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FAILURE STATISTICS FOR COMMERCIAL LITHIUM ION BATTERIES:      

A STUDY OF 24 POUCH CELLS 

Stephen J. Harris1, Chen Li2, David J. Harris3 

 

Abstract 

There are relatively few publications that assess capacity decline in enough commercial 

cells to quantify cell-to-cell variation, but those that do show a surprisingly wide 

variability.  Capacity curves cross each other often, a challenge for efforts to measure the 

state of health and predict the remaining useful life (RUL) of individual cells.  We 

analyze capacity fade statistics for 24 commercial pouch cells, aiming to provide an 

estimate for the time to 5% failure.  Our data indicate that RUL predictions based on 

remaining capacity or internal resistance are accurate only once the cells have already 

sorted themselves into “better” and “worse” ones.  Analysis of our failure data with 

normal and with 2- and 3-parameter Weibull probability density functions provide 

uniformly good fits using a variety of definitions of failure, but we argue against using a 

3-parameter Weibull function for our data. pdf fitting parameters appear to converge after 

about 15 failures, allowing failure times and confidence intervals to be estimated from a 

modest number of tests.  We suggest that testing should continue until predesignated 

confidence intervals for failure have been achieved, rather than using a predesignated 

number of cycles or a predesignated number of failures.  Increased efforts to make 

batteries with more consistent lifetimes should lead to improvements in battery cost and 

safety. 
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Introduction 

Over the past couple of decades, a number of “next generation” Li-ion batteries and 

“beyond” Li-ion batteries have been demonstrated in laboratory settings1-2, but few have 

been commercialized.  For the most part, the critical barrier to their practical application 

has been durability.  There is, therefore, a paramount need to understand and improve 

battery life3. 

As part of efforts to predict and improve battery life, a large number of models have been 

proposed1, 4-10. These models fall into various categories, such as physics-based11, data-

fitting/pattern recognition12-15, or hybrids13, and they have been extremely valuable for 

identifying important factors—temperature, charging rate, SOC window, etc.—that 

control life.  However, these models, similar to models that predict the life expectancy of 

a newborn, are at best rough guides to the actual durability of any given cell.  This is 

because failure is generally a statistical process16-18, where life is determined by “hidden” 

variables over which we typically exercise little control19-21. In batteries these variables 

could be microscale, such as heterogeneities within particles22-24; or mesoscale, such as 

variation in local porosity17 or state of charge25; or macroscale, such as the location in a 

pouch26 or cell-to-cell variation in the time-temperature history in a pack9, 27.  

Although the importance of identifying and controlling such variability is well-

recognized28-29,  the lithium battery durability literature sometimes treats failure as 

deterministic, with an implicit suggestion that variability could be limited if only the 

macroscopic battery parameters were tightly enough constrained.  It is therefore common 

to see only one or two, replications—or more commonly, no replications—of capacity 

fade data. Even in cases where variability is explicitly acknowledged, the analyses often 

rely on experimental data involving only a handful of nominally identical replications29-

34, so that the statistical confidence may not be high.  We note in this regard that 

disagreement in the literature over, for example, whether or not a particular additive 

increases battery life could be due to insufficiently large samples being studied. 



In contrast to the dearth of life variability data with multiple replications in the open 

literature, there is significant research on how such data should be treated statistically, 

when it exists35-40.  In large part this literature focuses on state of health (SOH) and state 

of available power (SoAP)41 monitoring and on predicting the remaining useful life 

(RUL) of a battery or pack6, either as a single RUL value or as a distribution of predicted 

RUL values.  These analyses often presume the existence of a library of previously 

measured (offline) data sets from which can be derived correlations between the RUL 

and the evolution of some operating parameter(s), such as impedance, rate of capacity 

loss, or open circuit voltage42.  An important question, then, is whether these libraries 

involve large enough samples so that confidence in the RUL predictions can be high.  We 

note, for example, that there have been nearly a hundred citations to a data file33 that has 

only 3 or 4 replications for each cycling condition. 

