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ABSTRACT OF THE THESIS

Evaluating One-day Earthquake Forecast Models Using Numerical Tests and Residual

Analysis Methods

by

Zhe Zhang

Master of Science in Statistics

University of California, Los Angeles, 2022

Professor Frederic Paik Schoenberg, Chair

Residual analysis has long been an effective tool for evaluating earthquake forecast models.

In this thesis, we not only present simple numerical summaries, but also focus on graphi-

cal residual methods including pixel-based approaches, Voronoi methods and super-thinned

residuals. Competing models in the Collaboratory for the Study of Earthquake Predictabil-

ity (CSEP) are evaluated and compared using the residual analysis techniques, and the

goodness-of-fit and deficiencies are assessed for each model.
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CHAPTER 1

Introduction

A fundamental issue in seismology is the need to accurately anticipate where and when

earthquakes are most likely to occur (Bolt, 2003). Forecasts are significant and necessary for

both short-term allocations of emergency resources and long-term earthquake preparedness

and building codes (Jordan and Jones, 2010). To this end, different space-time models

for earthquake occurrences are developed, and prospective analyses of forecasting models

become the focus of seismologists in comparison with retrospective assessments involving lack

of reproducibility, overfitting and data selection (Bray and Schoenberg, 2013). The efforts

to assess and compare their goodness-of-fit have led to developments such as the Regional

Earthquake Likelihood Models (RELM) project and its successor, the Collaboratory for

the Study of Earthquake Predictability (CSEP). CSEP inherited the community consensus

reached in RELM that all models will be tested by tests including several numerical summary

tests like the Number or N-test and the Likelihood or L-test to measure the consistency of

the data with the model. However, the N-test and L-test are unable to discern a significant

lack of fit unless the overall rate of the model fits extremely poorly. In addition, they fail to

indicate where a model fits poorly and may be highly misleading in model comparison.

The statistical developments in the assessment of space-time point process models have

resulted in new, powerful model evaluation tools including comparative quadrant methods

such as Pearson residuals, and residual point process methods such as Voronoi residuals. The

general form of these residual measures is a standardized difference between the number of

points observed and the number expected of a fitted model. For the Pearson residuals, one

may examine the integral of the residual process over regular, rectangular grid cells. However,

a problem expressed in Bray et al. (2014) is that if pixels are large, then the method may

1



overlook local inconsistencies between the observation and a forecast and result in even gross

misspecification; if pixels are small, residuals that correspond to pixels with an earthquake

may overwhelm the others in a visual inspection such that a plot of the Pearson residuals

may not be informative. To address the problem of pixel size specification, Voronoi residuals

and Voronoi deviances are proposed, which have the advantage of being less skewed. Some

other powerful alternative residual analysis techniques like super-thinned residuals have also

been proposed, which were reviewed in Clements et al. (2011).

The purpose of the current paper is to review various model evaluation techniques and to

demonstrate their use in one-day earthquake forecasting models for California. In Chapter

2, we describe the observed earthquake occurrences and the forecasted model, the Epidemic-

Type Aftershock Sequence (ETAS) model (Ogata and Zhuang, 2006) and the Short-Term

Earthquake Probability (STEP) model (Gerstenberger et al., 2005), for comparison. Chapter

3 discusses the methods currently used by CSEP for model evaluation. Pixel-based Pearson

residuals and deviances are applied in Chapter 4, and Chapter 5 investigates Voronoi residu-

als and Voronoi deviances. Chapter 6 introduces and applies the method of super-thinning.

Chapter 7 summarizes the results as well as some of the benefits and weaknesses of these

methods.
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CHAPTER 2

Models and Data for Comparison

In this chapter, we lay out the fundamental frameworks for point processes and describe two

models which have been accepted into CSEP and the data we use for comparison in detail.

2.1 Point Processes

A point process is a collection of points representing the time and/or location of an event

which falls in some space. A spatial-temporal point process is a stochastic process that

generates a countable set of points {(si, ti) : i = 1, 2, ..., N} in R2×R. It is often characterized

by its associated conditional intensity function where, given the history of the process, H,

up to time t,

λ(x, y, t|Ht) = lim
δx,δy,δt→0

E[N{(x, x+ δx)× (y, y + δy)× (t, t+ δt)}|Ht]

δxδyδt
,

which represents the infinitesimal expected rate by which points occur in space s and time

t, given information on all of the occurrences of points prior to time t. Several marks along

with each observation may also be recorded to help forecast future events. In seismology,

the magnitude of the event is an important mark. In addition, the finite-dimensional point

processes are considered to be simple, i.e. (si, ti) ̸= (sj, tj) for all i ̸= j, so the point process

can be uniquely determined by the conditional intensity (Daley and Vere-Jones, 2007).
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2.2 Self-exciting Point Processes

Self-exciting or Hawkes point processes are a class of branching point processes in which

there is a positive correlation between points. With the ability to capture triggering and

clustering behaviors, the model has become widely used in modeling seismicity since the

occurrence of an earthquake could trigger nearby aftershocks. In the spatial and temporal

context, the conditional intensity of a self-exciting point process depends on the past history

Ht and is of the form

λ(x, y, t|Ht) = µ(x, y, t) +K
∑
i:ti<t

g(x− xi, y − yi, t− ti),

whereK describes the productivity of the triggering function, {x1, x2, ..., xn} and {y1, y2, ..., yn}

denote the sequence of locations and {t1, t2, ..., tn} the times of the events within an earth-

quake catalog.

