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Review

Phase Change Random Access Memory for Neuro-Inspired 
Computing

Qiang Wang, Gang Niu,* Wei Ren,* Ruobing Wang, Xiaogang Chen, Xi Li, 
Zuo-Guang Ye, Ya-Hong Xie, Sannian Song, and Zhitang Song*

DOI: 10.1002/aelm.202001241

The digital-bits encoded artificial neural 
networks (ANNs) and the spike-timing 
encoded spiking neural networks (SNNs) 
are the two main paradigms of neuro-
inspired computing. ANN, including deep 
neural networks (DNNs), convolutional 
neural networks (CNNs), recurrent neural 
networks (RNNs), etc., turn out to be suc-
cessful in logical computing, machine 
vision, intelligent search, and automatic 
driving.[2,3] More recently, thanks to the 
advantages to realize synapse–neuron 
architecture, SNN has been increasingly 
emphasized as a more promising candi-
date for neuro-inspired computing.

In the past decade, various hardware/
software strategies have been proposed 
for the implementation of neuro-inspired 

computing. Based on the mainstream complementary metal–
oxide–semiconductor (CMOS) technology, transistor-based chips 
such as BrainScaleS,[4] TrueNorth,[5] and Pohoiki Beach[6] have 
executed SNN algorithms with reasonable classification accuracy 
and remarkable energy efficiency. However, the Moore’s law con-
straint, complex peripheral circuits, and difficulties in 3D integra-
tion impede the achievement of more advanced transistor-based 
neuro-inspired systems.

As an alternative candidate, emerging nonvolatile memories 
(NVMs) are found to have virtues in eliminating the energy-
intensive and inefficient transmission. Based on the principle 
that the electric-induced conductance can mimic the biological 
synaptic weight, NVM exhibit excellent analogue conductance 
regulation, i.e., continuously multilevel conductance tuning, 
and thus are widely employed to emulate synaptic behaviors 
in both ANN and SNN neuro-inspired systems. As shown in 
Figure  1, two-terminal NVM devices can be categorized into 
ferroelectric random-access memory (FeRAM), resistive RAM 
(RRAM), phase change RAM (PCRAM), and magnetic RAM 
(MRAM). The analogue conductance regulation, the energy 
consumption, the intradevice reliability and the interdevice 
uniformity are key parameters to realize a high-performance 
neuro-inspired system. FeRAM with tunable and multilevel 
conductance states show challenges in intradevice reliability 
and energy consumption. MRAM has good uniformity and low 
energy consumption but has not yet been widely implemented 
in neuro-inspired computing due to the challenge in realizing 
the analogue conductance. RRAM is a strong candidate because 
it has excellent properties of analogue conductance regulation, 
low energy consumption, and good reliability and uniformity. 

Neuro-inspired computing using emerging memristors plays an increas-
ingly significant role for the realization of artificial intelligence and thus has 
attracted widespread interest in the era of big data. Thanks to the maturity of 
technology and the superiority of device performance, phase change random 
access memory (PCRAM) is a promising candidate for both nonvolatile 
memories and neuro-inspired computing. Recently many efforts have been 
carried out to achieve the biological behavior using PCRAM and to clarify the 
related working mechanism. In order to further improve device performances, 
it is helpful and urgent to summarize and discuss the PCRAM solution for 
neuro-inspired computing. In this paper, fundamentals, principles, recent 
progresses, existing challenges, and mainstream solutions are reviewed, and 
a brief outlook is highlighted and introduced, with the expectation to expound 
future directions.
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1. Introduction

Artificial intelligence (AI) is leading a wave of unprecedented 
information technological revolution. As a promising route, 
hardware implementation of adaptive parallel processing in 
biological neural networks (BioNNs) by the means of neuro-
inspired computing is proposed,[1] which aims to eliminate the 
energy-intensive and inefficient transmission in von Neumann-
based platforms.
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Therefore, RRAM-based neuro-inspired systems have been 
intensively studied recently.[7] PCRAM, as another strong can-
didate, has been widely demonstrated in various neuro-inspired 
systems with ANN and SNN, due to its good conductance con-
trollability, intradevice reliability, and interdevice uniformity, as 
well as its good compatibility with the mature Si-based mass 
production technology. Intel has announced in 2018 the com-
mercial Optane DC Persistent Memory.[8]

A typical PCRAM has a metal–insulator–metal sandwich 
structure that is similar with a biological synapse component, 
and its conductance can be considered the same as the connec-
tion intensity between biological synapses. In PCRAM, the tem-
perature-driven phase transition from the crystalline state to the 
amorphous state of the phase change material leads to the distin-
guishable high conductance state and low conductance state of 
the device, respectively. Therefore, analogue conductance, which 
depends on the volume ratio of crystalline/amorphous phase, 
can be obtained by applying a programmed electric excitation. 
This process is used to emulate the weight update of the biolog-
ical synapse. With the aid of peripheral circuits and algorithms, 
the structure of BioNN composed of billions of interconnected 
neurons can be directly mapped by integrating PCRAM devices 
into a crossbar structure and thereby the functions of ANN and 
SNN can be executed. However, the technology roadmap from 

prototype PCRAM to large-scale application of neuro-inspired 
computing has not been clarified. In this review, we interpret 
biological fundamentals and state-of-the-art of PCRAM imple-
menting neuro-inspired computing. Considering aspect of 
device, the requirements, methods, challenges, and solutions as 
well as perspectives of PCRAM for neuro-inspired computing 
will be in-depth discussed and clarified. This review is expected 
to provide summary and feasible technical route for PCRAM in 
the field of neuro-inspired computing.

This review paper is organized as follows: Section 2 provides 
a comprehensive description of BioNN. Section  3 presents an 
overview of research progress of PCRAM in neuro-inspired 
computing. Section  4 discusses the challenges in the imple-
mentations of neuro-inspired computing and concludes effec-
tive solutions from the aspects of material science, PCRAM 
cell technology, and synaptic architectures. The final section 
summarizes the whole paper and points out potential research 
directions of PCRAM in neuro-inspired computing in future.

2. Fundamentals in BioNN

BioNN consists of billions of neurons interconnected through 
trillions of synapses, in which signals are transmitted by active 

Figure 1.  Introduction of neuro-inspired computing. Neuro-inspired computing based on memristors with integration of storage and computation 
avoids data traffic, becoming a promising alternative to emulate biological synapse, neuron, and BioNN.
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potential (just as “spike”) caused by ion transport and are then 
stored in synapse.[9] The strength of the connection between 
neurons, known as weight, is related to processing and storage 
of information and determines whether the post neuron is fired 
or not. This section introduces BioNN biodynamics in synapses 
and neurons, as well as the behavior of synaptic plasticity and 
learning rules.