In one of a relatively few14-15, 27, 43-45 published studies looking at a large number of 

individually tested cells, Baumhofer et al14 analyzed the capacity fade of 48 

commercially available carbon-NMC Sanyo/Panasonic UR18650E cylindrical cells.  The 

cells were graded into group C by the manufacturer and were all drawn from the same 

production lot. Care was taken to ensure that the cells were cycled under identical 

electrical, mechanical, and temperature conditions.  Their results are striking: after an 

initial several hundred cycles where the cells performed very similarly, the spread in 

capacity fade became quite wide so that, for example, cells lost 20% of their original 

capacity in a range between about 900 and 1300 cycles, Figure 1, reprinted here with 

permission46.  Of course, batteries that operate in the field, where conditions are not so 

well controlled, may have still broader degradation rates.47 



 

Figure 1.  Durability data of Baumhofer et al14 from 48 nominally identical Panasonic 18650 
batteries.  The x symbols mark experimental data.  The lines are cubic splines connecting the 
data points.  Reproduced with permission46.   

 

A close inspection of the Baumhofer data shows that the capacity vs cycle curves cross 

each other dozens of times and that, as the authors report, there is little or no relationship 

between the relative performance of any given cell early and late in the testing.  These 

experimental results imply, at the least, that capacity alone, or capacity derivatives, 

cannot be readily used to predict the RUL of these cells based on capacities at low 

numbers of cycles, even for these standardized commercial cells run under idealized 

conditions.  The authors then investigated making predictions of RUL based on 385 

“valid” and “significant” cell measurements taken during cycling, from which they 

selected the 24 (impedance and pulse cell resistance) measurements that best correlated 

the experimental outcomes.  After training, the model’s predictions were quite good.  

Unfortunately, as they point out, there seemed to be no logical reason why these 

particular 24 measurements should have been chosen, suggesting to the authors that these 



same parameters might not be particularly informative for another set of batteries or even 

for these same batteries run under different conditions.  Although their work suggests that 

great care should be taken in assessing the confidence that can be placed in RUL 

predictions for individual commercial cells, we hasten to point out that making 

commercial batteries with extremely consistent capacity fade over many years can be 

accomplished under some conditions37.   

In this work we measure the durability of 24 nominally identical commercial pouch cells.  

Rather than using the data to try to predict RUL, we focus on the sort of statistical 

measures that could provide value to battery manufacturers in setting their warranties.  

For example, we might ask, How confident can we be that 95% of the cells will still have 

adequate capacity after, say, 250 cycles?  We will provide an answer to this question near 

the end of the paper.  This sort of analysis could also be used to address other questions, 

such as, How many units must be tested for how long, without any failures, to verify that 

an old failure mode has been eliminated or significantly improved.   

There is a reason that some commercial cells last so much longer than others that are 

nominally identical, but the explanation is obscure.  Ultimately, we believe that an 

increased emphasis on making batteries whose lifetimes are more reproducible—

requiring a deeper understanding the variables that make some batteries better than 

others—will lead to improvements in battery cost and safety. 

Experimental 

The commercial high power lithium ion cells tested in this work are pouches with a 

nominal capacity of 4.4 Ah. The active material of the anodes and cathodes are synthetic 

graphite and LCO (Lithium Cobalt Oxide), respectively. Power capability of these cells is 

shown in Appendix 1 in Supplemental Information.   

24 cells selected randomly from a single batch of cells were cycled at room temperature 

(~ 25 degrees C) with an Arbin BT2000. On each cycle, the cells were charged in a 

CCCV (Constant Current Constant Voltage) mode at 1C (4.4 A) constant current up to 



4.35V, followed by a constant voltage charge until current dropped below C/40.  The 

cells were then discharged at 10C (44 A) constant current until the terminal voltage 

decreased to 3 V. Note that a 10C discharge rate was employed for these cycle life tests 

in order to accelerate  the degradation process. All cells were compressed in custom-

designed cell fixtures during the cycling tests. Special attention was paid to ensure 

contact resistances between the cell tabs and the fixture leads were small enough so that 

the high-rate discharge was not affected by any external factors.  Both capacity and 

internal resistance ( 1 kHz) were measured after each cycle. 

Calculations were performed with the Weibull-DR code48 and with custom R code49.  The 

raw data from the tests is provided in the Supplemental Information. 

