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ABSTRACT OF THE DISSERTATION

Essays in Economic Theory

by

Omer Ali

Doctor of Philosophy in Economics

University of California, Los Angeles, 2017

Professor Ichiro Obara, Co-Chair

Professor Marek G. Pycia, Co-Chair

My dissertation is composed of three chapters. In the first, I study the incentive role

of information – how the strategic release of information can induce an agent to exert

more effort on a project. More specifically, I focus on how feedback can be provided to

a worker who is uninformed about the progress they make on a long term project. I

show that delaying feedback about their performance can induce the worker to continue

working on the project longer than they would were they to learn about their perfor-

mance without delay. Negative feedback, due to the absence of good news, received

in the early stages of the project can cause them to quit prematurely. In the second

chapter, I study a model of matching between individuals and institutions. Matching

models allow researchers to identify optimal allocations of individuals to school seats,

medical residency programs and other positions over which individuals have preferences
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and for which they may differ in suitability. While we know that in models in which

individuals only care about the institution they match with, stable matchings always

exist, I show that when individuals also care about the the number of matches made

by the institution they join, stable matchings no longer exist in general. I show that

stable matchings can only be found under a set of conditions I identify. Relaxing any

of these conditions leads to examples of markets with no stable matchings. In the third

chapter, I set out to understand why elected politicians choose to toe the party line

instead of voting on issues according to their own preferences. I find that despite the

short term benefits of voting for their preferred policies, there are long-term benefits

from coordinating their voting behavior among like-minded legislators. These findings

provide a rationale for why political parties form among politicians with similar policy

positions.
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Chapter 1

Disclosure in Multistage Projects

1



1.1 Introduction

When and how individuals receive information about their progress on a task has signif-

icant effects on the effort they provide. While the incentive role of monetary payments

is well understood, economists have only recently begun exploring the incentive role

of information. In this paper, I study how information supplied by a sender affects a

receiver’s incentives to keep working on a project.

There are many applications of this framework: an entrepreneur who must convince

her investors that the project is going well has an incentive to share good news as soon

as it arrives. However, if she commits to this disclosure policy, the absence of good

news makes investors more pessimistic about the prospects of the venture, and they

may withdraw their funding. A physician who would like to keep her patient on an

experimental treatment for as long as possible and promises to disclose positive results

of the treatment risks making her patient more pessimistic when there is no good news

to share. Finally, a firm that benefits from R&D may want researchers to keep working

on a new technology even when there is uncertainty about the prospects of successfully

marketing the innovation. When the firm receives information indicating that the

prospects are good, it would like to make this known to its researchers. Committing to

do so, however, means that as long as no good news is received, researchers conclude

that things are not going well.

In all of the above examples, the sender must balance between the benefits of sharing

good news and the discouragement effect of its absence. I study this trade-off in a model
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in which the sender learns about the underlying quality of a project through the arrival

of successes over time and must choose whether (and how) to share her information

with the receiver. The project is completed when two successes arrive, which captures

the idea that it has two distinct stages. While the first success is only observable to

the sender, the second success is public and ends the game. Only good projects yield

successes, which arrive stochastically in every period in which the receiver chooses to

work. At the beginning of the relationship, neither player knows the type of the project

and they share a common prior belief, p0, that it is, in fact, a good project. The sender

does not incur any cost herself, but also benefits from the completion of the project,

an event I will refer to as a ‘breakthrough’. When the sender and receiver choose their

disclosure policy and quitting strategy (respectively) simultaneously, there is a class

of equilibria characterized by the length of time the receiver is willing to work from

the beginning of the game without receiving any information, and the threshold beliefs

they use thereafter to decide whether or not to quit. We study two focal disclosure

mechanisms: promise policies keep the receiver working until a pre-specified time at

which point the sender releases some (or all) information; the indifference policy involves

releasing just enough information in each period to make the receiver indifferent between

working and quitting. While neither policy is the optimal mechanism in all cases, a

number of partial results indicate that promise strategies are superior for the sender

earlier in the game, while the indifference policy is better in its later stages.

One of the main trade-offs faced by the sender in the model is that information can

have both a positive as well as a negative effect on incentives. Good news (the arrival of
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the first success) motivates the receiver to keep working, but its absence is discouraging.

This trade-off is present in static models of persuasion such as Kamenica and Gentzkow

(2011).1 An additional trade-off that the sender takes into account is introduced by

the dynamics of the problem and relates to the timing of information revelation. While

the sender always prefers to delay revealing information, the receiver prefers to learn

about the outcome history as early as possible. Suppose that there is a certain amount

of information that the sender can reveal to ensure that the receiver stays in the game

whenever they are asked to do so. Can the sender decrease this amount in return for

giving the receiver more information later in the game? The answer to this question

determines whether promise policies improve upon the indifference policy described

above. When it is possible to delay information revelation with a promise of a future

reward, the sender considers whether the reward is affordable and, if so, changes their

disclosure policy accordingly. A novel feature of the framework I study is that this

trade-off changes over time because of the non-stationarity of the problem. While in

the early stages of the game, the receiver’s beliefs are in a region of the belief space

where the necessary rewards are affordable, over time, they move into a region where

the sender prefers to stick to the indifference policy.

A growing literature studies how the provision of information can induce a receiver

to take certain actions, even when the incentives of the receiver and the information

provider are not aligned. Kamenica and Gentzkow (2011) study a static model in which

a sender knows the state and commits to a disclosure policy that partially reveals

1Similar frameworks are also studied in Calzolari and Pavan (2006) and Ivanov (2010).
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it to the receiver. Whereas the sender’s most preferred action is state-independent,

the receiver conditions their choice on their beliefs about the state. The sender must

calibrate their disclosure policy in a way that maintains the credibility of their messages.

While the sender would always prefer to inform the receiver that the state is such

that the sender’s most preferred action is the appropriate one, the receiver would, in

response, disregard this information and instead choose according to their prior. This

principle is also at play in the setting I study: the sender would like the receiver to

continue working for as long as possible, but sending them good news regardless of the

outcome history observed renders the messages unpersuasive.

A dynamic version of this problem is studied in Ely (2017): a sender observes the

true state as it evolves according to a Markov process. The receiver knows the transition

rule, but does not observe the state. Messages from the sender can be conditioned on

their information in such a way that sometimes induces the receiver to take the sender’s

preferred action. In this setting, the myopic optimal disclosure policy is also optimal

when the receiver is patient and strategic. This is in stark contrast with the results

I find in this paper: the sender can do strictly better when they promise to reveal

information in the future, thereby taking advantage of the receiver’s patience.2

2Smolin (2015) studies the optimal feedback policy when the sender receives private information
about the receiver’s performance over time. This is the closest framework in spirit to the one studied in
this paper. Payoffs accrue to the players in every period and the game is played for an infinite number
of periods with no end date. These features ensure that, unlike the case here, values are stationary
in beliefs and independent of calendar time. When the receiver prefers to quit earlier than the sender
would like, an optimal policy involves a coarsening of the information received by the sender: they
only communicate to the receiver whether or not their beliefs are above a certain threshold. In the
model I study, however, the sender can sometimes increase their payoff by randomly disclosing bad
news and keeping the receiver in the game with strictly positive probability in every period. In this
way, the receiver continues working even when the sender’s beliefs drift arbitrarily close to zero.
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While the framework studied in this paper is novel, it combines features present in

existing work. The multistage nature of the project is similar to the models in Bimpikis

et al. (2016) and Green and Taylor (2016). Both of these papers, however, assume

that the first success is the receiver’s private information, not the sender’s. Dynamic

information disclosure is present in Ely (2017) and Orlov et al. (2016). Learning about

the underlying productivity of the project and choosing how to share this information

with the receiver is present in Orlov (2015) and Smolin (2015). In Pei (2016), an

intermediary shares their information about the quality of the project/agent with the

market. Che and Horner (2015) study the optimal recommendation strategy when a

platform maximizes the welfare of consumers who sample a product over time.

Below, we describe some examples that motivate the structure of the game described

above. The rest of the paper proceeds as follows: section 2.2 describes the framework

and the evolution of beliefs; section 1.3 describes the mechanism design problem facing

the sender; section 1.4 describes the simultaneous move game between sender and re-

ceiver when the latter also has commitment power, and section 2.5 concludes. Proofs

are relegated to section 1.6.

1.1.1 Examples

Venture capital

Consider a venture capitalist involved in funding a project run by an entrepreneur.

Suppose the project requires building a prototype before the final product is produced.
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Funding occurs in discrete stages (periods) and allows the entrepreneur to continue

working. If the project is good, a prototype is successfully built with some probability

in each stage; a bad project never yields a functioning prototype. The entrepreneur

observes whether or not the prototype built in each period is functioning and can choose

whether (and how) to share this information with the investor. While the investor

never observes the state of prototypes, the ultimate success of the project (say, the

development of the marketable product) is public information. This occurs with some

probability in every period but only after a prototype has been successfully developed.

The prototype, therefore, represents an intermediate stage of the production process

that reveals the quality of the project being undertaken by the entrepreneur, as well

as the news that development of the product is halfway complete. The entrepreneur

would like to work on the project for as long as possible, but the investor would only

like to invest if the rewards are sufficiently high. How should the entrepreneur reveal

information about the state of the prototype to the investor?

Experimental treatment

Consider a physician treating a patient with a condition that has no known cure. There

is an experimental drug that can either be effective (ω = 1) or not. Since the drug is

unproven, neither party knows its quality for sure and they both begin with a shared

common prior. The drug is taken once a week in pill form and is guaranteed to generate

painful side effects that only the patient suffers (c > 0). During the week, the patient

undergoes some tests that only the physician has access to. The weekly tests perfectly
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reveal whether the week’s treatment was successful, but the patient doesn’t feel any

better. The condition is cured when two weeks of treatment succeed, only at which

point does the patient know that the drug must have worked. The physician can choose

whether and how to share information about the weekly tests with the patient. The

patient would like to continue with the treatment but only if there is a reasonably high

chance of success. The physician, on the other hand, would prefer to keep the patient

on the drug for as long as possible. How should the physician communicate the results

of the weekly tests to the patient?

Research and development

Consider a firm with an active research department. The firm ultimately monetizes the

results of successful research projects and incentivizes its researchers by rewarding them

with a financial stake in the project. They receive a payoff only if/when their research

is successfully developed into a marketable product. Researchers can choose whether or

not to contribute to a project, but they can only keep their financial stake alive if they

continue working. Let’s examine a researcher’s decision whether or not to start and

continue working on a particular project. If the project is good, it can be successfully

sold by the marketing department, but in each time period this happens only with some

probability. If the project is bad, it can never be marketed successfully and no matter

how long the researcher remains involved, their stake will never bear fruit. The firm

understands the researchers’ incentives, but would like them to continue exploring an

idea even when marketing efforts prove unsuccessful, because their planning horizon
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is longer than the researcher’s, who may not necessarily spend their entire career at

the firm. The marketing department receives information about the success of their

efforts over time. Suppose there are two stages of a successful marketing campaign: (i)

developing a strong core group of enthusiastic customers, and (ii) mass market success.

The second stage can never be achieved before the first, and neither stage is possible with

a bad project. When a project is successfully mass marketed, the researchers receive

their payoffs. However, they do not learn about whether the marketing department has

successfully mobilized a core group of enthusiasts. The firm’s management can commit

to sharing information about the first stage with researchers to keep them involved in

the project for as long as possible. How should the firm share information about the

outcome of its marketing efforts with its researchers?

1.2 Model

1.2.1 Environment

A sender and receiver collaborate on a joint project over discrete time. The project,

which can either be good quality or bad, has the following characteristics: when the

project is good, there is a positive probability of a success in every period in which

the receiver chooses to work. When the project is bad, however, successes never arrive.

The receiver must decide whether to work or quit in each period, and once they choose

to quit, they can never work on the project again. Completion of the project - which

we refer to as a “breakthrough” - requires the arrival of two successes, only at which

9



point do the players receive a payoff. It is helpful to view the first success as a project

milestone, such as a functioning prototype, and the second success as the end of the

project. Examples of such projects are common in venture financing, medicine, and

R&D in firms (see subsection 1.1.1). While working makes the realization of a payoff

more likely, it is costly for the receiver. As a result, they only choose to work when the

likelihood of a breakthrough is sufficiently high.

Only the sender observes the arrival of the first success and decides whether (and

how) to share this information with the receiver. We assume that the sender commits

to a disclosure policy at the beginning of the game and cannot deviate from their chosen

policy. After observing the outcome in each period, they can send a message to the

receiver, which may depend on the history of outcomes realized and messages sent

thus far. The receiver interprets this message in light of the sender’s commitment to

send certain messages only when certain histories arise. Messages inform the receiver

about likely outcome histories and about the quality of the project. A message that the

sender commits to sending more often when a success has arrived makes the receiver

more optimistic about the quality of the project. The absence of such a message,

however, has the opposite effect. The sender’s decision problem reflects the trade-off

faced, for example, by an entrepreneur who commits to sharing information about her

progress on a project of uncertain viability with her investors. While a breakthrough (in

this case, the ultimate success of the venture) is observable to both the entrepreneur as

well as her investors, progress is only known to the entrepreneur and she must consider

the effect of regularly sharing news of this progress (or lack thereof) on the investors’
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enthusiasm for her project, and the likelihood of securing their continued support. The

sequence of actions for the sender and receiver within a given period are described in

figure 1.1.

start of period t start of period t+1

sender sends 
message mt

receiver 
chooses 
action at

yt-1 is 
realized

(if at = quit, 
game ends)

if at = work, 
continue

(if yt-1 is 2nd 

success, 
game ends)

yt is 
realized

(if yt is 2nd 

success, 
game ends)

time

Figure 1.1: The sequence of actions within a period.

Let ω ∈ Ω = {0, 1} denote the quality of the project. Neither player knows this

parameter for sure at the beginning of the game.3 The project is good (ω = 1) with

common prior probability p0, in which case successes arrive with probability θ ∈ (0, 1)

in every period in which the receiver chooses to work. The receiver incurs a per-period

cost of c > 0 whenever they choose to work. If the receiver chooses to quit, the game

ends and each player receives a payoff of zero. While the receiver never observes the

arrival of an intermediate success, a breakthrough is observable to both players and

ends the game. When a breakthrough occurs, each player receives a lump sum payoff

of B > 0. The sender observes the entire history of outcomes (successes and failures in

3This can alternatively be interpreted as the receiver’s type, which is unknown to both players.

11



every period). They choose when and how to share this information with the receiver.

As such, both players hold beliefs about the quality of the project that evolve over

time. Notice that the benefit of a breakthrough is the same for both players, yet a

misalignment of incentives exists because only the receiver incurs the cost of working.

time

no success

one success

breakthrough

t3

(a) An outcome history with no successes.

time

no success

one success

breakthrough

t1 t3

(b) An outcome history with one success.

time

no success

one success

breakthrough

t2t1

(c) An outcome history with a breakthrough.

Figure 1.2: Possible outcome histories when the receiver quits at time t3.
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(pt,qt) (pt+1,qt+1)

sender 
observes 
outcome yt

(πt, µt)

sender 
sends 
message mt

receiver’s
beliefs:

sender 
observes 
output yt+1

receiver 
takes 
action at

time

Figure 1.3: Within-period actions and beliefs

1.2.2 Outcomes, payoffs and preferences

Recall that the sender and receiver only receive a payoff of B when a breakthrough

occurs. Along the way, the receiver incurs a cost of c in every period, but the sender does

not. Let yt ∈ {0, 1} denote the outcome in period t when the receiver chooses to work,

with 1 representing a success and 0 a failure. The outcome history, yt = (y1, . . . , yt), is

the sequence of outcomes up to time t. Let the set of all histories up to time t be Y t.

Define the function S : Y t → {0, 1, 2} in the following way:

S
(
yt
)

=



2 if
∑t

s=1 ys = 2 and yt = 1

1 if
∑t

s=1 ys = 1

0 if
∑t

s=1 ys = 0

The function S counts the number of successes in a history. Since the project ends

when two successes arrive, histories have at most two successes, and the second must

arrive in the final period. Y t is the set of all t-period histories satisfying this restriction:
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Y t =
{
yt = (y1, . . . , yt) ∈ {0, 1}t : S

(
yt
)
≤ 2, S

(
yt
)

= 2 ⇐⇒ yt = 1
}

Notice that both players have preferences over outcome histories, not outcomes per se,

since intermediate successes are not valued independently of the history in which they

occur. A 10-period history with a success in the 5th period and no successes thereafter

does not yield a payoff, whereas a 10-period history with successes in the 5th and 10th

periods does. The 5th period success, therefore, is not independently valuable.

In addition to the players’ utilities being defined over the space of outcome his-

tories, they are also time-dependent. Consider the 10-period outcome history with a

breakthrough in the final period. A receiver evaluating this history at the beginning

of the game can look forward to 10 periods in which they incur the per period cost c

and a reward at the end. Their utility from this outcome history at the beginning of

the game is, therefore, δ9B −
∑9

t=0 δ
tc, where the reward B is discounted, and there

is a cost of c in every period leading up to the breakthrough. Now consider the same

outcome history evaluated at the beginning of the 6th period. The costs incurred in

the first five periods are now sunk and the reward is closer in time; the receiver’s utility

is now δ4B −
∑4

t=0 δ
tc; the reward is closer in time, and there are only 5 more periods

in which to incur the cost of working. In general, denote the receiver’s payoff from

outcome history yt at the beginning of period τ ≤ t by u (yt| τ):

14



u
(
yt
∣∣ τ) =


δt−τB −

(∑t−τ
s=0 δ

s
)
c if S (yt) = 2

−
(∑t−τ

s=0 δ
s
)
c otherwise

When the receiver evaluates an outcome history, they take into account (i) how

long they work, and (ii) whether or not a breakthrough occurs. On the other hand,

when the sender evaluates an outcome history, they only care about whether or not a

breakthrough occurs, since they do not incur the per-period cost of working, c. Denote

the sender’s payoff from outcome history yt at time τ ≤ t by v (yt| τ):

v
(
yt
∣∣ τ) =


δt−τB if S (yt) = 2

0 otherwise

This payoff structure is a departure from similar models in the literature, which

generally feature flow payoffs that accrue to players over time. In Smolin (2015), the

principal and agent receive flow payoffs generated by an underlying state and the agent’s

actions in each period. In Ely (2017), the players receive flow payoffs determined by

an evolving state and the agent’s actions in each period. When flow payoffs depend

on the state, or a player’s beliefs about the state, the problem can be expressed in a

recursive manner with these beliefs as state variables. In this paper, both the receiver’s

as well as the sender’s beliefs are relevant state variables. Moreover, the the non-linear

evolution of beliefs precipitated by the information released at the start of each period

implies that tools used in linear environments cannot be applied here.
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1.2.3 Strategies

It is clear that there is a misalignment of incentives between the sender and receiver.

The former would like the receiver to work on the project forever, since even arbitrarily

long sequences of failures never convince the sender that the project is bad for sure (as

long as p0 > 0). The receiver, on the other hand, would only like to work when the

probability that the project is good is sufficiently high, since working is costly. As such,

the sender would like to maintain the receiver’s beliefs about the quality of the project

by sending good news. The receiver interprets the messages they receive with this in

mind. In the model we study, the sender must commit to an information disclosure

policy at the beginning of the game.4 This policy specifies the distribution of messages

sent to the receiver as a function of the outcome histories and message histories up to

that point in the game. Recall that Y t is the space of outcome histories up to time t.

Let Mt denote the message space containing all messages sent by the sender in period

t. M t−1 = M1 × . . . ×Mt−1 denotes the space of message histories up to time t − 1.

