
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Use solid k-mers in minHash-based genome distance estimation

Permalink
https://escholarship.org/uc/item/9345h43b

Author
Zheng, An

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9345h43b
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Use Solid K-mers In MinHash-Based Genome Distance Estimation

A thesis submitted in partial satisfaction of the
requirements for the degree

Master of Science

in

Computer Science

by

An Zheng

Committee in charge:

Professor Pavel Pevzner, Chair
Professor Vikas Bansal
Professor Melissa Gymrek

2017

Copyright

An Zheng, 2017

All rights reserved.

The thesis of An Zheng is approved, and it is acceptable in

quality and form for publication on microfilm and electroni-

cally:

Chair

University of California, San Diego

2017

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . v

List of Tables . vi

Acknowledgements . vii

Abstract of the Thesis . viii

Chapter 1 Introduction and background . 1
1.1 Genome distance estimation 1
1.2 Current methods . 2
1.3 MinHash . 3
1.4 Solid k-mer powered MinHash 5

Chapter 2 Method . 7
2.1 General scheme . 7
2.2 Identification of overlapping read pairs 8

2.2.1 Workflow . 8
2.2.2 Data . 9
2.2.3 Implementation . 9

2.3 Genome identification . 10
2.3.1 Workflow . 10
2.3.2 Data . 10
2.3.3 Implementation . 10

Chapter 3 Result . 15
3.1 Identification of overlapping read pairs 15

3.1.1 Performance comparison between solid k-mer pow-
ered MinHash and regular MinHash 15

3.1.2 Selecting the solid k-mer threshold 17
3.2 Genome identification . 19

Chapter 4 Discussion and future work . 21

Bibliography . 23

iv

LIST OF FIGURES

Figure 1.1: An example of how to use MinHash to compute the resemblance of
two genome sequences. 6

Figure 2.1: A simplified example of how the sketch of a genome sequence is
generated in the solid k-mer powered MinHash. 12

Figure 2.2: The workflow of the identification of overlapped reads. 13
Figure 2.3: The workflow of genome identification. 14

Figure 3.1: PR curves using the in silico genome data. 16
Figure 3.2: PR curve using the E Coli genome data. 17
Figure 3.3: Comparison of AUC values generated using different solid k-mer

thresholds. 19

v

LIST OF TABLES

Table 3.1: K-mer frequency distribution in the E. coli genome. 18
Table 3.2: K-mer occurrence distributions of the Bacillus anthracis Ames read

set and the Bacillus cereus ATCC 10987 read set. 19
Table 3.3: Rankings and p-values of Bacillus anthracis Ames and Bacillus cereus

ATCC 10987 generated with different solid k-mer thresholds. 20

vi

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my thesis advisor,

Professor Pavel Pevzner, for his continuous support of my research work, for his patience

and immense knowledge, and for his being a good mentor and academic role model.

I am also grateful to Professor Melissa Gymrek and Professor Vikas Bansal for

their valuable suggestions to my thesis writing.

Last but not least, I would like to give my special thanks to Professor Yu Lin.

Without his ideas and guidance, I would have been overwhelmed by all sorts of problems

in this research project and could have given up a long time ago.

Right now, I feel any words would be too pale to convey my appreciations to all

these people who gave me great help. Thank you!

vii

ABSTRACT OF THE THESIS

Use Solid K-mers In MinHash-Based Genome Distance Estimation

by

An Zheng

Master of Science in Computer Science

University of California, San Diego, 2017

Professor Pavel Pevzner, Chair

MinHash is a popular method for genome distance estimation. However, its

requirement for input data quality is relatively strict, and its performance deteriorates

if the input sequences are generated from sequencers with high sequencing error rates,

especially from long-read sequencers. To solve this problem, in this thesis, we use solid

(frequently occurring) k-mers as input to feed MinHash, and prove the effectiveness of

this solid k-mer powered MinHash by comparing its performance in genome distance

estimation with regular MinHash. In addition, we also discuss how to select the optimal

threshold for solid k-mers in order to make the most of our solid k-mer powered MinHash.

viii

Chapter 1

Introduction and background

1.1 Genome distance estimation

Genome distance is a measure of the degree of similarity or overlap between

genome sequences sampled from the same reference genome, from different individuals

of the same species, or from individuals of different species [Nei87].