Results and Analysis 

Results for our 24 cells up to 593 cycles are shown in Figure 2a.  (Internal resistance 

measurements generally follow capacity measurements.)  The most striking features of 

this graph are that (1) the cells perform very nearly identically up to about 150 cycles, 

after which they diverge markedly; and (2) capacity retention early in the testing says 

almost nothing about its retention later on, as shown in Figure 2b.  Others14-15, 43-44 have 

observed these same features.  (We point out, however, that by post-selecting just the 

best-performing 26 cells out of 43 samples tested, Wang et al50 found relatively smooth 

behavior.)  



 

Figure 2.  (a) Experimental capacity curves.  (b) Correlation between fractional remaining 
capacity at 80 and 500 cycles.  The correlation coefficient for the least squares line is about 0.1. 

 

(a) 

(b) 



Statistical Analysis 

A statistical analysis of failure51 can begin by defining four time-dependent (or cycle 

number-dependent) functions.  They are  

(1) f(t), the failure probability density function pdf, which is the fraction of all of the 

cells in a population that fail on cycle t.  (We are assuming that there enough 

cycles so that the density function is approximately continuous.) 

(2)                          , the cumulative fraction of cells that have failed by cycle t. 

 

(3) S(t) =  1 – F(t), the survival function, the fraction of cells that survive at cycle t. 

(4) h(t) = f(t)/S(t), the hazard function, the fraction of survivors that fail on cycle t. 

As a simple example, f(100) could be the fraction of people who die during their 100’th 

year, perhaps 0.25%.  F(100) is the fraction of people who have died by the age of 100, 

perhaps 99%.  S(100) is the fraction of people who survive to age 100, 1%.  Then h(100), 

the hazard, is 25%, the fraction of people who survive to age 100 but then die during their 

100’th year.  (It is quite hazardous to live to a very old age.) 

A commonly used failure pdf is the normal distribution, 
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where  is the mean (and median and mode) of the distribution, and  is its standard 

deviation.  A normal failure pdf might be expected, for example, if the cell durability is 

greatly enhanced by the presence of an additive (whose initial concentration is Gaussian 

distributed) that is gradually consumed during operation, so that when the additive runs 

out the battery fails.   

Another common functional form taken for f in the failure literature is the Weibull 

function8, 43-44,  
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where  is the shape parameter or the Weibull slope,  is the scale parameter, and  is the 

location parameter.  Similar to a normal analysis, a potentially useful feature of a Weibull 

analysis is that there may be mechanistic information that can be inferred from the fit.  

For example, if f reduces to exponential decay, corresponding to a hazard function 

that is independent of the age of the sample, valid for random failures such as failure 

caused by driving over a pothole.  If f has a rapid initial fall, and the hazard 

function falls with time, characteristic of infant mortality.  For the hazard function 

rises with time, indicating wear-out. If f has a tail to the right and so looks 

lognormal) (weakest link mechanism), while for f is nearly normal.  In 

comparing Weibull and normal distributions, we notice that the Weibull distribution has 

3 parameters, while the normal distribution has 2 parameters. However, in many analyses 

 is set to 0, so that the Weibull distribution also has 2 parameters. Bazant has pointed 

out52 that a 3-parameter Weibull has no mathematical basis; only the 2 parameter Weibull 

comes from the  limiting behavior of the smallest of a set of independent, identically 

distributed random variables (“weakest link”) with bounded power law tails53-55.  

Nevertheless, a 3-parameter Weibull function is sometimes used for purposes of 

improving an empirical fit8, 21. 

We next need to define failure.  For many systems, the definition of failure is obvious: 

the person dies, the car won’t move, the river overflows its banks, the part fractures.  In 

this sense, battery failure is different if we want to use capacity to define failure, since its 

definition is arbitrary44.  For the moment, we will define a failed battery as one that has 
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lost 20% of its initial capacity, the criterion generally used for electric vehicle batteries.  

With this definition, our data show that 20 of 24 cells failed during our 593 cycle test, 

Figure 2a.  We refer to the remaining four tests as “suspended”.  (The existence of these 

suspended tests has a significant impact on the analysis.)   

