coarse level bitmaps to answer a one-sided range query. Let ci denote the ith coarse level bitmap and bi

denote the ith fine level bitmap, the solution to query “A ≤ ai” can be to computed as ck−1 + ∑i
j=dk−1+1 b j,

where the values di are coarse bin boundaries and dk−1 < i < dk. As before, there is a complement option

which can be expressed as ck −∑
dk

j=i+1 b j. The operation a−b is define to be a& ∼ b.

Since the ck−1 and ck are about the same size, we can choose to use either the direct option or the

complement option according to how many bytes are to read read from disk. This minimizes the overall

query processing cost. On average, the cost of answering a one-sided range query is equivalent to reading

one coarse level bitmap and one quarter of the fine level bitmaps in a coarse bin. For uniform random data,

we can express the average cost of processing a one-sided range query as follows,

tRE
1RQ =

Cmr(1/C)

4Bc

(1−Bc/C)+
1

Bc

Bc−1

∑
i=1

mr(i/Bc) ≈
N

2Bc

+
N

w−1
. (35)

Similar to the approximate in Equation 29, the above approximate is accurate for large C and small Bc.

Two-sided range query The answer to a two-sided range query can be effectively constructed from an-

swers to two one-sided range queries. In other words, “a1 ≤ A ≤ a2” is equivalent to “A ≤ a2 AND NOT A

< a1.” This leads to the following expression for the average query processing cost.

tRE
2RQ = 2tRE

1RQ ≈ N

Bc

+
2N

w−1
. (36)

Since there are two options to compute the answer to a one-sided range query, there are a total of four

options for a two-sided range query. Considering that there are two additional options of answering the same

query using the fine level bitmaps only, altogether there are six different ways to answer a two-sided range

query using the range-equality encoding. Our test software implements all these six options.

7.4 Interval-equality encoding

An interval-equality encoded index can be constructed from an equality-equality encoded index by recom-

puting the coarse level bitmaps using interval encoding. Because interval encoding produces about half as

many bitmaps as range encoding, interval-equality encoding may produce a more compact index than the

range-equality encoding. In fact, an interval-equality encoded index may even be smaller than an equality-

equality encoded index.
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7.4.1 Index size

For Bc coarse level bins, interval encoding produces Bc + 1−⌈Bc/2⌉ bitmaps, where each of them has the

bit density of ⌈Bc/2⌉/Bc. This is the case for all three types of synthetic data considered so far. Following

the same analysis that leads to Equation 51, we can compute the clustering factor of the bitmaps to be f (1−
1/C)/(1−⌈Bc/2⌉/Bc) ≈ 2 f . From the earlier analysis, we know that such bitmaps can not be compressed

with WAH compression.

For uniform random data, the total size of an interval-equality encoded index is

sIE
U = Cmr(1/C)+(Bc +1−⌈Bc/2⌉)mr(⌈Bc/2⌉/Bc) ≈ 2N +

BcN

2(w−1)
. (37)

Note that the above approximation is accurate for large C and modest Bc, say C ≥ 100 and Bc ≤ 50.

7.4.2 Query processing cost

As illustrated in the equality-equality encoding and the range-equality encoding cases, the process of an-

swering a range query (either one-sided or two-sided) involves using the coarse level bitmaps to answer the

query approximately and then use the fine level bitmaps to make the answer accurate. Since the procedure

involving the fine level bitmaps are the same as before, we only need to consider how the interval encoded

coarse level bitmaps can be used to answer a range query.

In [7], the authors have thoroughly explained how to answer a range query using the interval encoded

index. Some of the dominant cases have also been reviewed in Section 5.5. The key observation is that it

requires two bitmaps to answer any range query, be it an equality query, one-sided range query or two-sided

range query. Because all coarse level bitmaps are likely to be the same size, the average cost of processing

either a one-sided range query or a two-sided range query is

tIE
2RQ ≈ N

Bc

+
2N

(w−1)
. (38)

7.5 Optimal number of coarse bins

The optimal number of coarse bins for the equality-equality encoding can be computed by minimizing the

query processing cost as we have done. Recall that for two-sided range queries, the optimal number of coarse

bins is 11 on a 32-bit system. However, without considering compression, the optimal number of coarse bins

would have been 1,400 according to Equation 5. With Bc = 1400, the equality-equality encoding is no more

efficient than the basic bitmap index, however, with Bc = 11, the equality-equality encoding answers a query

with 1/3th the cost of the one-component equality encoding ( 0.5N
0.174N

). This advantage also motivates us to

find the optimal number of coarse bins for other two-level encodings.

The optimal choice for the number of coarse bins for the range-equality encoding and the interval-

equality encoding cannot be produced by minimizing the index size or the query processing cost, because

those functions are monotonic functions of the number of coarse bins. In the test software to be used later,

we use the following choices. For the range-equality encoding and the interval-equality encoding, we choose

the number of coarse bins to make the query processing cost involving the coarse level to be the same as that

involving the fine level. We choose Bc based on the cost for processing two-sided range queries as shown in

Equations 36 and 38. In the case of range-equality encoding, see Equation 36, the cost involving the coarse

level is 2N/(w−1) and the cost involving the fine level is N/Bc. The choice of

Bc = (w−1)/2 (39)

makes the costs due to two levels the same.

It is possible to minimize any convex function of the size and time to obtain a choice for the number

of coarse level bins. For example, minimizing sRE
U tRE

2RQ leads to Bc =
√

(w−1)(2w−3)/2. For w = 32,
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binary equality equality-equality range-equality interval-equality

size
N log2(C)

w−1
[24] 2N [7] 2.35N [28] 2.48N [34] 2.29N [37]

EQ
N log2(C)

w−1
[25] 2N

C
[9] 2N

C
[9] 2N

C
[9] 2N

C
[9]

1RQ
N log2(C)

w−1
[26] N

2
[11] 0.129N [29] 0.064N [35] 0.095N [38]

2RQ
N log2(C)

w−1
[27] N

2
[13] 0.174N [32] 0.095N [36] 0.095N [38]

Table 3: Index sizes and query processing costs of five encodings on uniform random attributes with large

attribute cardinalities. The equations defining the more general cases are given in the square brackets.

Bc = 31. Alternatively, we may minimize sRE
U + tRE

2RQ, which leads to a choice of Bc =
√

w−1. For w = 32,

this suggest Bc = 6. Obviously, other functions of sRE
U and tRE

2RQ will lead to different choices for Bc between

6 and 31. We decide to use the formula in Equation 39 because it is in the middle of a range of possible

choices. Since the average query processing cost for the interval-equality encoding is the same as that for

the range-equality encoding, Equation 39 is also used for determining the number of coarse bins for the

interval-equality encoding.