A good method to accurately estimate genome distance is required in a wide

range of biological scenarios. For example, in de novo genome assembly, in order to

find all overlapped sequence segments (namely, reads), we need to estimate the degree of

overlap between every read pair and connect them together into a whole genome based

on the estimated genome distance [KBP15].

Moreover, through the comparison of genome distances between different popu-

lations or species, we can gain insight into how certain populations or species evolved.

For example, by comparing a large number of loci from Eurasian and African genome

samples and analyzing the genomic distance between these two populations, researchers

predicted that Eurasians were derived from African populations, and this divergence

happened around 100,000 years ago [NR74]. Similarly, in [WM07], researchers illus-

1

2

trated how certain vertebrates and mammals evolved by measuring the genome distance

between 28 vertebrate species.

Finally, an accurate and efficient estimator for genome distance is also critical to

many metagenomic analyses, such as in the categorization of metagenome sequences

with k-means [XY11] or hierarchical clustering [RR13], in which genome distance is

used to quantify the degree of relationship between each pair of organisms.

1.2 Current methods

Currently, the most widely used method for genome distance estimation is se-

quence alignment, which is a way of arranging the sequences of DNA, RNA or protein

and identifying the regions of similarity which may be caused by functional, structural,

or evolutionary relationships between the sequences [Dav03].

Basic Local Alignment Search Tool (BLAST) [SFAL90] is one of the most

popular alignment-based analysis tools. Since 1990 when BLAST was first published,

numerous BLAST variations have been proposed and applied for different scenarios; such

as PSI-BLAST for protein alignment [SFAL97] and V-BLAST for real-time analysis

[PWG98], and BLAT, a BLAST-like alignment tool which is faster yet less sensitive

[Ken02].

However, although alignment-based methods are effective in estimating genome

distance, they suffer from substantial computational cost [KBP15]. It took more than

10 days to complete the de novo assembly of Arabidopsis thaliana (Ler-0) from SMRT

reads (approximately 11 Gb data) [Pac16]. Even small bacterial genomes require a day

to assemble using the HGAP [CSCK13] or PBcR [SKP13] pipelines.[KBP15]

Several MinHash-based and alignment-free methods were developed to address

this problem. MinHash is a hash-based technique that was originally designed to es-

3

timate the similarity of web pages [Bro97]. It has since been applied to genome dis-

tance estimation in large genomes assembly [KBP15][BDOP16], metagenome clustering

[RR13][XY11], and human phylogenetic analysis [BDOP16]. MinHash-based methods

are not only much more computationally efficient than alignment-based methods, but

also can maintain relatively high accuracy comparable to the alignment-based meth-

ods. [KBP15] The details of MinHash and its current applications are introduced in the

following section.

1.3 MinHash

The basis of MinHash is hash functions. A hash function can be a user-defined or

randomly generated function which maps data of arbitrary size to data of fixed size. Each

input entry is called a key, and its corresponding result is called the hash value. Equation

below is a naive example of a hash function. ”%” denotes the remainder calculation. For

any integer input, this function calculates the remainder of the input number divided by

10, and projects this number into a single digit (0-9).

Hash value = key % 10 (key ∈ Z)

To solve real world problems, there are different implementations of hash func-

tions for different scenarios, such as dynamic perfect hashing [MDT94], rolling hashing

[DL10], and universal hashing [JC79]. MinHash is based on the universal hashing

method. This hashing method selects a hash function at random from a family of hash

functions as the mapping scheme, in which the probability that any two distinct keys

share the same hash value is 1/n, where n is the number of total hash values.

MinHash was first brought forward by Andrei Broder in 1997 in order to quickly

compute the resemblance between set pairs. [Bro97] The basic idea is to use a series

4

of distinct universal hashing functions to randomly sample the given data sets, map the

data sets into fixed-length profiles called sketches, and estimate the resemblance of every

pair of sets based on their sketches. The resemblance between two sketches equals the

fraction of their common sketch elements. For example, if a sketch is [1,2,3,4] and the

other one is [1,2,5,6], their resemblance is 2/4, because the first two elements are the

same, whereas their last two elements differ.