The events are classified into two types: background and triggered. The background

rate of the process as a function of location and time is modeled by the Poisson process

µ(x, y, t), and the triggering function g models additional events induced by a prior event.

The triggering function is typically nonnegative and often a power law decay function or

kernel function. Meanwhile, it can be separated into space and time for simplicity such that

g(x−xi, y−yi, t− ti) = f(x−xi, y−yi)h(t− ti). The summation term gives the contribution

of all previous events to the overall intensity at location (x, y) and time t.

2.2.1 Epidemic-Type Aftershock Sequence Model by Ogata and Zhuang (2006)

The Epidemic-Type Aftershock Sequence (ETAS) model is one of the most important seis-

micity forecasting models. The initial ETAS model was proposed by Ogata (1988), mod-

eling the temporal background seismic activities and their aftershocks. Ogata (1998) soon

extended it to a spatial-temporal model, attempted different parameterizations of the model

and considered the separable form in space and time clustering effects.
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The model is essentially a marked self-exciting point process, expressed as

λ(x, y, t) = µ(x, y) +
∑
i:ti<t

g(x− xi, y − yi;mi)v(t− ti),

where m is the magnitudes of the observed events and the aftershock decay is represented by

the Modified Omori function v(t) = K(t+c)−p. The common standard form of the triggering

functions is typical the multiplication of normalized time and space density distributions

besides the multiplication of size function κ(m) = const.×σ(m) ∝ eαm such that

g(x, y;m) = κ(m)× (p− 1)cp−1

(t+ c)p
× [

1

πσ(m)
h{(x, y)S(x, y)

t

σ(m)
}].

Zhuang et al. (2004) made a diagnostic analysis of space-time features of clusters by

stochastic declustering, and the expected number of offspring reveals a significant bias in the

spatial scaling factor. Hence, a better-fitted model that reduces the bias was proposed by

Ogata and Zhuang (2006). The constraint between κ and σ is removed, leading to a new

model

g(x− xi, y − yi;mi −mc) = e(α−γ)(mi−mc) × [
(x− xi, y − yi)Si(x− xi, y − yi)

t

eγ(mi−mc)
+ d]−q,

which requires the eight parameters θ = (µ,K, c, α, γ, p, d, q). A further term γ is intro-

duced, taking into account the correlation between the aftershock area and the aftershock’s

magnitude.

2.2.2 Short-Term Earthquake Probability model by Gerstenberger et al. (2005)

The STEP model introduced by Gerstenberger et al. (2005) to assess seismic hazards is

an extension of the marked temporal earthquake clustering model proposed by Reasenberg

and Jones (1989, 1990 1994). They assumed that both the aftershock magnitudes and the

variation in aftershock rate with the mainshock magnitude follow the Gutenberg-Richter

relationship, and the rate of aftershocks varies with time obeying the modified Omori Law.
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The aftershock occurrence is described as a nonhomogeneous Poisson process occurring at

time t with a rate greater than a magnitude threshold Mc given as

λ(t,M) =
10a+b(Mm−M)

(t+ c)p
.

The Reasenberg and Jones model was then expanded by Gerstenberger et al. (2005)

in several ways. The new model evaluates the spatial distribution of the aftershock se-

quence and computes the overall hazard from multiple aftershocks. With sufficient obser-

vations, sequence-specific aftershock parameters are determined using maximum likelihood

techniques. All possible magnitudes of seismic shaking are included in a hazard assessment,

and the hazard computation is based on an automated decision for real-time processing.

In this manner, the STEP model helps establish an appropriate null hypothesis for testing

short-term conditional probabilistic seismic hazards.

2.3 The Data

The ETAS and STEP models explored here come from CSEP’s rate-based repository, and

both of the models produce a forecasted expected number of events in each spatial-magnitude

bin for each day. Each bin is of size 0.1◦ longitude (lon) by 0.1◦ latitude (lat) by 0.1 units

magnitude for earthquake magnitudes ranging from 3.95 to 8.95. There is a single bin of size

0.1◦ by 0.1◦ by 1.05 units of magnitude for magnitudes 8.95-10. The RELM testing region

was designed to incorporate all earthquake occurrences in California and ∼ 1◦ around it.

The observational and forecasting data selected is for a period of one year from October

1, 2016 to September 30, 2017. Within the space-time window, there are 22 earthquakes

observed. In addition, for residual analysis, the conditional intensity is aggregated for each

spatial bin by summing the forecasted rate over all magnitude bins and the forecast period.

As a result, the overall intensity is the expected conditional rate for each of the 7,682 grids

for each model, shown in Table 2.1.
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Longitude Latitude Rate

[125.4, 125.3] [40.1, 40.2] 0.0367
[125.4, 125.3] [40.2, 40.3] 0.0472
[124.4, 124.3] [40.1, 40.2] 0.0355
[124.4, 124.3] [40.2, 40.3] 0.0422

... ... ...