Then H t−1 = Y t−1×M t−1 is the space of histories containing past outcomes as well as

past messages. Formally, the sender’s strategy, σ = {σt}∞t=1, is a sequence of functions

mapping histories to probability distributions over messages:

σt : H t−1 → ∆ (Mt) ,

4This is similar to the sender choosing a signal in Kamenica and Gentzkow (2011), the principal
committing to a feedback policy in Smolin (2015), or the principal committing to an information policy
in Ely (2017).
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where ∆ (Mt) is the space of probability distributions over an arbitrary message

space, Mt. With a slight abuse of notation, we will denote the probability distribution

over Mt induced by history ht−1 by σt ( .|ht−1). Knowing σ and observing mt ∈ Mt at

time t informs the receiver about the likely outcome histories that arose. A perfectly

informative disclosure policy, for example, would specify distributions with disjoint sup-

port whenever histories are distinct: σt (m|ht−1) > 0, σt

(
m| ĥt−1

)
> 0 ⇐⇒ ht−1 =

ĥt−1. Receiving a message would perfectly reveal the outcome history to the receiver.

Denote such a policy by σfull. A disclosure policy that is completely uninformative

would specify the same distribution over messages for every history. Denote a policy

that provides no information to the receiver by σnull, and let Σ be the space of all

disclosure policies.

The receiver’s strategy specifies whether or not they choose to work in each period

after observing the sender’s history of messages. Formally, their strategy, β = {βt}∞t=1,

is a sequence of functions mapping each message history to a probability distribution

over their action space:

βt : M t → ∆ {work, quit} ,

Let B denote the space of all possible strategies, and at denote the chosen action in

period t.
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1.3 Analysis

1.3.1 Beliefs

Messages inform the receiver (who does not directly observe outcomes) about outcome

histories that are likely to have arisen thus far in the game. Given a disclosure policy,

σ, a message mt ∈ Mt induces a probability distribution, dt ( .|mt;σ) ∈ ∆ (Y t−1), over

possible outcome histories via Bayes’ rule. This distribution, which represents the

receiver’s beliefs, depends on σ, the sender’s disclosure policy, and the message, mt,

received in period t. The former is the framework through which the receiver interprets

messages, and the latter is the new information released as the game progresses. This,

in turn, induces beliefs about the quality of the project, and whether an intermediate

success has arrived - these derived beliefs turn out to be convenient parameters in the

analysis of the game. We denote the receiver’s beliefs at the beginning of period t about

outcome histories of length t− 1 before they receive a message by dt ∈ ∆ (Y t−1). This

is their belief about outcome histories given that the game has not ended in period t,

and given all their prior information.

We begin by defining the receiver’s beliefs over outcome histories, dt ( .|mt;σ):

dt
(
yt−1

∣∣mt;σ
)

=
P (yt−1,mt;σ)

P (mt;σ)
,

where P (mt;σ) is the probability that message mt is sent in period t given that the

sender is using disclosure policy σ, and P (yt−1,mt;σ) is the probability that message
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mt is sent and outcome history yt−1 is observed, given that the sender is using disclosure

policy σ. The former is a function of the receiver’s beliefs about outcome histories at

the beginning of period t (dt ∈ ∆ (Y t−1)). The expression for P (mt;σ) is given below.

P (mt;σ) =
∑

yt−1∈Y t−1

σt
(
mt| yt−1

)
dt
(
yt−1

)
The numerator of the expression for dt (yt−1|mt;σ) can be further expanded into

the following:

P
(
yt−1,mt;σ

)
= P

(
mt| yt−1;σ

)
dt
(
yt−1

)
,

where P (mt| yt−1;σ) is the conditional probability of observing messagemt following

outcome history yt−1. We can now give the expression for dt (yt−1|mt;σ) in terms of

the receiver’s beliefs.

dt
(
yt−1

∣∣mt;σ
)

=
σt (mt| yt−1) dt (yt−1)∑

yt−1∈Y t−1

σt (mt| yt−1) dt (yt−1)

The receiver is interested in the project’s quality, and whether a success has already

occurred, conditional on the project being good. For any outcome history, yt−1, there is

a corresponding belief about the likelihood that this history was generated by a project

of quality ω. It is clear to see that whenever S (yt−1) = 1, it must be the case that

ω = 1.5 However, when S (yt−1) = 0, it may well be that ω = 1, but a success has not

5We don’t need to deal with the case in which S
(
yt−1

)
= 2, since those histories are revealed to all

players when they occur.
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yet arrived; it could also be the case that ω = 0. Let the function φ : Y t → [0, 1] be the

mapping from outcome histories (of any length) to beliefs about ω, so that φ (yt) is the

receiver’s beliefs about ω when they know for sure that yt occurred. For example, when

S (yt) = 1, φ (yt) = 1; on the other hand, when S (yt) = 0, φ (yt) = p0(1−θ)t

p0(1−θ)t+1−p0
, which

is the probability that the project is good and t failures have occurred. Similarly, let

the function ψ : Y t → [0, 1] map outcome histories to beliefs about the arrival of the

first success. S (yt) = 1 means that ψ (yt) = 1 , and the receiver knows for sure that

a success has arrived; S (yt) = 0 implies that ψ (yt) = 0, and the receiver knows for

sure that no success has arrived. Interior values for this belief arise when the receiver

holds non-degenerate beliefs about outcome histories. Suppose, for example, that the

receiver believes that yt0 arose with probability 1 − ρ and yt1 arose with probability

ρ, where S (yt0) = 0, and S (yt1) = 1. Their beliefs about the number of successes

conditional on ω = 1 is then ρ× 1 + (1− ρ)× 0 = ρ.

Over the course of the game, the receiver’s beliefs about outcome histories evolve in

response to information about the continuation of the game as well as messages from

the sender. In the first period, the fact that the game has not yet ended is uninformative

because two successes are required to end the game and only one success can arrive per

period. In the absence of any message from the sender, their beliefs about ω remain

unchanged from p0, and their belief that a success has occurred conditional on ω = 1 is

simply θ. Denote these beliefs by (p0, θ) in the space ∆ (Ω)×∆ (X). When the sender

plays the no-information strategy, σnull, these beliefs persist until the beginning of the

second period. Suppose instead that the sender plays the fully informative strategy,
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σfull. When y1 = 1, the receiver’s beliefs before they observe the sender’s message are

(p0, θ) and evolve to (1, 1) after they observe it. When y1 = 0, the receiver’s beliefs

evolve from (p0, θ) to
(
p0(1−θ)
1−p0θ , 0

)
. Notice that the receiver’s beliefs about ω obey the

martingale property, since p0 = p0θ × 1 + (1− p0θ) × p0(1−θ)
1−p0θ . Their beliefs about the

arrival of the first success, conditional on ω = 1 also obey the martingale property, so

long as we condition all probabilities on the event ω = 1: θ = θ × 1 + (1− θ)× 0.

We can now define the mapping from beliefs about outcome histories, dt ∈ ∆ (Y t−1),

to beliefs about the project’s type, and whether a success has arrived, conditional on

the project being good: ∆ (Ω)×∆ (X). We will use pt and πt to denote the receiver’s

belief that ω = 1, and qt and µt to denote their beliefs that a success has occurred,

conditional on ω = 1. The pair (pt, qt) will represent their beliefs after they learn that

the game has not yet ended in period t, but before they observe the sender’s message.

Meanwhile, the pair (πt, µt) will represent their beliefs after they observe the sender’s

period-t message. Given any distribution over outcome histories in Y t−1, the pair of

functions (φ, ψ) derive a pair of beliefs in ∆ (Ω)×∆ (X) induced by this distribution.

With some abuse of notation, let φ (dt) denote the beliefs about ω induced by the

probability distribution over outcome histories, dt ∈ ∆ (Y t−1):

φ (dt) =
∑

yt−1∈Y t−1

φ
(
yt−1

)
dt
(
yt−1

)
Similarly, let ψ (dt) denote the beliefs about the number of successes achieved, con-

ditional on ω = 1 when the receiver’s beliefs about outcome histories is dt:
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ψ (dt) =
∑

yt−1∈Y t−1

ψ
(
yt−1

)
dt
(
yt−1

)
We summarize these observations below. A pair of disclosure policy and message,

(σ,mt), induce a belief distribution over outcome histories, which, in turn, induces

beliefs about the quality of the project and whether a success has arrived.6

(σ,mt) ∈ Σ×Mtyd
dt ( .|mt;σ) ∈ ∆ (Y t−1)

φ

yψ
(πt, µt) ∈ ∆ (Ω)×∆ (X)

The belief pairs (pt, qt) and (πt, µt) are key parameters in the model and will feature

prominently in the analysis that follows. We refer to (pt, qt) as the receiver’s period-t

prior beliefs and (πt, µt) as their period-t posterior beliefs. Figure 1.4 depicts the evo-

lution of the receiver’s beliefs within a given period.

6The message need not be informative. If mt = ∅, for example, then dt ( .|mt;σ) = dt, which are
the receiver’s beliefs after learning that the game has not yet ended, but before receiving a message
from the sender.
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Figure 1.4: Within-period actions and beliefs

There are two benchmark disclosure policies briefly mentioned earlier: σnull, the no-

information disclosure policy, and σfull, the full information disclosure policy. These two

policies represent the worst and best payoffs, respectively, for the receiver. Whereas

the full information policy yields the lowest expected payoff to the sender, the no-

information policy is not their most preferred. In the following subsection, we describe

how the receiver’s beliefs evolve over time under the two policies.

1.3.2 Expected payoffs

A pair of strategies, (σ, β) ∈ Σ × B, along with a player’s beliefs about the project

induce a probability distribution over future outcome histories. The collection of pos-

sible outcome histories from the beginning of period τ onwards is Yτ =
⋃∞
t=τ Y

t. The

receiver’s expected payoff at time τ , given the strategy profile (σ, β), can be expressed

as follows:

U (σ, β| τ) = Eσ,β
[
u ( ỹ| τ)| {σt}τ−1

t=1

]
,

23



where ỹ ∈ Yτ is random, and the expectation is taken with respect to the distribution

over Yτ determined by the receiver’s beliefs and the strategy pair (σ, β). The receiver’s

beliefs at time τ are determined by the sender’s disclosure policy up to time τ . Similarly,

the sender’s expected payoff at time τ is V (σ, β| τ):

V (σ, β| τ) = Eσ,β
[
v ( ỹ| τ)| {yt}τ−1

t=1

]
,

where the sender’s beliefs are determined by the actual outcome realizations. Play-

ers’ expected payoffs at the beginning of the game will be expressed by U (σ, β| 0) and

V (σ, β| 0).

Although the sender can use an unrestricted message space, they ultimately care

about whether or not the receiver chooses to work. Moreover, since the sender’s strategy

is known to the receiver, every message sent induces a unique choice of action by the

receiver.7

As such, the message space may as well be the receiver’s action space. This in-

sight was leveraged by Kamenica and Gentzkow (2011) and Smolin (2015) to define

and consider straightforward signals and recommendation policies, respectively. We

define recommendation policies in our context as those policies with codomain equal to

probability distributions over the receiver’s action space.

Definition 1. A disclosure policy, σ = {σt}∞t=1, is a recommendation policy if:

7We assume that ties are broken in favor of working, a technical assumption that does not drive
any of the results.
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σt : H t−1 → ∆ ({work, quit})

Considering these policies is without loss of generality, as the next result will show.

By considering only those policies that recommend an action for the receiver to take, we

can reduce the space of disclosure policies over which the sender maximizes, simplifying

their decision problem.

Proposition 1. Consider the pair of disclosure policy and strategy (σ, β). There exists

a recommendation policy, Rσ, such that:

V (σ, β| t) = V (Rσ, β| t) ∀t ∈ N

U (σ, β| t) = U (Rσ, β| t) ∀t ∈ N

Proof. See subsection 1.6.1.

In addition to the simplification afforded by proposition 1, we can also show that

recommendation policies need only depend on the outcome history. As the receiver

learns about outcome histories through the sender’s messages over time, they update

their beliefs about the state. Often, models in which a player learns about a parameter

associated with the productivity, quality, type of a project or bandit arm reduce to

optimal stopping problems. The optimal strategy involves tracking some parameter,

usually the player’s beliefs, which triggers the player to stop investing, experimenting,
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or working when it falls below some threshold.8 Since our framework bears many

similarities with these models, optimal strategies in our setting also reduce to cut-off

strategies, but only in the later stage of the game. We define a generalization of cut-off

strategies, which we call eventually cut-off strategies. The relevant belief in our case is

the receiver’s belief that a breakthrough will occur in the next period. In the beginning

of the game, the receiver knows that not enough time has elapsed for a breakthrough to

occur, even if they are fairly confident that the project is good. In the extreme, they are

sure that a breakthrough will never occur in the first period because two successes are

required, and a maximum of one can arrive in one period. In the second period, their

beliefs that a breakthrough will arrive can be positive but small. In the third period,

beliefs will be positive and larger still etc. Once a sufficient amount of time has elapsed,

their beliefs about the quality of the project begin to deteriorate, and their belief that

a breakthrough will occur in the next period decreases. Under some disclosure policies,

beliefs decline monotonically for the remainder of the game. In this phase of the game,

they find it optimal to employ a cut-off strategy (see Proposition 2).

Definition 2. A strategy, β ∈ B, is eventually a cut-off strategy if there exists

some T ∈ N and b ∈ [0, 1] such that:

8See, for example, Smolin (2015) among many others.
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βt (mt) =



work ∀t < T

work if t ≥ T, πtµtθ ≥ b

quit if t ≥ T, πtµtθ < b

The receiver works in every period t < T , and for all t ≥ T , they choose to work

if and only if they believe that a breakthrough will occur in the next period with

probability greater than b.

Recall from subsection 1.3.4 that the receiver’s subjective belief that a breakthrough

will occur in the current period is πtµtθ. This belief decreases monotonically as long as

πtµt ≥ πt+1µt+1 for all remaining t. Notice that it is always the case that µt+1 > µt,

since the longer the receiver stays in the game, the more likely it is that a success has

arrived, conditional on the project being good. However, µt is bounded above by 1,

and over time, in the absence of good news from the sender, πt tends towards 0. This

moves the receiver’s belief about the probability of a breakthrough downwards.

Proposition 2. Suppose the sender chooses a recommendation policy Rσ. If {(πt, µt)}∞t=1

is the sequence of the receiver’s posterior beliefs after they receive the message “work”

and πtµt ≥ πt+1µt+1 ∀t ≥ T for some T ∈ N, then a strategy that is eventually a cutoff

strategy is optimal for the receiver.

Proof. See subsection 1.6.2.

Every disclosure policy chosen by the sender induces a sequence of posterior beliefs

for the receiver. The receiver evaluates whether (and for how long) to work by using
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these beliefs to calculate their expected payoff. For a pair of posterior beliefs (π, µ) such

that π is the receiver’s belief about ω and µ is their belief about whether a success has

already occurred, we refer to the quantity πµθB − c as the receiver’s flow payoff. This

is the expected payoff the receiver anticipates less the cost of working for an additional

period. The first term is the probability of a breakthrough arriving in the next period

(πµθ) multiplied by the benefit (B). When the flow payoff is positive, it is myopically

optimal for the receiver to work for an additional period. When the flow payoff is

negative, a myopic receiver would quit, since working for one period costs strictly more

than they expect to gain. However, a forward looking receiver may stay if the sum

of future flow payoffs is positive. At the beginning of the game, this consideration

determines whether the receiver begins working on the project or not. Let {(πt, µt)}

be the sequence of posterior beliefs induced by the sender’s disclosure policy. If there

is some T such that:

−c+ (π1µ1θB − c) +
T∑
t=2

t−1∏
s=1

(1− πsµsθ) (πtµtθB − c) ≥ 0,

the receiver chooses to work until period T .

Before we present the main result of this section, let T̄ be the time at which the

receiver chooses to quit when they receive no information from the sender. Recall that

under σ̄, the receiver’s beliefs about the project deteriorate monotonically over time

(see figure 3.7). Their beliefs about the arrival of a breakthrough in the next period

(πtµtθ) also decrease monotonically beyond some point in time. In this phase of the
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game, they employ a cut-off strategy and quit whenever the benefit they can expect

to gain in the next period (πtµtθB) no longer exceeds the cost of working. Since the

probability of a breakthrough is decreasing, if this inequality fails in any period, it also

fails in all future periods. As a result, the receiver quits in the first period in which

this inequality fails. We call this period, T̄ and define it formally below. When the

receiver does not learn any new information, their posterior beliefs are equivalent to

their priors: πt = pt and µt = qt.

T̄ = min
t

{
t : psqs <

c

θB
∀s ≥ t; σ = σnull

}
To ensure that the receiver begins working on the project even under a no informa-

tion policy, we make the following assumption:

Assumption 1. The receiver always chooses to start working on the project:

−c+ p1q1θB − c+
T̄−1∑
t=2

t−1∏
s=1

(1− psqsθ) (ptqtθB − c) ≥ 0

1.3.3 Evolution of beliefs under σnull and σfull

Under σnull, the only source of information about ω and the number of successes

achieved comes from the fact that a breakthrough has not yet occurred. In the first

period, there is no new information, since a breakthrough never occurs after only one

success. The receiver’s beliefs about ω remain at their initial level, p0. However, in the

second period, if the game has not yet ended, the receiver can begin to draw inferences
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about the project’s quality. Let the number of successes achieved through time t be Xt.

The probability that the project is good, conditional on having less than two successes

by the second period is:

p2 = P (ω = 1|Xt < 2) =
P (ω = 1, Xt < 2)

P (Xt < 2)
=

(1− θ2) p0

(1− θ2) p0 + 1− p0

,

where (1− θ2) is the probability that two successes have not yet occurred, given

that the project is good. When the project is good, the number of successes up to time

t follows a Binomial distribution with t draws and success probability θ: Xt|ω = 1 ∼

B (t, θ). Let pt denote the receiver’s beliefs that ω = 1 at time t, when the game has

not yet ended:

pt = P (ω = 1|Xt < 2) =
P (ω = 1, Xt < 2)

P (Xt < 2)
.

Since P (Xt < 2) → 0 as t → ∞, pt → 0, and the receiver becomes increasingly

pessimistic about the quality of the project the longer they stay in the game.

Now consider the case in which the sender reveals all information to the receiver

(σfull). This differs from the preceding case in that now the receiver knows when the

first success arrives, not just when the second success ends the game. As such, beliefs

evolve differently: in the absence of good news, the receiver becomes more pessimistic

about the quality of the project. When they do see the first success, the receiver’s

beliefs jump to 1. Denote the receiver’s period-t beliefs when they observe no successes

by p̂t.

30



p̂t = P (ω = 1|Xt < 1) =
P (Xt = 0) p0

P (Xt = 0) p0 + 1− p0

It can be shown that p̂t ≤ pt for all t for histories in which no successes arrive.

However, any history in which a success arrives induces beliefs p̂t to jump to one, while

beliefs pt continue to deteriorate. Below, we depict the evolution of beliefs under no

information and full information for two outcome histories to illustrate this point.
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(b) Successes in the 11th and 15th periods.

Figure 1.5: The receiver’s beliefs for two outcome histories under no information (σnull)
and full information (σfull) when the prior belief that ω = 1 is p0 = 0.8, and the
probability of success in each period when the receiver works on a good project is
θ = 0.3.