This technique was later introduced to tackle the computational problem of

read overlap estimation in long-read assembly. [KBP15][BDOP16] Figure 1.1 shows a

simplified example of the MinHash process. In real-world scenarios, researchers usually

first decompose every genome read into 16-25 base pair-long k-mers (oligomers with

nucleotide sequence length of k; i.e. 16-mer is a k-mer with 16 base pairs) using a

sliding window. Then they utilize MinHash to map every set of k-mers into a sketch.

The genome distance between genome sequences is defined as the resemblance of their

sketches.

Similarly, in metagenomics analysis, researchers usually build a k-mer set for each

genome sequence, and compute the sketches of these sequences. Then, they calculate

the genome distance based on these sketches, and construct hierarchical structures of the

input genome sequences and their corresponding organisms using clustering algorithms,

such as k-means. [XY11]

However, if a genome sequence is generated by a sequencer with a high sequenc-

ing error rate, such as PacBio or an Oxford Nanopore MinION [KBP15], the performance

of MinHash-based genome distance estimators will deteriorate significantly in both accu-

racy and efficiency, because these erroneous nucleotides will produce k-mers that do not

exist in the original reference genome sequence and thus dilute the k-mer set. This results

in two important disadvantages. On one hand, the hashing process has to spend more time

to deal with these additional k-mers. On the other hand, the number of common k-mers

5

between related sequences decreases: if one or more nucleotides in a k-mer mutate, this

k-mer will be treated as a completely different k-mer in MinHash. Thus, the estimated

genome distance value will be lower than the true value, and this value difference will

vary from sequence to sequence due to the randomness of sequencing errors. This will

eventually cause some related sequence pairs to fail to be retrieved.

1.4 Solid k-mer powered MinHash

To solve the problem above, we introduce solid k-mer powered MinHash, a

modified MinHash procedure, to improve robustness against sequencing errors in the

input. Solid k-mers of a genome sequence are the k-mers that occur more than some

number of times in the genome sequence of interest. The threshold is variable and

usually predefined according to needs. The idea of solid k-mers is widely used in data

pre-processing for de novo assembly [PNA11][DL15] in order to filter out regions with

erroneous nucleotides derived from sequencing. In our work, we adapt this idea by

pre-processing the k-mer sets into solid k-mer sets, and using these solid k-mer sets as

input data to MinHash. We call this modified method solid k-mer powered MinHash.

Currently, only a few implementations, such as MASH [BDOP16], mention that

these erroneous nucleotides can be a possible source of error in genome distance estima-

tion. However, none have provided experimental proof to demonstrate that solid k-mers

improve performance. Nor have they discussed how to select an appropriate threshold

for solid k-mers to maximize this benefit. Thus in this thesis, we compare the perfor-

mance between solid k-mer powered MinHash and regular MinHash in genome distance

estimation, and discuss how to set the threshold for solid k-mers. The development and

implementation of solid k-mer powered MinHash can enable calculating the genomic

distances with higher speed and accuracy.

6

Figure 1.1: An example of how to use MinHash to compute the resemblance of two
genome sequences. S1 and S2 are first decomposed into 3-mers. Each hash function
Fi(x) contains two steps: g(x) and fi(x). g(x) transcribes every A into 1, C into 2,
G into 3 and T into 4. For example, AGA is transcribed as 131. The second step
is defined as fi(x) = x%(10 ∗ i). A complete hash function is Fi(x) = fi(g(x)). Each
hash function maps the k-mer sets into integer numbers, and the numbers generated by
different functions are shown in different colors in the figure. In every column, only the
smallest integer is kept in the sketch, and the length of a sketch equals the number of
hash functions used. The resemblance of S1 and S2 equals the fraction of the common
elements in their sketches.

Chapter 2

Method

2.1 General scheme

The first step of solid k-mer powered MinHash is to build a solid k-mer set for

each genome sequence. Here, we utilize DSK [GR13], a k-mer counting software, to

find all kmers in each genome sequence and calculate their occurrence frequencies. K in

our experiments is set to 16. From all the k-mers in a sequence, a subset of them whose

occurrence frequencies are no less than a predefined threshold are selected to compose

the solid k-mer set for the corresponding sequence.

We then apply MinHash to the solid k-mer sets to generate the sketches. For a

genome sequence S, its solid k-mer set is first mapped into integers by a series of hashing

functions, and then its sketch records the minimal mapped integer of every hashing

function. To guarantee the sensitivity of MinHash, the number of hashing functions used

in MinHash is usually 512 or 1,024 for the analysis of genomes with 1 million to 10

million base pairs. For larger genomes, such as human genomes, 2,048 or more hashing

functions are required. Figure 2.1 provides a simplified example to illustrate the whole

process.