Based on our analysis of two-level encodings, the number of coarse level bins is quite small, therefore,

there is no need to use another coarse level.

8 Optimal Encodings

In last three sections, we studied the performance characteristics of different encodings in isolation. Next,

we summarize the key results and select some of them for further comparisons. In addition, we also point

out the optimal scaling property of the three two-level encodings.

Among the multi-component methods, we identify two methods that are promising, the one-component

equality encoding and the binary encoding. The query processing cost using a multi-component encoding

generally increases as the number of component increases. A notable exception is the binary encoding,

which because of its special design is able to keep its index size small and query processing cost low. It

is implemented in some commercial DBMS products [17, 21]. So is the one-component equality encoding

[2, 20]. Therefore, comparisons against these method are of practical interest to a large number of users.

For high-cardinality attributes, the one-component range encoding and interval encoding produce in-

dexes that can be much larger than the base data, but their sizes decrease as the number of components

increases. The versions that use the maximal number of components would have all bases of size 2, which

can be optimized and turned into the binary encoding. In this regard, the one-component equality encoding

and the binary encoding represent the two extremes of multi-component encodings, where the first uses the

minimal number of components and the second uses the maximal number of components.

Among the multi-level encodings, we show that the optimal number of levels is 2. Among the two-

level encodings, equality-equality encoding, range-equality encoding and interval-equality encoding pro-

duce compact indexes and also have low query processing costs.

In Table 3, we summarize the performance characteristics of the five encodings identified above. We only

consider the case of uniform random attributes with high attribute cardinalities because the high-cardinality

attributes are considered challenging for bitmap indexes, and uniform random data are among the hardest

for WAH compression method to compress.

The specific numbers given in Table 3 are for w = 32, which is the word size on our test system. The

rows labeled EQ, 1RQ and 2RQ are the query processing costs, which are defined to be the number of

words accessed in order to answer an average query of the particular type. Currently, the basic bitmap index

(marked equality in Table 3) and the binary encoded index are considered efficient indexes and used in

commercial database systems. Through our analyses, we see that the two-level encodings can significantly

outperform these two. For two-sided range queries (2RQ), the average query processing cost using the
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Table 4: Labels of bitmap encoding schemes used in tests.

BN binary encoding

E1 one-component equality encoding (the basic bitmap index)

EE equality encoded coarse level, equality encoded fine level

RE range encoded coarse level, equality encoded fine level

IE interval encoded coarse level, equality encoded fine level

range-equality encoding or the interval-equality encoding is about 1/5th of that for the basic bitmap index.

The query processing cost using the equality-equality encoding is about 1/3rd of that for the basic bitmap

index.

Based on the query processing costs shown in Table 3, the range-equality encoding and interval-equality

encoding would be faster than the binary encoding if the attribute cardinality is larger than five. This means

that for most attributes, the two-level encodings are preferred. On attributes with cardinality 1 million,

log2(C) = log2(106) ≈ 20, the range-equality encoding and the interval-equality encoding are almost seven

times faster at answering two-sided range queries than the binary encoding. The performance advantages of

these two-level encodings is even more pronounced on one-sided range queries and equality queries.

When a bitmap index is used to answer a query, a bitmap representing the selected records is produced.

Let h denote the number of hits. Since each hit is identified, the process to identify and record the hits

requires a minimal of O(h) time. Any indexing method that can answer a query in O(h) time is said to be

optimal.

The three two-level encodings not only perform well in terms of average query processing cost, they

are also optimal indexes because they answer queries on O(h) time. In [34], the authors proved that the

worst-case time complexity of the basic bitmap index compressed with WAH has O(h) time complexity.

By construction, the three two-level encodings contain the basic bitmap index at the fine level, and they

never cost more than the basic bitmap index to answer any query. Therefore, equality-equality encoding,

range-equality encoding and interval-equality encoding also have O(h) time complexity.

9 Observed Performance

In this section we measure the size and the query processing costs of the five multi-level and multi-component

bitmap encoding schemes identified in the previous section. A brief description of these encoding schemes

and their short-hand notations are listed in Table 4. We used 100 million records with five different attribute

cardinalities ranging from 100, 1000, to 106. For each cardinality, we also vary the data distribution by using

three different Zipf exponents 0, 1 and 2, and three different clustering factors, 2, 4, and 8. The attributes

are named cmzz or cmf f , where m indicates the attribute cardinality being 10m, z is the Zipf exponent, and

f is the clustering factor. For example, the attribute named c5z1 has an attribute cardinality of 105 and a

Zipf exponent of 1; c6f2 has an attribute cardinality of 106 and a clustering factor of 2. All our performance

benchmarks were carried out on a 2.8 GHz Intel Pentium 4 with 2 GB of memory. The I/O subsystem is a

RAID 0 disk array consisting of 4 disks with a measured I/O rate of some 80 MB/sec.

We present the index sizes before the query processing costs. The discussions on query processing cost

progress from the most detailed query response time of each query, to the average cost per attribute, and

finally to the average cost over the entire data set, which lead eventually to a high-level comparison among

the five selected encodings.
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(a) Uniform data (cmz0) (b) highly skewed data (cmz2)

Figure 9: Sizes of compressed bitmap indexes. Dash-dotted lines are predictions.

9.1 Index Size

The sizes of the compressed bitmap indexes are shown in Figure 9 along with the predictions made in earlier

sections. Each symbol shows the index size for one attribute and the dash-dotted lines are the predictions.

There are five symbols on each line representing five different attribute cardinalities ranging from 100 to 106.

Figure 9(a) shows the index sizes of uniform random data (attributes cmz0, i.e., those with Zipf exponents

z = 0) and Figure 9(b) shows the index size of highly skewed data (attributes cmz2, i.e., Zipf exponents

z = 2). In both cases, the actual measured index file sizes represented by the symbols fall on top of the

prediction lines, indicating that the actual values agree with predictions.

The bitmap indexes used here are built with no binning. The basic bitmap index contains C bitmaps.

With WAH compression, these bitmaps take about 2N words for large C. In our tests, N is 108 and a word has

four bytes, therefore, the index size should approach 8× 108 bytes as the attribute cardinality C increases.

The sizes of E1 indexes indeed approach the expected value of 8×108 bytes.