1.3.4 Probability of a breakthrough

The sender’s period-t message induces period-t posterior beliefs (πt, µt) about ω ∈ Ω

(the quality of the project) and x ∈ X (the number of successes conditional on the

project being good). Given these beliefs, the receiver can calculate the probability of

achieving a breakthrough in the current period if they choose to work. The probability

of a breakthrough in period t depends on their beliefs (πt, µt), since a breakthrough only
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occurs when (i) the project is good, and (ii) one success has already occurred in the

past. Indeed, it is simply the probability that the project is good, πt, multiplied by the

probability that a success has already occurred, conditional on the project being good,

µt, multiplied by the probability that another success arrives this period, conditional

on the project being good, θ: πt × µt × θ. When the receiver does not observe an

informative message in period t, their prior beliefs are unchanged, and hence their

belief that a breakthrough will occur in the current period is ptqtθ instead.

Consider the mechanism design problem in which the sender commits to a disclosure

policy and the receiver best responds. One class of disclosure policies, which we refer to

as promise policies, consists of the following two stages: (i) a phase of no information

disclosure, then (ii) a promise by the sender to reveal some information after a certain

amount of time has elapsed. When the sender reveals all of their information at the

promised time, we call the policy a perfect promise policy; otherwise, it is a partial

promise policy.

Another focal policy we analyze is the indifference policy: the sender conceals all

information until the receiver is at the cusp of quitting, at which point they begin releas-

ing information randomly with just enough probability to keep the receiver indifferent

between staying and quitting. These two policies are described below.

1.3.5 Indifference policy

Under the indifference policy, the sender conceals all information (by always recom-

mending work) until time T̄ , after which point they (i) always recommend work after
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outcome histories with one success, and (ii) sometimes recommend work after outcome

histories with no successes. Let 1− rt be the probability with which the sender recom-

mends work following a t− 1 period outcome history with no success. The probability

rt is chosen such that the receiver is just indifference between working and quitting

when they receive the message work.

Payoffs from the indifference policy

Notice that since the sender always recommends to the receiver that they should work

following histories with one success, their continuation value is B following any such

history. An argument for this statement is provided below.

Proposition 3. Under the indifference policy, the sender’s value is B following any

history with a success.

Proof. See subsection 1.6.3.

Let R∗ be the indifference policy and β∗ the receiver’s best response. There is

always some positive probability that the receiver keeps working. This probability

rapidly approaches 0 as time progresses. Nevertheless, this means that the sender’s

value is composed of an infinite sum. We describe it in full below, then provide upper

and lower bounds that become arbitrarily tight the more terms we include. The sender’s

value at time T̄ from the indifference policy is described below:

V
(
R∗, β∗| T̄

)
= (1− rT̄ )

(
BθbT̄ + (1− θbT̄ )V

(
R∗, β∗| T̄ + 1

))
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The sender’s value at the beginning of the game is below:

V (R∗, β∗| 0) = p0P (XT̄−1 > 0)B + [p0P (XT̄−1 = 0) + 1− p0]V
(
R∗, β∗| T̄

)
,

where XT̄−1 follows a binomial distribution with T̄ −1 trials and success probability

θ. The expression above captures the idea that, since the receiver stays for sure until

T̄ , the sender can look forward to T̄ − 1 trials that may yield a success. Beyond period

T̄ , the sender’s value is described above and depends on the sequence of revelation

probabilities, {rt}∞t=T̄ . Since all policies considered by the sender involve an initial T̄

period phase of no-information, this does not play a role in our comparison between

indifference and promise policies below.

The receiver’s value from the indifference policy depends on the revelation proba-

bilities chosen by the sender, {rt}∞t=T̄ . Let U
(
R∗, β∗| T̄

)
be their continuation value at

the beginning of period T̄ . Since the sender chooses these probabilities to ensure that

the receiver is just indifferent between staying and quitting, his continuation value is

equal to zero:

U
(
R∗, β∗| T̄

)
= (1− rT̄ (1− pT̄ qT̄ ))

[
πT̄µT̄ θB − c+ (1− πT̄µT̄ θ)U

(
R∗, β∗| T̄ + 1

)]
= 0

In fact, this is true in every period beyond T̄ . The next result shows that when the
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receiver plays an eventually cutoff strategy with T = T̄ , it is optimal for the sender to

choose the indifference policy.

Theorem 1. Suppose assumption 1 holds, and that the receiver chooses an eventually

cutoff strategy with T = T̄ . The recommendation policy, R∗ is optimal for the sender:

R∗t
(
yt−1

)
=



work if t < T̄

work if t ≥ T̄ and S (yt−1) = 1

quit with probability rt = c−ptqtθB
c(1−ptqt) if t ≥ T̄ and S (yt−1) = 0

work with probability (1− rt) if t ≥ T̄ and S (yt−1) = 0

β∗t (mt) =


work if mt = work

quit if mt = quit

Proof. See subsection 1.6.5.

When this restriction on the receiver’s strategies is relaxed, the indifference policy

may no longer be optimal. For example, if the receiver can choose a voluntary initial

period larger than T̄ , the sender can benefit by delaying information. To study this,

we introduce promise policies in the next section.
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1.3.6 Promise policies

Payoffs from a promise policy

Consider a promise policy that the sender proposes to the receiver at the beginning

of period t, in which the sender promises to reveal the entire history of outcomes at

time T > t. Denote the sender’s beliefs about ω by bt, and the receiver’s period-t

prior beliefs by (pt, qt). If the receiver chooses to stay until period T , the values of the

players are described as follows, where P T is the perfect promise strategy that reveals

all information at time T , and βT is the receiver’s best response:

U
(
P T , βT

∣∣ t) = (ptqtθB − c)+(1− ptqtθ) (pt+1qt+1θB − c)+. . .+
T−1∏
s=t

(1− psqsθ) pT qT
(
B − c

θ

)

V
(
P T , βT

∣∣ t) = btθB + (1− btθ) bt+1θB + . . .+
T−2∏
s=t

(1− bsθ) bT−1θB

Incentive compatibility

At the time the sender offers a promise policy to the receiver, the receiver must decide

whether or not to accept. This decision involves not only deciding whether or not to

work in the period of the offer, it also involves deciding whether or not to work in

every subsequent period before receiving the information from the sender. The sender’s

recommendation that the receiver should work in every period before the one in which

they reveal the history of outcomes must be incentive compatible if the receiver is
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expected to follow through. The next result shows that if the receiver prefers to follow

the recommendations of the promise strategy at time t, then they also prefer to do so

at every subsequent time before the final period.

Proposition 4. Let P T be a promise policy proposed by the sender to the receiver at

time t > T̄ . If Us
(
P T
)
≥ 0, then Us+1

(
P T
)
≥ 0 for all t ≤ s < T .

Proof. See subsection 1.6.4.

1.3.7 Conditions under which information delay is optimal

Sender

In general, the sender prefers to delay revealing information to the receiver, since a

negative message delivered earlier in the game hastens the receiver’s departure. We ask

the following question: for an ε decrease in revelation probability today, what is the

maximum δ increase in revelation probability tomorrow that the sender is willing to

give, assuming the receiver continues obeying the recommendations? Let the sender’s

value at time t from a status-quo revelation policy (with revelation probabilities rt and

rt+1) be Vt, and let their value from the new ε− δ perturbed policy be V̂t.

Vt = (1− rt) θbtB + . . .

(1− rt) (1− rt+1) (1− θbt) θbt+1B + . . .

(1− rt) (1− rt+1) (1− θbt) (1− θbt+1)Vt+2
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V̂t = (1− rt + ε) θbtB + . . .

(1− rt + ε) (1− rt+1 − δ) (1− θbt) θbt+1B + . . .

(1− rt + ε) (1− rt+1 − δ) (1− θbt) (1− θbt+1) V̂t+2

Since we assume that the only differences between the two disclosure policies occur

in periods t and t+ 1, it follows that the continuation value at time t+ 2 is the same.

A sufficient condition for the perturbed policy to be preferred by the sender is for

the following condition to hold: (1− rt + ε) (1− rt+1 − δ) ≥ (1− rt) (1− rt+1). This

inequality can be rearranged into the expression in condition 1 for δ in terms of ε, rt

and rt+1.

Condition 1. Sufficient condition for the sender to prefer decreasing the revelation

probability in period t by ε and increasing it by δ in period t+ 1:

δ ≤ ˆ̂
δmax =

ε (1− rt+1)

1− rt + ε

In general, the sender’s period-t+ 2 values may differ, but it will always be the case

that V̂t+2 ≥ Vt+2. To see why, recall that the sender must compensate the receiver for

lower flow payoffs in period t by increasing the revelation probability in period t + 1

and, therefore, increasing the receiver’s period-t+ 1 posterior beliefs beyond their value

under the status quo.

38



While the condition on δ is sufficient, it is not necessary. Decreasing revelation

probability at time t by ε strictly increases the sender’s flow payoff in period t. This

strict increase can allow for the condition we require to be violated and for the sender

to still prefer the perturbed policy to the status quo.

Receiver

Now consider the receiver’s willingness to accept a decrease in revelation probability

by ε in period t in exchange for an increase in period t + 1 revelation probability by

δ. A decrease in rt decreases the receiver’s posterior beliefs about the prospect of a

breakthrough in period t, while an increase in rt+1 increases these beliefs. As such,

the receiver’s flow payoffs are lower in period t and higher in period t + 1. Let their

period-t prior beliefs be (p, q) and their value at time t from the status quo policy and

the perturbed policy be Ut and Ût, respectively.

Ut (work|mt = work;R, β) = (πµθB − c) + . . .

. . .+ (1− πµθ) (1− rt+1 (1− p′q′)) (π′µ′θB − c+ (1− π′µ′θ)Ut+2)

where (π, µ) are the receiver’s period-t posterior beliefs when their prior beliefs are

(p, q) and the revelation probability is rt; (p′, q′) are the receiver’s period-t + 1 prior

beliefs, and (π′, µ′) are their period-t+ 1 posterior beliefs.
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Ût

(
work|mt = work; R̂, β̂

)
= (π̂µ̂θB − c) + . . .

. . .+ (1− π̂µ̂θ) (1− (rt+1 + δ) (1− p̂′q̂′))
(
π̂′µ̂′θB − c+ (1− π̂′µ̂′θ) Ût+2

)

where terms with hats reflect the fact that under the perturbed policy, the evolution

of the receiver’s beliefs differs from their evolution under the status quo. Since the

receiver’s value at time t+ 2 is determined by their period-t+ 2 prior beliefs, and these,

in turn, are determined by the revelation probabilities in time t and t+1, Ût+2 may not

be equal to Ut+2. Unlike the sender’s, the receiver’s beliefs (and, hence, their values) are

affected by the revelation probabilities. For any ε > 0, the corresponding δ that keeps

the receiver’s period t value from working weakly greater than the status quo value

must raise their period-t + 1 posterior beliefs about the prospects of a breakthrough

above the status quo level. This is necessary to compensate the receiver for the lower

flow payoff in period t under the perturbed strategy. In addition to generating higher

flow payoffs in period t+ 1, higher period-t+ 1 posterior beliefs also induce high period

-t+2 prior beliefs, which increase the receiver’s value. As such, Ût+2 ≥ Ut+2. In general,

when the value of δ is chosen such that Ut = Ût, say, it is possible to choose a value

that increases Ût through a mixture of (i) higher period-t+1 flow payoffs, as well as (ii)

a higher value of Ût+2. It is sufficient to require the increase in period-t + 1 revelation

probability, δ, to guarantee that Ût ≥ Ut through the flow payoffs in periods t and

t+ 1 alone, because the receiver’s period-t+ 2 continuation value will, by the previous
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argument, automatically be higher. For any decrease in period-t revelation probability,

an increase in period-t+1 revelation at least as large as δ guarantees that the receiver’s

value at time t is at least as high as their value under the status quo policy.

Condition 2. Sufficient condition for the receiver to accept ε lower revelation proba-

bility in period t and δ higher probability in period t+ 1:

δ ≥ δ̂min =
εpq

1− rt + ε

[
Bθ [2 (1− pq (1− θ))− θ (1 + p)] + c [(1− pq) θ − (1− p (q (1− θ) + θ)) rt+1]

c (1− (1− pq) rt) (1− p (q (1− θ) + θ))

]

When the δ required to keep the receiver’s payoff sufficiently high is lower than

the maximal δ the sender is willing to offer, the sender can improve their payoff by

decreasing the revelation probability. This is guaranteed to hold whenever δ̂min ≤ ˆ̂
δmax.

1.3.8 Examples

A priori, it is not clear whether the sender earns a higher payoff from the indifference

policy or from the maximal promise policy - the one in which they keep the receiver

in the game for the longest time possible. The examples below show that for some

parameter values, the sender can do strictly better by adopting the indifference strategy,

and for others, they can do better by adopting the maximal promise strategy. Recall

that any policy used by the sender involves an initial T̄ period with no information

sharing. The indifference policy differs from promise policies beyond this initial phase.

Therefore, we consider the sender’s value beyond this initial point in the comparison
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below. The sender’s payoff from the indifference policy involves an infinite number of

terms, since the receiver remains in the game with positive probability in every period.

Below, we derive bounds on their value beyond period T̄ :

(1− rt) [θbtB + (1− θbt) (1− rt+1) θbt+1B] ≤ V (R∗, β∗| t) ≤ (1− rt) θbtB
1− (1− rt) (1− θbt)

These inequalities follow from the fact that bt ≥ bt+1, and rt ≤ rt+1 for all t. The

sender’s value from promise policies involve multiple stages of computation: first, we

find the maximal time the receiver is willing to stay before receiving information. Given

this time, we calculate the sender’s expected payoff from the receiver remaining in the

game until that time. When B = 4, θ = 0.4, c = 0.4 and p0 = 0.8, the sender conceals all

information for the first 8 periods of the game. After this point, they can use a maximal

promise policy to keep the receiver in the game for an additional period after which they

fully reveal the outcome history. The receiver is only willing to stay in the game for

one more period beyond the voluntary 8 during which they stay without receiving any

information. However, the sender can do strictly better by using the indifference policy.

When, on the hand, θ = 0.35, the receiver still stays in the game for 8 periods without

receiving any information, but the sender can now use a maximal promise policy to

keep them in the game for an additional 3 periods beyond the voluntary phase. They

now prefer the maximal promise policy to the indifference policy. An increase in θ has

two effects: the probability of a success in a given period is now higher, conditional
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on the project being good. However, in the absence of good news, beliefs deteriorate

faster. Lower values of θ make players more lenient on outcome histories. It may well

be the case that the project is good but a success is yet to arrive.

1.4 Commitment

In this section, we consider the game in which the receiver has commitment power,

and both players choose their strategies at the beginning of play. The sender chooses a

disclosure policy, and the receiver chooses a mapping from disclosure policies to strate-

gies in B, simultaneously. To distinguish between these strategies and those described

above, we refer to them as commitment strategies. A commitment strategy, C, is a

mapping C : Σ→ B, and the space of all such strategies is C.

The strategies defined in subsection 1.2.3 map the sender’s messages to distributions

over actions. When the players commit to their strategies at the beginning of the game,

messages can have different meanings, depending on the disclosure policy in use by the

sender (recall that beliefs are induced by the pair of disclosure policy and message).

The receiver’s decisions are determined by their beliefs. When the disclosure policy is

known in advance (in the mechanism design problem analyzed earlier), messages alone

determine the receiver’s beliefs. When the disclosure policy is not known, however, the

pair of disclosure policy and message together determine their beliefs. Both strategies as

well as commitment strategies are equivalent to mappings from beliefs to distributions

over actions.
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A pair, (σ∗, C∗), is an equilibrium if (σ∗, C (σ∗)) is a Nash equilibrium of the simul-

taneous move game, and the receiver’s strategy, β∗ = C∗ (σ∗), is sequentially rational

on the equilibrium path. Namely, it must be the case that, given that the sender is

committed to σ∗, the receiver would not want to deviate from β∗ at any point during

the game. Conversely, given that the receiver is committed to β∗, the sender would not

want to deviate from σ∗ at the beginning of the game. Whereas the receiver makes de-

cisions along the path of play, the sender makes all their choices at the beginning of the

game, since their disclosure policy determines how messages are interpreted. Changes

in messages over time would render this commitment meaningless, and the receiver

would not be able to correctly interpret messages.

Definition 3. An equilibrium is a pair (σ∗, C∗) such that:

U (σ∗, C∗ (σ∗)| 0) ≥ U (σ∗, C (σ∗)| 0) ∀ C ∈ C,

V (σ∗, C∗ (σ∗)| 0) ≥ V (σ,C (σ)| 0) ∀ σ ∈ Σ,

We restrict attention to commitment strategies that induce the same mappings from

beliefs to actions for any σ ∈ Σ. For example, suppose that for some σ1 6= σ2 ∈ Σ,

and C ∈ C, C (σ1) = β1 and C (σ2) = β2. Let (πt, µt) be the receiver’s period-t

posterior beliefs under (σ1, β1) as well as under (σ2, β2) induced by messages m1t and

m2t, respectively. If β1 (m1t) 6= β2 (m2t), then C does not induce the same mapping

from beliefs to actions for σ1 and σ2. Essentially, we restrict attention to commitment
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strategies that map a receiver’s beliefs to action distributions. Call this restricted space

C̃⊆ C.

The main result of this section shows that a range of outcomes, including outcomes

obtained through promise policies, can be sustained in equilibrium. In particular, the

first best (for the receiver) full information outcome can be sustained. Before we state

the result, let T̂ denote the time at which information is released in the maximal promise

policy.

Theorem 2. Suppose assumption 1 holds, and suppose that the receiver chooses com-

mitment strategies from C̃. For every T ∈
[
T̄ , T̂

]
, there exists an equilibrium pair(

βT , CT
)
such that the sender conceals all information until time T , and the receiver

chooses to stay until time T , at which point they quit if a success has not arrived.

1.5 Conclusion

In this paper, I study the role of disclosure policies on the incentives of a receiver

who decides when to quit a project. Although the payoffs that accrue to the players

from the success of the project are the same, the sender does not incur the cost of

working. As a result, she would like the project to continue indefinitely. The receiver,

on the other hand, does incur a cost, and only prefers to stay on the project when

he is sufficiently optimistic about the project’s chances of success. There are two key

forces at play: (i) the balance between promising to give the receiver good news, and the

resulting bad news generated when this good news does not arrive; and (ii) the trade-off
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between releasing some information today, and delaying revelation at the same time as

increasing the amount of information released to the agent in order to compensate them

for waiting. The first trade-off appears in many settings in which an agent commits to

an information revelation policy used to persuade another agent to take some actions

that may not be in line with their interests. The second trade-off appears in dynamic

settings, but often does not play a crucial role. In Ely (2017), for example, the myopic

optimal disclosure policy is also an optimal policy when the receiver is patient and

strategic. In the above setting, I provide conditions under which, and examples in

which, this is not the case. The sender can take advantage of the receiver’s patience

by promising them more information if they choose to stay in the project longer. Why

does the sender benefit from the receiver’s patience in this framework? There are two

important differences between the model I study here and the one studied in Ely (2017):

(i) the sender does not receive flow payoffs in my setting, and (ii) she is uncertain about

the quality of the project. These two differences imply that the value to the sender from

the receiver staying for one more period is large: she may receive a perfect good news

signal about the project in this additional period, which would guarantee her receipt

of the lump sum payoff, B. Promising to reveal information in the future allows the

sender the opportunity to learn that the project is good, and relay that information to

the receiver. These considerations do not arise when the sender knows the state and

can choose when to communicate it to the receiver. Other than the flow payoff that

accrues, there is no informational value from waiting an additional period.