7

8

To evaluate our solid k-mer powered MinHash, we test it in two different scenarios:

(1) identifying overlapping reads for long-read assembly (2) identifying the closest

organism to a query genome sequence from a genome database containing various

genome sequences. Detailed implementations will be included in the next two sections.

2.2 Identification of overlapping read pairs

2.2.1 Workflow

Given a set of genome reads, we apply the workflow used in [KBP15] to search

for potentially overlapping read pairs (figure 2.2). The process of read pair identification

consists of two stages. In stage 1, the degree of overlap of a read pair is defined as the

resemblance of their corresponding sketches. Any read pair with a resemblance score

lower than a predefined threshold will be discarded. In stage two, instead of the sketches,

the degree of overlap of a read pair is defined as the similarity of their solid k-mer sets.

We utilize the Jaccard similarity coefficient (equation below) to quantify the similarity

degree. Only read pairs whose Jaccard coefficient are higher than a predefined threshold

(different from the one in stage 1) are kept as overlapping reads.

Jaccard(A,B) =
‖A∩B‖
‖A∪B‖

This two-stage process enables us to quickly filter out read pairs that are highly

unlikely to overlap, and leaves only a small number of them to be examined more

carefully. Since the majority of read pairs are highly unlikely to overlap, even if we take

random hits into consideration, this two-stage filter can work much more efficiently than

a filter with only stage two.

9

2.2.2 Data

In our experiment, we separately use in silico genome data and Escherichia coli

(E. coli) genome data as the reference genome to evaluate our solid k-mer powered

MinHash. The in silico genome sequence is 1,000,000 base pairs long and was generated

with a randomized algorithm. It only contains legitimate nucleotides (namely, A, C, G,

and T). The E. coli data (NC−000913 [NCBa]), is 4,641,652 base pairs long. It is a

complete genome of Escherichia coli K−12 MG1655.

To generate genome reads, we utilized kmerStatSimulator, a sequencing simulator

used in [KBP15], to simulate the sequencing process of the PacBio sequencer (typically,

substitution rate: 0.01, insertion rate: 0.12, deletion rate: 0.02) [BKS16] and the MinION

sequencer (typically, substitution rate: 0.049, insertion rate: 0.078 and deletion rate:

0.051)[MJA15]. Each read was 10,000 base pairs long, and we simulated to a target

reference genome with coverage of 50x. The truth sets were generated using Blasr

[CT12], a read aligner designed by PacBio, which can map reads onto the reference

genome and identify all overlapping pairs according to their positions.

2.2.3 Implementation

We implement this process in a python program, including the overlap identifica-

tion process and evaluation process. The code can be accesses on Github (https://github.c

om/Pandaman-Ryan/solid kmer MinHash).

10

2.3 Genome identification

2.3.1 Workflow

In the genome identification process, instead of hashing a single read each time,

we map a whole assembled genome sequence or a whole set of sequenced reads into one

sketch. For every query genome sequence or read set, we compare its sketch with our

database, a library of assembled genomes and read sets derived from different organisms,

and compute their resemblance scores. Then these organisms are ranked according

to their resemblance scores with the query genome sequence or read set. Figure 2.3

illustrates how this process works with a simplified example.

2.3.2 Data

The reference genome database used in this sub-experiment is NCBI RefSeq 70

[KPM12][NCBb] which was released in 2015. It contains genome assemblies and read

sets from 54,118 organisms. These sequencing data were generated using various tech-

nologies including Illumina HiSeq, Illumina MiSeq, PacBio RSII, and Oxford Nanopore

MinION.

We used two reads sets, 1D and 2D Oxford Nanopore MinION read sets of

Bacillus anthracis Ames and Bacillus cereus ATCC 10987, as the query sequences. These

datasets were acquired from [BDOP16].

2.3.3 Implementation

To implement this genome identification process, we apply MASH [BDOP16]

in our experiment. MASH is a MinHash-based software for genome and metagenome

distance estimation. It takes the query sequences and the reference genome database as

11

the input, and computes a ranked list of the organisms that resemble the query sequences.