2.1. Neuron

The neuron is the crucial information processing and transmit-
ting unit component of a BioNN. A neuron consists of a cyton, 
dendrites, and axons. The cyton is covered by a lipid bilayer 
membrane and is responsible for metabolism and making a 
“decision” based on the incoming signals. Dendrite and axon 
are two types of extensions of the cyton, serving as signal 
input and output components, respectively. Once the synapse 
behavior occurs, the neuron makes self-adjusting activity to 
incoming potentials that are filtered and integrated through 
dendrites. Based on integrate-and-fire (LIF) mechanism, if the 
sum of the potentials (excitatory and inhibitory) exceeds the 
threshold value, the neuron cell will be eventually fired to export 
an update active potential to surround neurons by axons.[10,11]

2.2. Electrical Synapse and Chemical Synapse

The synapse connects adjacent neurons. There are two types of 
synapses in the biological brain: the electrical synapse and the 
chemical synapse. An electrical synapse is constructed by two 
plasma membranes with an ultranarrow cleft (2–4 nm), as shown 
in Figure  2a, being able to simultaneously provide mechanical 
and electrical connections and allow fast bidirectional trans-
mission through specific gap junctions.[12,13] The functions of 
electrical synapse in biology are transiting arousal states and 

regulating the sensitivity of the cortex to sensation as well as con-
trolling the level of synchronization in neural networks.[12,14] Dif-
ferently, chemical synapse is more extensive in BioNN and more 
important for neuro-inspired computing. As shown in Figure 2b, 
the configuration of a typical chemical synapse has presynapse 
and postsynapse cells, as well as a wider synaptic cleft. Several 
receptors, such as N-methyl-d-aspartic acid receptor (NMDA) 
and ɑ-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor 
(AMPA) selectively provide molecular membrane channels 
when an active potential is triggered from presynapse, allowing 
or preventing synaptic vesicles that packing neurotransmitters 
(i.e., ionic and molecular) through the presynaptic membrane. 
Once the synaptic behavior occurs, vesicles fuse with presynaptic 
membrane and release neurotransmitters into synaptic cleft. A 
portion of neurotransmitters spreads to postsynaptic membrane 
to active corresponding receptors and bind to them, which con-
tributes to the excitatory/inhibitory postsynaptic and potential 
(EPSP/IPSP) depending on the nature of neurotransmitters.[13,15] 
These complicated dynamics can be executed by the electrical 
field-driven growth of the crystalline areas of phase change mate-
rials in PCRAM (see more discussion in Section 3.3).

2.3. Synaptic Plasticity and Learning Rules

The synaptic plasticity is essential for the formation of informa-
tion storage, which refers to long-term changes of synaptic effi-
cacy such as the enhancement and the reduction of the synaptic 
weight (known as “synaptic potentiation” and “synaptic depres-
sion”).[16] According to the duration of the synaptic behavior, the 
synaptic plasticity can be divided into long-term synaptic plas-
ticity (LTSP) and short-term synaptic plasticity (STSP). Potency 
of brain’s learning in cellular level is essential for BioNN to 
reach adaptive information processing. Hebbian learning 
and Bienenstock–Cooper–Munro (BCM) learning are two most 
popular theories in neuroscience.

Figure 2.  Models of synapse and synaptic plasticity. a) Configuration of electrical synapse. The bidirectional ion channel between two membranes 
is formed through specific gap junctions specific gap. b) The components of chemical synapse are the presynapse (source of synaptic vesicles), the 
postsynapse (loading receptors), and the synaptic cleft. The ion diffusion model of LTSP indicates that Ca2+ concentration is key factor to form LTD/
LTP during synaptic behavior. c) Experimental LTD and LTP were induced by applying the repeated 1 Hz stimulation and the 100 Hz stimulation for 
1 s, respectively. Reproduced with permission.[19] Copyright 1993, The American Association for the Advancement of Science. d) Time course of STSP 
that includes four phases of facilitation, depression, stimulus ceases, and post-tetanic potentiation. Reproduced with permission.[20] Copyright 2004, 
Sinauer Associates.
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2.3.1. Long-Term Synaptic Plasticity

LTSP was discovered in 1970s. It was found that, in the hip-
pocampus, continuous stimulation of excited synapses results 
in the increment of synaptic weight lasting for hours or even 
days.[16–18] The intracellular concentration of Ca2+, which is 
affected by NMDA and AMPA receptor, plays a gating role to 
decide the formation of long-term potentiation (LTP), long-term 
depression (LTD). The process of LTSP is illustrated in Figure 2b. 
Once the low-frequency stimulus comes, Mg2+ blocks the Ca2+ 
channel that coupled to NMDA receptor (NMDA channel) due to 
the strong polarization therefore forming the low Ca2+ concentra-
tion in postsynapse. The weak depolarization inside postsynapse 
is mainly contributed by monovalent ions like Na+ and K+ that 
permeated by the channel coupled to the AMPA receptor (AMPA 
channel), resulting in LTD. Otherwise, the postsynapse mem-
brane is strongly depolarized to impel Mg2+ blocking away, as the 
high-frequency stimulus occurs. NMDA channel opens leading 
to in surge of intracellular concentration of Ca2+ to form LTP. In 
terms of hardware, a good retention of the intermediate conduct-
ance is required to achieve LTSP. PCRAM exhibits advantages in 
terms of retention thanks to the thermal stability of phase change 
materials (see more discussion in Section 3.4).

2.3.2. Short-Term Synaptic Plasticity

STSP describes the phenomenon that the transmission signal 
(or synaptic weight) increases first right after activation occurs, 

then nearly goes back to the initial state during tens of milli-
seconds to a few minutes (shown in Figure  2c).[19] Figure  2d 
indicates that STSP contains four phases including facilita-
tion (STF), depression (STD), stimulus ceases, and post-tetanic 
potentiation (PTP).[20] STF refers to a transient increase that 
happens when several active potentials consecutively stimu-
late a presynapse in a short interval of tens of nanoseconds. 
Accumulation of Ca2+ ions in the synaptic cleft induces more 
synaptic vesicles to release neurotransmitters, ultimately 
resulting in a larger increment of membrane potential.[21,22] 
According to this mechanism, a paired pulse facilitation (PPF) 
based on two short pulses has been widely demonstrated in 
synaptic simulation applications.[23–26] After a period of stim-
ulus ceasing, the presynapse restores the supply of vesicles to 
neurotransmitters, therefore the membrane potential can be 
enhanced again. This is another form of PTP.[20,27]

2.3.3. Hebbian Learning

Hebbian learning plays an important role in biological learning 
and memory, which is born from Hebb’s postulation in 1940s 
that elucidates the causality between the relative activity of 
neurons and the modulation of synaptic weight.[28] Nowa-
days, Hebbian learning is mainly associated with the so-called 
spike-timing-dependent plasticity (STDP) that was proposed 
by bioneurologists at the end of the 20th century. As shown 
in Figure  3a,b, once both neurons are stimulated, if the pre-
synaptic spike precedes the postsynaptic spike, LTP is formed 