Longitude Latitude Rate

[125.4, 125.3] [40.1, 40.2] 0.0000
[125.4, 125.3] [40.2, 40.3] 0.0000
[124.4, 124.3] [40.1, 40.2] 0.0072
[124.4, 124.3] [40.2, 40.3] 0.1362

... ... ...

Table 2.1: Expected Conditional Rate for Each Grid Forecasted by the ETAS model (Left)
and the STEP model (Right). STEP has several pixels with forecasted conditional intensities
of 0.

Figure 2.1: Cumulative forecast plot from October 1, 2016 to September 30, 2017 and
locations of earthquakes with magnitude M ≥ 3.95 in the RELM testing region.

Figure 2.1 visualizes the cumulative intensity for the one year period from the two models

as well as the estimated earthquake hypocenter locations indicated by the black square for

the 22 earthquake occurrences in space. The color scale corresponding to the expected con-

ditional intensities is presented through the legends on the right, where darker red indicates

higher expected conditional rates. Meanwhile, the color scale is set to be the same for the

two models in order to make comparisons compatible. It can be seen that the two plots share

some similarities in forecasting earthquake regions, which are also aligned with most events.

Meanwhile, there are some differences between the forecasts made by the two methodolo-
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gies. The spatial distribution of forecasting earthquakes of the ETAS model tends to be more

evenly and on a larger scale, with smaller expected conditional rates. The discrepancies are

demonstrated especially in the Trinidad fault zone (lon ≈ −124.5◦W and lat ≈ 40.5◦N) and

near Hawthorne, Neveda (lon ≈ −118.7◦W and lat ≈ 38.4◦N). In contrast, the STEP model

tends to make accentuated forecasts such as near the Geysers (lon ≈ −122.7◦W and lat

≈ 38.8◦N) and Hawthorne, Neveda.
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CHAPTER 3

Numerical Tests

This chapter reviews the suite currently implemented by CSEP to assess seismological mod-

els. Two types of numerical tests will be introduced and used to evaluate the considered

models. Then, the limitations are discussed.

3.1 Introduction to numerical tests

Two numerical summary tests, the Likelihood-test (L-test) and the Number-test (N-test),

were initially implemented by CSEP to evaluate and compare earthquake forecast models.

For the numerical tests, each model consists of the estimated number of earthquakes in each

of the spatial-temporal-magnitude bins.

The L-test, described by Schorlemmer et al. (2007), assesses the quality of a forecast in

the likelihood space, evaluating the probability of the observed events under the fitted model.

It simulates some fixed number s of realizations from the forecast model and compares the

log-likelihood (ℓ) of the observed earthquake catalog (ℓobs) with that of each simulation (ℓj,

for j = 1, 2, . . . , s). The quantile score, γ , is given by the fraction of simulated likelihoods

that are less than the observed catalog likelihood in such a way that

γ =

∑s
j=1 1ℓj<ℓobs

s
,

where 1 denotes the indicator function. The forecast is considered to be inconsistent with

the observed seismicity if the value of γ is close to zero and can be rejected.

The N-test focuses on the number of events, and the quantile score δ is defined as the

9



fraction of simulations that contain fewer points than the actual observed number of points

in the catalog, Nobs:

δ =

∑s
j=1 1Nj<Nobs

s
,

where Nj is the number of points in the jth simulation of the model. If δ is close to 0 or

1, then the model is under-predicting or over-predicting the total number of earthquakes

respectively, which would be rejected.

3.2 Analysis and limitations of numerical tests

Table 3.1 shows results for the L and N-test for the two models. From the γ score alone, the

ETAS and STEP model would not be rejected, so the N-test should be applied for a final

decision. At the 5% level of significance, the δ scores demonstrate that the ETAS model

is underpredicting earthquake rates, while the actual observed number of events falls inside

the 95% interval for the number of events in the forecast of the STEP model, passing the

N-test.

Model ℓobs γ Nobs δ

ETAS -184.92 1.00 22 1.00
STEP -173.73 0.81 22 0.87

Table 3.1: Results of the L and N-test including the observed log-likelihoods, ℓobs, the L-test
γ scores, the observed number of events, Nobs and the N-test δ scores. The bold-faced score
implies significance at the 5% level resulting in rejection of the forecast.

Overall, the L-test evaluates the forecast based on magnitude, spatial location and num-

ber of events, so it is considered more comprehensive than the N-test which ignores the first

two components. However, only the overall goodness-of-fit of the model can be evaluated

by the two tests, and they fail to suggest areas where one given model may behave poorly

and where one model performs better than the other. As Clements et al. (2011) mentioned,

in practice, both statistics γ and δ test essentially the same thing, namely, the agreement

between the observed and modeled total number of points. Indeed, for a typical model,

10



the likelihood for a given simulated earthquake catalog depends critically on the number of

points in the simulation.