In addition, it enables us to set the minimum copies of each k-mer required to pass a

noise filter for reads, and ignores any k-mers that fail to pass this filter. Thus we can use

this parameter to configure the threshold of solid k-mers.

12

Figure 2.1: A simplified example of how the sketch of a genome sequence is generated
in the solid k-mer powered MinHash. In this figure, S is a genome sequence and the
occurrence frequencies of its component k-mers are shown in the top table. Here we
set the threshold of solid k-mers as 2. From the occurrence frequencies table we can
see that only ACT, CTG, GAC and TGA are solid k-mers under this threshold. There
are 3 hash functions (f1, f2 and f3) in MinHash. Their mapping schemes are randomly
generated, but they satisfy the requirement that the probability that any two distinct keys
share the same hash value is 1/n, where n is the number of total hash values. Every hash
function maps these four solid k-mers into four integers, and the minimal one of these
four integers is recorded into the sketch. The length of the sketch equals the number of
hash functions used in MinHash.

13

Figure 2.2: The workflow of the identification of overlapped reads. SEQ1 and SEQ2
are the pair of reads we want to check. They are taken as a pair of overlapping reads
only if they successfully pass the two-stage filter. The steps for filtering are colored in
blue.

14

Figure 2.3: The workflow of genome identification. S is a query genome sequence.
We compare it with all the genomes in the database, and rank them according to their
similarity score with S.

Chapter 3

Result

3.1 Identification of overlapping read pairs

3.1.1 Performance comparison between solid k-mer powered Min-

Hash and regular MinHash

In the identification of overlapping read pairs from read sets, we set the solid k-

mer threshold as 2, and then evaluated the performance of solid k-mer powered MinHash

and regular MinHash respectively on read sets from the simulated genome and the E. coli

genome. For each genome, we simulated two distinct read sets using PacBio sequencer

settings and MinION nanopore sequencer settings. Thus, we conducted four groups of

experiments.

The threshold of the second stage filter was always set to five times as the

threshold of the first stage to prevent false negatives derived from MinHash. The initial

threshold thresholds for stage one and stage two were 0.00002 and 0.0001, respectively.

This is already a lower bound on filter thresholds, since for 10,000 base pairs reads

a single common k-mer between two sequences results in a Jaccard coefficient above

15

16

0.0001. We repeated the identification process, incrementing the first stage filter by

0.00002 and the second stage filter by 0.0001 each round, until the threshold of the

second stage reached 1.

Predicted read pairs were compared with the truth sets. Precision-recall curves

are in figure 4 and figure 5. Each node in these curves corresponds to one round of the

experiment. Notably, the precision rates usually cannot start from zero, since even at

the minimum threshold (0.0001) most non-overlapping pairs are still filtered. The recall

rates also started from a non-zero value (0.1) in our experiment. We define the region

inside these thresholds as ”effective area”. In the following sections, the calculation of

area under curve (AUC) specifically refers to the AUC within the effective area.

Figure 3.1 shows the precision-recall curves using the in silico data. The left

figure was generated using PacBio mutation configurations. The AUC of the solid

k-mer powered MinHash method is 0.913692, and the AUC of the regular MinHash

method is 0.708507. The right figure was generated using MinION nanopore mutation

configurations. The AUC of the solid k-mer powered MinHash method is 0.821010, and

the AUC of the regular MinHash method is 0.309791.

Figure 3.1: PR curves using the in silico genome data. The left figure is generated using
PacBio mutation configurations. The right figure is using MinION nanopore mutation
configurations. The red lines in both figures denote the solid k-mer powered MinHash
method, and the blue lines denote the regular MinHash method.

17

Figure 3.2 shows the precision-recall curves using the E coli data. The left-side

figure was generated using PacBio mutation configurations. The AUC of the solid k-mer

powered MinHash method is 0.905992, and the AUC of the regular MinHash method

is 0.707547. The right-side figure was generated using MinION nanopore mutation

configurations. The AUC of the solid k-mer powered MinHash method is 0.734723, and

the AUC of the regular MinHash method is 0.318537.

Figure 3.2: PR curve using the E Coli genome data. The left figure is generated using
PacBio mutation configurations. The right figure is using MinION nanopore mutation
configurations. The red lines in both figures denote the solid k-mer powered MinHash
method, and the blue lines denote the regular MinHash method.