Figure 3.  Biological learning rules. a) The model of neuron system in Hebbian learning rule. b) The shape of STDP observed by Bi and Poo. Reproduced 
with permission.[29] Copyright 1998, Society for Neuroscience. c) The model of signal transmission mechanism in BCM learning rule. d) BCM learning 
rule introduces the sliding frequency threshold θm, which automatically adjust as a function of average activity of postsynaptic neuron. Reproduced 
with permission.[37] Copyright 2012, Springer Nature.
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and the synaptic weight is positive. Otherwise, LTD is formed. 
The synaptic weight decreases bilaterally with the difference 
of increasing time between two spikes.[16,29] Furthermore, 
there are other forms of STDP observed in a wealth of slice 
recordings in hippocampus, such as asymmetric anti-Hebbian, 
symmetric Hebbian and symmetric anti-Hebbian,[30–34] which 
are widely accepted as references for implementations of the 
synaptic simulation using hardware technology.[35,36]

2.3.4. Bienenstock–Cooper–Munro Learning

Hebbian learning illustrates that the modulation of the synaptic 
weight between two neurons arises from the order and the 
interval time of spikes, however, one imperative concern is that 
how such learning can be controlled and stable. BCM learning 
rule proposed in 1982 is a preferable solution that considers fre-
quency-dependent plasticity and sliding modification threshold. 
Figure 3c schematically depicts the signal transmission mecha-
nism under BCM learning rule.[37–40] Its biggest difference from 
Hebbian learning in transmission is that, as a response, post-
synaptic neuron exports an integrated postsynaptic spike-rate 
not only to the next neuron and but also to every presynapse.[37] 
Mathematically, as shown in Figure  3d, BCM learning rule 
introduces the concept of sliding frequency threshold θm that 
just likes a turning point. If c > θm, then φ(c) > 0, and synaptic 
weight potentiates.

Otherwise, synaptic weight depresses. In BCM learning, syn-
aptic weight tends to be stable and controllable due to the average 
activity of postsynaptic neuron automatically adjusts and limits 
the value of θm.[37] This principle is also widely known as spike 

rate-dependent plasticity (SRDP), which has been extensively 
demonstrated using memristors in experiments.[41,42]

2.4. Other Advanced Synaptic Plasticity

Apart from the above-discussed synaptic plasticity, some other 
advanced ones have also been demonstrated in biology and 
electronic devices. Herein, we want to highlight three signifi-
cant advanced synaptic plasticity that are of great potential to 
accelerate the development of neuro-inspired computing, being 
strongly associated with the regulation of synaptic plasticity, the 
expansion of encoding capability of 3D connectivity, as well as 
man–machine interaction implementation of ANN and SNN.

2.4.1. Intrinsic Plasticity

The ion channel is generally considered as a key in transmis-
sion by chemical synapses and exhibits manifold synaptic plas-
ticity, like LTP, LTD, and STDP, thanks to the modulation of 
synaptic weight. In fact, during the signals transmission, the 
voltage-gated channel is another ubiquitous way situated near 
the input and output ends of neurons and has been demon-
strated to be associated with intrinsic plasticity.[43–46] Normally, 
as a function of emergency receptor, the intrinsic plasticity 
occurs in the hippocampus, amygdala, and prefrontal cortex, 
when in irritations, fear, skin injury, and it originates from 
the reduction of active potential threshold after learning.[46] 
The schematic diagram for the intrinsic plasticity is shown in 
Figure 4a. Initially, the synaptic weight is potentiated to make 

Figure 4.  Schematic diagrams of recent advanced plasticity. a) Intrinsic plasticity. Reproduced with permission.[46] Copyright 2018, Elsevier Ltd. 
b) Metaplasticity. Reproduced with permission. Copyright 2018, The Royal Society of Chemistry.[51] c) Structural comparison of weight plasticity and 
wiring plasticity. Reproduced with permission.[55] Copyright 2004, Spring Nature.
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EPSP large enough to exceed the threshold (Step 1) during 
learning due to the increased density of neurotransmitters and 
receptors. After learning, EPSP is amplified because of the 
regulation of dendrite channels (marked in red, Step 2), and 
then threshold is lowered by the hyperpolarization caused by 
the regulation of voltage-gated channels, resulting in a larger 
spike firing (Step 3). Finally, neuron is depolarized to trigger 
an action potential by the EPSP (Step 4).[46] To date, intrinsic 
plasticity has been widely applied in the field of sensors, such 
as in humanoid robots, nociceptor, built by CMOS devices, or 
nanometer memristors.[47–49]

2.4.2. Metaplasticity

Preserving information of incoming signals is another impor-
tant function of the biological synapse. The key concern is 
whether such synaptic weight plasticity like LTP and LTD 
could stay in dynamic balance within an appropriate range, to 
refrain from overpotentiation and overdepression.[39,50] Meta-
plasticity is proposed by Abraham to eliminate this concern. 
It is high-order synaptic plasticity (known as “plasticity of syn-
aptic plasticity”) and often occurs after suffering from enriched 
environmental, stress events, visual stimuli, and so on.[39] An 
example of metaplasticity is illustrated in Figure  4b.[51] It is 
clear that with the same plasticity-inducing stimulus, the syn-
aptic response weakens once a priming stimulus is introduced 
before the plasticity-inducing stimulus (shown in the bottom 
panel), as compared to normal synaptic plasticity shown in the 
top panel. In recent years, metaplasticity also has been highly 
valued in the field of neuro-inspired computing using nanode-
vices.[51–54] Typically, using a typical bismuth-based memristor, 
Mazur et al. verified that SRDP and STDP can be further mod-
ulated via metaplasticity to produce an amplification of synaptic 
weight.[52]

2.4.3. Wiring Plasticity

Apart from the weight plasticity that illustrates the modifica-
tion of connection strength in a given neuron system (wiring 
diagram is unchanged), the wiring plasticity that is mediated 
by the connectivity and structural alterations in spines, den-
drites, and axons should also be highlighted. Evidences indicate 
that wiring plasticity not only partly affects the storage capacity 
of brain, but also is beneficial to the extension of advanced 
learning, such as perceptual learning, motor learning, and 
spatial learning. For example, rewiring diagram in sparse net-
works could dramatically improve the ability of encode learned 
information.[55–57] The concept of wiring plasticity can be under-
stood by considering a simple comparison shown in Figure 4c. 
Differing from weight plasticity with unchanged structure, 
the wiring diagram transforms when the system experiences 
wiring plasticity. However, the mechanism behind wiring plas-
ticity is still unknown due to the underdeveloped imaging tech-
nology, which is insufficient to provide subcellular visualization 
of neural activities and morphological changes in brain. There 
is only an accepted speculation that there should be LTP-like 
and LTD-like mechanism to modify the formation or deletion 

of the wiring plasticity. More detailed discussions about wiring 
plasticity are available in review by Chklovskii et al.[55]