I study two natural disclosure policies: the indifference policy and the maximal

46



promise policy. I derive conditions under which the sender would prefer to deviate from

the indifference policy by delaying revelation and compensating the receiver with more

information later on. Through examples, I demonstrate that neither the indifference

policy nor the maximal promise policy is optimal for all parameter values. This is

surprising because the indifference policy keeps the receiver’s continuation value at 0,

making his individual rationality constraint bind. On the other hand, the maximal

promise policy generates strictly positive continuation payoffs for the receiver: when

they choose to stay until some period, T , their continuation value grows as they ap-

proach T and they anticipate receiving the promised information.

Many open questions remain. Are there sufficient conditions for the optimality of

the indifference policy? This questions is more difficult to answer than whether or not

there are conditions for the optimality of the maximal promise policy. This is because

continuation payoffs after a deviation in which the sender delays releasing information

are strictly positive, hence higher than those under the indifference policy. This gives the

sender more room to delay information further, giving the promise policy an advantage

over the indifference policy. A sufficient condition must, therefore, take this possibility

into account. In general, expressions for the receiver’s continuation values are less

tractable than those in existing models since their relevant beliefs are two dimensional

with non-linear transition rules. This makes studying deviations from the indifference

policy more cumbersome. Nevertheless, the findings above point towards an important

role that promise policies can play in dynamic persuasion games.
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1.6 Proofs

1.6.1 Proof of Proposition 1

Fix a disclosure policy, σ = {σt}, such that σt ( .| yt−1) ∈ ∆ (Mt) . We can partition

Mt into Qt and Mt\Qt such that the receiver quits whenever they observe a message

mt ∈ Qt and chooses to work otherwise. Let rt =
´
Qt
σt (mt| yt−1) dmt, and define Rσ

t

as follows:

Rσ
t

(
m| yt−1

)
=


rt if m = quit

1− rt if m = work

Since the receiver chooses to quit whenever they receive a message mt ∈ Qt under σ,

they choose to quit whenever they receive the message “quit” under Rσ. Similarly, they

choose to work whenever they receive the message “work” under Rσ, since working is

preferred to quitting whenever they receive a message mt ∈Mt\Qt under σ. To see why

the players’ values are the same under (σ, β) as they are under (Rσ, β), notice that the

receiver stays in the game after each history with exactly the same probability under

both pairs.

�

48



1.6.2 Proof of Proposition 2

Let T be the first period such that πtµt ≥ πt+1µt+1 for all t ≥ T . The receiver’s expected

payoff from T onwards when they choose to work whenever they receive the message

ıwork is the following:

U (Rσ, β|T − 1) = πTµT θB − c+ (1− πTµT θ)U (Rσ, β|T )

= πTµT θB − c+ (1− πTµT θ) [πT+1µT+1θB − c+ (1− πT+1µT+1θ)U (Rσ, β|T + 1)]

=
∞∑
t=T

(πtµtθB − c)
t−T∏
s=1

(1− πT+s−1µT+s−1θ)

Since πtµt ≥ πt+1µt+1, it is clear that once (πtµtθB − c) < 0 (or πtµt < c
θB

) for

some t, the expression is negative for all subsequent periods, and quitting in period t

maximizes the receiver’s payoff conditional on reaching period T . For any choice rule

prior to period T , the receiver maximizes their expected payoff from period T onwards

with a cutoff strategy. Hence, their optimal strategy is eventually a cutoff strategy.

�

1.6.3 Proof of proposition 3

Suppose that a success has occurred. The sender recommends that the receiver works in

every period thereafter. Since the policy is incentive compatible, the receiver complies

with the recommendation. Only good projects yield successes, which means that the

49



project must be good. As such, in every period, there is a probability of θ that a

breakthrough arrives, with a payoff of B. With probability (1− θ) there is a next

period with the same prospects. The sender’s value is below:

V = θB + (1− θ) θB + (1− θ)2 θB + (1− θ)3 θB + . . .

= θB
(
1 + (1− θ) + (1− θ)2 + (1− θ)3 + . . .

)
= θB

(
1

1− (1− θ)

)
= B

�

1.6.4 Proof of proposition 4

Suppose that Us
(
P T
)
≥ 0 for some t ≤ s < T . We can write this condition, while

expanding Us
(
P T
)
, as follows:

Us
(
P T
)

= (psqsθB − c)+(1− psqsθ) (ps+1qs+1θB − c)+. . .+
T−1∏
τ=s

(1− pτqτθ) pT qT
(
B − c

θ

)

Since t > T̄ , every term of the form (psqsθB − c) in the above expression is negative.

The expression for Us+1

(
P T
)
can be written in terms of Us

(
P T
)
in the following way:

Us+1

(
P T
)

=
Us
(
P T
)
− (psqsθB − c)

(1− psqsθ)
≥ Us

(
pT
)
,
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where the inequality follows from the fact that (psqsθB − c) ≤ 0 and (1− psqsθ) < 1.

�

1.6.5 Proof of Theorem 1

We will show that (1) given R∗, β∗ is (i) sequentially rational on the equilibrium path,

and (ii) optimal. (2) Given β∗, R∗ is optimal for the sender.

Let bt be the sender’s period t beliefs that the project is good, where t ≥ T̄ . Let

pt be the receiver’s belief that ω = 1, and qt be their belief that there has been one

success, conditional on ω = 1, all at the beginning of period t (their period t prior

beliefs - see subsection 1.3.1 for details). We consider the class of disclosure policies in

which the sender always recommends to the receiver that they stay when S (yt) = 1,

and recommends that they quit with some probability rt when S (yt) = 0. The choice

of rt affects the receiver’s period-t posterior beliefs, which are a function of their prior

beliefs and the probability rt in the following way (where we have suppressed time

subscripts):

π (p, q, r) =
p (1− r (1− q))
1− r (1− pq)

µ (q, r) =
q

1− r (1− q)

It can be shown that both π and µ are increasing in r. The reason is that the

probability r represents the credibility of the sender’s messages, or the extent to which
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their disclosure policy is in line with the receiver’s interests. For example, consider a

disclosure policy with rt = 1: this means that whenever the sender observes a history

with no successes, they tell the receiver to quit, which is exactly what the receiver

would like to do. When rt = 1, and the sender recommends to the receiver that

they should stay, the receiver knows for sure that the sender must have observed a

success. The receiver’s period-t posterior beliefs, therefore, jump to 1. In the other

extreme, when rt = 0, the sender always tells the receiver to stay. As a result, the

message does not convey any credible information, and the receiver’s period-t posterior

beliefs are unchanged - they quit even when the sender sends the message “stay”. The

value of rt, therefore, simultaneously determines (i) how often the sender recommends

that the receiver quit when they observe no successes, and (ii) how likely it is that a

success has occurred given that the sender recommends “stay”. The sender would like

to minimize how often they recommend that the receiver quit (by minimizing rt), as

well as ensuring that their ıstay message is credible. This trade-off is captured by the

sender’s value function from the optimal strategy after histories in which no success has

been observed. The value function, V (b, p, q), takes their beliefs, as well as the prior

beliefs of the receiver into account, and can be described as follows:

V (b, p, q) = max
r∈[0,1]

{(1− r) [bθV (1, π (p, q, r) , µ (q, r)) + (1− bθ)V (b′, p′ (π, µ) , q′ (µ))]}

subject to π (p, q, r)µ (q, r) θB ≥ c
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The constraint ensures that the sender’s “stay” message is credible - the receiver’s

period-t posterior beliefs must be such that when they do receive the stay message,

they actually prefer to stay. V (1, π, µ) is the sender’s value when a success arrives and

their beliefs that ω = 1 jumps to 1. When a success does not arrive, their beliefs about

the project deteriorate in the next period to b′:

b′ =
(1− θ) b
1− θb

Recall that the transition rule for receiver’s beliefs is the following:

p′ =
π (1− µ) + πµ (1− θ)

1− πµθ

q′ =
(1− µ) θ + µ (1− θ)

1− µθ

Namely, whenever the game does not end, the receiver’s prior beliefs in the next

period are given by (p′, q′) given that their previous period’s posterior beliefs were (π, µ).

Suppose the sender plays the strategy σ∗ in which they reveal the state to the receiver

with probability rt in period t such that πtµtθB = c. Namely, the sender reveals just

enough information to bring the receiver’s beliefs up to the level at which they are

indifferent between staying and quitting (we assumed that the receiver stays when they

are indifferent). In period t, given a history with no success, the sender’s value function

is described below:
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V ∗t = (1− rt) [θbtV (1, πt, µt) + (1− θbt) (1− rt+1) [θbt+1V (1, πt+1, µt+1) + (1− θbt+1)Vt+2]]

Consider an alternative strategy, σ̂, in which, whenever a success has not yet oc-

curred, the sender reveals the state with higher probability in period t (r̂t > rt), pushing

the receiver’s posterior beliefs above the threshold level required for them to stay. In

period t+1, the sender reveals the state with smaller probability (r̂t+1 < rt+1), since the

receiver’s period-t + 1prior beliefs are now higher than they would have been had the

sender sent the message “quit” with probability rt instead of r̂t. This is beneficial for the

sender, since they now send the message “stay” with higher probability. The trade-off is

the following: the sender must send the message “stay” with lower probability in period

t in order to send it with higher probability in period t + 1. The sender’s value from

this strategy, V̂ , is described below.

V̂t = (1− r̂t) [θqtV (1, π̂t, µ̂t) + (1− θqt) (1− r̂t+1) [θqt+1V (1, π̂t+1, µ̂t+1) + (1− θqt+1)Vt+2]]

First, notice that πt+1 = π̂t+1 and µt+1 = µ̂t+1, since the sender only needs to push

the receiver’s period-t + 1 posterior beliefs to the threshold required for them to stay.

To determine whether such a deviation is profitable, we calculate the difference V ∗t − V̂t:
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V ∗t − V̂t = θqt [(1− rt)V (1, πt, µt)− (1− r̂t)V (1, π̂t, µ̂t)] + . . .

. . .+ (1− θqt) θqt+1V (1, πt+1, µt+1) [(1− rt) (1− rt+1)− (1− r̂t) (1− r̂t+1)] + . . .

. . .+ (1− θqt) (1− θqt+1)Vt+2 [(1− rt) (1− rt+1)− (1− r̂t) (1− r̂t+1)]

= θqt [(1− rt)V (1, πt, µt)− (1− r̂t)V (1, π̂t, µ̂t)] + . . .

. . .+ (1− θqt) [(1− rt) (1− rt+1)− (1− r̂t) (1− r̂t+1)]× . . .

. . .× [θqt+1V (1, πt+1, µt+1) + (1− θqt+1)Vt+2]

First, note that the first bracketed expression is positive since (1− rt) > (1− r̂t) and

V (1, πt, µt) = V (1, π̂t, µ̂t). Indeed, it can be shown that V (1, πt, µt) = V (1, π̂t, µ̂t) =

V (1, πt+1, µt+1) = B. To see this, notice that the sender always recommends to the

receiver that they should stay after every period with one success. The receiver obeys

this recommendation and stays forever, eventually achieving a breakthrough. Since

there is no discounting, and a breakthrough arrives with probability 1 whenever the

receiver stays forever, the sender’s payoff is simply B (see proposition 3 for a proof).

The expression above can be simplified as follows:

V ∗t − V̂t = θqt [r̂t − rt]B + (1− θqt) [(1− rt) (1− rt+1)− (1− r̂t) (1− r̂t+1)] [θqt+1B + (1− θqt+1)Vt+2]

Note that rt is determined by the condition πtµtθB = c, which is a function of pt,
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qt, θ, B and c. Solving this identity for rt yields the following expression:

rt =
c− ptqtθB
c(1− ptqt)

,

which is positive since c > ptqtθB for all t ≥ T̄ . Consider any r̂t = rt + ε for some

ε > 0, and notice that the resulting period-t posterior beliefs are as follows:

π̂t (pt, qt, r̂t) =
pt (1− r̂t (1− qt))

pt (1− r̂t (1− qt)) + (1− r̂t) (1− pt)

µ̂t (qt, r̂t) =
qt

1− r̂t (1− qt)

Applying the transition rules for b′, p′ and q′ from above yields the following expres-

sions, where hats denote quantities under the alternative strategy, σ̂:

bt+1 =
(1− θ) bt

(1− θ) bt + 1− bt

p̂t+1 =
π̂t (1− µ̂t) + π̂tµ̂t (1− θ)

π̂t (1− µ̂t) + π̂tµ̂t (1− θ) + 1− π̂t

q̂t+1 =
(1− µ̂t) θ + µ̂t (1− θ)

1− µ̂tθ

Next, r̂t+1 chosen such that π̂t+1µ̂t+1θB = c. Recall that π̂t+1 is a function of

period-t+ 1 prior beliefs, (p̂t+1, q̂t+1), as well as r̂t+1:
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π̂t+1 =
p̂t+1 (1− r̂t+1 (1− q̂t+1))

p̂t+1 (1− r̂t+1 (1− q̂t+1)) + (1− r̂t+1) (1− p̂t+1)

µ̂t+1 =
q̂t+1

1− r̂t+1 (1− q̂t+1)

We now have formulae for all the terms in the expression for V ∗t − V̂t expressed in

terms of pt, qt, θ, B, c and ε. It can be shown that the expression in brackets, which

is the only one that may turn out to be negative, simplifies to the following fraction,

which is always positive:

(1− rt) (1− rt+1)− (1− r̂t) (1− r̂t+1) =
εptθ (Bθ − c) (1− qt)

c (1− pt (qt + (1− qt) θ))
> 0

This shows that no “one-shot” two period, deviation by the sender improves upon

their payoff from policy σ∗. Now consider multiple period deviations in which the sender

keeps the receiver’s posterior beliefs after sending message “stay” above the threshold

belief required to keep them in the game when they stick to strategy β∗. This is the only

other type of admissible deviation, because the receiver quits whenever their beliefs fall

below this threshold.

Consider an alternative strategy, σ̃, in which the sender deviates in periods t, t+ 1,

and t + 2, such that r̃t = r̂t > rt, r̃t+1 > r̂t+1 and r̃t+2 < r̂t+2 = rt+2. Let Ṽt denote

the sender’s value in period t from the strategy σ̃, V̂t their value from σ̂, and V ∗t their

value from σ∗. Since r̂t = r̃t, it follows that the receiver’s period-t+ 1 prior beliefs are
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the same under the two strategies: (p̂t+1, q̂t+1) = (p̃t+1, q̃t+1). Starting at period t + 1,

the strategies σ̃ and σ̂ now correspond to a pair of strategies one of which restores the

receiver’s beliefs to the threshold level and the other inflates their beliefs for one period

before restoring it in the next, respectively. But these are precisely what the strategies

σ∗ and σ̂ do at time t. The result above shows that V ∗t > V̂t for any σ̂ with r̂t > rt

and r̂t+1 such that π̂t+1 = πt+1. This implies that V̂t+1 > Ṽt+1. Using this fact, and the

expression for Ṽt, we show that V ∗t > Ṽt.

Ṽt = (1− r̃t)
[
θbtB + (1− θbt) Ṽt+1

]
< (1− r̃t)

[
θbtB + (1− θbt) V̂t+1

]
= V̂t < V ∗t

Now consider any strategy, σr, that deviates from σ∗ for r periods - the sender

changes the recommendation probabilities rt for r− 1 periods, potentially changing the

receiver’s posterior beliefs, then restores the receiver’s posterior beliefs in the rth period

to the threshold level and returns to the strategy σ∗ thereafter. We have shown that

the sender does not benefit from such a deviation when r = 2 or 3.9 We will prove that

such a strategy is never beneficial for any r ∈ N by induction. We begin by assuming

that it is not beneficial for r = k. Denote the sender’s value at time s by V k
s when

the sender deviates deviates for k periods, and by V k+1
s when they deviate for k + 1

periods. Let the first period of deviation be t and assume that V ∗t ≥ V k
t ; we will show

9It is immediate that the sender does not benefit when r = 1, since inflating the receiver’s beliefs
for one period then returning to σ∗ is costly for that one period (since r̂t is higher than rt), and there
is no benefit in subsequent periods.
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that V ∗t ≥ V k+1
t . Notice that V k

t can be expressed as follows:

V k
t = θB

[
k−2∑
s=0

qt+s
∏
i≤s

(1− r̂t+i)
∏
j≤s−1

(1− θbt+j)

]
+
∏
i≤k−2

(1− r̂t+i) (1− θbt+i)V k
t+k−1,

where t + k − 1 is the last period in which the sender deviates from σ∗ under σk -

the period in which the receiver’s posterior beliefs are restored to the threshold level.

Let the receiver’s prior beliefs at the start of this period be (p̂t+k−1, q̂t+k−1) and the

sender’s be bt+k−1,; the sender chooses r̂t+k−1 such that the receiver’s posterior beliefs

are at the threshold. Indeed, V k
t+k−1 can be expressed as follows:

V k
t+k−1 = (1− r̂t+k−1)

[
Bθbt+k−1 + (1− θbt+k−1)V ∗t+k

]
= V ∗t+k−1 (bt+k−1, p̂t+k−1, q̂t+k−1)

Now consider V k+1
t and suppose that the first k − 1 deviations are exactly those

employed in σk (such a strategy is always possible to construct). The sender’s value in

period t, V k+1
t , can be expressed as follows:

V k+1
t = θB

[
k−2∑
s=0

bt+s
∏
i≤s

(1− r̂t+i)
∏
j≤s−1

(1− θbt+j)

]
+
∏
i≤k−2

(1− r̂t+i) (1− θbt+i)V k+1
t+k−1,

Notice that V k+1
t+k−1 can be further unpacked:
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V k+1
t+k−1 = (1− r̃t+k−1)

[
Bθqt+k−1 + (1− θqt+k−1) (1− r̃t+k)

[
Bθqt+k + (1− θqt+k)V ∗t+k+1

]]
,

where r̃t+k−1 ≥ r̂t+k−1 and r̃t+k ≤ r̂t+k. But this is the same as the sender’s value at

time t+ k− 1 with priors (bt+k−1, p̂t+k−1, q̂t+k−1) of a 2-period deviation from σ∗, which

we have already shown is never beneficial. This implies the following:

V ∗t+k−1 (bt+k−1, p̂t+k−1, q̂t+k−1) ≥ V k+1
t+k−1

Combining the inequalities established above, we can conclude that σ∗ is preferred

by the sender to any k + 1 period deviation:

V ∗t ≥ V k
t ≥ V k+1

t

This completes the proof.

�
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Chapter 2

Stability in a many-to-one Matching
Model with Externalities among
Colleagues
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2.1 Introduction

Externalities can arise among agents in many two-sided settings including school choice

and the labor market. A student’s decision to attend a school, for example, may depend

on the characteristics of the school itself as well as on the other students attending that

school. A worker’s decision to join a particular firm may depend on the firm itself as

well as on their prospective colleagues. In this paper, I study a two-sided matching

model in which agents on one side of the market exert externalities on one another, and

investigate the conditions under which stable matchings exist.

I complement the existing literature on matching with externalities by analyzing a

many-to-one setting in which firms match with many workers who prefer to join larger

firms. I find that stable matchings exist but only under certain conditions: there can

only be two firms in the market, and these firms must have responsive preferences.

The results in this paper are related to those in Dutta and Masso (1997), who also

study a many-to-one matching model with externalities among workers. They derive

restrictions on the preferences of agents that precipitate a non-empty core.1 They find,

for example, that core matchings exist when firms have substitutable preferences and

workers care about firms first, then consider the workers they employ in a lexicographic

manner. In contrast, I focus on stable matchings, and allow workers to have preferences

that are not necessarily lexicographic. The main take-away from their analysis is that

allowing for more general preferences may result in an empty core and, hence, no stable

1All matchings in the core are stable.
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matching.