From the above results, we can see that the solid k-mer powered MinHash

performed better than regular MinHash in identifying overlapping read pairs in all cases.

Compared with regular MinHash, the solid k-mer powered approach is more robust to

high sequencing error rates. These results were consistent in both in silico genome data

and E. coli genome data.

3.1.2 Selecting the solid k-mer threshold

In the experiment above, we set the solid k-mer threshold as 2, and showed that

applying solid k-mers as the input was able to increase the performance of the MinHash-

based method for overlap detection. However, how to select the solid k-mer threshold

18

still remains as an important challenges.

Suppose we have a read set R and its reference genome S, and every read in R

is sampled from S. If the error rate during sequencing is zero, every k-mer that appears

in R should also appear in S. If we set k large enough, for instance k equals 16 as used

above, the number of different types of k-mers in R should be around the same size as

the length of S, or slightly less than the length of S but with same order of magnitude.

However, in the presence of sequencing errors, R will contains many erroneous k-mers.

K-mers that infrequently occur in R are very likely to be derived from sequencing errors.

To remove these erroneous inputs, we can set the solid k-mer set at a certain threshold so

that number of solid k-mers is around the same size as the length of S.

We evaluated our hypothesis above using the E. coli genome data. The length of

this E. coli genome was 4,641,652. The k-mer occurrence frequency distribution of its

read set is shown in Table 3.1. According to our hypothesis, 3 and 4 should be the best

candidates for the solid k-mer threshold.

Table 3.1: k-mer frequency distribution in the E. coli genome.

K-mer occurrence >= 1 >= 2 >= 3 >= 4 >= 5
Number of k-mers 225,936,345 23,043,727 4,943,888 2,124,463 1,085,457

We repeated the overlap identification experiment in the previous section eight

times, each time with a different solid k-mer threshold, from 1 to 8. The values of the

AUC in these eight groups are plotted in figure 3.3. From the result we can see that the

AUC value peaks when the threshold is 3 or 4, consistent with our hypothesis.

19

Figure 3.3: Comparison of AUC values generated using different solid k-mer thresholds.

3.2 Genome identification

Solid k-mer powered MinHash can be also applied in genome identification.

We tested its ability using MASH, the MinHash-based tool which can rapidly identify

isolated genomes from both assemblies and raw sequencing reads. [BDOP16]

In the genome identification experiment, we conducted 6 parallel sub-experiments

with different solid k-mer thresholds, from 1 to 6. Table 3.2 shows the k-mer occurrence

distributions of the two query read sets, Bacillus anthracis Ames and Bacillus cereus

ATCC 10987. Since the length of Bacillus anthracis Ames is 5,227,293 bp [TDR03]

and the length of Bacillus cereus ATCC 10987 is 5,432,652 [KEG], according to our

theory put forward in the previous section, the optimal solid k-mer threshold for Bacillus

anthracis Ames and Bacillus cereus ATCC 10987 should be around 2 to 3.

Table 3.2: K-mer occurrence distributions of the Bacillus anthracis Ames read set and
the Bacillus cereus ATCC 10987 read set.

K-mer occurrence >= 1 >= 2 >= 3 >= 4 >= 5 >= 6
B. anthracis 162,532,281 10,809,747 992,468 176,235 65,733 37,371
B. cereus 236,865,294 22,287,686 3,085,292 815,821 325,198 157,169

Table 3.3 shows the ranking of the two genome sequences we queried among all

20

54,118 organisms in NCBI RefSeq 70, as well as their corresponding p-values. Compared

with regular MinHash (namely, when the solid k-mer threshold equals 1), utilizing solid

k-mer powered MinHash was able to increase the genome identification accuracy for

both Bacillus anthracis Ames and Bacillus cereus ATCC 10987. The p-value reached to

the highest significance when the threshold was set to 3 in both cases, consistent with our

prediction.

Table 3.3: Rankings and p-values of Bacillus anthracis Ames and Bacillus cereus ATCC
10987 generated with different solid k-mer thresholds.