The binary encoding (BN) produces the smallest indexes in each case and the range-equality encoding

produces the largest index among the five encodings tested. Since the three two-level encodings contain the

basic bitmap index at the fine level, their sizes are always larger than the basic bitmap indexes. Because

the coarse level bitmaps are hard to compress, each coarse level bitmap is about the same size no matter

what encoding is used. For this reason, the encoding that produces less bitmaps typically also produces

smaller indexes. Based on the parameters described in the previous section, encoding IE produces 9 coarse

level bitmaps, encoding EE produces 11 coarse level bitmaps and encoding RE produces 15 coarse level

bitmaps. We observe that the RE indexes are indeed the largest. Because the equality encoded coarse

level bitmaps produced by encoding EE are slightly more compressible than other coarse level bitmaps, EE

encoded indexes are about the same as RE encoded ones in some cases.

Figure 9(a) and Figure 9(b) show data with different Zipf exponents. As the Zipf exponent increases, the

data distribution becomes more skewed and the index size decreases as well. The coarse level bitmaps are

hard to compress. This keeps the differences between the two-level encodings and the E1 encoding about

the same in Figure 9(a) and Figure 9(b). On highly skewed data (with Zipf exponents z = 2), the relative

difference between the two-level indexes and the one-level equality encoded index is larger. For example,

the size of the IE encoded index is about 15% larger than the E1 index on c6z0 (where C = 106 and z = 0),

but their relative difference increase to about 82% on c6z2 (where C = 106 and z = 2).

Figure 10(a) shows how the index sizes change with the Zipf exponent and the clustering factor. In this

case the attribute cardinality is fixed at 106. This bar graph contains six groups for six different attributes
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(a) Measured index sizes (b) Index building time

Figure 10: Sizes of compressed bitmap indexes and time needed to build the indexes. Attribute cardinality

C = 106.

with C = 106. Within each group, the five bars correspond to five different encodings. The bars are ordered

from left to the right in the same order as the legends.

For four out of six attributes, encoding BN produces the smallest indexes, while in the other two cases,

E1 produces the smallest indexes. In terms of total sizes, indexes produced by BN is smaller. Another trend

we observe is that the index sizes produced by BN is about the same in five out six cases. This is because BN

usually produces bitmaps that are incompressible as expected. In all other cases, the index size decreases as

the Zipf exponent or the clustering factor increases. The index sizes produced by E1 show the largest benefit

as the Zipf exponent or the clustering factor increases.

Figure 10(b) shows the time used to build the indexes for the attributes with cardinality 106. Generally,

the larger indexes require more time to build. This is primarily because the current implementation uses the

dynamic arrays from Standard Template Library to hold the words used in the compressed bitmaps. The

larger indexes generally contain many large bitmaps. While creating the indexes, these bitmaps grow in size

and have to be frequently reallocated to accommodate the increasing space requirement. Avoiding these

dynamic memory allocation could reduce the variation in index creation time.

We conclude the discussion on index sizes by observing that all five encodings produce indexes that are

no more 3 times the base data size. In our tests, the one attribute of the base data takes 4×108 bytes. In the

worst case, shown in Figures 9(a) and 10(a), the observed index sizes are less than 12×108 bytes. Since the

popular B-tree indexes are observed to take 3 – 4 times the size of base data, we regard all five of them as

using acceptable amount of space.

9.2 Scaling with the number of hits

In Section 8, we show that four of the five encodings tested can answer queries in O(h) time, which means

in the worst case, the time required to answer a query is bounded by a linear function of the number of hits

h. In Figure 11(a), we plot the time used to answer a query against the number of hits. In this case, we

show only the time values measured with c6z0 because queries on the uniform random data take the longest

time to answer. To make sure the full I/O cost is accounted for, we unmount the file system containing the

data files and the index files. We measure the I/O cost through vmstat command, and measure the time

through gettimeofday which reports the elapsed time in seconds. The queries we use here are subsets of

canonical two-sided range queries. Each query set contains 300 randomly selected two-sided range queries.

The queries we use only count the number of hits, but do not retrieve any records.

In Figure 11(a), the points marked E1 form a straight line when the number of hits is less than 50
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Figure 11: The query response time (seconds) plotted against the number of hits on uniform data.

million. For queries with more than 50 million hits, the query response time decreases as the number of

hits increases. This agrees with prediction that the query processing time is bounded by a linear function of

the number of hits. However, for the predicted linear relation to hold, the slope of the line formed by E1

must not depend on characteristics of the data such as the attribute cardinality. Wu et al. [34] gave extensive

argument indicating the slope approaches a constant as attribute cardinality increases, here we give some

empirical support. In Figure 11(b), we show how the slope of the timing curve varies with the attribute

cardinality. We observe that as the attribute cardinality increases, the slope indeed approaches a constant.

Therefore, the WAH compressed basic bitmap index does scale as O(h).
As expected, the time used by the two-level indexes are never more than that of the basic bitmap index

(E1). In fact, when the number of hits is close to 50 million (N/2), the two-level methods are 10 times

faster. Figure 11(a) shows that the query response time of the three two-level indexes are close to that of

E1 if the number of hits is less than 10 million. Therefor, their query response time is bounded by the same

linear function for E1. This verifies that the three two-level indexes are not only faster but also theoretically

optimal.

9.3 Average cost per attribute

The next set of measurements are averaged over all random two-sided range queries for each attribute. We

measure these both the I/O cost and the query response time.

Figure 12(a) shows the actual query processing costs against their predicted values, where each symbol

represent the average I/O cost over 300 random queries on a single attribute, and the dashed lines represent

the predictions computed earlier. Each prediction line has five symbols on them representing five attributes

with different attribute cardinalities. We observe that the predictions match the actual observed values well.

Though we only show the case for the uniform data, similar agreement between predicted costs and actual

costs is also observed for other attributes. This agreement indicates that our analyses captured the most

important I/O costs involved in answering a query.

Figure 12(b) shows the average query response time used for each attribute of the test data set. We choose

to show the time values involving the uniform data to reduce the clutter of the graph. Overall, we see that

that the basic bitmap index (marked with E1) requires the longest time. The three two-level encodings are

faster than both the basic bitmap index and the binary encoded index. Among the three two-level encodings,

encoding EE takes longer time to answer a query than encoding RE and IE. Time used by encoding RE and

IE are nearly the same, with IE uses slightly less time in some cases.
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Figure 12: The average cost to answer random two-sided range queries on uniform random data.

Comparing Figures 12(a) and (b), we see that the relative differences among the three two-level encod-

ings are about the same, but the same is not true between E1 and BN. According the I/O costs, E1 should

be more efficient than BN for attributes with C > 2(w−1)/2 = 32768. However, E1 always takes more time

to answer a query than BN no matter what is the attribute cardinality. This is primarily due to two reasons.