The results below are also related to those in Fisher and Hafalir (2016), who study

a one-to-one matching model with externalities among all agents. In their set-up, both

workers and firms prefer assignments with more matches, externalities affect all agents

in a symmetric way, and agents do not take the effect of their actions on the level of

externalities into account. They show that under these conditions, a stable matching

exists. In contrast to this approach, I assume that externalities only affect workers, and

allow them to take the effect of their actions on the level of externalities into account

when they make their matching decisions. I use similar fixed point methods to show

that a stable matching exists under these assumptions.

Many-to-one matching models with externalities are also analyzed by Bando (2012)

and Salgado-Torres (2013) using an approach pioneered by Sasaki and Toda (1996)

and refined by Hafalir (2008). In these papers, agents are endowed with ‘estimation

functions’ that describe their beliefs about the outcomes that arise when they deviate

from existing assignments. Pycia and Yenmez (2015) study a much more general many-

to-many matching model with contracts in which agents on both sides of the market

are affected by externalities. They derive restrictions on preferences that guarantee

the existence of stable outcomes. A similar setting to the present model (but with

transfers) has been studied by Lee (2014). The study investigates the existence of

market tipping (in which only one platform prevails) or market splitting (in which two

platforms coexist) equilibria in a model with firms that contract with two competing

platforms.
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The existence of stable matchings in the presence of externalities turns out to be

uncommon. Whereas agents in markets without externalities have preferences over

agents on the other side of the market, in the presence of externalities, each agent

may have preferences over all possible matching outcomes that can arise. As such,

models with externalities often do not admit stable matchings for arbitrary preference

profiles.2 Motivated by this observation, and eschewing restrictions on preferences,

Echenique and Yenmez (2007) propose an algorithm that finds core matchings (when

they exist) in a model with externalities among colleagues. The approach I take in

this paper is different and in line with studies that look for sufficient conditions for

existence. Despite the simplicity of the setting I study in this paper, stable matchings

only exist when there are two firms in the market. This result highlights the tradeoff

between allowing for more complex interdependence between agents on the one hand,

and finding stable matchings on the other.

The main result of the paper comes at the end of section 2.3. The proof uses Tarski’s

fixed point theorem to show that a fixed point, which corresponds to the externalities

generated by a myopic-stable matching, exists. Roughly speaking, existence of myopic-

stable matchings is driven by a monotonic relationship between the number of workers

a firm starts out with, and the number of workers it ends up with at the end of a

‘round’ of matching. Assuming that firms have responsive preferences ensures that a

2A stable matching always exists in the classical one-to-one matching model (Gale and Shapley
(1962)). In the many-to-one matching model (see chapters 5 and 6 in Roth and Sotomayor (1990))
and the many-to-many matching model (See Echenique and Oviedo (2006)), a stable matching exists
when preferences satisfy a condition called ‘substitutability’ .
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firm always ends up with more workers than it would have had it begun the round

with fewer workers. To reach a stable matching from this point requires verifying that

workers move around in a way that does not result in any cycles.

Section 2.2 describes the model with two firms, and Section 2.3 outlines the existence

proof. In Section 2.4, I show examples of cases in which either no stable matchings exist,

or the existence proof fails to go through when the sufficient conditions I introduce in

Section 2.3 are violated. I also describe an example in which even when these conditions

hold, stable matchings fail to exist in general with more than two firms. Section 2.5

concludes and discusses directions for future research.

2.2 Model

Consider a model in which firms are matched with sets of workers. Let the set of firms

be F = {f1, f2}, the set of workers be W = {w1, . . . , wn}, and the set of all agents be

N = F ∪ W . Each firm fi has a quota, qi, which determines the number of workers

they are matched with (empty slots are filled by multiple copies of the firm itself).3

Workers have preferences over the firm they match with and the number of workers

employed by that firm. Firms have preferences over sets of workers. A matching game,

G, is a quintuple, {F ,W , µ, uw, uf}, of firms, workers, a matching (defined below), a

utility function for workers, and a utility function for firms. Both firms and workers

have strict preferences.

3Throughout the remainder of the paper, I assume that qi = n for both firms and show in Section
2.4 an example of a game with no stable matchings when this assumption is relaxed.
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Definition 4. A mapping µ : N → N is a matching if it satisfies the following

conditions:

• µ(w) ∈ F ∪ {w} for each w ∈ W

• µ(fi) ⊂ W ∪ fi : |µ(fi)| = qi for each fi ∈ F

• For each w and f , µ(w) = f ⇐⇒ w ∈ µ(f)

Let M be the set of all matchings. We define what we mean by an externality

correspondence below.4 When a firm employs a smaller number of workers than its

capacity allows, the remaining slots are filled by multiple copies of itself, hence µ(fi) ⊂

W ∪ fi.

Definition 5. An externality correspondence is a mapping e : M → R2 that

associates a two-dimensional, real-valued vector, e(µ), to each matching, µ. Elements

of this vector are indexed by the firm, so that efi(µ) is the externality associated with

firm fi in matching µ.

The externality efi(µ) is the number of workers matched with firm fi in matching

µ. Next, we define the payoffs of firms and workers at a given matching, µ. Firm f ’s

payoff at matching µ is the utility they obtain from matching with the set of workers

µ(f):

uf (µ) = uf (µ(f))

4The terminology we use is borrowed from Fisher and Hafalir (2016).
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Worker w’s payoff derives from the firm they are matched with as well as the

level of externality associated with that firm in the going matching:

uw(µ) = uw
(
µ(w), eµ(w)(µ)

)
If worker w is single (i.e. µ(w) = w), then eµ(w) = 0. The next set of definitions de-

scribe what we mean by stability in the model. The first definition describes individual

rationality - one of the requirements that a stable matching must satisfy. A matching

is individually rational if no worker prefers to be single than remain with their current

match, and no firm prefers to relinquish any one of its workers. Since I assume that

firms have responsive preferences, whenever they are willing to fire a set of workers,

there must exist one worker they would prefer to exchange for an empty slot.

Definition 6. A matching is individually rational if uw(µ) ≥ uw(w, 0) for every

w ∈ W , and uf (µ(f)) ≥ uf ({µ(f)\w} ∪ f) for every f ∈ F and any w ∈ µ(f).

Another way in which a matching may be unstable is when there is a worker who

prefers to join another firm over the firm they are currently matched with, and that

firm prefers to employ the worker.5 The deviating firm and worker are said to block

the going matching.

Definition 7. A matching, µ, is blocked by worker w and firm f if uw(f, ef (µ) + 1) >

uw(µ(w), eµ(w)(µ)) and uf (µ(f) ∪ w) > uf (µ(f)).

5If the firm has already filled its quota of workers, then it must prefer to employ the deviating
worker instead of one of its existing employees.
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When the firm has already filled its quota, the blocking conditions for the worker

and firm become uw(f, ef (µ)) > uw(µ(w), eµ(w)(µ) and uf ({µ(f)\w′} ∪ w) > uf (µ(f))

for some w′ ∈ µ(f), respectively.

Definition 8. A matching is stable if it is individually rational, and not blocked by

any worker-firm pair.

This is the standard definition of stability, and the only difference between our set-

ting and the classical notion is that workers now take the number of other workers

employed at their target firm into account when contemplating whether or not to de-

viate.6 Note that although the present setting is very similar to that in Fisher and

Hafalir (2016), I allow workers to take their own deviation into account when blocking

a matching. This endows workers with some rationality as they anticipate the effect

their own deviation has on the size of a firm’s workforce. The next section outlines the

existence proof.

2.3 Existence of stable matchings

Let E = {e(µ) : µ ∈ M} ⊂ RF be the set of possible vectors of externalities. For

each x ∈ E, the auxiliary matching game, G(x), is {F ,W , µ, uxw, uf}, where the only

6A similar notion of stability is used in both Fisher and Hafalir (2016) and Pycia and Yenmez
(2015) in which agents take other agents’ matching decisions as fixed. This is an alternative approach
to the one that models what agents believe will occur after they deviate through estimation functions
(Sasaki and Toda (1996); Hafalir (2008); Salgado-Torres (2013)). Bando (2012) takes an intermediate
approach and requires that group-wise deviations by a single firm and a set of workers only occur when
they are credible. That is, when there are no deviations by a subset of the deviating workers and those
already at the firm that make workers in this subset as well as the firm better off.
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change made to the ingredients of the matching game G is that workers’ utilities are

now indexed by the externality vector x and defined below.

Definition 9. For a given matching µ, and vector of externalities x, worker w’s

payoff in the auxiliary game G(x) derives from the firm they are matched with as

well as the level of externality associated with this firm according to the externality

vector x:

uxw(µ) = uw
(
µ(w), xµ(w)

)
Notice that each auxiliary matching game is now a potentially different matching

game without externalities. Workers take the externalities associated with a firm as a

fixed feature of that firm and, therefore, have a strict ranking of firms that is indepen-

dent of the matching decisions of other agents. For a given auxiliary game, G(x), we

define what it means for a matching to be stable in the usual sense (i.e. in settings

without externalities) in G(x) and refer to this concept as auxiliary-stability to draw

a distinction between stability in the game with externalities and stability in auxil-

iary games. As usual, stability requires individual rationality and no-blocking. The

corresponding requirements for auxiliary games are defined below.

Definition 10. Amatching µ is auxiliary-rational inG(x) if uf (µ(f)) ≥ uf ({µ(f)\w} ∪ f)

for every f ∈ F and any w ∈ µ(f), and uw(µ(w), xµ(w)) = uxw(µ(w)) ≥ uxw(w) =

uw(w, 0) for all w ∈ W .

Auxiliary-rationality is the same as individual rationality in the absence of exter-
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nalities. In a matching that satisfies this condition, no firm prefers to relinquish any of

its workers, and no worker prefers to be unmatched over remaining with the firm they

are matched with.

Definition 11. A matching µ is auxiliary-blocked in G(x) by worker w and firm

f if uw(f, xf ) > uxw(µ(w)) = uw
(
µ(w), xµ(w)

)
and uf ({µ(f)\w′} ∪ w) > uf (µ(f)) for

some w′ ∈ µ(f).

A matching is auxiliary-blocked when, for a fixed vector of externalities, there is

some firm-worker pair that would prefer to jointly deviate over remaining with their

current matches. When no such firm-worker pair exists, and a matching is auxiliary-

rational, it is auxiliary-stable.

Definition 12. A matching µ is auxiliary-stable in G(x) if it is auxiliary-rational

and not auxiliary-blocked in G(x).

Each auxiliary game, G(x), is a many-to-one matching game without externalities.

As a result, an auxiliary-stable matching exists if firms’ preferences are responsive (de-

fined below). Responsiveness is a common restriction on preferences in the matching

literature (see, for example, Roth and Sotomayor (1990)). Let S(x) denote the set of sta-

ble matchings in the auxiliary game G(x): S(x) = {µ : µ is auxiliary stable in G(x)}.

Below is the definition of responsive preferences, and a result guaranteeing that auxil-

iary games always admit an auxiliary-stable matching.

Definition 13. (Definition 5.2 in Roth and Sotomayor (1990)) A firm’s pref-

erence relation, �f , over sets of workers is responsive (to preference relation �̃ over
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individual workers) if for any set of workers S, and any w /∈ S and w′ ∈ S, S �

{S\w′} ∪ {w} ⇐⇒ w�̃w′.

For each vector of externalities x ∈ E, if firms’ preferences are responsive, then

S(x), the set of stable matchings of auxiliary game G(x), is non-empty.

Proof. See the appendix.

Definition 14. A worker’s preferences, �w, are increasing in the number of col-

leagues if for any two auxiliary games, G(e1) and G(e2), such that e1 ≥ e2,

f1 �w f in G(e2) =⇒ f1 �w f in G(e1) for f ∈ {f2, ∅}

f2 �w f in G(e1) =⇒ f2 �w f in G(e2) for f ∈ {f1,∅}

Preferences are increasing in the number of colleagues if, whenever a worker prefers

some firm, say firm 1, over either firm 2 or remaining unmatched when firm one is

matched with some number of workers, then they also prefer firm 1 to either firm 2 or

being unmatched when firm 1 is matched with more workers. Before stating the next

result, we introduce the concept of myopic-stability. This form of stability requires that

matchings are auxiliary-stable with respect to the vector of externalities they generate.

Formally, let xµ = e(µ) be the set of externalities generated by matching µ. Matching

µ is myopic-stable if it is auxiliary stable in G(xµ).

While we will be able to relax the assumption of myopia, we use it in an intermediate
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step in the existence proof. The next step in showing existence of stable matchings in

G is to define a correspondence, T : E → E, in the following way:

T (x) = {e(µ) : µ ∈ S(x)}

In words, T (x) is the set of possible externalities associated with auxiliary-stable

matchings of the game G(x). The fixed points of T correspond to myopic-stable match-

ings, as the next result shows.

Proposition 5. There is a myopic-stable matching µ∗ of the matching game G iff there

is an x∗ such that x∗ ∈ T (x∗), where x∗ = e(µ∗).

Proof. See the appendix.

Having shown that fixed points of T correspond to externalities generated by myopic-

stable matchings, we now show that fixed points of T do exist. Our strategy is to apply

Tarski’s fixed point theorem (Tarski (1955)), which means that we need to guarantee

that there is an increasing selection of T (since T is a correspondence) and that E is a

partially ordered complete lattice.7 A selection of the correspondence T is a function

f : E → E such that for any x ∈ E, f(x) ∈ T (x). E endowed with a partial order is a

complete lattice if any subset of E has a greatest lower bound and least upper bound

that exist in E.

7Tarski’s fixed point theorem states the following: let F : X → X be a map from a complete
lattice, (X,≤), onto itself. If F is increasing (x ≥ y =⇒ F (x) ≥ F (y)), the set of fixed points of F ,
{x ∈ X : x = F (x)}, is a non-empty complete lattice.
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Proposition 6. If there exists an increasing selection f of T , then a myopic-stable

matching, µ∗, exists.

Proof. By Tarski’s fixed point theorem, an increasing selection of T has a fixed point,

which is also a fixed point of T . By Proposition 5, this fixed point corresponds to the

externalities generated by a myopic-stable matching, µ∗.

We are now ready to show that myopic-stable matchings exist, as long as three

conditions hold: (i) firms have responsive preferences, (ii) workers have preferences

that are increasing in the number of colleagues, and (iii) firms do not have capacity

constraints. First, we define an appropriate partial order on the set of externalities, E,

and show that the resulting partially ordered set is a complete lattice. Then we check

that T is increasing with respect to the partial order defined. Once these two conditions

are satisfied, Tarski’s fixed point theorem applies. The partial order is described in

lemma 2.6 in the appendix, which also shows that E equipped with this partial order

is a complete lattice. We obtain the existence of myopic-stable matchings in the next

proposition.

Proposition 7. For workers with preferences that are increasing in the number of col-

leagues, and two firms with responsive preferences and qi = n, a myopic-stable matching

exists.

Proof. See the appendix.

Showing that stable matchings exist once we have a myopic stable matching is
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relatively straightforward, and we present the argument in the penultimate result in

this section.

Proposition 8. For firms with responsive preferences, workers with preferences that

are increasing in the number of colleagues and qi = n, if a myopic-stable matching

exists, then so does a stable matching.

Proof. See the appendix.

Putting these results together yields the main result of the paper: a stable matching

exists whenever the preferences of firms and workers satisfy the restrictions above.

Theorem 3. For two firms with responsive preferences, workers with preferences that

are increasing in the number of colleagues and qi = n, a stable matching exists.

Proof. This follows from propositions 1-4.

The assumptions we imposed on preferences to ensure that a stable matching exists

allow for the application of Tarski’s fixed point theorem in Proposition 7. The three

restrictions we require, (1) that there are only two firms, (2) that firms have responsive

preferences, and (3) that firms have no capacity constraints, are all necessary, as will

be shown in the next section.

2.4 Examples

This section contains examples of games without stable matchings that arise when the

assumptions on firms’ capacities, their preferences and their number are relaxed. In
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the first example, I show that when there are capacity constraints, it is possible to find

a preference profile in which firms’ preferences are responsive, workers’ preferences are

increasing in the number of colleagues, and yet no stable matching exists.

Responsive preferences are a special case of preferences that satisfy ‘substitutabil-

ity’.8 In the standard many-to-one matching model without externalities, a stable

matching exists whenever firms have substitutable preferences. However, example 2.4

shows that substitutable preferences are not sufficient to guarantee that stable match-

ings exist - it describes a game with two firms, workers whose preferences are increasing

in the number of colleagues and no stable matching.

Finally, example 2.4 shows that when there are three firms (with responsive pref-

erences) and three workers with preferences that are increasing in the number of col-

leagues, it is possible to construct preferences for workers that preclude the existence

of stable matchings.

An example of a game with firms that have capacity constraints in which

no stable matching exists:9 Consider a game with two firms and two workers. Let

both firms have responsive preferences with the following underlying ranking of workers:

w1 � w2 � ∅. Let worker i’s preferences (�i) be increasing in the number of colleagues

and order firm-employee pairs in the following way:

(f1, 2) �1 (f2, 1) �1 (f1, 1) �1 ∅

8A preference relation � satisfies substitutability if for any w,w′ ∈ W , if w ∈ S ⊆ W and S �
S′, ∀S′ ⊆W , then w ∈ T ⊆W\w′ where T � T ′, ∀T ′ ⊆W\w′

9I would like to thank Ichiro Obara for suggesting this example.

75



(f2, 1) �2 (f1, 2) �2 (f1, 1) �2 ∅

Namely, worker 1 is preferred by both firms to worker 2, and worker 1 prefers firm

1 to firm 2 only when firm 1 employs one other worker. Meanwhile, worker 2 always

prefers firm 2 to firm 1. Finally, suppose that firm 2’s capacity is 1: it can only employ

one worker, while firm 1 can employ 2 workers. To see that there is no stable matching,

consider the following cycle, beginning at matching µ1 = {{f1, w2}, {f2, w1}}:

µ1 = {{f1, w2}, {f2, w1}} is blocked by (f1, w1), leading to µ2.

µ2 = {{f1, w1, w2}, {f2, ∅}} is blocked by (f2, w2), leading to µ3.

µ3 = {{f1, w1}, {f2, w2}} is blocked by (f2, w1), leading to µ4.

µ4 = {{f1, ∅}, {f2, w1} , {∅, w2}} is blocked by (f1, w2), leading back to µ1. Notice

that starting at any matching of this game leads to some point in this cycle through

either an individual or a pair-wise block. Since all agents prefer to be matched, it is

clear that no matching in which there is an unmatched agent is stable, so we only need

to consider matchings in which all agents are matched. µ1, µ2 and µ3 are, therefore,

the only possible candidates for stable matchings. But these matchings are part of the

cycle above, hence no stable matchings exist.

An example of a game with firms that have substitutable preferences in

which no stable matching exists: Let F = {f1, f2}, W = {w1, w2}, and suppose

that firms’ preferences are such that {w1} �f {w1, w2} �f {w2} �f ∅. First, notice

that although these preferences are substitutable, they are not responsive. If they were
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responsive to some underlying preference relation, �, then w2 � ∅ would imply that

{w1, w2} �f {w1, ∅} = w1. Let workers’ preferences be such that (f1, 2) �w (f2, 2) �w

(f1, 1) �w (f2, 1), and notice that there are no stable matchings in which any worker is

unmatched. This is because any unmatched worker would prefer to match with some

firm. Moreover, if one worker is unmatched, then there must be a vacant firm, which

would prefer to employ them than remain unmatched. However, any matching in which

all workers are matched is not stable either:

{{f1, w1, w2} , f2} is blocked by f1

{{f1, w1} , {f2, w2}} is blocked by (f2, w1)

{{f1} , {f2, w1, w2}} is blocked by f2

{{f1, w2} , {f2, w1}} is blocked by (f1, w1) If there is no stable matching in which

some workers are unmatched, and none in which all are matched, then stable matchings

don’t exist in this example.