Solid k-mer threshold 1 2 3 4 5 6

B. anthracis
rank #417 #13 #1 #96 #255 #249

p-value 8.79e-11 1.40e-16 5.07e-17 2.29e-4 6.93e-3 3.76e-3

B. cereus
rank #464 #3 #1 #1 #1 #3

p-value 4.01e-08 8.92e-31 7.22e-77 3.05e-72 1.64e-32 2.56e-09

Chapter 4

Discussion and future work

Based on the results in our experiment, we can conclude that compared with

regular MinHash-based methods for genome distance estimation, feeding MinHash with

solid k-mers as input can increase the accuracy of the distance calculation, enabling a

boost of the downstream analysis in both precision and recall rates.

In addition, the solid k-mer powered MinHash method leaves out the less frequent

k-mers and thus enables us to save computational time. For example, for the E. coli

genome data analyzed here, there are around 200 million different k-mers in its sequenced

reads, but only less than 5 million of them appear 3 or more times. Since the time

complexity of MinHash is linear to the number of k-mers [Bro97], in theory we only

need to spend around 1/40 computational time in the MinHash process using our solid

k-mer powered MinHash.

One limitation of our method is that the calculation of the k-mer threshold

requires us to know the approximate length of the reference genome beforehand, which

is sometimes unknown or difficult to acquire, especially when we deal with read sets

from unknown organisms. Fortunately, there are tools, such as preqc [Sim14], that can

quickly estimate the length of a reference genome without knowing the actual reference

21

22

genome sequence or assembling the reads. Our next step is to incorporate preqc into our

method to enable us to estimate genome distance without any extra information apart

from the input genome sequences or reads. We will then wrap the whole method into an

open source software tool and share it on public platforms such as Github.

Bibliography

[BDOP16] Pll Melsted Adam B. Mallonee Nicholas H. Bergman Sergey Koren Brian
D. Ondov, Todd J. Treangen and Adam M. Phillippy. Mash: fast genome and
metagenome distance estimation using minhash. Genome Biology, 17(1):132,
2016.

[BKS16] Sven Rahmann Bianca K. Stcker, Johannes Kster. Simlord: Simulation of
long read data. Bioinformatics, 32(17):2704–2706, 2016.

[Bro97] Andrei Z. Broder. On the resemblance and containment of documents. IEEE,
Compression and Complexity of Sequences 1997(Proceedings), 1997.

[CSCK13] Patrick Marks Aaron A Klammer James Drake Cheryl Heiner Alicia Clum
Alex Copeland John Huddleston Evan E Eichler Stephen W Turner Chen-
Shan Chin, David H Alexander and Jonas Korlach. Nonhybrid, finished
microbial genome assemblies from long-read smrt sequencing data. Nature
methods, 10(6):563–569, 2013.

[CT12] Mark J Chaisson and Glenn Tesler. Mapping single molecule sequencing
reads using basic local alignment with successive refinement (blasr): applica-
tion and theory. BMC bioinformatics, 13(1):238, 2012.

[Dav03] W. Mount David. Bioinformatics: Sequence and Genome Analysis. Gold
Spring Harbor Laboratory press, New York, 2003.

[DL10] Owen Kaserb Daniel Lemirea. Recursive n-gram hashing is pairwise inde-
pendent, at best. Computer Speech and Language, 24(4):698–710, 2010.

[DL15] Ruibang Luo Kunihiko Sadakane Tak-Wah Lam Dinghua Li, Chi-Man Liu.
Megahit: an ultra-fast single-node solution for large and complex metage-
nomics assembly via succinct de bruijn graph. Bioinformatics, 31(10):1674–
1676, 2015.

[GR13] Rayan Chikhi Guillaume Rizk, Dominique Lavenier. Dsk: k-mer counting
with very low memory usage. Bioinformatics, 29(5):652–653, 2013.

23

24

[JC79] Mark N. Wegman J.Lawrence Carter. Universal classes of hash functions.
Journal of computer and system sciences, 18(2):143–154, 1979.

[KBP15] Chen-Shan Chin James P Drake-Jane M Landolin Konstantin Berlin,
Sergey Koren and Adam M Phillippy. The primate neocortex in compara-
tive perspective using magnetic resonance imaging. Nature biotechnology,
33(6):623–630, 2015.

[KEG] KEGG. Bacillus cereus atcc 10987. http://www.genome.jp/kegg-bin/show-
organism?org=bca.

[Ken02] W. James Kent. Blatthe blast-like alignment tool. Genome research,
12(4):656–664, 2002.