Using encoding E1, we need to perform C/4 operations on compressed bitmaps on the average. This re-

quires considerable amount of CPU time. In many cases, the CPU time is close to the time required for I/O

operations using encoding E1, while the CPU time using encoding BN is typically negligible. This means

that the total elapsed time using E1 is about twice that using BN as shown in Figures 12(b). The second

reason that using E1 takes more time than using BN is that it requires more read operations using E1 than

using BN. In our test software, we always reads a binary encoded index in one read operation, while to

answer a query using E1, we need at least two read operations, once to read the metadata and once to read

the bitmaps involved. This introduces more I/O overhead. The three two-level encodings require even more

I/O operations than E1, but they require less CPU time than E1. When C = 106, the average query response

time using IE is about 1/3rd of that using BN even though the I/O cost of IE is about 1/5th of that of BN.

9.4 Relative speed

To measure the relative speed of the five encodings, we compute their average speedup against a simple base

line, namely the projection index [21]. The projection index is efficient for ad hoc range queries used in

our tests [21], and it requires a simple fixed time, about 4.88 seconds to answer a query on our test system,

which make the comparisons simple. Figure 13 shows the speedup of the five different bitmap indexes over

the projection index. We compute the speedup value based on the average time to answer 300 queries on

an attribute, and each bar in this figure represents the average of speedup values for five different attributes

with the same Zipf exponent or clustering factor, but different attribute cardinalities. There are six groups of

bars representing six types of attributes. Within each group, the five encodings are shown from left to right

in the same order as they are listed in top of the figure.

From Figure 13, we see that as the Zipf exponent increases the speedup value also increases. Similarly,

as the clustering factor of the uniform Markov process increases, the speedup value also increases. Encoding

E1 shows the largest increase; its speedup value goes from just above 1 for z = 0 to above 30 for z = 2. In

contrast, encoding BN shows smallest increase; its speedup value goes from about 2 for z = 0 to about 4

for z = 2. The three two-level encodings are generally faster E1, but the relative differences decrease as the

Zipf exponent increases or the clustering factor increases. The average speedup values over all queries are
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Figure 13: Speedup values of bitmap indexes against the projection index.

2.5 for BN, 7.8 for E1, 8.8 for EE, 10.1 for RE and 10.6 for IE.

9.5 Space-time trade-off

We summarize all measurements in a graph plotting the overall average query response time against the

overall average index sizes in Figure 14. In this figure, the horizontal axis shows the average index size

overall all 30 attributes in our synthetic data set, and the vertical axis shows the average query response time

over all 9000 queries (300 queries × 30 attributes). In Figure 14, we show five symbols, one for each of

the five encodings tested. We observe that the overall average index size of IE is about 3 times that of BN,

but the query response time of BN is about exactly 3 times that of IE. The dashed line passes through all

points where increasing the index by a factor of x reduces the query response time by a factor of 1/x. If we

regard this line as representing a fair space-time trade-off, on our particular data set, BN and IE have this

fair trade-off. Encoding IE has the best space-time trade-off among the three two-level encodings.

Comparing IE with E1, we observe that IE uses about 1/3rd more space (4.8× 108 bytes vs. 3.6× 108

bytes), but it reduces the query response time by a factor of about 2.4 (0.71 seconds vs. 1.7 seconds). Clearly,

the two-level interval-equality encoding (IE) has a favorable space-time trade-off compared with the basic

bitmap index (E1).

10 Summary and Future Work

One important contribution of this paper is the development of precise closed-form formulas that predict the

index sizes and query processing costs of compressed bitmap indexes. These formulas are highly accurate

as shown by extensive experimental measurements. Therefore, they are very useful for query planning and

cost estimation. In addition, through the analyses we also discover the correct parameters that significantly

improve the performance of multi-level indexes.

Among the multi-component indexes, we identify the bit-sliced index [21, 31] and the basic bitmap

index [20] as the best. Without compression, Chan and Ioannidis [6] showed that the optimal number of

components was two. In this paper, we prove that using either the minimal number of components (such

as the one-component equality encoding that produces the basic bitmap index) or the maximum number

of components (i.e., the binary encoding that produce the bit-sliced index) minimizes the index size. It is

possible for the one-component range encoding and interval encoding to use less time to answer a range
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Figure 14: The average query response time (in seconds) plotted against the average index sizes (in bytes)

over all test data. On the dashed line that goes through BN and IE, the product of the index size and the

query response time is the same.

query, but their index sizes can be arbitrarily large as shown in Equations 15 and 19. For example, for a 4-

byte integer attribute with 1 million distinct values, a range encoded index could be more than 30,000 times

larger than the base data. Therefore, they are not suitable as general-purpose indexing methods. Using more

than one component reduces the numbers of bitmaps needed, and therefore index sizes. However, due to its

unique construction, the binary encoding has many advantages over all other multi-component encodings,

with the only possible exception of the one-component equality encoding which is highly amenable to

compression. We include both the bit-sliced index and the basic bitmap index in our experimental study also

because they are implemented in commercial products.

Among the multi-level encodings, we show that the optimal number of levels is two. Among the two-

level encodings, the best ones all use equality encoding at the fine level. They are equality-equality encoding

[35, 27], range-equality encoding [35], and interval-equality encoding. Through our analyses, we are able

to compute the optimal number of coarse bins to use in each case. Both analyses and timing measurements

show that using the optimal number of coarse bins can significantly improve their performance. Because

the optimal numbers of coarse level bins are small (11 – 16), there is no need to use more than two levels.

Without considering compression, the predicted number of coarse level bins is much larger and using more

than two level might have been useful.

We prove that four out of the five above encodings (except the binary encoding) are theoretically optimal

because they require O(h) time to answer a query, where h is the number of hits of a query. Some of the

multi-level indexes have been studied before, however, we are the first to identify the appropriate parameters

to ensure that queries can be answered in O(h) time. We not only prove this in theory, but also verify it

through experimental measurements.

In addition to being theoretically optimal, the two-level encodings also answer queries much faster than

both the bit-sliced index and the basic bitmap index. In terms of overall average query response time, the

two-level interval-equality encoding is about 3 times faster than the binary encoding and 2.4 times faster than

equality encoding. In some cases, the two-level indexes are 10 times faster than the two multi-component

methods.

The two-level indexes generally use more space than the bit-sliced index and the basic bitmap index.

The overall average index size with the two-level interval-equality encoding is about 1/3rd larger than the
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basic bitmap index, and about 3 times larger than the bit-sliced index. However, compared with the popular

B-tree indexes, these two-level indexes are still relatively small. For example, the average size of all interval-

equality encoded indexes in our tests is about 1.2 times the base data size, while B-tree indexes are observed

to be 3 – 4 times the base data size.