In the final example, I show that whenever there are 3 firms and 3 workers, it is

possible to construct preferences for workers such that no stable matching exists even

when firms have responsive preferences and no capacity constraints. An example of

a game with 3 firms in which no stable matching exists: suppose there are 3

firms and 3 workers.10 Firms have responsive preferences and all workers are acceptable.

The following describes the preferences of workers.

10When there are more than 3 firms and 3 workers, a preference profile can be constructed so that
the resulting game has no stable matching by assuming that firms only find 3 workers acceptable, and
these 3 workers only find three firms acceptable.
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w1 : (f3, 2) �1 (f2, 2) �1 (f2, 1) �1 (f1, 3) �1 (f3, 1) �1 ∅

w2 : (f2, 2) �2 (f1, 2) �2 (f1, 1) �2 (f2, 1) �2 ∅

w3 : (f1, 2) �3 (f3, 2) �3 (f3, 1) �3 (f1, 1) �3 ∅

Workers’ preferences are increasing in the number of colleagues, hence satisfy the

condition in Definition 14. However, in every matching between workers and firms,

there exists a series of deviations that lead to the cycle described below. The starting

matching is µ1 = {{f1, w2, w3} {f2, w1} , f3}.

µ1 is blocked by (f2, w2), leading to µ2 = {{f1, w3} {f2, w1, w2} f3}.

µ2 is blocked by (f3, w3), leading to µ3 = {f1, {f2, w1, w2} , {f3,w3}}.

µ3 is blocked by (f3, w1), leading to µ4 = {f1, {f2, w2} , {f3, w1, w3}}.

µ4 is blocked by (f1, w2), leading to µ5 = {{f1, w2} , f2, {f3, w1, w3}}.

µ5 is blocked by (f1, w3), leading to µ6 = {{f1, w2, w3} , f2, {f3, w1}}.

µ6 is blocked by (f2, w1), leading back to µ1.

The existence of a cycle alone does not prove that there is no stable matching. It can

be shown that starting at any potentially stable matching leads, through a sequence of

blocks, to the cycle above. The remainder of this example is relegated to the appendix.
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2.5 Conclusion

In this paper, I described a matching model in which workers exert externalities on

their colleagues. I showed that a stable matching exists when workers’ preferences are

increasing in the number of colleagues, and two firms have responsive preferences with

no capacity constraints. The results contribute to the literature on matching models

with externalities among colleagues by providing sufficient conditions for the existence

of stable matchings and examples in which stable matchings no longer exist when these

conditions are relaxed. The framework is reminiscent of an oligopolistic labor market

with two firms in which workers prefer to join larger firms, or a school choice problem

with two schools and students who prefer larger cohorts.

There are some open questions that remain. While the examples in section 2.4 show

that stable matchings may not exist, it may be the case that stronger assumptions on

the preferences of firms and workers that rule out the type of cycles presented above

would allow for stable matchings to exist. One natural question to ask is whether

stable matchings emerge when preferences of workers are such that they only care

about the relative difference in the number of workers between firms. This would

shrink the number of deviations workers make, and could reasonably result in more

stable matchings.

Finally, agents see ahead up to the effect of their own deviation. This is a departure

from Fisher and Hafalir (2016), in which agents are myopic. However, it would be

reasonable to assume that agents can also anticipate the responses of others. In which
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case, a suitable notion of stability (for example, farsighted stability as in Mauleon et al.

(2011) and Ray and Vohra (2015)) may yield a different conclusion.

2.6 Appendix

Proof. (of lemma 2.3)

Responsive preferences satisfy substitutability. Any many-to-one matching game

without externalities in which firms’ preferences satisfy substitutability admits a stable

matching by theorem 6.5 in Roth and Sotomayor (1990).

Proof. (of proposition 5)

First, we will show that if µ∗ is stable, then e (µ∗) ∈ T (x∗).

Suppose, to the contrary, that e(µ∗) /∈ T (x∗). Notice that this implies that µ∗ /∈

S(x∗), i.e. that µ∗ is not auxiliary stable in G(x∗). This means that either (i) µ∗ is not

auxiliary-rational, or (ii) it is auxiliary-blocked in G(x∗).

If (i) is true, then either there exists some w ∈ W such that uw
(
µ∗(w), x∗µ∗(w)

)
<

uw(w, 0), or there exists some f ∈ F with uf (µ
∗) < uf (f). If the latter is true, then

µ∗ cannot be stable (a contradiction). Moreover, µ∗ cannot be stable if the former is

true, since uw
(
µ∗(w), x∗µ∗(w)

)
= uw

(
µ∗(w), e(µ∗)µ∗(w)

)
= uw(µ∗) and uw(µ∗) < uw(w, 0)

implies that µ∗ is not individually rational.

If (ii) is the case, then there exists w ∈ W and f∈ F such that uw(f, x∗f ) >

uw

(
µ∗(w), x∗µ∗(w)

)
and uf (µ∗(f) ∪ w) > uf (µ∗(f)). Since x∗ = e(µ∗), this violates

the stability of µ∗. It must, therefore be the case that a stable µ∗ is a fixed point of T .
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Next, we show that a fixed point of T must be generated by a stable matching. Let

x∗ ∈ T (x∗) such that x∗ = e(µ∗) - such a matching exists by non-emptiness of T . Now

suppose that µ∗ is not stable. Either (i) µ∗ is not individually rational, or else (ii) it is

blocked by some w ∈ W and f ∈ F .

(i) in the first case, the existence of some f ∈ F such that uf (µ∗) < uf (f) vi-

olates the auxiliary stability of µ∗ in G(x∗), which is guaranteed by the definition

of µ∗ as a matching such that e(µ∗) ∈ T (x∗). If, instead, individual rationality

is violated by the existence of some w ∈ W with uw(µ∗) < uw(w, 0), then since

uw(µ∗) = uw(µ∗(w), e(µ∗)µ∗(w)) = uw(µ∗(w), x∗µ∗(w)), this violates the auxiliary stability

of µ∗ in G(x∗).

(ii) in the second case, the existence of some w ∈ W and f ∈ F such that uf (µ∗(f)∪

w) > uf (µ
∗(f)) anduw(f, e(µ∗)µ∗(w))) > uw(µ∗(f)) violates auxiliary stability of µ∗ in

G(x∗), since e(µ∗) = x∗ by definition.

E = {(x, y, n− x− y) ∈ R3 : x, y ≥ 0, x+ y ≤ n} endowed with the partial order

(x1, y1, n − x1 − y1) ≥ (x2, y2, n − x2 − y2) ⇐⇒ x1 ≥ x2 and y1 ≤ y2 is a complete

lattice.

Proof. We want to show that for any A ⊆ E, there exists a supremum and infimum

in E. Let x̄ = max (x,y,n−x−y)∈A{x}, and y = min (x,y,n−x−y)∈A{y} and define s =

(x̄, y, n − x̄ − y). Then s is the supremum of A, and is in E. To see that s is the

supremum of A, notice that x̄ ≥ x for any (x, y, n − x − y) ∈ A and y ≤ y for any

(x, y, n− x− y) ∈ A, by definition. To see that s ∈ E, notice that since x̄ = x for some
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(x, ỹ, n− x− ỹ) ∈ A ⊆ E, it must be the case that x̄ + ỹ ≤ n. Moreover, since y ≤ ỹ,

it follows that x̄+ y ≤ x̄+ ỹ ≤ n.

Similarly, let x = min(x,y,n−x−y)∈A{x}, ȳ = max(x,y,n−x−y)∈A{y}, and n = (x, ȳ, n −

x− ȳ). Then n is an infimum of A since x ≤ x and ȳ ≥ y for any (x, y, n− x− y) ∈ A.

To see that n ∈ E, notice that ȳ = y for some (x̃, y, n− x̃− y) ∈ A, and so x̃+ ȳ ≤ n.

Since x ≤ x̃, it must be the case that x+ ȳ ≤ x̃+ ȳ ≤ n.

Proof. (of proposition 7) We will show that there exists an increasing (with respect to

the partial order defined in lemma 2.6) selection of T . Let (x1, y1, n−x1−y1), (x2, y2, n−

x2− y2) ∈ E be such that (x1, y1, n−x1− y1) ≥ (x2, y2, n−x2− y2). We will show that

for any µ1 ∈ T (x1, y1, n− x1 − y1) and µ2 ∈ T (x2, y2, n− x2 − y2), e(µ1) ≥ e(µ2). This

implies that any selection of T is increasing.

Let G(1) := G(x1, y1, n−x1−y1) and G(2) := G(x2, y2, n−x2−y2), and notice that

if W1(1) = {w ∈ W : f1 �w f2 in G(1)} and W1(2) = {w ∈ W : f1 �w f2 in G(2)},

then W1(2) ⊆ W1(1).

To proceed, we make use of the following chain of implications: e(µ1) ≥ e(µ2) ⇐⇒

|µ1(f1)| ≥ |µ2(f1)| and |µ1(f2)| ≤ |µ2(f1)| ⇐= µ1(f1) ⊇ µ2(f1) and µ1(f2) ⊆ µ2(f2).

µ1(f1) ⊇ µ2(f1)

Proof. Suppose that µ1(f1) + µ2(f1). Then there exists some w ∈ µ2(f1)\µ1(f1).

w ∈ µ2(f1) means that w �f1 ∅ and that f1 �w ∅ in G(2). In addition it means that

either f1 �w f2, or that f2 �w f1 and ∅ �f2 w in G(2). First, notice that f1 �w ∅

in G(2) implies that f1 �w ∅ in G(1). If it is the case that f1 �w f2 in G(2), then it
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follows that f1 �w f2 in G(1), and we arrive at a contradiction to the statement that

w /∈ µ1(f1). Suppose, instead, that f2 �w f1 and ∅ �f2 w in G(2). Since preferences

of firms are unchanged across games, this means that ∅ �f2 w in G(1) as well, hence

w /∈ µ1(f2). But since f1 �w ∅ in G(1) and w �f1 ∅, it must be the case that w ∈ µ1(f1)

- a contradiction.

µ1(f2) ⊆ µ2(f2)

Proof. Suppose that µ1(f2) * µ2(f2). Then there exists some w ∈ µ1(f2)\µ2(f2).

w ∈ µ1(f2) =⇒ w �f2 ∅ and f2 �w ∅ in G(1). In addition, w ∈ µ1(f2) =⇒ either (i)

f2 �w f1 in G(1), or (ii) f1 �w f2 and ∅ �f1 w in G(1).

Case (i): f2 �w ∅ in G(1) =⇒ f2 �w ∅ in G(2). f2 �w f1 in G(1) =⇒ f2 �w f1

in G(2). Since w �f2 ∅ and {f2 �w f1, f2 �w ∅} in G(2), w and f2 are a blocking pair

in G(2) - a contradiction.

We have shown that e(µ1) ≥ e(µ2) for any µ1 ∈ T (x1, y1, n − x1 − y1) and µ2 ∈

T (x2, y2, n−x2−y2). Pick any selection f of T - by the above, it must be an increasing

selection.

Proof. (of proposition 8)

Start at some myopic-stable matching µ with some workers employed at the two

firms while some are unemployed. Define the following sets of workers:

W 0(µ) := {w ∈ µ(f1) ∪ µ(f2) : ∅ �w (µ(w), |µ(µ(w))|)}
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W 1(µ) := {w ∈ µ(f2) : (f1, |µ(f1)|+ 1) �w (f2, |µ(f2)|) and w �f1 ∅}

W 2(µ) := {w ∈ µ(f1) : (f2, |µ(f2)|+ 1) �w (f1, |µ(f1)|) and w �f2 ∅}

Notice that since µ is myopic-stable, W 0(µ) = ∅. There are 4 possible cases we need

to consider:

(1) W 1(µ) = W 2(µ) = ∅

(2) W 1(µ) = ∅, W 2(µ) 6= ∅

(3) W 1(µ) 6= ∅, W 2(µ) = ∅

(4) W 1(µ) 6= ∅, W 2(µ) 6= ∅

Case 1:

Suppose that case (1) is true. Workers in the unemployment pool may prefer to join

one of the two firms when they take the effect of their deviation on the number of the

firm’s employees into account. Define the following sets of workers:

U1(µ) := {w : µ(w) = ∅, (f1, |µ(f1)|+ 1) �w ∅, and w �f1 ∅}

U2(µ) := {w : µ(w) = ∅, (f2, |µ(f2)|+ 1) �w ∅, and w �f2 ∅}

There are 4 possible cases:

(i) U1(µ) = U2(µ) = ∅
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(ii) U1(µ) = ∅, U2(µ) 6= ∅

(iii) U1(µ) 6= ∅, U2(µ) = ∅

(iv) U1(µ) 6= ∅, U2(µ) 6= ∅

If (i) is true, then µ is stable.

Cases 1-ii (and, by symmetry, case 1-iii):

Suppose (ii) is true. Let all workers in U2(µ) move to f2. This may cause other

workers to want to move from the unemployment pool to f2. If so, allow them and

subsequent sets of similar workers to move. This process ends at some point since the

number of unemployed workers is finite. Call the new matching µ̃. Since f2 now has

more workers, W 2(µ̃) may be non-empty, while W 1(µ̃) must be empty because W 1(µ)

is empty, and f2 now has more workers relative to f1. Notice that for any matching µ∗,

if W 1(µ∗) = W 2(µ∗) = U1(µ∗) = U2(µ∗) = ∅, then µ∗ is stable.

• Step 1:

– Allow all workers in W 0(µ̃) ⊆ µ̃(f1) (if any) to move to the unemployment

pool. This may cause other workers to want to move from f1 to the unem-

ployment pool. If so, allow them and subsequent sets of similar workers to

move. This process ends at some point since the number of workers matched

with f1 is finite; call the resulting new matching µ1.

– If W 2(µ1) is empty, consider the sets U1(µ1) and U2(µ1). Since U1(µ) is

empty, so is U1(µ1). It may be the case, however, that U2(µ1) is non-empty.

If so, allow workers to move to f2. This may cause other workers to want to

85



move from the unemployment pool to f2. If so, allow them and subsequent

sets of similar workers to move. This process ends at some point since the

number of unemployed workers is finite. Call the new matching µ̃1.

– If W 2(µ1) is non-empty, allow workers to move to f2. This may cause other

workers to want to move from f1 to f2. If so, allow them and subsequent sets

of similar workers to move. This process ends at some point since the number

of workers employed by f1 is finite, and call the new matching µ̃1. Consider

the sets U1(µ̃1) and U2(µ̃1). Since U1(µ) is empty, so is U1(µ̃1). It may be

the case, however, that U2(µ̃1) is non-empty. If so, allow workers to move to

f2. This may cause other workers to want to move from the unemployment

pool to f2. If so, allow them and subsequent sets of similar workers to move.

This process ends at some point since the number of unemployed workers is

finite. Call the new matching µ̃1.

• Step k:

– Allow all workers in W 0(µ̃k−1) ⊆ µ̃k−1(f1) (if any) to move to the unemploy-

ment pool. This may cause other workers to want to move from f1 to the

unemployment pool. If so, allow them and subsequent sets of similar work-

ers to move. This process ends at some point since the number of workers

employed by f1 is finite. Call the new matching µk−1.

– If W 2(µk−1) is empty, consider the sets U1(µk−1) and U2(µk−1). Since U1(µ)

is empty, so is U1(µk−1). If U2(µk−1) is non-empty, allow workers to move to
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f2. This may cause other workers to want to move from f1 to f2. If so, allow

them and subsequent sets of similar workers to move. This process ends at

some point since the number of workers employed by f1 is finite, and call the

new matching µ̃k.

– IfW 2(µk−1) is non-empty, allow workers to move to f2. This may cause other

workers to want to move from f1 to f2. If so, allow them and subsequent sets

of similar workers to move. This process ends at some point since the number

of workers employed by f1 is finite. Call the new matching µ̃k−1. Consider

the sets U1(µ̃k−1) and U2(µ̃k−1). Since U1(µ) is empty, so is U1(µ̃k−1). It

may be the case, however, that U2(µ̃k−1) is non-empty. If so, allow workers

to move to f2. This may cause other workers to want to move from the

unemployment pool to f2. If so, allow them and subsequent sets of similar

workers to move. This process ends at some point since the number of

unemployed workers is finite. Call the new matching µ̃k.

This process must stop at some finite k∗, since the number of agents who are either

matched with firm 1 or unemployed is finite: it must be the case that µ̃k∗ is stable.

Notice that the same process can be implemented for case (iii) when U1(µ) 6= ∅.

Case 1-iv:

Without loss of generality, let workers in U1(µ) move to firm 1 and call the resulting

matching µ̃. W 2(µ̃) is empty since W 2(µ) is empty and there are more workers in firm

1 relative to firm 2 in µ̃ than in µ.
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• Step 1:

– Allow all workers in W 0(µ̃) ⊆ µ̃(f2) (if any) to move to the unemployment

pool. This may cause other workers to want to move from f2 to the unem-

ployment pool. If so, allow them and subsequent sets of similar workers to

move. This process ends at some point since the number of workers matched

with f2 is finite; call the resulting new matching µ1.

– If both W 1(µ1) and U1(µ1) are empty, follow the steps for case 1-ii.

– If W 1(µ1) is empty, and U1(µ1) is non-empty, allow workers to move to firm

1. This may cause other workers to want to move from the unemployment

pool to f1. If so, allow them and subsequent sets of similar workers to

move. The process ends at some point since the number of workers in the

unemployment pool is finite; call the new matching µ̃1.

– If W 1(µ1) is non-empty, allow workers to move to firm 1. This may cause

other workers to want to move from f2 to f1. If so, allow them and subsequent

sets of similar workers to move. The process ends at some point since the

number of workers matched with f2 is finite; call the new matching µ̂1.

∗ If U1(µ̂1) is non-empty, allow workers to move to firm 1. This may cause

other workers to want to move from the unemployment pool to f1. If so,

allow them and subsequent sets of similar workers to move. The process

ends at some point since the number of workers in the unemployment

pool is finite; and call the new matching µ̃1.
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∗ If U1(µ̂1) is empty, follow the steps for case 1-ii.

• Step k:

– Allow all workers in W 0(µ̃k−1) ⊆ µ̃k−1(f2) (if any) to move to the unemploy-

ment pool. This may cause other workers to want to move from f2 to the

unemployment pool. If so, allow them and subsequent sets of similar work-

ers to move. This process ends at some point since the number of workers

matched with f2 is finite; call the resulting new matching µk.

– If both W 1(µk) and U1(µk) are empty, follow the steps for case 1-ii.

– If W 1(µk) is empty, and U1(µk) is non-empty, allow workers to move to firm

1. This may cause other workers to want to move from the unemployment

pool to f1. If so, allow them and subsequent sets of similar workers to

move. The process ends at some point since the number of workers in the

unemployment pool is finite; call the new matching µ̃k.

– If W 1(µk) is non-empty, allow workers to move to firm 1. This may cause

other workers to want to move from f2 to f1. If so, allow them and subsequent

sets of similar workers to move. The process ends at some point since the

number of workers matched with f2 is finite; call the new matching µ̂k.

∗ If U1(µ̂k) is non-empty, allow workers to move to firm 1. This may cause

other workers to want to move from the unemployment pool to f1. If so,

allow them and subsequent sets of similar workers to move. The process
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ends at some point since the number of workers in the unemployment

pool is finite; and call the new matching µ̃k.