A Weibull analysis might involve using median ranks56 (MR) to estimate the values of F 

at the measured failure times, followed by an ordinary least squares (OLS) analysis of a 

linearized version of the Weibull function to determine and, 

 

This approach is referred to as Median Rank Regression (MRR).  The 20 experimental 

failure times and associated median rank estimates57 for F(t) are shown in Table 1; the 4 

suspended tests are indicated at the end.  The MRR technique gives excellent fits to the 

data, with apparently tight constraints on the fitting parameters.  For example, using an 

OLS analysis, we find  = 2.3 ± 0.15 (2) with an R2 correlation coefficient of 0.98 for 

the 3-Weibull fit, Figure 3a.  For the 2-Weibull fit we find  = 4.6 ± 0.4 (2) with an R2 

correlation coefficient of 0.96, Figure 3b.  Note that this and all of our analyses include 

data for all of the samples, even those that seem to be outliers for particular cases.  We 

choose to include outliers because our goal is to describe the full distribution of 

outcomes.. 
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Figure 3.  OLS fit using the MRR technique for (a) 3-Weibull and (b) 2-Weibull distributions.  
The fits appear to provide strong constraints on the slopes, but this perception is overly 
optimistic. 

 



Unfortunately the quality of the fit gives a significantly over-optimistic sense of how well 

the parameters are known: the ordinary least squares (OLS) analysis does not provide 

good confidence intervals on the estimated parameters, as the OLS-based confidence 

intervals are too short49 (see Appendix 2 in Supplemental Information). In addition, the 

MRR technique does not take into account the cycle number where the tests ended (593 

in this case) when there are suspended tests.  This, in addition to other well-known issues 

with MRR analysis56, 58, motivates us to avoid the OLS-based analysis and use the 

maximum likelihood (ML) technique48, 56.  This involves, in effect, searching for the 

values of (β, η), (β, η, ), or () that maximize the likelihood of the associated pdf, 

where likelihood is defined as the probability that a given combination of parameters 

would produce the observed vector of failure times. For non-suspended cells, this can be 

calculated as the product of the pdf values at the cycle numbers where we observe 

failures; for the likelihood associated with suspended trials see [references]. Thus, if most 

of the observed failure times occur near the peak of a particular pdf curve, and if there are 

no observed failures or suspensions where the pdf is very small, then the corresponding 

parameters have high likelihood. 

In Figure 4 we illustrate how we analyze our data with a 3-Weibull distribution by 

evaluating the likelihood at a grid of 4,000 values of (β, η, ) triples, so that for each 

associated Weibull curve we ask how likely is it that the failure times that we measured 

could have come from that curve.  The images show successive 2D cuts through 

()-space for 4 values of , with the likelihoods color-coded.  The maximum 

likelihood Weibull curve has  2.3,   300, and  , in agreement with the MRR 

analysis.  However, it is clear that  is not tightly constrained; Weibull curves with 1.5 < 

< 4 can have likelihoods within about a factor of 2 of the maximum likelihood, 

depending on and .  This result, together with the fact that good fits are obtained from 

(2 parameter) normal and 2-parameter Weibull distributions, suggests that our data do not 

justify the use of 3 parameters.  We emphasize that MRR may provide the best estimates 



for the Weibull parameters, given the data available, but the uncertainty in those 

parameter values cannot be readily evaluated from examining linearized Weibull plots.   

 

Figure 4.  Slices at ≈and that show the relative likelihood of different 
combinations of shape factor  and scale factor  for each value of video showing shape 
and scale likelihoods for intermediate values of  is included in the Supplementary Materials. 

 

Figure 5 shows the likelihoods associated with different cumulative failure distributions 

F(t;).  We have drawn a horizontal line where F = 5% of the samples have failed; 

this might represent a critical threshold for a costly battery recall, for example.  We note 

from the figure that the confidence interval is much narrower at 5% failure than at, say, 

95% failure, reflecting the fact that we have no data above 593 cycles.  (Confidence 

intervals can be obtained directly from the ML analysis or from other techniques59-60.)  



Fortunately, from a practical point of view, we are normally most interested in small 

values of F. 