Additionally, when used to compare competing models, the results of likelihood-based

tests can be uninformative and misleading due to the problem of the variable null hypothesis

(Bray and Schoenberg, 2013). For example, if model A has a higher likelihood than model B,

it would be quite likely for model A to be rejected while model B not to be rejected based on

the L-test. It is mainly the result of different null hypotheses of the two tests. When L-test

is utilized to test model A, the null hypothesis is model A, and when model B is tested,

the null hypothesis is model B. Hence, under different hypotheses, the test statistic may

distribute very differently, leading to misleading or even seemingly contradictory results.
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CHAPTER 4

Pixel-based Residual Methods

The residual analysis method for spatial-temporal point processes provides graphical displays

of model performance. In this chapter, we introduce three pixel-based residuals and use the

methods to analyze how well the two models fit.

4.1 Raw residuals

Baddeley et al. (2005) proposed methods for the residual analysis of purely spatial processes,

according to differences between the number of points occurring within prespecified bins and

the number expected by the model. Zhuang (2006) extended such methods to the spatial-

temporal case which is very appropriate for assessing the CSEP models as the models are

restricted to have a constant conditional rate within predetermined bins. Consider a model

λ̂(t, x, y) for the conditional intensity at any location s and time t. Raw residuals may be

defined following Baddeley et al. (2005) as the number of points observed minus the number

of expected points in each bin Bi, that is,

R(Bi) =

∫
Bi

r(t, x, y) dtdxdy =

∫
Bi

dN−
∫
Bi

λ̂(t, x, y) dtdxdy = N(Bi)−
∫
Bi

λ̂(t, x, y) dtdxdy.

The adequacy of the fitted model can be checked by inspecting whether R(Bi) ≈ 0.

Figure 4.1(a) shows the raw residuals for the ETAS model with the largest residual (2.93)

located on the pixel that is near Hawthorne, Neveda (lon ≈ −118.7◦W and lat ≈ 38.4◦N)

which is also the location of a small cluster of earthquakes. Another notable residuals (1.99)

occurs in the Sierra area in close proximity to the Mohawk Valley fault zone (lon ≈ -120.4◦W

12



and lat ≈ 39.4◦N). Besides that, a residual of 1.96 occurs around the Collayomi fault zone

area (lon ≈ -122.8◦W and lat ≈ 38.7◦N). The earthquake occurrences were more accurately

forecasted in other areas such as the Trinidad fault zone (lon ≈ -124.5◦W and lat ≈ 40.5◦N)

which contains another small cluster of points.

The raw residuals of STEP model, visualized in Figure 4.1(b) share some similarities to

the ETAS model in terms of model fit, while differences also exist. The largest raw residuals

(1.95) for the STEP model occurs near the Mohawk Valley fault zone (lon ≈ -120.4◦W and lat

≈ 39.4◦N). Large residual (1.91) is also located close to Hawthorne, Neveda (lon ≈ -118.7◦W

and lat ≈ 38.4◦N) and (1.85) around the Collayomi fault zone area (lon ≈ -122.8◦W and lat

≈ 38.7◦N).

Figure 4.1: Left panel (a): pixel-based raw residuals for the ETAS model. Right panel (b):
pixel-based raw residuals for the STEP model. The maximum observed pixel-based raw
residual is 2.93 for ETAS and is located near Hawthorne, Neveda (lon ≈ −118.7◦W and lat
≈ 38.4◦N). The maximum observed pixel-based raw residual is 1.95 for STEP and is close
to the Mohawk Valley fault zone (lon ≈ -120.4◦W and lat ≈ 39.4◦N).
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4.2 Pearson residuals

Baddeley et al. (2005) also introduced various ways of standardizing the difference between

the number of events and expected points such as the Pearson residuals which are defined

as

RP (Bi) =

∫
Bi

rP (t, x, y) dtdxdy =

∫
Bi

1√
λ̂
dN −

∫
Bi

√
λ̂ dtdxdy

=
∑

(tj ,xj ,yj)∈Bi

1√
λ̂(tj, xj, yj)

−
∫
Bi

√
λ̂(t, x, y) dtdxdy,

for all λ̂(ti, xi, yi) > 0. In this case, the raw residuals are rescaled with mean 0 and variance

approximately equal to 1.

In our case, since the STEP model has several pixels with an estimated conditional

intensity of 0 which complicates the standardization, a minor adjustment would be made

so that the forecasted conditional intensity in each of these locations is slightly greater

than 0. However, the resulting Pearson residuals of a few pixels are tens or hundreds of

times larger than others, rendering a plot of Pearson residuals providing limited information.

Indeed, when the aggregated conditional intensity in some pixels is very small or the spatial-

temporal pixels are very small, the distribution of raw residuals becomes highly skewed and

the standardization makes such residuals more problematic. The residuals in such pixels

may dominate the others in a visual setting. Hence, Pearson residuals emphasize more like

the locations of the observations themselves and fail to identify the quality of the fit in the

other pixels where earthquakes did not occur.

In this case, one possible solution would be to enlarge the pixel size such that the inte-

grated conditional rate in each pixel is higher. However, while this would be effective in the

case of a homogeneous process, a different problem could be induced in a nonhomogeneous

setting. Since positive and negative values of the residual process within a particular pixel

can cancel each other out, a large pixel may overlook gross misspecification such that the

residuals will have low power. Therefore, although raw and Pearson residuals could identify

individual pixels containing earthquakes which need an improvement in their forecasts, it is
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typically hard to avoid the problem of highly skewed or low power residuals such that the

residuals cannot figure out other regions where the models may fit relatively well or poorly.