∗ If U1(µ̂k) is empty, follow the steps for case 1-ii.

The process leads to case 1-ii at some k∗ since the number of workers that are either

matched with firm 2 or unemployed is finite.

Note that if some workers moved from firm 2 to firm 1 during the process, then

U2(µk
∗
) is empty, since µ is myopic-stable. Namely, for all workers with µ(w) = ∅, it

must be the case that one of the following statements is true:

• ∅ �w (f1, |µ(f1)|) and ∅ �w (f2, |µ(f2)|)

• ∅ �w (f1, |µ(f1)|), (f2, |µ(f2)|) �w ∅, and ∅ �f2 w

• ∅ �w (f2, |µ(f2)|), (f1, |µ(f1)|) �w ∅, and ∅ �f1 w

• (f1, |µ(f1)|) �w ∅ , ∅ �f1 w, (f2, |µ(f2)|) �w ∅, and ∅ �f2 w

If at least one worker moves from firm 2 to firm 1, |µk∗(f2)| < |µ(f2)|−1, and workers

in U2(µ) now prefer to remain unemployed even after taking their own deviations into

account.

Had we allowed workers to move from U2(µ) instead of U1(µ), we would return to

case 1-iii instead of 1-ii.

Case 2:

Suppose W 1(µ) = ∅ and W 2(µ) is non-empty. Allow workers in W 2(µ) to move to

firm 2 and call the new matching µ1. Since W 1(µ) is empty, so is W 1(µ1). If W 2(µ1) is
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non-empty, allow workers to move to firm 2 and call the resulting matching µ2. Continue

the process until W 2(µk
∗
) is empty - such a k∗ must exist since the number of workers

matched with firm 1 is finite. Since W 2(µ) was non-empty and µ is a myopic-stable

matching, W 1(µk
∗
) = ∅, and we can follow the steps in case 1.

Case 3:

This is the same as case 2 but with workers moving to firm 1 instead of firm 2.

Case 4:

When bothW 1(µ) andW 2(µ) are non-empty, allowing any one of the sets of workers

to move to its preferred firm (and allowing subsequent sets of similar workers to move

in the same direction) takes us back to case 1, since µ is myopic-stable. To see this,

suppose we let workers in W 1(µ) move to firm 1 and call the new matching µ1. Since

µ is myopic-stable, W 2(µ1) = ∅.

• Step 1:

– Suppose W 1(µ1) 6= ∅. Allow workers in W 1(µ1) to move to firm 1 and call

the new matching µ2.

• Step k − 1:

– Suppose W 1(µk−1) 6= ∅. Allow workers in W 1(µk−1) to move to firm 1, and

call the new matching µk.

The process must end at some point, and there must exist a k∗: W 1(µk
∗
) = ∅,
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since the number of workers matched with firm 2 is finite. Moreover, W 2(µk
∗
) = ∅ by

myopic-stability of µ. This takes us back to case 1.

Example 2.4 (continued) Since all the workers prefer to be matched with some

firm than remain unemployed, and firms find all workers acceptable, there will be no

unemployed workers at any stable matching. It suffices, therefore, to consider matchings

in which all workers are employed. There are 27 such matchings (including the 6 shown

in the main text). In 6 of these 27 matchings, one worker is matched with each firm.

For example, µ = {{f1, w1} , {f2, w2} , {f3, w3}} is such a matching. None of these

matchings can be stable, since workers always prefer to join another firm with an

existing employee than remain at a firm that only employs one worker. Next, consider

matchings in which two workers are matched with one firm and the remaining worker is

matched with another firm. There are 18 such matchings, none of which are stable. To

see this, notice that in 6 of these matchings, worker 1 is the only employee in the firm

they are matched with. If that firm is either firm 1 or 3, they would prefer to move to

firm 2 (even when it doesn’t employ the other two workers). When that firm is firm 2,

and the other two workers are employed by firm 3, then worker 1 prefers to deviate and

join them. Finally, when worker 1 is matched with firm 2 and the other two workers

are matched with firm 1, we are back to µ1, which we know is not stable.

In 6 of the matchings in which two workers are matched with one firm and one

worker is matched with another, worker 2 is the only worker employed by some firm.
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If they are employed by either firm 2 or 3, they block the going matching and move to

firm 1. If they are employed by firm 1 and the remaining workers are employed by firm

2, they block the matching by moving to firm 2. Finally, if they are employed by firm

1 and the rest are employed by firm 3, we are back to µ5, which is not stable.

In the remaining 6 matchings, worker 3 is the sole employee of some firm. This

firm cannot be firm 1 in a stable matching, since worker 3 strictly prefers to join firm

3 with any number of employees than remain at firm 1. The worker can also never

be employed by firm 2 since it individually blocks such a matching. If the worker is

employed by firm 3 and the remaining workers are employed by firm 1, then it prefers

to deviate and join them. If they are employed by firm 2, then worker 1 deviates and

joins firm 3.

Finally, there are 3 matchings in which all 3 workers are matched with the same

firm. Call them µ1, µ2, and µ3, where µj is the matching in which all workers are

matched with firm j. µ2 is not stable because worker 3 prefers to be single. µ1 is not

stable because worker 1 prefers to join firm 2. µ3 is not stable because worker 2 prefers

to be single.
This shows that the game presented in example 2.4 has no stable matching.
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Chapter 3

A Simple Model of Party Formation
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3.1 Introduction

Baron and Ferejohn (1989) was the first study to model the process of legislative bar-

gaining. They modeled the bargaining process as a dynamic game between agents

bargaining over the split of a finite resource. A proposer is chosen with some exogenous

probability at the beginning of each period, and they propose a split of the resources

that must garner majority support in order to be implemented. The equilibrium strate-

gies that emerge are ones in which the proposer courts a minimal winning coalition that

approves the proposal, while the other legislators oppose it. There is no role for political

parties in this model. As a result, every proposal is passed with a minimal winning

coalition and legislators vote independently of any strategic considerations.

There is, as yet, no consensus on what the most important functions of political

parties are Dhillon (2004). Baron (1993) focuses on parties’ wish to influence the ulti-

mate policy that the government implements, as well as their incentives to garner wide

electoral support. In his model, parties consider the eventual government formation

process as well as the process of bargaining between parties into account when choosing

their policies. They also take into account the potential electoral support that their

policies are likely to attract. The model has two main results: in a 3-party set-up with

a two dimensional policy space, either all parties choose the median policy, or else, for

some parameter values, they each choose different positions that are equidistant and
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symmetric from the median position. Although the title of the paper1 alludes to the

process through which parties form, the main contribution of the paper is its attempt

to consider multiple goals that parties have simultaneously.

Jackson and Moselle (2002) extend the basic bargaining model in Baron and Fere-

john (1989) by adding a policy that the proposer can choose. This choice is characterized

as a location in the interval [0, 1]. In this setting, parties are exogenous constraints on

individual legislators ensuring that they propose a particular vector of policy and al-

locations whenever they are selected. In a 3 legislator example (left, right and media

legislators), the authors show that stable parties2 emerge only between players that are

ideologically adjacent - a party between the two extreme legislators, for example, is not

stable.

Morelli (2004) studies a three party model, where party formation is modeled as two

of the three parties agreeing to a coalition. In this setting, the parties serve two func-

tions. They are a commitment device for politicians who want to run on platforms that

are not their own. The second function they serve is as a coordination device for voters.

Eguia (2012), on the other hand, models parties as coalitions that vote according to the

wishes of the majority of their members. A peculiar assumption in the model is that

legislators face uncertainty over their own preferences. At the beginning of each stage,

1Government formation and endogenous parties.
2A political party is defined to be stable if no agent wishes to leave in anticipation of higher utility

elsewhere.
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legislators form parties prior to the resolution of uncertainty, and credibly commit to

vote according to the party line once their preferences are revealed. In a model with

repeated stages of voting, Eguia (2012) shows that a stable coalition of legislators (a

party) can consistently shift equilibrium policy away from the status quo median - this

conclusion contradicts one of the results in Baron (1993), which argues that under some

circumstances, parties will simply offer the median policy.

We follow the approach of Jackson and Moselle (2002) and adopt their framework. In

their study, they show that an equilibrium in stationary strategies exists. In this paper,

we show that a symmetric equilibrium exists in a legislative game with 3 players, and

that the equilibrium takes a particular form. Moreover, we show that an equilibrium

exists in some neighborhood of this symmetric equilibrium. Finally, we demonstrate the

properties of equilibrium quantities with numerical simulations. Section 2 describes the

model, section 3 discusses existence and properties of equilibrium, section 4 explores

the stability of political parties, and section 5 concludes.

3.2 The model

3.2.1 Legislative game

Consider the legislative bargaining model in Jackson and Moselle (2002) with three play-

ers. Let the ideal point of legislator i ∈ {0,m, 1} be vi ∈ [0, 1], and let v0 = 0 and v1 = 1

and m be the median legislator. A legislator is picked proposer with probability pi (this
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will be assumed to be 1/3 for the remainder of the paper) at the beginning of each

period to propose a decision composed of a policy yi and a split of the finite resources

available, X: {xi}i such that
∑

i xi = 1. A decision is then voted on by all players

who can specify if they vote “for” or “against” the decision. It is adopted if it receives

majority support. There are an infinite number of periods denoted by t ∈ {1, 2, . . .}.

The game ends when a decision is adopted. A strategy for each player is a decision that

they propose whenever they are chosen proposer, and a voting rule whenever they are

not proposing that can be characterized by a function assigning a “yes” or “no” to each

possible decision . A strategy for a player is stationary if their continuation strategy at

the beginning of every subgame is the same regardless of history. An equilibrium is sta-

tionary if it is a subgame perfect equilibrium and each legislator’s strategy is stationary.

A simple equilibrium is a stationary equilibrium in which (i) each legislator random-

izes over at most M < ∞ proposals, (ii) each such proposal can be identified with a

distinct coalition C such that i /∈ C, and #C = n−1
2
. In our version of the model with

only three legislators, each C is simply another player.

3.2.2 Preferences

Let legislator i evaluate a decision d = (y, x) = (y, x0, xm, x1) with utility function ui,

defined as follows:

ui(d) = xiX + 1− (vi − y)2
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This function is separable in xi and y, is concave in the decision, d, and is single

peaked for every x for legislator i in y at their ideal point, vi. Therefore, it satisfies the

assumptions in Jackson and Moselle (2002). It is commonly assumed that legislators

are office-seeking: they only care about getting re-elected. This form of utility function

can be interpreted in that light if we consider the ideal point vi to be the ideal point of

the legislator’s district, and the resources xiX as the resources that the legislator then

spends on their district (or redistributes among voters). In either case, we can view

the legislator as having internalized the preferences of their district. Since pursuing the

best interest of the district (or the district’s median voter) is the best way to ensure

reelection, this formulation is in line with the assumption that legislators are office-

seeking. Alternatively, if we assume that legislators are policy-motivated, then vi can

be interpreted as their own ideal point, and they maximize their own utility.

3.3 Equilibrium

In this section, we show the existence of a novel kind of equilibrium in the three player

game. One in which the median player randomizes between proposing to the other

two players, and where the extreme players always propose to the median, when either

one is chosen proposer. This equilibrium can be seen as exhibiting some form of party

structure since legislators only propose to adjacent legislators - any proposal that passes

does so with a contiguous coalition. In the next section, we explore an explicit party

structure using the notion of the stability of coalitions.
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Proposition 23 in Jackson and Moselle (2002) shows that a simple equilibrium exists

in the general legislative game with unspecified concave utility functions and n legis-

lators. Here, we will show that a particular kind of simple equilibrium exists. First,

we show that a symmetric simple equilibrium exists whenever the median legislator

is equidistant from the extreme legislators. By Proposition 3 in Jackson and Moselle

(2002), any approved decision in any stationary equilibrium distributes resources among

an exact majority. This means that each proposer targets another player, and offers

that player a share of the resources that would induce them to vote for the proposal.

In an arbitrary symmetric equilibrium, it may be the case that legislators randomize

between proposing to one of the other two players. We show, however, that whenever a

symmetric equilibrium exists, it is one where only the median player randomizes (with

probability 1/2) between proposing to 0 and 1, and where the other two players always

propose to the median player.

A symmetric equilibrium exists whenever vm = 1/2 in which:

• m proposes (1 − xm, 1/4) to 0 with probability 1/2 and (1 − xm, 3/4) to 1 with

probability 1/2

• 0 proposes (1− x0, 1/4) to m whenever they are chosen proposer

• 1 proposes (1− x0, 3/4) to m whenever they are chosen proposer

3If ui is concave for each i, then there exists a simple equilibrium. Moreover, if each ui is strictly
concave then all stationary equilibria are simple (Jackson and Moselle (2002)).
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• players that are proposed to always accept

Having shown the existence of a symmetric equilibrium, we will now show that it

must be one where both extreme players always propose to the median player, and the

median player randomizes with probability 1/2 between proposing to either one. The

proof will consider two cases: first, we will consider the case of a symmetric equilib-

rium in which the two extreme players propose to one another with certainty and show

that, for both players, proposing to the median player instead is a profitable deviation.

Second, we will consider a symmetric equilibrium in which the two extreme players ran-

domize between proposing to the other extreme player and proposing to the median.

We will then show that it is profitable for both players to propose to the median player

every time, and so randomizing is not equilibrium behavior.

It is important to point out that a crucial assumption throughout this paper is that

the amount of resources, X, is sufficiently large to allow for an interior solution (where

the proportion of resources shared with the legislator being proposed to is strictly be-

tween 0 and 1). This allows the proposed policy to always be at the midpoint between

the two legislators’ (the proposer and the legislator accepting the proposal) ideal points.

The first two results we prove show that the equilibrium in which the median player

randomizes between proposing to 0 and 1, and where both 0 and 1 propose to the

median with certainty is the unique symmetric equilibrium in the three player game
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specified above.

Let vm = 1/2. For some values of δ and large enough values of X, a symmetric

equilibrium in which 0 and 1 always propose to m, and m randomizes with probability

1/2 between proposing to either extreme player exists. Moreover, it is the unique

symmetric equilibrium.

Next, we show that, in addition to a symmetric equilibrium, whenever vm = 1/2,

there exist equilibria when the position of the median legislator is near vm. These

equilibria will not be symmetric and some of them are described in the numerical

analysis we conduct in the appendix.

An equilibrium in which 0 and 1 always propose to m, and m randomizes between

proposing to either player exists for vm in the neighborhood of 1/2.

The appendix contains numerical simulations of equilibrium quantities and demon-

strates how they change with parameters δ and X. We can see that the range of δ in

which an equilibrium exists is increasing in X: the larger X is, the larger the range of

δ at which an equilibrium exists (appendix sections 5.1, 6.1, 6.2). Moreover, we can

see that at any value of X, the proportion kept by the median player whenever they

propose to the extreme players is increasing in δ (appendix section 6.4).

3.4 Political Parties

Jackson and Moselle (2002) define a party as a subset of legislators P ⊂ N who propose

the same policy whenever any member is chosen proposer. Moreover, they each vote
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for this proposal whenever it is tabled. Such a party is stable4 if the following condition

holds:

ui(P ) ≥ ui(P
′) ∀i ∈ P, ∀P ′ 3 i

In their examples, Jackson and Moselle (2002) find that the identity of stable parties

depends on the specific utility parameters. Although our framework specifies the utility

function, it is parameter-free5. To this extent, there is an obvious question to ask: what

is the identity of stable parties in our framework? How do they differ with the location

of the median legislator? Is it possible to have a non-contiguous stable party (one made

up of legislators 0 and 1)?

Notice that a party generates some joint utility for its members:

uP = ui(P ) + uj(P ) = X + u(vi − vP ) + u(vj − vP ),

where vP is the policy proposed by party members. For ui(P ) to be well defined, the

split of this total utility among the members of the party must be specified. Since there

are always two players in a party in our example, and following Jackson and Moselle

4Although the notion of stability defined here applies more generally than the three player model
we describe, the utility that an individual player obtains from being a member of a party is not well
defined for more than three players. We use the Nash bargaining solution to determine the policy that
a party chooses and split the revenue between two legislators in a party. However, in a party with
more than 3 players, this approach is no longer applicable. The definition of stability above, therefore,
applies in those cases, provided utility is defined in some way.

5As opposed to Jackson and Moselle (2002), who must specify a parameter that determines the
relative preference for policy vis-a-vis resources for each legislator, we have a utility function that
is common for all legislators. One possible variation to explore may be the concavity of the utility
function, specified by the power to which we raise the distance between policy and ideal point.
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(2002), we let the split of utility be determined by the Nash bargaining solution6.

Let P (i, j) be the party formed by players i and j. We begin with the equilibrium

described above (where both extreme players propose to m, and m randomizes) and

investigate which parties are stable. First, consider the case of P (0,m) and let vp0m be

the chosen party policy and x0
0m be the proportion of the resources kept by player 0 in

the split. We’re looking for the Nash bargaining solution, and so (vp0m, x
0
0m) solve the

following maximization:

(vp0m, x
0
0m) = arg max

v,x

{
(xX + 1− v2 − ū0)((1− x)X + 1− (vm − v)2 − ūm)

}
,

where ūi is expected utility of player i in the equilibrium described above. Since we’re

considering the symmetric case, vm = 1/2. The first order conditions are then simply:

FOC(x) : x =
1

2X

(
X − (vm − v)2 − ūm + v2 + ū0

)

FOC(v) : (vm − v)
(
xX + 1− v2 − ū0

)
− v

(
(1− x)X + 1− (vm − v)2 − ūm

)
= 0

Solving these two simultaneous equations, we get vP0m = vm/2 and x0
0m = X+ū0−ūm

2X
. We

can repeat this exercise for the party P (0, 1) and find vP01 = 1/2 and x0
01 = X+ū0−ū1

2X
.

6The agreement x∗ ∈ X, the set of possible consequences, is a Nash solution of the bargaining
problem {X, (d1, d2),%1,%2} if and only if:

(u1(x
∗)− d1)(u2(x∗)− d2) ≥ (u1(x)− d1)(u2(x)− d2)∀x ∈ X,

where (d1, d2) is the disagreement point, %i is the preference relation of i over lotteries over X (page
302, Osborne & Rubinstein (1994)).
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Finally, for the party P (m, 1), the quantities are vPm1 = (1+vm)/2 and xmm1 = X+ūm−ū1
2X

.

These results are summarized in the following proposition.

Proposition 9. Let X be sufficiently large, and let P (i, j) be a party composed of

players i and j. If ūk is player k’s expected utility from the independent voting game

and the players determine the policy of the party, vPij , and the share of resources, xkij,

allocated to player k through the Nash bargaining solution, then these quantities take

the following form:

vPij =
vi + vj

2
xiij =

X + ūi − ūj

2X

Notice that the party’s policy is the midpoint between the two legislators’ ideal

points, and the share of resources allocated to a legislator is proportional to their ex-

pected utility in the independent voting game and decreasing in the other player’s

expected utility in the independent voting game. This makes intuitive sense since more

influential players (those with higher expected utility in the independent voting game)

command a larger proportion of the party’s resources.

According to the above definition of stability, a party is stable if neither member

wishes to be part of another party. Let’s consider the party P (0,m). 0 does not want

to leave the party whenever U0(P (0,m)) ≥ U0(P (0, 1)), while m doesn’t want to leave

whenever Um(P (0,m)) ≥ Um(P (m, 1)). Below, we derive the general conditions for

stability of P (0,m) and proceed to show that these hold in the symmetric equilibrium

we discuss above.
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Notice that since the threat points are the expected utilities from the independent

voting game, it must be the case that ū0 = ū1, otherwise m would not randomize be-

tween proposing to the extreme players. This observation makes it clear to see that

Um(P (0,m)) ≥ Um(P (m, 1)) =⇒ vm ≤ 1/2, the first condition for stability of P (0,m).