This plasticity is believed to be essential for the neuro-
inspired computing and has attracted intensive efforts in 
hardware implementation. The intrinsic characteristics and 
operation mechanism of different NVM devices determine 
their applications in realizing different plasticity. For example, 
LIF mechanism can be equivalent to the threshold effect of the 
(amorphous to crystalline) crystallization process in PCRAM. 
The characteristic conductance attenuation of RRAM makes 
it suitable for the realization of STSP, in which the rupture of 
the conductive filament results in the reduction of conductance 
in milliseconds or even nanoseconds. By contrast, PCRAM 
presents some disadvantages in STSP due to the nonsponta-
neous amorphization process. The STSP may be achieved by 
PCRAM only with the aid of programmed pulse excitations. 
Intrinsic plasticity, metaplasticity, wiring plasticity, and other 
advanced plasticity are important for high-performance neuro-
inspired computing. The state-of-the-art of PCRAM hardware 
applied to neuro-inspired computing will be presented in detail 
in Section 3.

3. Overview of Neuro-Inspired Computing Using 
PCRAM Technology
According to the dissection of BioNN, the essential tasks of 
neuro-inspired computing are mimicking fundamental syn-
apses, neurons and their synaptic behaviors using hardware 
technology. Over decades, lots of implementations of neuro-
inspired computing based on PCRAM technology have been 
reported. In this section, we comprehensively discuss the 
implementation of neuro-inspired computing using PCRAM, 
including the fundamental electric-induced conductance mech-
anism, and advanced schemes to emulate biological compo-
nents and behavior as well as the state-of-the-art in intelligent 
applications based on PCRAM integrated array.

3.1. Electric-Induced Conductance Controllability

Corresponding to the principles of biological synaptic behavior, 
the key precondition of implementing BioNN using hardware 
is the continuous regulation of conductance. The feasibility of 
PCRAM originates from the electric-induced controllable phase 
change occurred at the active region. As shown in Figure 5, crys-
talline and amorphous states in the active area can be bilaterally 
and continuously controlled by applying appropriate electrical 
excitation. The process of crystalline-to-amorphous change 
with prompt quenching is induced by high and narrow pulses, 
which equals to the process of synaptic depression (marked 
in dark blue). While the reverse process simulating synaptic 
potentiation (marked in dark red) is a thermal accumulation 
and requires long and moderate heating, which normally is car-
ried out by applying lower and wider pulse. Consequently, with 
special programming pulses, PCRAM performs reliable bidi-
rectional electric-induced conductance controllability, that is, 
multilevel reduced conductance and the cumulative enhanced 
conductance.[58–62]

Adv. Electron. Mater. 2021, 2001241
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3.2. PCRAM Neuron

The neuron dominates information transmission through the 
significant function of LIF mechanism in BioNN. LIF mecha-
nism is driven by complex electrochemical mechanisms in con-
junction with the feature of lipid-bilayer membrane, according 
Hodgkin–Huxley model and various threshold-based neuronal 
models.[63–65] Membrane potential is regulated by stochastic 
incoming excitatory and inhibitory postsynaptic potentials from 
dendrites. It leads to fired neuron to export new potential via 
axons once the sum of potentials is high enough to exceed firing 
threshold.[66] The idea of emulating artificial neuron is realizing 
dynamic updating of membrane potential using suitable hard-
ware design. The electric-induced transformation in PCRAM 
with conductance threshold directly expresses the evolution 
of biological membrane potential. Figure  6a presents a typical 
stochastic PCRAM neuron system proposed by IBM team, which 
comprises dendrites (stochastic inputs), cyton (which performs 
function of integrate-and-fire event), and axons (output). The 
modification of conductance by pulses emulates the LIF mecha-
nism in biological neuron, as shown in Figure 6b.[66]

Thanks to the exploitation of the stochasticity and nonvolatility, 
this PCRAM neuron meets well the two requirements for neuro-
inspired computing, i.e., robustness and low energy. However, 
this comes at the expense of limited control of neuronal dynamics 
with minimal circuit requirements, because the intrinsic stochas-
ticity of PCRAM is derived from physical crystallization. Further 
efforts may focus on using smaller nodes for more precise tuning 
of crystallization, and on more comprehensive design of acces-
sory devices, peripheral circuits, and algorithms.

3.3. PCRAM Synapse

Electronic synapse is another crucial component to emulate 
biological behaviors. In practice, schemes of single PCRAM 
and 2-PCRAM per synapse are commonly employed for neuro-
inspired integrated circuits to simulate the potentiation and the 
depression. The single PCRAM scheme corresponds to bidi-
rectional electric-induced conductance was described in Sec-
tion  3.1. The disadvantage is that the subsequent reset pulse 
destroys the inherent state during amorphization. This means 
that the stored information is instantly forgot and has to be 
relearned. For the latter, the potentiation and the depression 
are implemented using “positive device” and “negative device,” 
respectively, both of which exploit cumulativity in crystalliza-
tion. The final synaptic weight can be expressed by differential 
conductance of two PCRAMs. This approach avoids using reset 
pulse to improve continuous value of weights but needs to peri-
odically recover conductance to prevent saturation of positive 
and negative conductance. 2-PCRAM scheme has been widely 
employed for the construction of PCRAM-based neuro-inspired 
computing, although it comes at the cost of increasing com-
plexity in design as compared to single PCRAM scheme.[67,68]

3.4. PCRAM Synaptic Plasticity

Emulations of synaptic structure and synaptic plasticity are 
essential tasks for the realization of BioNN. However, the 
complex dynamic electrochemical models of synaptic plas-
ticity make them be often necessary to be simplified into 

Figure 5.  Bidirectional electric-induced conductance controllability for synaptic simulation. Normally, synaptic potentiation is obtained by lower and 
wider pulse and synaptic depression is achieved using higher and narrower pulse.
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computation models for the emulation. Among the proven 
synaptic plasticity, synaptic potentiation and depression, as 
well as STDP are the most desired and emphasized in neuro-
inspired computing. PCRAM with a two-terminal structure 
allows these and has the advantage of structural similarity to 
biological synapse and bidirectional controllable conductance, 
and thus has been widely studied.[35,69–71] Synaptic potentia-
tion can be achieved using a uniform pulse train or a stair-
case pulse train comprising a number of wider pulses whose 
amplitude is below the Set voltage, while synaptic depression 
is achieved by staircase pulse train comprising a series of 
narrower pulses whose amplitude is slightly higher than Reset 
voltage.