4.3 Deviances

Wong and Schoenberg (2009) introduced pixel-based deviance residuals which are useful for

comparing the fit of models. Similar to raw and Pearson residuals, deviances are computed

over evenly spaced pixels. The differences between log-likelihoods for the two models would

then be examined. Given the conditional intensity λ̂1 and λ̂2 of two models, the deviances

in each pixel, Bi, are expressed as

RD(Bi) =
∑

i:(ti,xi,yi)∈Bi

log(λ̂1(ti, xi, yi))−
∫
Bi

λ̂1(t, x, y) dtdxdy

−
( ∑

i:(ti,xi,yi)∈Bi

log(λ̂2(ti, xi, yi))−
∫
Bi

λ̂2(t, x, y) dtdxdy

)
.

Positive residuals imply that the model λ̂1 fits better in the given pixel and negative

residuals imply that λ̂2 provides a better fit. In addition, an overall log-likelihood ratio score

could be obtained by summing the deviance residuals up,
∑

i RD(Bi), to get an overview of

the quality of fit and improvements.

The deviances for the ETAS model versus the STEP model can be seen in Figure 4.2.

Although the discrepancies between the two models may not be large, the ETAS model

outperforms the STEP model in about two-thirds of all locations where earthquakes were

observed. Specifically, the ETAS model forecast the seismicity accurately around the Collay-

omi fault zone (lon ≈ -122.8◦W and lat ≈ 38.8◦N) and also South in the forecast region. The

STEP model appears to improve upon the ETAS model in the Pacific Ocean (lon ≈ -124◦W

and lat ≈ 40.0◦N) and also performs well around Hawthorne, Neveda (lon ≈ -118.9◦W and

lat ≈ 38.3◦N) where clusters of earthquakes are located. Additionally, the ETAS model

demonstrates a much better fit in a few pixels on the northwest side as indicated by the dark

15



red, but the STEP model does a better job in most locations including the vast majority

of locations far from seismicity, while the ETAS model tends to over-predict events in these

locations. Overall, the log-likelihood ratio score is -6.89, suggesting that the STEP model

offers some improvements over the ETAS model.

Figure 4.2: Deviance residuals for the ETAS model versus STEP model. The ETAS model
performs well in a few pixels on the northwest side shown by the dark red and in two-thirds
of locations where earthquakes occurred. The STEP model forecasts well in most locations
including the vast majority of locations far from seismicity.

One thing that should be noted is that the result can depend heavily on the 0 replacement

values of the STEP model. In our case, the 0 replacement values are chosen to be half of the

minimum non-zero conditional intensity which is around 1e-8. However, if the 0 replacement

values chosen get closer to 0, it would likely lead to a different result which implies the ETAS

model outperforms the STEP.

Overall, deviance residuals help make a comparison between two competing models of

similar times and regions. It can identify places where one appears to perform better than

the other in alignment with the observed earthquakes, and a log-likelihood ratio score can

be computed for an insight into the improvement in fit from one model to another, helping
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the building of subsequent models and experiments.
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CHAPTER 5

Voronoi Methods

While pixel-based residuals like Pearson residuals and deviances are useful for gridded fore-

casts, departures from the events can be identified by Voronoi residuals and Voronoi De-

viances. They are also valuable for overcoming the challenges which are the results of small

aggregated conditional intensities in each pixel, leading to high skewness in the distribution

of the raw and Pearson residuals. This chapter presents concepts of Voronoi methods, intro-

duces the data preparation for Voronoi residual analysis and analyzes the results of model

evaluation using Voronoi methods.

5.1 Voronoi Residuals

Voronoi residuals are constructed using Voronoi tessellation which is a partition of the metric

space on which a point process is defined into convex polygons, or Voronoi cells, Ci. Specif-

ically, given a point pattern of N events, for each observed point xi of the point process, its

corresponding cell is the region including all locations that are closer to xi than to any other

point of N . The Voronoi tessellation is the collection of such cells which we assume fills

the complete window CT such that CT = ∪N
i=1Ci. Then, given a model for the conditional

intensity of a spatial or spatial-temporal point process, the raw residual process may be

aggregated over the Voronoi cells rather than over rectangular pixels to construct residuals

for a conditional intensity model, which is referred to as Voronoi residuals.

In comparison with conventional pixel-based methods, the partition of Voronoi residuals

is entirely spatially adaptive, data-driven and automatic, so the distribution of residuals

tends to be far less skewed than pixel-based methods. Since each Voronoi cell has exactly

18



one point inside it by construction, the raw Voronoi residual for cell i is given by

R̂i := 1−
∫
Ci

λ̂ dµ

= 1− |Ci|λ̄

where λ̄ denotes the mean of the proposed model λ̂ over Ci. Following Baddeley et al. (2005),

the raw Voronoi residuals can be recalled of the form

RV (Ci) =
1−

∫
λ̂(t, x, y) dtdxdy√∫
λ̂(t, x, y) dtdxdy

.