Overall, the binary encoding produces the most compact indexes, while interval-equality encoding costs

the least to answer an average range query. Therefore, the binary encoding is more suitable if the disk

space is very limited, while interval-equality encoding is the best if disk space is less of a concern. In

most applications where B-tree indexes are currently used, switching to one of the five bitmap indexes

reduces both the disk usage and the query response time. In this case, we recommend using interval-equality

encoding.

In this paper, we analyze encoding methods with WAH compression. Our analyses concentrate on

random data, which produce bitmap indexes that are the hardest for WAH to compress. In this regard,

we have studied the worst case scenario — all indexes studied will perform no worse on real application

data than on random data. However, it is possible that their relative performances may differ on a set of

application data than on random data, or the optimal number of coarse bins may differ. Considering an

alternative compression method could be of interest when the attribute cardinality C is close to N, because

WAH compression has a considerable overhead in this case. We also did not consider how binning the base

data might affect the overall query response time. These are all interesting topics for future work.
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Figure 15: A 4-state Markov model. To avoid clutter, only transition probabilities from state 0 to others

are marked. The transition probability of staying in state 0 is q00 ≡ 1− q01 − q02 − q03. The transition

probabilities from other states can be similarly defined.

A Index Sizes on More Realistic Data

In the body of the article, we show the performance characteristics of Zipfian data and Markovian data

in graphs but without given the exact formulas for them. In this appendix, we give a brief description

of these two types of data and give the exact formulas for the expected index sizes under the three basic

encodings. We will not repeat the formulas for the query processing costs to answer queries because they

can be computed using the general formulas given before by plugging in the specific formula for bitmap

sizes of different data.

Similar to Section 5, we start by discussing how the synthetic data is generated, following by discussing

the formula for compute the size of each individual bitmap, then discussing the sizes of various indexes. We

give detailed formulas for the three one-component encodings because they are the building blocks for other

more complex encoding methods. We also discuss the formulas for the multi-component equality encoded

indexes.

A.1 Model data

The two types of more realistic data are Zipfian data and Markovian data. The Zipfian data contains records

that are independent from each other as the uniform random data, but the probability distribution of each

value follows the well-known Zipf distribution, where the value i has a probability that is proportional to

i−z, with z known as the Zipf exponent [?].

The rows of uniform random data and Zipfian data are not correlated with each other. However, in real

applications, data records are often related. We use the Markov model to capture this dependency [3]. Under

a Markov model, a new record is generated based on the most recent record as illustrated in Figure 15. This

particular Markov model has four states, which will generate an attribute with cardinality 4. In general, an

attribute with cardinality C is generated with a C-state Markov model.

A.2 Size of Markovian bitmap

In a bitmap index on Zipfian data, all bitmaps are random bitmaps with sizes given in Equation 6. We don’t

need to produce a separate formula for compute the sizes of their bitmaps. However, we do need another

formula for computing the sizes of bitmaps on Markovian data.

For Markovian data, each bitmap in the bitmap index is a Markov bitmap as described in [34]. In addition

to parameters N and d used to describe a random bitmap, a Markov bitmap requires one more parameter

called the clustering factor f .

The Markov bitmaps may contain longer 1-fills than random bitmaps, this makes the bitmaps more

compact. Given a large enough dataset, the bit density of a bitmap corresponding to one value approaches

the probability of the state corresponding to the value in the stable distribution of the Markov model [3].

The clustering factor f of the bitmap is the clustering factor of the Markov model. For the example given

in Figure 15, the clustering factor of the bitmap corresponding to value (state) 0 is determined by q00.

According to the analysis in [34], we have f = 1/(1−q00).
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The number of words required to store a Markov bitmap with bit density d and clustering factor f is as

follows,

mM(d, f ) =

⌊

N

w−1

⌋

+2−
(⌊

N

w−1

⌋

−1

)

(

(1−d)(1−q01)
2w−3 +d(1−q10)

2w−3
)

≈ N

w−1

(

1− (1−d)

(

1− d

(1−d) f

)2w−3

−d

(

f −1

f

)2w−3
)

. (40)

The above formula was derived using the same two-word grouping used for the random bitmaps, the details

of which can be found in [34].

To simplify the discussion for Markovian data, we limit the Markov model to have a simple transition

matrix; all its off-diagonal entries of the transition matrix must be the same. In the example shown in

Figure 15, we restrict q01 = q02 = q03 = q10 = q12 = q13 = . . . = q. The stable distribution of this Markov

model is a uniform distribution. The clustering factor of a bitmap corresponding to a single value is

f = 1/(1−qii) = 1/(1− (1− (C−1)q)) = 1/(C−1)q. (41)

Since bitmap indexes on uniformly distributed data are always harder to compress than non-uniform data of

the same cardinality, the data produced by this particular Markov model represents the worst cases among

all datasets generated by Markov models.

As a consistency check, we observe that the uniform random numbers can be generated with the Markov

model using a special choice of q = 1/C. This choice of transition matrix means that the another of the C

states can be reached from any state with equal probability, therefore this special Markov model is equivalent

to the uniform random process used earlier. In this case, the clustering factor f equals 1/((C− 1)/C) =
C/(C−1). For any bitmap from a bitmap index for both the uniform random data and the Markov model,

the bit density d = 1/C. Substituting the bit density into Equation 6, to get the size of a bitmap as

mr(1/C) ≈ N(1− (1−1/C)2w−2 −1/C2w−2)/(w−1). (42)

At the same time, we can substitute the bit density and the clustering factor into Equation 40, we compute

the size of a bitmap to be

mM(
1

C
,

C

C−1
) ≈ N

w−1

(

1− (1− 1

C
)

(

1− 1/C

(1−1/C)(C/(C−1))

)2w−3

− 1

C

(

C/(C−1)−1

C/(C−1)

)2w−3
)

= N(1− (1−1/C)2w−2 −1/C2w−2)/(w−1). (43)

We see that Equations 42 and 43 give the same result. In fact, it is straightforward to verify that the exact

version of Equation 6 and 40 are also the same if d is substituted with 1/C and f is substituted with C/(C−
1). This shows that these formulas for evaluating sizes of bitmaps are consistent with each other.