 

 Figure 5. Relative likelihoods of associated with different cumulative failure functions F, 
obtained from adding up all the likelihoods (pixel intensities from Figure 4) for all values of 
 that produce a given percent failure at a given number of cycles. A line is drawn across the 
image at 5% failure. 

Number of Failures Observed 

A focus on low values of F suggests that we ask how much useful information we lose by 

stopping the testing early.  For example, we can calculate the expected number of cycles 

to 5% failure, as well as the associated confidence intervals, at any point in time, such as 

after every experimentally observed failure.  The data points in Figure 6a show how these 

quantities vary as a function of the number of observed failures.  Initially the confidence 

intervals show no trends, since the addition of each additional failure can significantly 

alter the analysis.  But by around a dozen failures, trends in the data appear.  After 20 



failures have been observed, we calculate with 90% confidence that the expected number 

of cycles for 5% failure is between about 200 and 375 cycles, with an ML estimate at 

275.  

 

 

Figure 6.  Impact of varying the number of failures observed (type II censoring).  (a) Confidence 
limits for the number of cycles until 5% of the cells fail.  Blue squares, 5%; green diamonds, 
50%; red triangles, 95%. (b) 2-Weibull fitting parameter  as a function of the number of 
observed failures. (c) 2-Weibull fitting parameter  as a function of the number of observed 
failures. (d) Correlation coefficient between performance on cycles N and N+200.  A line with 
the form y = a + b ln x is shown as a guide to the eye. 

Most of the information about the 5% failure rate can be found in the first few failures, as 

indicated by the fact that the estimates and confidence limits in Figure 6a are relatively 

stable as the testing continues up to 20 failures. Similarly, figures 6a and 6b suggest that 

the underlying parameters may also converge after about 10 or 15 failures, although we 



recognize that the fitted values are approximate (Figure 4).  More testing will be required 

to determine if this apparent convergence is real.   

If we can accurately estimate the Weibull parameters from 15 or 20 failures (Figures 6a 

and 6b), does that mean we can make accurate extrapolations for the performance of 

individual cells for RUL predictions?  To address this question, we carried out an 

analysis similar to that shown in Figure 2b, but correlating the capacity of each cell on 

cycle N with its capacity on cycle N+200.  Figure 6d shows that the correlation 

coefficients are poor for N < 150 cycles. During this period, all the cells are performing 

similarly, and there is very little information about their future performance. But by the 

time N = 350, the correlation coefficient is above 0.8. This increase demonstrates that 

reasonably accurate predictions of performance 200 cycles ahead are possible, but only 

after sufficient degradation has occurred to produce significant capacity spread.  In other 

words, once it is clear which cells have good or bad capacity retention properties, their 

individual performance can be extrapolated further with modest confidence.   

Figures 6a and 6b show that even after a small number of failures the Weibull parameters 

are in the range of their converged values.  Schuster et al45, who measured the spread of 

capacity values at a time before there were any failures, found 50 <   < 116, 

corresponding to extremely narrow distributions.  As they point out, these somewhat 

unexpected results are the result of the fact that there is hardly any variation in capacity at 

early times, consistent with published data14-15 and Figure 2a.  Figure 2b shows that data 

taken at such early times provides very little predictive power. 

Definition of Failure 

We pointed out above that our choice of failure at 80% retained capacity is fundamentally 

arbitrary, although there are good practical reasons why this value was chosen by the auto 

industry.  To determine how our results are affected by our choice of failure criterion44, 

we carried out analyses with failure defined as 70%, 75%, 80%, 85%, and 90% retained 

capacity.   



Figure 7 compares the fitted shape parameter  as a function of how we define failure, 

using 2- and 3-parameter Weibull functions.  The most interesting result here is that the 

2-Weibull fit returns a value of  that is roughly constant at about 5, while the 3-Weibull 

fit has  changing by nearly a factor of 2.  If is to have any physical meaning, then its 

value should hardly be expected to change so much just because we change our definition 

of failure, suggesting that a 3-Weibull fit will not provide much insight.  As with the 80% 

data above, the fitted 2-Weibull and normal functions are very similar for every definition 

of failure.   