The determination of an appropriate color scale with appropriate limits is one difficulty

when plotting Voronoi residuals. Bray et al. (2014) suggested a probability integral transfor-

mation (PIT) to scale the Voronoi transformation uniformly. However, it was computation-

ally intensive since repeated simulations of the fitted model are required. Thus, although the

PIT method performs well in terms of visualizing the residual process in seismology, simpler

alternatives may be proposed. For instance, we simply fit a homogeneous Poisson process

model, with rate fit by maximum likelihood, and use the standardized Voronoi residuals for

this null model as a scale by which to judge the residuals of alternative models (Gordon et

al., 2015).

To prepare for the Voronoi residual analysis, the space-time window of the observational

data is divided into 22 cells where each of the 22 observations corresponds to one Voronoi

cell. Each Voronoi cell consists of all locations which are closer to the generating point than

to any other observation points. Hence, each pixel of size 0.1◦ longitude by 0.1◦ latitude

is assigned to the ”closest” Voronoi cell in terms of Euclidean distance. The expected con-

ditional intensity is then aggregated over each Voronoi cell which will be compared to the

observational data to evaluate the quality of the fit of the model. Table 5.1 shows the in-

tegrated expected conditional intensities for the first four Voronoi cells forecasted by ETAS

and STEP model. It can be seen that the ETAS model forecasts more earthquakes than the
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STEP model in general and the STEP model seems to perform poorly in predicting a few

events with approximate 0 expected conditional rate .

Date Integrated Rate

2016.820 0.8939
2016.928 0.7089
2016.952 2.2161
2016.952 1.8414
2016.953 2.0795

... ...

Date Integrated Rate

2016.820 0.4124
2016.928 0.4087
2016.952 0.6340
2016.952 1.8745
2016.953 1.4659

... ...

Table 5.1: Expected conditional intensities forecasted by ETAS model (Left) and STEP
model (Right). The ETAS model tends to forecast more earthquakes than STEP.

For the Voronoi residuals, positive values represent under-predictions, negative values

represent over-predictions, and values around 0 indicate well-behaved predictions made by

a model. Figures 5.1(a) and 5.1(b) show the standardized Voronoi residuals for the ETAS

model and the STEP model respectively. It can be seen that both models tend to over-predict

seismicity as indicated by a vast region of red cells. Specifically, both models perform poorly

in forecasting earthquakes on the outer ring of Southern California such as the seismicity

around the Pacific Ocean area (lon ≈ -120.00◦W and lat ≈ 34.42◦N) and near Mexicali at

the Mexico-California border (lon ≈ -115.23◦W and lat ≈ 32.23◦N). Meanwhile, both models

under-predict seismicity near Hawthorne, Nevada (lon ≈ -118.89◦W and lat ≈ 38.37◦N). The

ETAS model seems to do a decent job while anticipating the earthquakes that happened

in the Trinidad fault zone (lon ≈ -124.54◦W and lat ≈ 40.34◦N), while the STEP model

appears to under-predict seismicity in this region. Furthermore, the STEP model performs

well forecasting seismicity in clusters nearby (lon ≈ -118.91◦W and lat ≈ 40.78◦N) and (lon ≈

-124.38◦W and lat ≈ 40.27◦N). In addition, the STEP model appears to forecast earthquakes

accurately around the Collayomi fault zone area (lon ≈ -122.77◦W and lat ≈ 38.78◦N).

Using the same color scale enables simple comparisons between models. Overall, the

Voronoi residuals indicate that the STEP model appears to demonstrate a better seismicity

forecasting ability. It forecasts the earthquake near the Trinidad fault zone and around the

Collayomi fault zone accurately, with a Voronoi residual very close to 0. In addition, although
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Figure 5.1: Left panel (a): Voronoi residuals for the ETAS model. Right panel (b): Voronoi
residuals for the STEP model. Both models perform well in the Trinidad fault zone (lon ≈
-124.5◦W and lat ≈ 40.5◦N). Moreover, the STEP model appears to forecast earthquakes
accurately around the Collayomi fault zone area (lon ≈ -122.77◦W and lat ≈ 38.78◦N).

the STEP model under-predicts seismicity in a few regions, it seems to improve upon the

ETAS model by decreasing the tendency of over-predicting seismicity in most areas.

5.2 Voronoi Deviances

To further assess the predictions made by the two models, Voronoi deviances are utilized

to make a comparison. Similar to pixel-based deviances, the log-likelihoods of the ETAS

model and the STEP models are examined. In this case, instead of computing deviances

over evenly spaced pixels, we compute deviances from Voronoi tessellated cells. The Voronoi

deviance residual of a Voronoi cell Ci is then defined as

RV (Ci) =
∑

i:(ti,xi,yi)∈Ci

log(λ̂1(ti, xi, yi))−
∫
Ci

λ̂1(t, x, y) dtdxdy

−
( ∑

i:(ti,xi,yi)∈Ci

log(λ̂2(ti, xi, yi))−
∫
Ci

λ̂2(t, x, y) dtdxdy

)
,

21



where λ̂1 and λ̂2 are the fitted conditional intensity given two models. A RV (Ci) value close

to 0 implies that the two models provide a similar fit in the Voronoi cell Ci, and larger

RV (Ci) values suggest bigger discrepancies between forecasts made by the two models.