A.3 Equality encoding

In Section 5.3, we give the formula for the total size of one-component equality encoded bitmap index on

uniform random data. Now, we consider the expected total size of bitmaps of the same index on Zipfian and

Markovian data.
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A.3.1 Zipfian data

Let αz denote the scaling constant of the probability distribution, we have αz = (∑C
1 i−z)−1. The probability

for the ith value, di, is αzi
−z. Since each record is generated independently of others, we have random

bitmaps in the index for an attribute following the Zipf distribution. The total size of such an index under

WAH compression is given by the following summation,

sE
z =

C

∑
i=1

mr(αzi
−z). (44)

For z = 0, we have α0 = 1/C and di = 1/C. In which case, sE
z=0 ≡ sE

U .

If the attribute cardinality C is large and the Zipf exponent is small, say z ≤ 1, then αz is relatively

small and the probability for each value is small. In this case, the bit density di of a bitmap in the bitmap

index is also small, which means the following approximations are valid, d2w−2
i ≈ 0 and (1− di)

2w−2 ≈
1− (2w−2)di. In this case, we can simplify the formula for the size of a bitmap to be mr(αzi

−z)≈ N((2w−
2)αzi

−z)/(w−1) = 2Nαzi
−z. By the definition of αz, we obtain

sE
z ≈ 2N,

which gives the same approximate index size as the uniform random data. This is what we expected as the

Zipf exponent approaches 0. However, in general, as z increases, the total index size would be smaller.

For z > 1, the summation ∑C
i=1 i−z and αz approach their asymptotic maximum as C increases. For a

large enough C, the first few values appear with nearly fixed probabilities no matter what is the actual value

of C. For example, if z = 2, for any C larger than 20, the value of αz is about 1.6 no matter what is the

exact value of C. The probabilities for values greater than 20 are so small that their corresponding bitmaps

in an index would be much smaller than those corresponding to the first 20 values. In this particular case,

one reasonable way to estimate the index size would be to assume the first 20 bitmaps are not compressible,

therefore the index size would be close to 20N/(w−1) words, which is much smaller than 2N words.

A.3.2 Markovian data

For an attribute produced by the Markov model, the bitmap index contains C Markov bitmaps with bit

density d = 1/C and clustering factor f (same as the clustering factor of the Markov model). The total size

of these bitmaps is given by the following equation,

sE
M = CmM(

1

C
, f )

≈ NC

w−1

(

1−
(

1− 1

C

)(

1− 1

(C−1) f

)2w−3

− 1

C

(

1− 1

f

)2w−3
)

. (45)

By definition, f cannot be less than 1. For large C, say C ≥ 100, we can assume (1−1/((C−1) f ))2w−3 ≈
1− (2w− 3)/((C− 1) f ). In this case, (1− 1/C)(1− 1/((C−1) f ))2w−3 ≈ (1− 1/C)(1− (2w− 3)/((C−
1) f )) = 1−1/C− (2w−3)/(C f ). This leads to the following approximation for the index size,

sE
M ≈ NC

w−1

(

1

C
+

2w−3

C f
− 1

C

(

1− 1

f

)2w−3
)

=
N

w−1

(

1+
2w−3

f
−
(

1− 1

f

)2w−3
)

. (46)

We see that the index size is independent of the actual value of C for large enough C. This is similar to the

case of uniform random numbers. In most applications, the values of f are smaller than w. In this case, the

total index size is nearly inversely proportional to the clustering factor f .
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A.4 Range encoding

The bitmaps produced using the one-component range encoding are effectively the precomputed answers

to one-sided range queries. A key advantage of this encoding is that it can answer range queries quickly,

but the bitmaps are not amenable to compression. In this subsection, we quantify the index size and query

processing cost to see if it offers a good space-time trade-off.

A.4.1 Zipfian data

Under Zipf distribution, the probability corresponding to value j is αz j−z. Under the range encoding, the

bit density of the ith bitmap is di = ∑i
j=1 αz j−z. Since each such bitmap is a random bitmap, we can use

Equation 6 to compute its size. Summing up the size of each such bitmap, we obtain the formula for the

total size of bitmaps as

sR
z ≈

C−1

∑
i=1

N

w−1



1−
(

1−
i

∑
j=1

αz j−z

)2w−2

−
(

i

∑
j=1

αz j−z

)2w−2


 . (47)

We know that WAH compression does not reduce the sizes of bitmaps with bit densities between 0.05 and

0.95. Figure 3 shows the densities of bitmaps for Zipfian data with attribute cardinality 100. For z = 0, about

90% of the bitmaps are not compressible. For z = 1, about 80% of the bitmaps are not compressible. For

z = 2, about 10% of the bitmaps are not compressible. Generally, when z > 0, the fraction of compressible

bitmaps increases as attribute cardinality increases. As more bitmaps become compressible, the total index

size will decrease.

A.4.2 Markovian data

To evaluate the sizes of indexes in Markovian data, we need to also compute the clustering factor of the

bitmaps. Let fi denote the clustering factor of the ith bitmap. The clustering factor the first bitmap f1 is the

same as the clustering factor f of the Markov model that generated the data. Based on Equation 41 we say

that the clustering factor is the inverse of the probability of the Markov model going from a state represented

by a bitmap to a state not represented by the bitmap. The ith bitmap in range encoding represents the first

i values; the probability of going from one of these values to (C − i) others is (C − i)q according to the

definition of the Markov model. Therefore, the clustering factor of the ith bitmap is

fi =
1

(C− i)q
=

C−1

C− i
f . (48)

Plug in the formulas for the bit density di = i/C and the clustering factor fi into Equation 40, we obtain

the following expression for the index size for Markovian data

sR
M ≈

C−1

∑
i=1

N

w−1

(

1−
(

1− i

C

)(

1− i(C− i)

(C−1)2 f

)2w−3

− i

C

(

1− (C− i)

f (C−1)

)2w−3
)

. (49)

A.5 Interval encoding

Interval encoding produces about half as many bitmaps as equality encoding and range encoding. It can

answer the queries just as efficient as range encoding. Next, we quantify these performance characteristics

for the basic one-component interval encoded index to see whether it presents a better space-time trade-off

than the range encoded index.
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Figure 16: The bit density di of bitmaps from an interval encoded index on Zipfian data (C = 100). WAH is

only able to compress random bitmaps with bit density less than 0.05 or more than 0.95.

A.5.1 Zipfian data

The bit density of the ith bitmap in an interval encoded bitmap index on a Zipf attribute is di = ∑
i+⌈C/2⌉−1
j=i αz j−z.

Plugging in this bit density into Equation 6, we obtain the total size of bitmaps as

sI
z =

C−1

∑
i=1

mrdi ≈
N

w−1

C−1

∑
i=1

(

1− (1−di)
2w−2 −d2w−2

i

)

.