 

Figure 7.  Fitted values for  as a function of how we define failure, where final capacities range 
between 70% and 90% of the initial capacities.  Diamonds, 2-Weibull.  Squares, 3-Weibull 

 

Choosing Among Functional Forms 

Both Weibull and normal distributions are widely used functions for fitting failure data.  

In principle, an advantage of using one of these distributions is that the fits may give 



insight into the failure mechanisms, as described above. Figure 8 shows the best fits to 

the 2-Weibull, 3-Weibull, and normal distributions.  The 2-Weibull and normal 

distributions are nearly identical, except at high cycles where there are no data.  Thus, it 

is not particularly useful to discuss which functional form fits the data better.  The graph 

shows that the 2-Weibull function can locate itself at almost precisely the same place as 

the other functions, which have explicit location parameters.  Thus, the addition of a 

(third) location parameter for the 3-Weibull function is more or less redundant: it simply 

allows the shape and scale parameters to take a wider range of values while still 

maintaining a good overall fit, as we have seen in Figure 4.  Furthermore, the 3-Weibull 

distribution falls off a cliff below 200 cycles—in, fact it predicts that the probability of a 

failure below 185 cycles (the value of ) is precisely zero.  Given the failure points shown 

on the graph, this prediction seems implausible, and in our opinion, disqualifies the 3-

Weibull distribution as representing the true failure distribution, no matter how good its 

fit to the linearized failure data8, Figure 3a.  This situation is typical of what happens 

when data is over-fit—extrapolations tend to be unreliable. 

 



Figure 8.  Best fit 2-Weibull (solid red), 3-Weibull (dotted purple), and normal (dashed blue) 
distributions to our failure data on a log scale, shown as diamonds along the x-axis.  The 2-
Weibull and the normal curves are essentially indistinguishable in the range where we have 
experimental data (up to 593 cycles).  Note that use of a 3’rd parameter  in a Weibull 
distribution leads to the predictin that the probability for failure occurring before the  th cycle is 
zero.  In this case,   = 185, which appears implausible. 

 

Without more failure data we have no basis for choosing between a 2-Weibull and a 

normal distribution.  It could in principle be valuable to distinguish between them, since 

there are insights to be gleaned about a failure mechanism that is known to be normal, for 

example.  However, we estimate that this would take at least hundreds of observed 

failures.  (Data on this scale could become available from warranty returns.)  However, if 

the goal of the testing is to set a warranty, it makes no difference which of these two 

functions we choose: the predicted failure distributions and confidence intervals of the 

two functions are practically indistinguishable. 

 

Conclusions 

We have cycled 24 nominally identical commercial pouch cells under laboratory 

conditions for almost 600 cycles, during which time their capacities dropped to between 

45% and 85% of their initial values.  Not only did the distribution of capacities become 

very wide, but the capacity vs cycle curves crossed each other numerous times.  Although 

our testing protocol was unusual (10C discharge in order to hasten failure), our results 

qualitatively mirror those of others14-15, 43-44 and suggest that great care should be 

exercised when deciding how much faith to put in SOH/RUL predictions based on only a 

handful of replications or on early performance data.  While it is possible that good RUL 

predictions can be made using other measurements, such as impedance or OCV, we don’t 

believe that there is sufficient data available to warrant such an assumption, especially 

since capacity and impedance are correlated61. The availability of more data sets with 



relatively large numbers of replications will, we believe, be necessary to resolve such 

issues.   

We show in Appendix 2 that a median rank regression (MRR) analysis can give an 

unrealistically optimistic sense of how well the Weibull parameters are known.  Instead, 

we have used maximum likelihood techniques to show that wide ranges of Weibull 

parameters can give reasonable fits to our data, even when the failure data fall closely on 

a linear Weibull plot. Thus, likelihood-based methods should be preferred over MRR, 

even when the distribution of failure times looks approximately Gaussian.   

Our data provide no rationale for choosing between 2-Weibull and normal distributions 

as fitting functions, and, indeed, they predict almost identical failure distributions and 

confidence limits for cycle ranges for which we have data.  Apart from theoretical 

reasons to doubt the value of employing a 3-Weibull distribution52-55, we find that the 

best 3-Weibull fit does not add insight and is not physically reasonable for our data, even 

though the fit is better.  