Voronoi deviances between the ETAS Model and the STEP model are shown in Figure

5.2. Combing it with the Voronoi residual plots, it can be seen that the STEP model

outperforms the ETAS model in most of the regions since the ETAS model excessively over-

predict earthquakes. The ETAS model accurately forecasts seismicity in the northwest in the

Pacific Ocean and at longitude ≈ -122.73◦N and latitude ≈ 38.79◦W. Overall, the total log-

likelihood ratio is -6.89, confirming the result of pixel-based deviances that the STEP model

provides a better fit than the ETAS model, but it would be easier to compare the forecasts

with the observational data in each area using the visualization of Voronoi deviances.

Figure 5.2: Voronoi deviances for the ETAS model versus STEP model. The STEP model
outperforms ETAS in most regions.
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CHAPTER 6

Super-thinning

In this chapter, an introduction to super-thinning is presented at the beginning. Then, we

give steps of applying super-thinning and discuss the resulting super-thinning residuals to

compare the goodness-of-fit of the two models.

6.1 Introduction to super-thinning

Super-thinning for residual analysis, proposed by Clements et al. (2012), is a combined

approach of thinning introduced by Schoenberg (2003) and superposition by Brémaud (1981).

By thinning, each point xi of a point process N is kept with some probability pi. If the

estimate λ̂ is equal to the true conditional intensity λ almost everywhere, then the residual

process will be homogeneous Poisson with rate k. In residual superposition, it transforms

the point process N by simulation, which creates a residual point process superposed onto

N , generating a homogeneous Poisson process. It is essentially an addition operator on the

point process, i.e. N3 is the superposition of point process N1 and N2. However, when

the model λ̂ for the conditional intensity of the observed point process is volatile, the two

residual analysis methods tend to have low power. Therefore, super-thinning which could

control the relative amount of thinning and superposition is a more powerful approach. As

noted in Clements et al. (2012), it thins in regions of high intensity and superposes simulated

points in regions of low intensity, which results in a homogeneous Poisson point process if

the model for λ used in the thinning and superposition is correct. Hence, homogeneity is

one way of assessing the super-thinned residuals of the model, detecting any clustering or

inhibition indicating a lack of fit.
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In super-thinning, to transform the point process N into a residual process Z, one

first thin N by keeping each observed point (ti, xi, yi) independently with probability pi =

min{1, k/λ̂(t, x, y)} to obtain a thinned residual Z1. Subsequently, a Cox process Z2 may

be simulated directly by max{0, k− λ̂(t, x, y)}, which can be easily achieved by simulating a

homogeneous Poisson process with rate k and independently retaining each simulated point

(t̃i, x̃i, ỹi) with probability max{0, (k− λ̂(t̃i, x̃i, ỹi))/k}. The super-thinned residuals are then

the points of the residual point process Z = Z1 + Z2.

6.2 Super-thinning analysis

As Clements et al. (2012) suggested, k was chosen to be the median of λ̂ for the ETAS and

STEP model to optimize the power of the resulting residual test. Figure 6.1 shows the super-

thinned residuals for the two models. The dark green circles indicate the thinned events,

and plus signs indicate simulated points. It can be seen that the two models thinned the

observed earthquakes similarly. Figure 6.1(a) suggests that there contains a few significant

clusters in the right southeastern corner (lon ≈ -114.8◦W, lat ≈ 33.7◦N) and close to the

faults on east side Madeline Plains (lon ≈ -120.1◦W, lat ≈ 40.8◦N). There is another notable

cluster at longitude ≈ -119.9◦W, latitude ≈ 36.5◦N. Besides, some inhibitions exist in the

residual process. For example, there are inhibitions near Tahoe Valley fault zone (lon ≈

-120.0◦W, lat ≈ 38.9◦N) and close to Concord fault (lon ≈ -122.0◦W, lat ≈ 37.5◦N).

The super-thinned residuals for the STEP model are displayed in Figure 6.1(b). Com-

pared with the ETAS model, the points seem to be more uniformly distributed without

major inhibitions. There are some small clusters center at longitude ≈ -122.5◦W, latitude

≈ 38.0◦N, and longitude ≈ -119.9◦W, latitude ≈ 41.5◦N. Another cluster is near the Paleo-

subduction zone (lon ≈ -124.1◦W, lat ≈ 42.0◦N). There is also little over-prediction indicated

by a consistent covering of residual points, so the residual process is close to what is expected

as enough points were simulated. In addition, there is a small number of inhibitions close

to Mission fault (lon ≈ -122.0◦W, lat ≈ 37.6◦N) and near the Cambria fault zone (lon ≈

-121.0◦W, lat ≈ 35.5◦N).
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Figure 6.1: One realization of super-thinned residuals. Left panel (a): ETAS. Right panel
(b): STEP. The dark green circles indicate the thinned events, and plus signs indicate
simulated points. There is a significant cluster at longitude ≈ -114.8◦W, latitude ≈ 33.7◦N
for ETAS. Clustering for the STEP model occurs near the Paleo-subduction zone (lon ≈
-124.1◦W, lat ≈ 42.0◦N).