To simplify the above formula, we again take advantage of the fact that WAH is not able to reduce the

size of bitmaps with densities between 0.05 and 0.95. To see the exact values of di, we plot them from

indexes on different Zipf distributed data in Figure 16. In this case, all attributes have attribute cardinality

of 100. There are 51 bitmaps in each index. For z = 0, the bit density of every bitmap is exactly 0.5 as

expected. For z > 0, the lines formed by the bit densities are monotonically decreasing. For z = 1, we see

that none of the bitmaps are compressible because their bit densities are all between 0.05 and 0.95. This

indicates that the index size for z between 0 and 1 is about the same as in the uniform random case, that is,

sI
z ≈ NC/2(w− 1). Compared with equality encoding, interval encoded index can be much larger in size.

However, the interval encoded index is about half the size of a range encoded index.

As z increases, more bitmaps may have densities less than 0.05. In fact, for z = 2, 40 out of the 51

bitmaps have bit density less than 0.05, which means about 80% of the bitmaps are compressible. We also

note that as attribute cardinality increases, a larger fraction of bitmaps becomes compressible as well. As

more bitmaps become compressible, their total size decreases.

A.5.2 Markovian data

To compute the expected index sizes on Markovian data, we can reuse the same formula for bit density for

the uniform random data, but, we need to compute the clustering factors of the bitmaps. To do this, we use

the fact that the clustering factor of a bitmap is the inverse of the probability of the Markov model going

from a value represented by the bitmap to a value not represented by the bitmap. Since each bitmap under

interval encoding represents ⌈C/2⌉ values, the transition probability that the next value is one of the other

C−⌈C/2⌉ values is (C−⌈C/2⌉)q. According to Equation 41 that defines the relationship between q and
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Figure 17: The bit density di of bitmaps from a two-component equality encoding of a Zipf attribute (C1 =
1000, C2 = 1000, C = 106, z = 1).

the clustering factor f of the Markov model, we can express the clustering factor of a bitmap as

fi = f (C−1)/(C−⌈C/2⌉) ≈ 2 f . (50)

Therefore, the total size of bitmaps in an interval encoded index can be written as follows,

sI
M = (C−⌈C/2⌉+1)mM(⌈C/2⌉/C, f (C−1)/(C−⌈C/2⌉))

≈ C

2
mM(

1

2
,2 f )

≈ NC

2(w−1)

(

1−
(

1− 1

2 f

)2w−3
)

. (51)

In most cases, where the clustering factor f is modest, say f is between 1 and 10, the value of (1−
(2 f )−1)2w−3 is much less than 1, for example, (1− 20−1)62 = 0.04. Therefore, the total size of bitmaps

is approximately NC/2(w− 1), which is the same as in the case of uniform random data. However, in

rare cases where f is much larger than w, we have (1− 1/2 f )2w−3 ≈ 1− (2w− 3)/2 f . Further assuming

(2w−3)/(2w−2) ≈ 1, we can simplify the expression for sI
M to be sI

M ≈ NC/2 f . In these cases, the index

size is inversely proportional to the clustering factor f .

A.6 Multi-component equality encoding

A.6.1 Zipfian data

For Zipfian data, the probability for the ith value is αzi
−z, and the probability that the jth component has

value i j is (note that i ≡ ∑k
g=1 ig ∏k

l=g+1 Cl)

dEk
i j

= αz

C1

∑
i1=1

. . .
C j−1

∑
i j−1=1

C j+1

∑
i j+1=1

. . .
Ck

∑
ik=1

(

k

∑
g=1

ig

k

∏
l=g+1

Cl

)−z

. (52)

For the first component, the bit density of a bitmap dEk
i1

is the sum of probabilities of C/C1 consecutive

values, i.e., dEk
i1

= ∑
i1C/C1

l=1+(i1−1)C/C1
αzl

−z. Because i−z is a monotonically decreasing function (when z > 0),
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dEk
i1

is also a monotonically decreasing function. Furthermore the decrease is sharper in dEk
i1

than in i−z
1 , as

illustrated in Figure 17. In this figure, we plotted the bit densities of all bitmaps from a two-component

equality encoded index on a Zipf attribute with attribute cardinality 1 million and Zipf exponent 1. We

choose to have two components of the same size, C1 = C2 = 1000. The dotted line in the figure shows a

reference distribution for C = 1000. In this case, we see the bit density of the first bitmap d1 is about a half,

while di for most other bitmaps are less than 0.05. This means the bitmaps in the first component are easy

to compress.

For the last component in a multi-component encoding, the expression above expression for the bit den-

sity can also be significantly simplified, dEk
ik

= ∑
C/Ck−1
l=0 αz(i+k + l ∗C/Ck)

−z. Because i−z is monotonically

decreasing, dEk
ik

is also monotonically decreasing as ik increases. In fact, the bit densities of bitmaps in each

component form a decreasing line, but the rate of decrease reduces as the component number j increases.

Therefore, this decreases the likelihood that any bitmap has density less than 0.05 or greater than 0.95,

which means more bitmaps are not compressible. In Figure 17, we see that the majority of the bitmaps in

the second component have a higher bit density than the simple Zipf distribution (shown as the dotted line).

Given the above bit densities, we can evaluate the total size of the bitmaps by summing up the expected

sizes of bitmaps given by Equation 6, sEk
z = ∑ j ∑i j

mr(d
Ek
i j

). This summation can be evaluated numerically

using a computer program.

Next, we examine a few special cases where the index size can be simplified to compact expressions.

The first special case is for z ≤ 1. In previous analyses, we see that the index sizes of such Zipfian data are

just about the same as the uniform random data. If the same is true for every component, then we again

have sEk
z ≈ 2kN. Since the first component is expected to be compressed better than a Zipf dataset with Zipf

exponent z and cardinality C1, the total index size is likely to be less than 2kN, but we do not have a compact

expression for the exact difference.

For Zipfian data with large Zipf exponents, say, z ≥ 2, we know that the probability of the first few

values are nearly constant no matter how many other values are observed. In this case, these first few values

will determine the total index size. Let gz denote the number of such values. When they are encoded using

the multi-component equality encoding, each of them will be encoded into a different bitmap in the last

component if Ck ≥ gz. In this case, the bitmaps in the kth component have nearly the same bit densities

as the first Ck bitmaps in the one-component equality encoded index. Therefore the total size of bitmaps

in kth component is about the same as the total size of all bitmaps in the one-component equality encoded

index. The total size of bitmaps in other components may be small because the first bitmap in each of

these components have a bit density close to 1 and all bitmaps are very easy to compress. Altogether, the

multi-component index takes more space than the one-component version, though the difference could be

small.