For STDP, the programmable staircase pulse scheme and 
the square pulse scheme are the most popular.[35,36,72–76] In 
the former approach, as shown in Figure  6c, the presynaptic 
spike consists of depression pulses with increasing amplitudes 
following potentiation pulses with decreasing amplitudes, 
whereas the postsynaptic spike only consists of a single and 
wider pulse. It is noticed that both amplitudes of depression 
pulses and potentiation pulses are initially below the corre-
sponding threshold, which means that any pulse in presyn-
aptic spike is not able to depress or potentiate the weight 
unless it overlaps the postsynaptic spike. Therefore, postsyn-
aptic spike acts like a gate to control the synaptic weight to 
be increased or decreased, causing LTP or LTD, respectively. 
The net of arrival times of presynaptic spike and postsyn-
aptic spike is defined as the spike timing (ΔT), and the net 
of the strength of two spikes is represented by the change of 
synaptic weight (ΔW). Thus, the correlation between time and 

synaptic weight can be shown in Figure 6c, which is quite sim-
ilar as the result reported by Bi and Poo for biological STDP 
rule. Furthermore, as shown in Figure  6d, the so-called four 
popular forms of STDP learning rules in biosome including 
asymmetric Hebbian, asymmetric anti-Hebbian, symmetric 
Hebbian, and symmetric anti-Hebbian, are obtained by regu-
lating the intervals and amplitudes of presynaptic spike.[36] 
In the latter approach, i.e., the square pulse scheme, pairs of 
mutual enhancing square pulse and mutual offsetting pulse are 
used to implement various STDP due to their perfect control of 
temperature in phase change area. It is more concise and has 
higher efficiency because two spikes contribute together to the 
regulation of synaptic weight, and may be easier to practice in 
large-scale integration circuits compared to the staircase pulses 
scheme due to the simple designs of square pulses. Neverthe-
less, the biological similarity of STDP achieved by square pulse 
scheme needs to be further improved and demonstrated, and 
thus it has not yet been widely used in practice.[76]

The accumulative and controllable crystallization process 
makes it possible for PCRAM to achieve hardware neurons 
and synapses and to realize synaptic plasticity. The draw-
backs of high-energy consumption and burst amorphization 
can possibly be overcome by optimizing the synapse architec-
tures, circuits, and algorithms, although it is at the expense of 
increased system complexity. Furthermore, as a key figure of 
merit for storage application, high phase changing speed has 
been pursued in the past decades, which is in contrast to the 
requirement of the continuous multilevel conductance response 
in neuro-inspired computing. Improving the phase change con-
trollability through material engineering may be considered as 

Figure 6.  PCRAM neuronal system and synaptic simulation. a) Schematics of PCRAM electronic neuron and b) corresponding update of conductance 
to mimic LIF rule in biological neuron. Reproduced with permission.[66] Copyright 2016, Spring Nature. c,d) Four forms of STDP are simulated by 
regulating the intervals and amplitudes of programmable staircase pulse scheme in presynaptic spike. Reproduced with permission.[6] Copyright 2011, 
American Chemical Society.
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an alternative approach to simplify the circuits and minimize 
the system requirements.

3.5. Implementations of Neuro-Inspired Computing Using 
PCRAM Integrated Array

The implementation of hardware SNN using integrated 
synaptic devices array is essential to achieve neuro-inspired 
computing. In this section, we discuss fundamentals in 
PCRAM integration architecture and its applications in neuro-
inspired computing in both supervised learning and unsuper-
vised learning manners.

3.5.1. PCRAM Integration Architecture

The powerful PCRAM-based SNN can be built layer by layer 
on integrated memristors structure by introducing the dense 
crossbar array structure and the 3D integration technology, as 
illustrated in Figure  7a,d, respectively.[67,77] However, the sneak 
current as interpreted in Figure 7c is a serious challenge that may 
lead to confusion of high and low resistance devices, resulting 
in wrong interpretation of the storage bit.[78] The selector is an 
effective component to cope with this problem. A variety of selec-
tors have been developed, such as Si-based devices (i.e., three-
terminal transistor and Si PN diode), oxide PN junction diodes, 
threshold switch devices (i.e., ovonic threshold switching (OTS) 
and threshold vacuum switching devices), as well as other novel 
devices.[79–85] Transistor and OTS are widely accepted in PCRAM 
integration with configurations of 1T1R or 2T1R (in Figure 7e)[85] 
and OTS-PCRAM (in Figure  7d),[81] respectively, thanks to their 
good CMOS compatibility.

3.5.2. Learning Rules in Neuro-Inspired Computing

In terms of machine learning, neuron networks are trained 
either indirectly or directly, corresponding to supervised 
learning and unsupervised learning, respectively. The former 
manner requires training process to establish relation between 
inputs and outputs, and emphasizes the gradient descent-based 
error backpropagation algorithms.[3,67] Supervised learning 
system usually takes thousands of training and thousands of 
labeled examples.[3] For example, the famous MNIST contains 
60  000 training samples. Many significant applications in the 
field of neuro-inspired computing, particularly in image classi-
fication and identification, have been successfully implemented 
by SNN supervised learning.[60,67,85–89]

However, biological behaviors are more similar to unsu-
pervised learning. Human beings or animals understand and 
create novelties by virtue of initiative learning from observa-
tions in practice rather than labeled training, although human 
experiences like labeled learning process in the youth period, 
for example, identifications of fruits, animals, and cars. Unsu-
pervised learning with STDP requires underlining adaptively 
revealing, summarizing and analyzing latent connections and 
similarities in samples rather than onerous labeled training. 
In the BioNN topology, multiple presynaptic neurons are con-
nected to a postsynaptic neuron, in accordance with the survival 
of the fittest, but only the strongest fired presynaptic neuron 
enables to transmitting information. In order to mimic this 
adaptive competition, unsupervised learning induces a winner-
takes-all mechanism to screen out the winning neuron among 
all neurons that experience LIF mechanism.[68] It is believed to 
be more promising to carry out adaptive tasks in the long term 
compared to supervised learning despite as the lightly lower 
performance than that of supervised learning.

Figure 7.  3D integration architecture of PCRAM. a) Schematic of multilayer perceptron and corresponding crossbar array designed by Burr et al. In this 
architecture, each subcell contains one selector and one PCRAM to address the sneak current issue. Reproduced with permission.[67] Copyright 2014, 
IEEE. b) 3D integration schemes. Model 1: Stacked 3D horizontal crosspoint array. Model 2: 3D vertical crosspoint array. Reproduced with permis-
sion.[77] Copyright 2016, IEEE. c) Interpretation of sneak path. Supposing that the targeting addressed unit in the center of the crossbar array is in the 
high resistance state (HRS) (marked in red) while surrounding units are in the low resistance state (LRS) (marked in yellow). Read current (marked in 
pink) may act on other devices (Isneak, marked in brown) as it flows through the target device. d) Microstructure characterization of an OTS-PCM cell 
and the corresponding fully integrated array. Reproduced with permission.[81] Copyright 2009, IEEE. e) TEM image of PCRAM-based 2T-1R configuration. 
Reproduced with permission.[85] Copyright 2015, IEEE.
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3.5.3. Neuro-Inspired Computing Networks Using PCRAM 
Hardware