We note that the data presented and discussed8, 14-15, 44 here all come from commercial 

pouch and 18650 cells.  It would be interesting to know whether cells fabricated in 

academic labs are more reproducible62 (because they're handmade63) or less reproducible 

(because they don't have that secret additive) than commercial cells64.  Future work will 

explore the differences between cells that fail early and cells that fail late.  Our results 

suggest that looking for failure modes in a single degraded battery, as is commonly done, 

may be missing a key point: the failure mode(s) of the cell that ended the test at 85% 

capacity might be quite different from that of the cell that ended the test at 45% capacity.  

We will also compare the predictive value of the approach suggested in Figure 6d with 

more sophisticated approaches to predicting RUL.  In sum, we believe that an increased 

emphasis on research aimed at understanding why battery lifetimes are so variable could 

lead to improvements in battery cost and safety. 
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Table 1.  Failure data, including cycle number for each Failure or Suspension, the number of Failures or 

Suspensions, and the Median Rank value. 

CYCLES  F/S 
 

QTY  MED RANK 

255   F 1 0.029 

301   F 1 0.070 

326   F 1 0.111 

338   F 1 0.152 

340   F 1 0.193 

341   F 1 0.234 

379   F 1 0.275 

408   F 1 0.316 

409   F 1 0.357 

430   F 1 0.398 

449   F 1 0.439 

475   F 1 0.480 

497   F 1 0.520 

509   F 1 0.561 

515   F 1 0.602 

518   F 1 0.643 

537   F 1 0.684 

541   F 1 0.725 

541   F 1 0.766 

560   F 1 0.807 

560   S 4       -------- 

 

 

 

 

 

 



 

Appendix 1. Rate Data 

 

Figure A1. Rate data for our cells 

  



Appendix 2. Problems with OLS-based estimation of Weibull parameters 

As outlined above, the simplest method for estimating Weibull parameters involves 

running a linear regression (ordinary least squares, OLS) on median ranks. This performs 

well for generating a single estimate of the Weibull parameters. It would seem only 

natural, then, to use the standard confidence intervals from OLS to estimate uncertainty 

in these parameters. However, these confidence intervals are too short and fail to achieve 

the desired coverage level. This happens because the assumptions of OLS are not 

justified when regressing median ranks. 

To demonstrate this, we simulated 25 failure times from a Weibull distribution with η = 

250, β = 1.5, and γ = 0. We estimated the shape parameter β using OLS as described and 

calculated the 95% confidence interval. We repeated this procedure 10,000 times and in 

only 31% of the replications did the confidence interval contain the true value β = 1.5, far 

below the nominal 95% level. Maximum likelihood, on the other hand, produced 

confidence intervals that contained the true value in 95.3% of replications. Figure A2 

shows histograms of the estimated parameters and standard errors from the 10,000 

replications using OLS; it is clear that the OLS standard errors considerably 

underestimate the sampling variability in the estimated shape. 

Furthermore, the R2 values from OLS can lead to a false sense of fit to the Weibull 

distribution. Figure A3 shows histograms of R2 values from each replication for three 

different simulations based on: (a) a 2-Weibull distribution with η = 250, β = 1.5; (b) a 

uniform distribution (density is constant between 1 and 300); and (c) a 50/50 mixture of 

two 2-Weibull distributions, η = 250, β = 0.8 and η = 250, β = 5. 

In the uniform case, the R2 value is above 0.9 in 80.5% of replications, and even in the 

mixture case this still happens in 51.1% of replications. If we use R2 to gauge the model 

fit (whether the observations seem to fit a true Weibull distribution), we are bound to 

draw overconfident “yes” conclusions in a wide variety of situations. 



 

Figure A2: Histograms of estimates and standard errors from OLS-based median rank regression. Dotted 
line indicates true shape parameter. 
  

 

 

 

Figure A3. Histograms of R2 values from OLS-based median rank regression for samples drawn from 
different underlying distributions.  (a) Values from the true Weibull distribution used above. (b) Values 
drawn uniformly between 1 and 300. (c) Values drawn from a mixture of two very different Weibulls. 
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