A.6.2 Markovian data

For the Markovian data, the bit densities are the same as for the uniform random data. To compute the index

sizes, we need to evaluate the clustering factors. In a bitmap from the jth component, a bit being 1 represents

the Markov model is in one of some C/C j states. The probability of going from one of these states to others

is Cq(1−1/C j). Using Equation 41, we can evaluate the clustering factor of the bitmap as

f Ek
j = (Cq(1−1/C j))

−1 =
(C−1)C j

C(C j −1)
f . (53)

For relatively large C and C j, we see that the clustering factors of bitmaps produced by the multi-component

equality encoding is nearly the same as the clustering factor of the Markov model.

Given the above clustering factors and the bit densities, using the formula for the size of a Markov

bitmap given in Equation 40, we can express the total size of the bitmaps as follows

sEk
M =

k

∑
j=1

C jmm(
1

C j

, f Ek
j )
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≈ N

w−1

k

∑
j=1

C j

(

1−
(

1− 1

C j

)(

1− C

(C−1)C j f

)2w−3

− 1

C j

(

1− C(C j −1)

(C−1)C j f

)2w−3
)

. (54)

As in the case of the one-component equality encoding, the clustering factor of the Markov model has a

strong influence on the index size. To illustrate this influence, we assume that all C j are larger than 100. In

this case, we can use the same approximation that was used to produced Equation 46, and give the following

expression for the total index size (note we also assume C ≈C−1).

sEk
M ≈ N

w−1

k

∑
j=1

(

1+
2w−3

f
−
(

1− C j −1

C j f

)2w−3
)

.

If we further assume either (1− C j−1

C j f
)2w−3 ≈ (1−1/ f )2w−3 or (1− C j−1

C j f
)2w−3 ≈ 0, then sEk

M ≈ ksE
M. Similar

to the case of uniform random data, the index size increases as the number of components increases for small

k. As k increases, the values of C j will become smaller, in which case, we can approximate the index size

by considering each bitmap to be incompressible. Since the number of bitmaps decreases as k increases, the

total index will eventually decrease as k further increases. Again, the minimal index size would be achieved

with either the minimal k (k = 1) or the maximum k.

A.7 Multi-component range encoding and multi-component interval encoding

A.7.1 Zipfian data

As indicated before, the bitmaps for the multi-component range encoding and the multi-component interval

encoding can be constructed from those for a multi-component equality encoding. In the jth component, the

i jth bitmap in the multi-component range encoding is a bitwise OR of the first i j bitmaps in jth component

of the multi-component equality encoding. Therefore, the bit density is simply the sum of those of the first

i j bitmaps and can be computed from the expressions for the bit densities in the multi-component equality

encoding as shown in Equation 52, i.e.,

dRk
i j

= ∑
g j=1

i jd
Ek
g j

.

Similarly, the bit density of the i jth bitmap in the jth component of a multi-component interval encoding

can be expressed as

dIk
i j

=
i j+⌈C j/2⌉−1

∑
g j=i j

dEk
g j

.

Since we do not have concise expression for Equation 52, we not able to produce concise formulas for dRk
i j

or dIk
i j

either. Instead, we use a computer program to evaluate these expressions to compute the bit densities,

use Equation 6 to compute sizes of each bitmap, and then sum up the total size of the bitmaps to give the

size information plotted in Figures 6 and 7. From this process, we observe that most of the bitmaps are

incompressible using WAH compression.

A.7.2 Markovian data

In Sections A.4.2 and A.5.2, we explained how the clustering factors of bitmaps under range encoding and

interval encoding are related to the clustering factors of the bitmaps under equality encoding. The same can

be applied here. Under multi-component range encoding, the bitmaps in the jth component have clustering

factor given in Equation 53. Substituting the clustering factor f on the right-hand size of Equation 48, we
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obtain the expression for the clustering factor of the i jth bitmap in the jth component under multi-component

range encoding,

f Rk
i j

=
C j −1

C j − i j

f Ek
j =

(C−1)C j

C(C j − i j)
f .

Similarly, the clustering factor of the bitmaps in the jth component of a multi-component interval encoding

can be derived from Equations 50 and 53 as follows,

f Ik
j =

(C j −1)

(C j −⌈C j/2⌉)
(C−1)C j

C(C j −1)
f =

(C−1)C j

C(C j −⌈C j/2⌉) f ≈ 2 f .

Note that the bit densities for Markov data are the same as those for the uniform random data. With these

quantities, we can compute the sizes of each bitmap using Equation 40, and then compute the sum as the

total size of bitmaps in an index. This procedure generated the values that go into Figure 6 and 7. Note

that with clustering factor f = 2, the total index size is only slightly smaller than the uniform random case

(marked with z = 0).

A.8 Sizes of coarse-level bitmaps in multi-level encodings

In Section 7.1, we mentioned that for both the uniform random data and Zipfian data, the coarse level

bitmaps can be treated as random bitmaps with bit density 1/Bc. For Markovian data, the bit densities of

the coarse level bitmaps are the same, i.e., equal to 1/Bc. Next, we briefly explain how to compute their

clustering factors.

As before, we can compute the clustering factor for equality encoded bitmaps as the inverse of the

probability for the Markov model to transfer from one of the values in the coarse bin to a value outside. It

is clear that each coarse bin contains C/Bc values which represent C/Bc states of the Markov model. Let

q denote the probability for the Markov model to transfer from one state to another, then the probability

that the Markov model transfer from one of the C/Bc states to another one outside the coarse bin is qC(1−
1/Bc). Thus the clustering factor of an equality-encoded bitmap is (qC(1− 1/Bc))

−1 = f (1− 1/C)/(1−
1/Bc), where f is the clustering factor of the Markov model, see Equation 41 for further details. Given this

clustering factor for equality encoded bitmaps, the corresponding clustering factor for range and interval

encoded bitmaps can be determined as in Sections A.4.2 and A.5.2. Substitute the above clustering factor

into Equation 48, we obtain the clustering factor of the ith coarse bitmap with range encoding as

fi =
Bc −1

Bc − i

1−1/C

1−1/Bc

f =
Bc(C−1)

(Bc − i)C
f .

Similarly, using Equation 50, we obtain the clustering factor of coarse bitmaps with interval encoding as

Bc −1

Bc −⌈Bc/2⌉
1−1/C

1−1/Bc

f =
Bc(C−1)

(Bc −⌈Bc/2⌉)C f ≈ 2 f .

With the values of bit density and clustering factor, we can compute size of each individual bitmap using

Equation 40 and then derive the expression for the index sizes and query processing costs.
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