PCRAM ANN: DNN, RNN, and CNN characterized by mul-
tiple iterations appear to be attractive to the communities of 
machine-learning, computer-vision, and speech-recognition, 
which, in turn, has incited numerous studies on the PCRAM 
hardware implementations. A fully connected multiple archi-
tecture is needed to map topological neuron networks. This 
can be achieved by integrating PCRAM synapses/neurons 
and combining the designs in selector components and 
synapse architecture. Then, hardware DNN (Figure  8a),[90] 
RNN (Figure 8b),[91] and CNN (Figure 8c)[92] are created after 
training using such models as forward propagation, back-
ward propagation, and Hopfield algorithms. Burr et  al. pro-
posed a large-scale 3-layer DNN hardware (containing 164 885 
PCRAM synapses) and achieved a training accuracy of 82.2% 
using a 2-PCRAM synaptic architecture and backward propa-
gation.[67] As shown in Figure 8b, a Hopfield RNN used as an 

accelerator was mapped by fully connected PCRAM synapses 
and neurons.[91]

PCRAM SNN: IBM performs several pioneering works 
in PCRAM hardware SNN. In 2017, the team demonstrated 
spike-excited encoding information and supervised learning 
using multilevel cell (MLC) PCRAM technology along with 
an efficient comprehensive model.[60] Most recently, a typical 
132 × 168 PCRAM-SNN with supervised training was validated 
for high-accuracy speech recognition.[93] Furthermore, unsuper-
vised learning PCRAM hardware networks has progressed in 
the aspects of digit recognition, image recordings, spatiotem-
poral patterns learning, etc.[64,94–98] Typically, using a 10 × 10 2D 
PCRAM SNN based on the Hopfield network, Eryilmaz et  al. 
successfully achieved brain-like associative learning and pattern 
recognition by increasing the number of epochs of weight 
update.[98]

PCRAM-based neuro-inspired networks have been dem-
onstrated in experiments, however, more efforts are required 
for the large-scale applications and mass production. Low 

Figure 8.  PCRAM hardware neuron networks. a) DNN. Reproduced with permission.[90] Copyright 2018, The Author(s). b) RNN.[91] c) CNN.[92] 
d) SNN.[93] e) The training of supervised learning SNN. The audio signal of characters “IBM” (Eye..Bee..Em) was captured and then converted into 
132 spike streams that were encoded in designed SNN. After supervised training, the objective images (“I,” “B,” and “M”) can be recognized with high 
accuracy. Reproduced with permission.[93] Copyright 2020, The Author(s).
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intradevice and interdevice reliability and low-density inte-
gration are still problematic for high-accuracy recognition 
of PCRAM ANN. In addition, poor understanding of the 
principles of SNN algorithmic limits the development and 
implementation of its hardware. More studies on algorithms, 
circuits, synaptic architectures, and devices are urgently 
required to overcome the difficulties in PCRAM SNN.

4. Challenges and Solutions

Despite considerable advantages in neuro-inspired com-
puting using PCRAM by booming neuroscience knowledge 
and mature large-scale integration technology, there are still 
some unsolved obstacles in aspects of devices, systems, and 
algorithms,[90,92,99–104] which pose challenges to make further 
achievements in higher-level intelligent applications. We sum-
marize here the challenges and solutions in terms of material 
engineering, programming stimulus, device technology, prepa-
ration technology, synaptic architecture engineering, as well as 
programming algorithms and circuits.

4.1. Reliability, Energy Consumption, and Multilevel 
Conductance

High reliability, low energy consumption and multilevel con-
ductance are basic device requirements of PCRAM for an 
energy-efficient and high-performance neuro-inspired com-
puting hardware. Device reliability primarily involves the stable 
write–erase operation, speed, retention, and endurance. Poor 
reliability of PCRAM normally results from the poor thermal 
stability and the unstable atomic rearrangement in active area 
after crystallization or amorphization. Energy consumption is 
a key concern for neuro-inspired computing hardware, which 
mainly results from the high-powered Reset operation due to 

the high melting point of phase change materials and is related 
to the power consumption of selective components in integra-
tion hardware. The capability of multilevel conductance change 
is associated with the continuous controllability of conductance 
for realizing reliable synaptic simulation.

Material engineering is beneficial for high crystallization 
temperatures, grain refinement, and stable lattice constant, 
which has played an essential role in these basic evaluations. 
It has been reported that PCRAMs based on Ga–Sb–Ge,[105,106] 
Ge–Sb–Te (GST),[107] are able to reach a high endurance of 
1011 cycles and a retention of more than 10 years. In addition, 
doping engineering leads to the suppression of nucleation-
seeds and the increase of defects, resulting in the slow and con-
trollable crystallization. For example, C-doped GST,[108] N-doped 
GST,[109,110] O-doped Ti–Sb–Te,[71] etc., were demonstrated to 
have the controllable multilevel conductance and good device 
reliability for neuro-inspired computing. Low energy consump-
tion can also be achieved by optimizing the material compo-
sition to reduce melting point,[111] embedding 2D material as 
thermal barrier,[112] as well as employing new materials like 
graphene and carbon nanotubes as electrodes.[113,114]

Interface engineering, device structure design, and encapsu-
lating are also employed to improve the storage reliability and 
synaptic performances. The nonconfined structure is the most 
appealing PCRAM structure for large-scale integrated device fab-
rication[115] thanks to its easy doping and interface engineering as 
well as the low cost. The strategy using interfacial layer to impact 
the activation energies and bonds (as shown in Figure 9a) was 
widely accepted to reduce the energy consumption and increase 
the number of intermediate states of PCRAM.[116,117] The design 
of GeTe/Sb2Te3 interface is helpful to achieve the low-energy con-
sumption and the high reliability of write–erase.[118] Moreover, it 
has indicated that stacks consisting of alloys with distinct crys-
tallization behaviors, as named as “superlattice-like,” show the 
low thermal conductivity, the limited active area, and the low 
heat dissipation as well as the formation of bond at interface as 

Figure 9.  PCRAM cell technology for enhancing performances in neuro-inspired computing. a) HfO2 interface layer. Reproduced with permission.[117] 
Copyright 2012, IEEE b) Metallic surfactant layer scheme in a confined PCRAM. Adapted with permission.[123] Copyright 2013, IEEE. c) Elevated-confined 
structure. Reproduced with permission.[126] Copyright 2010, The Japan Society of Applied Physics. d) PCH structure. Reproduced with permission.[141] 
Copyright 2019, The American Association for the Advancement of Science. e) “Projected” PCRAM. Reproduced with permission.[142] Copyright 2015, 
Macmillan Publishers Limited. f) Encapsulating schemes. Reproduced with permission.[145] Copyright 2006, IEEE.
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a barrier (i.e., TiN/W,[119] GeTe/Sb2Te3,[120] N-GST/GST,[121] and 
Ti0.43Sb2Te3/TiN[122]), therefore significantly contributes to the 
reduced Reset voltage and higher device reliability. The con-
fined cell design is the other practical structure (in Figure  9b), 
in which the phase change material is located in a hole.[123] This 
structure was also suggested due to its advantages including 
failure avoiding, small footprint, limited active area, high relia-
bility, and lower power consumption.[61,123–125] A derivative design 
of elevated-confined structure (Figure 9c) has been demonstrated 
to provide effective thermal confinement to reduce the program-
ming power.[126]