Additionally, the Ripley’s K-function and the variance stabilized version of the K-function

called the L-function are utilized to help the super-thinning analysis. Figure 6.2 shows that

at almost all distances the actual observed value of K̂ is greater than the theoretically

derived expected value indicating clustering for both models. Nevertheless, comparing the

plots for the ETAS model with those for the STEP model, it can be seen that the estimated

K and L of the STEP model fit the theoretical values better. Combining the result with the

visualization of super-thinned residuals suggests that the STEP model seemingly performs

better in super-thinning analysis.
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Figure 6.2: Upper left panel (a): estimated K-function for ETAS. Upper right panel (b):
estimated K-function for STEP. Bottom left panel (c): estimated L-function for ETAS.
Bottom right panel (d): estimated L-function for STEP. The estimated K and L of the
STEP model fit the theoretical values better.
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CHAPTER 7

Summary

While a variety of spatial-temporal point process models has been proposed to forecast seis-

micity, assessing point processes poses unique challenges. As a result, many common residual

analysis methods for spatial point process models can be implemented to evaluate the quality

of fit and assess strengths and weaknesses in point processes. In this paper, residual meth-

ods including pixel-based residuals, deviances, Voronoi residuals and super-thinned residuals

were applied to two one-day earthquake forecast models, the Epidemic-Type Aftershock Se-

quence (ETAS) model and the Short-Term Earthquake Probability (STEP) model, for a

catalog spanning from October 1, 2016 to September 30, 2017, and these methods provide

more reliable estimates of the overall fit and more detailed information than the numerical

test.

The N-test and the L-test implemented by CSEP provide easy to understand statistics

that can be utilized for hypothesis testing, but they cannot identify where a model may

be fitting poorly and, hence, have very low power. The N-test does not assess the spatial

performance of a model, and the L-test does not differentiate between over-prediction and

under-prediction.

Pixel-based residuals have advantages like the simplicity of calculation and ease of inter-

pretation. However, the effects of expected conditional intensities of 0 and high skewness

in the standardized residuals increase the difficulty in interpretations. Deviances can be

valuable to compare forecasts of similar regions and times. Using a log-likelihood ratio score

gives an overall impression of the improvement in fit from the better fitting model and a

pixel by pixel comparison enables effortless detection of one model’s performance compared
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to the other.

One advantage of Voronoi residuals is that the partition of entirely automatic and spa-

tially adaptive, which does not need inputs from the user regarding tuning parameters.

Meanwhile, Voronoi residuals are substantially less skewed in comparison with pixel-based

methods. Super-thinned residuals may be a promising approach as well, although they may

have low power with volatile forecasted intensity.

In addition, the formulation of these models of spatial-temporal point processes allows

for additional evaluations to be applied that are not constrained by assumptions such as the

independence of bins (Schneider et al., 2014). The diagnostic tool can determine a model’s

performance when evaluating point processes. For instance, Voronoi residuals rely on fewer

assumptions, so models that do a decent job in areas of low seismicity may outperform

models with more accurate forecasts of where earthquakes actually occurred. Moreover,

deviances can be misleading if both competing models perform well or poorly in a spatial

bin. Hence, deviances are better to be used in combination with Pearson or Voronoi residuals

to characterize the overall and relative performance of the two models. Nevertheless, different

spatial cells used in these different residuals can lead to discrepancies. For example, deviances

for the ETAS and the STEP model in Figure 4.2 suggest a superior fit of the ETAS model in

the northwestern area of the forecast region, but Voronoi residuals indicate that the ETAS

model did not perform as well as the STEP model in cells in the same region (Figure 5.1(a)

and 5.1(b)).

Zechar et al. (2013) suggest using all tests in conjunction since each provides insight

into model performance. Based on all evaluation methods applied, the STEP model shows

a slightly better performance. In general, both models appear to over-predict seismicity

in most locations but under-predict seismicity around Hawthorne, Nevada. Super-thinning

indicates that the ETAS model has visible clusters and inhibitions. Meanwhile, Voronoi

residuals suggest that the STEP model makes more accurate forecasts in comparison to the

ETAS model and this is supported by the results from deviances. The STEP model has less

extreme pixel-based residuals, and its spatial distribution of intensity appears to be quite
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accurate in areas of low seismicity.

The question of how to improve the residual analysis methods remains open. Different

ways of standardizing the residuals were proposed, but it should be noted that the choice

of grids is suggested by the experience to be more important. In addition, regarding the

Voronoi tessellation, some sampling variability may be induced by the random cell areas and

the residuals are dependent, so methods requiring an independent and identically distributed

assumption should be used cautiously. A future direction is to consider residuals based on a

model-based centroidal Voronoi tessellation providing a partition that creates residuals that

are independent of one another if the underlying model is Poisson.

Besides, studies may be conducted in the future to find an optimal choice of k in super-

thinning. The parameter k should be chosen in a way that has a high probability to reject

a poorly fitted model and a low probability to reject a satisfactory model. Meanwhile,

simulations should not heavily determine the assessment of the homogeneity of the super-

thinned residuals, so ideally few points may be simulated and many of the observed events

are kept. The quality of fit measures under different hypotheses may be compared by future

theoretical and simulation research.
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