[KPM12] Garth Brown Kim Pruitt, Tatiana Tatusova and Donna Maglott. Ncbi refer-
ence sequences (refseq): current status, new features and genome annotation
policy. Bioinformatics, 40(D1):D130–D135, 2012.

[MDT94] Kurt Mehlhorn Friedhelm Meyer auf der Heide Hans Rohnert Martin Di-
etzfelbinger, Anna Karlin and Robert E. Tarjan. Dynamic perfect hashing:
Upper and lower bounds. SIAM Journal on Computing, 23(4):738–761,
1994.

[MJA15] Karen Miga Hugh Olsen Benedict Paten Miten Jain, Ian Fiddes and Mark
Akeson. Improved data analysis for the minion nanopore sequencer. Nature
methods, 12(4):351–356, 2015.

[NCBa] NCBI. Escherichia coli str. k-12 substr. mg1655, complete genome.
https://www.ncbi.nlm.nih.gov/nuccore/NC-000913.

[NCBb] NCBI. Refseq release 70 is now available with re-annotated
bacterial genomes for uniformity across genomes and species.
https://www.ncbi.nlm.nih.gov/news/05-07-2015-refseq-release-70-
reannotation/.

[Nei87] Masatoshi Nei. Molecular evolutionary genetics. Columbia university press,
1987.

[NR74] Masatoshi Nei and Arun K. Roychoudhury. Genic variation within and
between the three major races of man, caucasoids, negroids, and mongoloids.
American journal of human genetics, 26(4):421, 1974.

[Pac16] PacBio. Sequel system data release: Arabidopsis dataset and genome as-
sembly. http://www.pacb.com/blog/sequel-system-data-release-arabidopsis-
dataset-genome-assembly/, 2016.

25

[PNA11] Wing-Kin Sung Pramila Nuwantha Ariyaratne. Pe-assembler: de novo
assembler using short paired-end reads. Bioinformatics, 27(2):167–174,
2011.

[PWG98] G.J. Foschini P.W. Wolniansky and G.D. Golden. V-blast: An architecture
for realizing very high data rates over the rich-scattering wireless channel.
Signals, Systems, and Electronics, 1998, ISSSE 98. 1998 URSI International
Symposium on.:295–300, 1998.

[RR13] Zeehasham Rasheed and Huzefa Rangwala. A map-reduce frame-
work for clustering metagenomes. Parallel and Distributed Process-
ing Symposium Workshops and PhD Forum (IPDPSW), 2013 IEEE 27th
International(IEEE):549–558, 2013.

[SFAL90] Webb Miller Eugene W. Myers Stephen F. Altschul, Warren Gish and David J.
Lipman. Basic local alignment search tool. Journal of molecular biology,
215(3):403–410, 1990.

[SFAL97] Alejandro A. Schffer Jinghui Zhang Zheng Zhang Webb Miller Stephen
F. Altschul, Thomas L. Madden and David J. Lipman. Gapped blast and
psi-blast: a new generation of protein database search programs. Nucleic
acids research, 25(17):3389–3402, 1997.

[Sim14] Jared T. Simpson. Exploring genome characteristics and sequence quality
without a reference. Bioinformatics, 30(9):12281235, 2014.

[SKP13] Timothy PL Smith James L Bono Dayna M Harhay Scott D Mcvey Diana
Radune Nicholas H Bergman Sergey Koren, Gregory P Harhay and Adam M
Phillippy. Reducing assembly complexity of microbial genomes with single-
molecule sequencing. Genome biology, 14(9):R101, 2013.

[TDR03] Scott N. Peterson Timothy D. Read. The genome sequence of bacil-
lus anthracis ames and comparison to closely related bacteria. Nature,
423(6935):81–86, 2003.

[WM07] Ross C. Hardison Minmei Hou James Taylor Brian Raney Richard Burhans
Webb Miller, Kate Rosenbloom. 28-way vertebrate alignment and conserva-
tion track in the ucsc genome browser. Genome research, 17(12):1797–1808,
2007.

[XY11] Srinivas Aluru Xiao Yang, Jaroslaw Zola. Parallel metagenomic sequence
clustering via sketching and maximal quasi-clique enumeration on map-
reduce clouds. IEEE, Parallel and Distributed Processing Symposium
(IPDPS)(2011 IEEE International), 2011.