In addition, the deposition techniques can ultimately deter-
mine the reliability and lifetime of prototype devices. For 
example, physical vapor deposition (PVD) technique is the 
most suitable method for large-scale integrated devices fabri-
cation.[115] However, the drawbacks like elemental segregation 
and void formation in active area threat the reliability of non-
confined PCRAM. Advanced deposition techniques such as 
atomic layer deposition, ion beam deposition, and sputtering 
could realize the high-quality film deposition but at the expense 
of high-cost and poor efficiency.[127,128] A detailed discussion of 
deposition technology for PCRAM has been well-reviewed by 
Burr et al.[115]

4.2. Nonlinear and Asymmetric Conductance Response

For nonvolatile memory implementation SNN, synaptic 
weights are referred to the conductance of devices. Linear and 
symmetric conductance response (conductance increases and 
decreases) are expected to achieve high-precision comparable 
to conventional computer-science-oriented ANN that contains 
weight matrix initialized by the mathematic model. The key 
requirement is the realization of the microcontrol of conduct-
ance. However, it is difficult due to the fast phase transition 
and unique asymmetric switching mechanism in PCRAM, that 
is, accumulation in Set and abruption in Reset. For PCRAM 
synapse, only the limited range with relatively linear and con-
trollable conductance response can currently be achieved, 
resulting in strong degradation of accuracy.[67]

Material engineering plays an essential role in slowing crys-
tallization to improve the symmetry of electrical characteristic 
of PCRAM. For example, C dopant has been demonstrated to 
make the disorder of Ge–Te tetrahedral in GST thus retarding 
the formation of crystal grains.[108] The O-doped Ti–Sb–Te per-
forms a linear resistance modulation under identical pulses.[71] 
These demonstrations perform the good potential of regulating 
conductance for synaptic simulation.

Programing stimulus engineering, such as programmable 
staircase pulse scheme[36] and the square pulse scheme,[76] 
has been proved to be an effective approach to improve line-
arity and symmetry of conductance response, even if material 
engineering sometime fails to meet expectations. However, it 
is increasingly reaching the bottleneck due to the imperfect 
devices. More efforts should focus on material engineering 
to improve phase change controllability and to reduce the 
complexity in programing stimulus engineering. Indeed, a 
synergistic approach of combined material engineering and 
programming engineering should be adopted.

Synaptic architecture engineering with the specific algo-
rithm circuit is also widely used in neuro-inspired computing 
to circumvent tough challenges arising from electronic syn-
apse. Analog PCRAM synapse and binary PCRAM synapse 
are basic synaptic architectures.[129] The 2-PCRAM architecture 
described in Section  3.3, with differential circuits, is an avail-
able analog architecture that requires PCRAM itself to provide 
electric-induced conductance controllability. It has low power 
consumption and permits eliminating effects of asymmetric 
conductance response, because the update of synaptic weight 
is always realized in the crystallization process.[68,130] The binary 
PCRAM synapse is driven by a crucial probabilistic rule rather 
than an electric-induced conductance controllability. It only 
employs binary representation of PCRAM (only HRS and LRS), 
in principle, which circumvents the issue of nonlinear and 
asymmetric conductance of PCRAM.[131] At present, various 
probabilistic update schemes, such as fine-tuned probabil-
istic switching,[132] pseudorandom number generators,[129] and 
counter-based arbitration scheme,[90] have been proposed both 
in supervised learning and unsupervised learning applications.

4.3. Intradevice and Interdevice Variabilities

Variability is a key obstacle for large-scale neuro-inspired com-
puting using PCRAM technology and has been paid extensive 
attention for a long time. Generally, the variability occurs in 
both intradevice and interdevice.[90] Both intradevice variability 
and interdevice variability in PCRAM restrict the accuracy of 
SNN, although it has tolerance to some extent for initial varia-
tions and is able to become more robust by increasing training 
epochs. However, it comes at the expense of undesired training 
complexity and increasing the power consumption.[98]

Intradevice variability is believed to derive from inherent sto-
chasticity in PCRAM. It is mainly because of the high atomic 
mobility and phase segregation in the molten state.[101] It should 
be strictly avoided in implementing neuro-inspired computing 
as it may increase complexity of training and reduce system 
accuracy. Intradevice variability can be significantly relieved 
in general by high-thermal-stability composition like C-doped 
Sb-rich GST,[133] N-doped Sb films,[134] Mo-doped SbTe,[135] etc. 
In addition, the encapsulating of device and the shielding of 
operation environment are friendly to reduce testing noises 
for the acquisition of low-variability data. Interdevice vari-
ability presents device-to-device differences in conductance 
response in the PCRAM array, which possibly originates from 
the poor consistency during film deposition. Furthermore, as 
IBM reported, synaptic architecture engineering like multi-
PCRAM synapse together with iterative programming differen-
tial algorithms and circuits are necessary to further reduce both 
intradevice variability and interdevice variability in PCRAM 
integrated array.[136–138]

4.4. Resistance Drift

Resistance drift is a unique challenge in PCRAM. It refers to 
the phenomenon that the value of resistance spontaneously 
increases over time may due to the structural relaxation and 
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the increased activation energy for conduction. Such phenom-
enon is a major concern in HRS of amorphization while recent 
reports indicate that it also occurs in LRS of crystallization 
process.[100,104] The slight resistance drift can be balanced with 
increasing training epochs and may facilitate the classification 
accuracy of SNN. However, it is dramatically happened when a 
pretrained SNN is used to identify incoming patterns without 
synaptic weight updating.[92,103]

Some reports have verified resistance drift seems to be miti-
gated by material engineering. For example, N-doped Ge-rich 
GST[139] or Ti–Sb–Te system.[140] Indeed, an effective route is 
believed a comprehensive and systemic scheme that involves 
considerations of device structure, programming algorithms, 
and circuits.

From the device design point of view, the phase change het-
erostructure (PCH) (in Figure  9d) with a superlattice design of 
alternately stacked Sb2Te3/TiTe2 effectively suppresses composi-
tional and structural variability performs excellent immunity to 
noise and resistance drift.[141] The specific thin conducting sur-
factant layers, serving as a resistance modulation component in 
amorphous state, have been widely verified to relieve the resist-
ance drift in the confined structure and the “Projected” structure 
(in Figure  9e).[59,123,142,143] Recently, a pair of confined PCRAM 
with a thin metallic liner as a synaptic element was demon-
strated by IBM yielding a high test accuracy of 95% in MNIST 
simulation.[144] The design of encapsulating layer (in Figure  9f) 
using SiO2,[145] TiN, or Al2O3, whose biaxial moduli is much dif-
ferent to that of the phase change materials, is demonstrated to 
block oxygen penetration and mitigate the resistance drift.[145–148]

Recently, a number of advanced systematic R-drift mitigation 
approaches, such as reference-cell-based resistance tracking,[149] 
DRAM-like refresh resistance drift,[150] resistance drift com-
pensation (RDC) scheme,[151] and R-SET technique,[139] have 
been verified by IBM, Samsung Electronics, Macronix, and 
CEA-LETI, respectively. These approaches have been success-
fully demonstrated in the application of multilevel cell PCRAM 
as storage, and are serving for high-precision neuro-inspired 
computing.

4.5. Nondegenerate Conductance

The characteristic of nondegenerate conductance, which means 
the conductance cannot decay naturally in a short time (i.e., 
tens of nanoseconds), is remarkable for PCRAM synapse due 
to the relatively stable rearrangements of atoms after elec-
trical stimulation. It leads to the disadvantages of PCRAM 
synapse in short-term-related plasticity like STF, STD, PPF, and 
metaplasticity as compared to other RAMs that are driven by 
the migration and diffusion of charged ions,[49,152–154] as well 
as ferroelectric polarization dynamics.[155,156] Thanks to the 
electric-induced conductance controllability for PCRAM, pro-
gramming engineering can be viewed as a promising solution 
to overcome this issue. In addition, the inherent characteristic 
of resistance drift in PCRAM is a good representation of long-
term degenerate conductance. It is anticipated that regulating 
the rate of resistance drift by material engineering, circuit com-
pensation and programmable engineering is possible to achieve 
short-term conductance behavior.

4.6. Density

A high density is necessary for an energy-efficient and reliable 
PCRAM integration. As the developments of preparation tech-
niques and new materials, the effective transformation region 
of PCRAM is shrinking and a ≈5 nm2 contact area in a discrete 
PCRAM has been demonstrated using a carbon-nanotube elec-
trode.[157,158] However, as a key component to eliminate the sneak 
path issue in arrays, the transistor-based selector in industry 
always limits the chip density due to the lager demission of 
channel as compared to nanometer scale PCRAM. The emerging 
selector like OTS, and diode-based switch devices[79–85] still need 
to overcome the issues of insufficient stability and preparation 
technology to mass production. Furthermore, the increase of 
throughput of neuro-inspired computing increasingly poses 
challenges in high-density and miniaturization of 3D hardware 
integration. As the number of layer increases, the conventional 
3D vertical approaches like 3D stack with multiple layers of 2D 
crossbars[159] and 3D vertical arrays using pillar vertical elec-
trodes,[160–163] normally forming a staircase interconnect outside 
the 3D array to CMOS layer, will be failure due to the increase of 
wire resistance and floor plan contributed by interconnect. The 
4D address topology based on 3D CMOL (CMOS+Molecular) 
architecture,[164] allowing CMOS circuits inside the 3D array, is a 
potential route to enhance ultrahigh density integration.

5. Conclusions and Perspectives

In conclusion, we have presented an overview of fundamentals 
in biological nervous system including biological compositions, 
plasticity (LTSP, STSP, STDP, intrinsic plasticity, metaplasticity, 
wiring plasticity, etc.), learning rules (Hebbian learning, BCM 
learning) for possible bridging the gap between neuro-inspired 
computing and PCRAM technology. Recent advances including 
principles and applications in neuro-inspired computing imple-
mented by PCRAM have been comprehensively retrospected. 
PCRAM technique is capable to simulate biological neuron and 
synapse, Hebbian-based plasticity and is competent in fulfilling 
small-scale neuro-inspired computing tasks with ANN and SNN, 
such as MNIST digit recognition, speech identification, in man-
ners of both unsupervised learning and supervised learning.

PCRAM technology is a very promising candidate to achieve 
the neuro-inspired computing. In the future, following per-
spectives can be predicted for PCRAM-driven neuro-inspired 
computing:

1.	 Explore the potentials of PCRAM to achieve higher-order 
plasticity such as intrinsic plasticity, metaplasticity, and wir-
ing plasticity that are anticipated to intensify intellectual 
learning and promote the development of neuro-inspired 
computing. Meanwhile, occurrence of excessive simulation 
of biological synaptic plasticity should be avoided.

2.	 The mechanisms of neuro-inspired computing are still not well 
understood, at present, and the practical system capable of mas-
sive assignments are still lacking. We believe that the accom-
modation between ANN and SNN that combining the advan-
tages of high precision, high data throughput, high processing 
speed, and low power consumption is a promising tradeoff to 
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solve complex tasks.[165–167] The compatible system hierarchy 
allowing free communication between two paradigms in infor-
mation representation, computing paradigm, weight updating, 
and storage architecture should be built. In addition, the high 
energy-efficiency and simplification should be considered in 
the future hybrid platform construction.

3.	 Innovations in material optimization and device technology are 
still an essential path to obtain high-density, energy-efficient 
and high-performance device. New material systems provid-
ing retardative and controllable phase transition and further 
shrinkage technology are supposed to be emphasized in future 
studies. On the other hand, we should be aware of potentials 
of algorithms for amending inherent flaws of PCRAM. The 
route of algorithm–hardware co-design is believed to be able to 
address variability and drift of PCRAM. In addition, research-
ers need to pay extra attention to selector devices that account 
for the vast majority of the energy consumption. They severely 
hamper high-density integration due to the relatively larger 
size as compared to memory devices. The miniaturization of 
existing selectors using transistor, diodes, OTS, etc., should be 
further investigated. Emerging self-selective techniques and 
some novel selector schemes need to be developed.

4.	 In view of the intricate challenges of PCRAM synaptic de-
vice, we deem synaptic architecture is an effective shortcut 
to evade nonlinear and asymmetric conductance response, 
as well as eliminate resistance drift and variations. Although 
a number of successful PCRAM synapse architectures have 
been demonstrated, the improvement of networks’ ability 
is at the expense of increase in the number of devices per 
synapse, higher complexity, and higher power consumption. 
Furthering investigations on synaptic architecture may con-
sider to embed multilevel PCRAM devices to balance compli-
cated circuit configuration.

Finally, neuro-inspired computing is a systematic project 
involving disciplines of materials science, devices design, fabri-
cation technologies, synaptic architectures, circuits, algorithms, 
and neuroscience. It has been driven by PCRAM technology to 
harvest preliminary benefits in energy-efficient nonideological 
intelligence. Now is the time to integrate crossdisciplinary 
efforts to realize the prospect of ideological and initiative AI.
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