The second condition for stability comes from the condition for player 0 preferring

not to leave the party and it simplifies to7:

X + ū0 − ūm − 1

2
+

1− v2
m

4
≥ 0

Consider the symmetric case (vm = 1/2, and m randomizes with probability 1/2

between the two players) and notice that the first condition is weakly satisfied. To check

the second condition, we need to recall the expressions for ū0 and ūm. We reproduce

these below and, since we are looking at the symmetric case, simplify the expressions8

so that xm1 = xm0 = xm and x0
m = x1

m = x0.

ū0 =
1

3

[
x0X + 1− (1/4)2 + 1− (3/4)2 + (1/2)

(
(1− xm)X + 1− (1/4)2

)
+ (1/2)(1− (1/4)2)

]
7It’s straight forward to derive this inequality from the party policies and proportion of party

resources allocated to each member in parties P (0,m) and P (0, 1) and the following definition:

ui(P (i, j)) = xiijX + 1− (vi − vPij)

8Namely, the proportions offered by m to both 0 and 1 are the same and the proportions offered
by both 0 and 1 to m are the same. We chose to denote these with a 0 superscript for notational
convenience, and a 1 subscript could have also been used.
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ūm =
1

3

[
(1/2)(xmX + 1− (1/4)2) + (1/2)(xmX + 1− (1/4)2) +

(
(1− x0)X + 1− (1/4)2

)
+
(
(1− x0)X + 1− (1/4)2

)]

A straight forward substitution and simplification shows that the second condition

for stability of P (0,m) can be expressed as follows:

1

2

(
X +

1

3

(
X(3x0 − (3/2)xm − (3/2)) + (1/4)2 − (3/4)2

)
− 1

)
+

1− (1/2)2

4
≥ 0

We will show that this inequality holds for large values of X. To do this, notice that

we only need to show that the coefficient on X is positive, in which case, as X increases

the left hand side increases and eventually becomes positive, since the negative terms

are constant. The coefficient on X can be expressed as follows:

1

2
× 1

3

(
3 + 3x0 − 3

2
xm − 3

2

)
=

1

2

(
1 + x0 − 1 + xm

2

)
> 0

The inequality follows from the fact that xm ≤ 1. This result is summarized in the

following proposition.

Proposition 10. In a symmetric game with a sufficiently large X, parties P (0,m) and

P (m, 1) are stable, while P (0, 1) is not.

Proof. We’ve already shown the stability of P (0,m) above. The stability of P (m, 1)

follows from the symmetry of the set up. P (0, 1) is unstable since both 0 and 1 prefer

to be in a party with m.
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3.5 Conclusion

In this paper, we showed that a particular kind of symmetric equilibrium exists in a 3-

legislator version of Jackson and Moselle’s legislative bargaining model with quasi-linear

utilities. This is a first step to studying political party formation in this framework.

Although Jackson and Moselle set out to study political party formation, they only

study this under restrictive assumptions on the utility function9. We also characterize

the set of stable parties.

There are some outstanding questions. The first is whether we can show the exis-

tence result in claim 2 analytically. We conjecture that this is indeed possible. Second,

it remains to be seen whether claim 3 can be shown more completely (as it stands, the

final step of the proof is assumed to hold).

The results shown here apply to a restricted model: there are only three legislators

with a particular utility function. The first question we might ask is whether these

results hold for any quasi-linear utility function. This is quite possibly true. Whether

or not the results hold for more than three players, however, is a less straightforward

question. Most importantly, the utility of a legislator from belonging to a party is only

well defined for parties consisting of two legislators since the internal split of the re-

sources is decided by the Nash bargaining solution. With parties that have more than

9They look at linear utility functions with a coefficient that determines how much a legislator values
the proximity of a policy to their ideal point relative to consumption of resources.
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just two members, this is no longer possible. How would the internal split of resources

be decided in this case? This is an open question.

Furthermore, we only considered the symmetric case. However, it would be inter-

esting to explore how the identity of stable parties, for example, changes a the position

of the median legislator changes. In a model with more than three players, one ques-

tions that would be interesting to explore is whether parties are always composed of

contiguous coalitions of legislators.

It may be the case that the current framework would not lend itself well to exploring

these questions, particularly those that extend the model to more than 3 legislators.

As we can see, the model quickly becomes unwieldy and to obtain any properties of

the model usually requires solving some set of simultaneous equations. With more

legislators, this set would increase, making us resort even more frequently to numerical

analysis, instead of analytical results.
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3.6 Appendix

3.6.1 Proofs

Proof of Claim 1

Proof. A symmetric equilibrium is a vector

(q0
m, x

0
m, q

0
1, p, x

m
0 , x

m
1 , q

1
m, x

1
m, x

1
0)

such that q = q0
m,= q1

m, xm = x0
m = x1

m, x = x0
1 = x1

0, xm0 = xm1 = xm, and p = 1/2.

Namely, the probabilities with which 0 and 1 randomize between proposing to one

another and proposing to m are the same, and the amount of resources they offer is the

same. In addition, the amount of resources offered by m to either 0 or 1 is the same,

and m randomizes between offering to 0 and 1 with equal probabilities. A symmetric

equilibrium, therefore, can be characterized by 4 quantities:

(q, xm, x, x
m)

Define Asi (l) := {d ∈ D : ui(d) ≥ δvi(l)}, where l ∈ Ls, the space of symmetric

strategy profiles. We want to show that Asi (l) is (i) non-empty, (ii) compact, and (iii)

continuous.

(i) Non-empty: Since Asi (l) is non-empty for l ∈ L (Jackson and Moselle (2002)), and Ls ⊂ L, it

follows that Asi (l) is non-empty.
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(ii) Compact: Asi (l) is closed, and since Asi (l) ⊂ [0, 1]6, which is compact, it follows that Asi (l)

is compact.

(iii) Continuous: We want to show that Asi (l) is both uhc and lhc:

uhc: A correspondence f : X → Y is uhc if ∀ compact B ⊂ X, the set f(B) =

{y ∈ Y : y ∈ f(x) for some x ∈ B} is bounded.

Since Ds is compact, As(B) ⊂ Ds is compact for any compact B, so Asi (.) is

uhc.

lhc: A correspondence f : X → Y is lhc if ∀xn → x ∈ X : xn ∈ X∀n, ∀y ∈ f(x),

∃yn → y and N ∈ N : yn ∈ f(xn)∀n > N

Let ln → l ∈ Ls, ln ∈ Ls ∀n. Pick d ∈ Asi (l) = {d ∈ D : ui(d) ≥ δvi(l)}.

We want dn → d and N such that dn ∈ Asi (ln) ∀n > N . Let di be the best

decision for player i - they get all the resources (xi = 1), and the proposed

policy is their ideal point (y = vi). It’s clear that the following inequality

holds:

ui(di) > δvi(l
n)

Let dk = αkdi + (1− αk)d, where αk → 0 (i.e. dk → d). For each ln, we can

find a kn such that ui(dkn)) > δvi(l
n). Then dkn → d and dkn ∈ Asi (ln) ∀n,

hence Asi is lhc.

Define As−i(l) = ∪j 6=iAsj(l) - the set of decisions that would be approved if proposed

by player i. We want to show that As−i(l) is (i) nonempty, (ii) compact, and (iii)
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continuous.

(i) Non-empty: Since each Asj(l) is non-empty, so is As−i(l).

(ii) Compact: Since a finite union of compact sets is compact, As−i(l) is compact.

(iii) Continuous: The union of uhc (lhc) correspondences is uhc (lhc). The footnote contains a

direct proof 10.

Define A∗i (l) = arg max
d∈A−i

{ui(d)}. By the maximum theorem, A∗i (l) is non-empty,

compact-valued, and uhc.

Define Hs(l) = {l̃ ∈ Ls : d̃iC ∈ A∗i (l) ∀i}

We want to show that Hs(l) is (i) non-empty, (ii) compact, (iii) uhc, and (iv) convex.

(i) Non-empty: Each A∗i (l) is non-empty. To show that l̃ is symmetric, notice that if d01 ∈ A∗0(l),

10We want to show that Asi (l) is both uhc and lhc:

uhc: Let B ⊂ Ls be a compact set. Since As−i(B) = ∪j 6=iAsj(B) and each Asj(B) is bounded, so is
As−i(B).

lhc: Suppose we can express l as (. . . , diC , πiC , . . .), where πiC is the probability with which player i
proposes diC to coalition C. Define E[l] in the following way:

E[l] =
∑
i

pi

(∑
C

πiCdiC

)

Since individuals are risk averse,
ui(E[l]) > δvi(l) ∀i

To see this, notice that vi(l) =
∑
j pj (

∑
C πjCui(djC)).

Let dk = αkE[l] + (1− αk)d : αk → 0. For each j 6= i,
For each j 6= i, ∃Kj : uj(d

k) > δvi(l
n) ∀k ≥ Kj

Let Nn = max{Kj ,Kk}. Then uj(dk) > δvj(l) ∀k ≥ Nn, Hence, dNn ∈ As−i(l). Since dNn → d
and dNn ∈ As−i(ln), Asi (l) is lhc.
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then, by symmetry, it must be that d′01 ∈ A∗1(l) (where d′01 is the proposal in

which 1 offers to 0 what 0 offers to 1 in d01).

(ii) Compact: Since Hs(l) ⊂ Ls, a compact space, it suffices to show that Hs(l) is closed.

Let ln → l, where ln ∈ Hs(l′) ∀n. Then it follows that dniC ∈ A∗i (l
′) ∀i.

Let ln = (ln0 , l
n
m, l

n
1 ), where lni is the continuation strategy of player i - lni =

(. . . , (dniC , π
n
iC), . . .). If ln → l, it must be the case that lni → li ∀i and hence

(dniC , π
n
iC)→ (diC , πiC).

ln ∈ Hs(l′) =⇒ (πniC > 0 ⇒ dniC ∈ A∗i (l
′)) ∀i. This means that ui(dniC) = ūi ≥

ui(d) ∀d ∈ As−i(l′) ∀n. Since ui(.) is continuous, ui(diC) = ūi =⇒ diC ∈ A∗i (l′).

Now, to show that l ∈ Hs(l′), we simply need to show that πiC > 0 =⇒ diC ∈

A∗i (l
′). Suppose πiC > 0, then it must have been the case that πniC > 0 for n ≥ N ,

for some large N . But if this is true, then we have shown that it must be the case

that diC ∈ A∗i (l′).

(iii) Uhc: Since Ls is bounded, it follows that Hs(B) ⊂ Ls is bounded for any compact B,

therefore Hs(.) is uhc.

(iv) Convex: Suppose l, l′ ∈ Hs(l′′) and let λ ∈ (0, 1), then if lλ = λl + (1 − λ)l′, lλ ∈ Hs(l′′).

To see this, notice that we simply need to show that lλ is a symmetric strategy

profile. Recall that the entries of a symmetric continuation strategy are decisions

and probabilities:

((d01, 1− q), (d0m, q), (dm0, 1/2), (dm1, 1/2), (d1m, q), (d10, 1− q)),
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where each proposal diC is identified with a distinct C (one of the other players).

The difference between l and l′ are the probability, q, and the details of diC , by

which we mean the particular proportions being offered to C. Since each Asj(l′′)

is convex, if both d′iC and diC maximize ui over Asj(l′′), then, by the convexity

of Asj(l′′) and concavity of ui(.), it must be that dλiC also maximizes ui(.). This

means that dλiC = λdiC + (1− λ)d′iC ∈ A∗i (l′′). If both l and l′ are symmetric (and

hence have the form above), then lλ is also symmetric.Then if lλ is symmetric and

each dλiC maximizes ui over A∗i (l′′), it follows that lλ ∈ Hs(l′′).

By Kakutani’s fixed point theorem, Hs : Ls → Ls has a fixed point. This fixed

point is a symmetric equilibrium of the legislative game11.

Proof of Claim 2

Proof. First, notice that when X is large enough, the optimal policy yij for player i to

propose to player j is yij =
vi+vj

2
, which is the midpoint between the ideal points of i

and j. To see why this is the case, let xij be the proportion that i keeps when they

propose to j and notice that whenever player i chooses what policy to propose, they

solve the following maximization problem:

max
yij ,x

i
j

{
Ui(y

i
j, x

i
j) : Uj(y

i
j, x

i
j) ≥ δvj

}
,

where vj is j’s continuation payoff - a function of all players’ strategies.

11The final claim follows from the final step of the existence proof in Jackson and Moselle (2002).
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Since Ui(y, x) = ui(y) + xijX, and vj = δ
3

(
Uj(Pj) + uj(y

i
j) + xij + Uj(Pk)

)
, the La-

grangian of the above maximization problem is the following:

L = ui(y) + xijX + λ

(
uj(y) + (1− xij)X −

δ

3

(
Uj(Pj) + uj(y) + (1− xij)X + Uj(Pk)

))

The first order conditions of the above maximization problem with respect to y and xij

are the following condition:

FOC(y) :
∂ui(y)

∂y
+ λ

(
∂uj(y)

∂y
− δ

3

∂uj(y)

∂y

)
=
∂ui(y)

∂y
+ λ

∂uj(y)

∂y

3− δ
3

= 0

FOC(xij) : X + λ

(
−X +

δ

3
X

)
= X

(
1− λ3− δ

3

)
= 0

The first order condition with respect to xij yields λ = 3
3−δ . Substituting this into the

expression for the first order condition with respect to y yields:

∂ui(y)

∂y
+
∂uj(y)

∂y
= 0

Since ∂ui(y)/∂y = 2(vi − y), it follows that

∂ui(y)

∂y
+
∂uj(y)

∂y
= 2(vi − y) + 2(vj − y) = 2(vi + vj − 2y) = 0⇐⇒ y = (vi + vj)/2

Case 1: Suppose the symmetric equilibrium is one where the two extreme players

propose to one another, i.e. 1 proposes to 0 and 0 proposes to 1. We will show that at

the beginning of any subgame at which one of the extreme players is to propose to the
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Figure 3.1: Existence of a profitable deviation for 0.

If m’s continuation payoff, um lies between ū and u1, then there exists a profitable
deviation for 0 where they propose to m instead of 1, moving to the outer utility
frontier and increasing their own continuation value from u0.

other according to the equilibrium strategy profile, it would be profitable to propose

to m instead. More precisely, there exists a proposal that offers some share of the

resources to m that player 0, say, would prefer to the one that offers a share to 1, and

that this proposal would be accepted by m.

Let the total utility that can be “shared” between legislators i and j whenever i

proposes to j be denoted by U(i, j) = Ui(P
i
j ) + Uj(P

i
j ), where P i

j is i’s proposal to j.

We will show that such a deviation exists for player 0, but the symmetry of the setup

implies that the argument is exactly the same for 1. Notice that whenever the proposals

are interior, the proposed policy is located at the midpoint between the two legislators’
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ideal points. It’s clear to see that since the ideal point of m is closer to 0 than is 1,

U(0,m) > U(0, 1):

U(0,m) = U0(P 0
m)+Um(P 0

m) = 1−
(

0− 1

4

)2

+x0
mX+1−

(
1

2
− 1

4

)2

+
(
1− x0

m

)
X =

15

8
+X

U(0, 1) = U0(P 0
1 )+U1(P 0

1 ) = 1−
(

0− 1

2

)2

+x0
1X+1−

(
1− 1

2

)2

+
(
1− x0

1

)
X =

3

2
+X

The argument can be most clearly seen by looking at figure 1. The continuation payoffs

of m and 1 are on the y-axis, and 0’s continuation payoff is on the x-axis. The utility

frontier when 0 proposes to m is everywhere above that for the case when 0 proposes

to 1 since U(0,m) > U(0, 1). If a strategy profile defines continuation payoffs u0 and

u1 as depicted, then if um lies strictly below ū, a profitable deviation exists where 0 can

propose some split of the resources and the policy y0
m = 1/4 that yield immediate utility

for m greater than um. This means that m accepts this offer from 0. Moreover, by the

definition of ū, this proposal would yield utility for 0 greater than u0, their utility from

proposing to 1. This follows by the observation that a horizontal line from any point

on the y-axis below ū intersects the outer utility frontier to the right of u0.

To show that a profitable deviation for 0 exists, therefore, it suffices to show that

um < ū. This can be shown by solving for um, u1 and ū from the five simultaneous

equations (in five unknowns xm, u0, um, u1, and x0) below that derive from the binding

incentive constraints associated with the strategy profile we specified. Notice that x0 is
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proportion of resources kept by 0 when they propose to 1, and, by symmetry, it is also

the proportion kept by 1 when they propose to 0, and u(x) = 1− x2.

1) 0 accepts m’s offer:

(1− xm)X + u(1/4) = u0

2) 1 accepts m’s offer:

(1− xm)X + u(1/4) = u1

3) 1 accepts 0’s offer:

(1− x0)X + u(1/2) = u1

4) m’s continuation payoff:

um =
δ

3
(0 + u(1/4) + xmX + u(1/4) + 0 + u(1/4))

5) 1’s continuation payoff:

u1 =
δ

3

[
(1− x0)X + u(1/2) +

1

2
(0 + u(3/4)) +

1

2
((1− xm)X + u(1/4)) + x0X + u(1/2)

]

Once we solve for u0, we can solve for ū by the equality U(0,m) = u0 + ū12. Since

12This is clear to see from figure 1.
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this exercise involves solving five simultaneous equations in five unknowns, we find the

solutions numerically for some X and δ and verify that um < ū holds.

Case 2: Now suppose the symmetric equilibrium is one in which the extreme

players, 0 and 1, randomize between proposing to m and one another. Namely, they

each propose to m with probability q, and with probability (1− q) they propose to the

other extreme player. An equilibrium, therefore, is characterized by a vector

(xm, q, x0
m, x

0
1),

where m proposes (1 − xm) of the resources to each extreme player with probability

1/2, each extreme player proposes x0
m of the resources to m with probability q and

x0
1 to the other extreme player with probability (1 − q). We want to show that an

extreme player can profitably deviate in the subgame in which they should propose to

the other extreme player by proposing, instead, to m. In addition, we want to show

that this proposal will be accepted by m. Similarly to the above case, we solve for um

and u1 from the equations characterizing the equilibrium. We have 6 unknowns: the

4 equilibrium quantities and 2 continuation payoffs (0 and 1’s continuation payoffs are

the same, so we only consider u0 in the system below).

1) 0 accepts m’s offer:

(1− xm)X + u(1/4) = u0
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2) 0 accepts 1’s offer:

(1− x0
1)X + u(1/2) = u1

3) m accepts 0 & 1’s offers:

(1− x0
m)X + u(1/4) = um

4) m’s continuation payoff:

um =
δ

3

(
q(1− x0

m)X + u(1/4) + xmX + u(1/4) + q(1− x0
m)X + u(1/4)

)

5) 1’s continuation payoff:

u1 =
δ

3

[
(1− q)[(1− x0

1)X + u(1/2)] + q[(1− x0
m)X + u(1/4)] . . .

. . .+
1

2
(0 + u(3/4)) +

1

2
((1− xm)X + u(1/4)) + x0X + u(1/2)

]

6) m’s continuation payoff equals both extreme players’ continuation payoffs, since

only then can any one player be indifferent (and hence randomize) between propos-
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ing to m and proposing to the other extreme player.

um = u0

The above system of equations has a solutions since it has 6 equations in 6 unknowns.

From the value of u0, we can find ū, and check to see if ū < um. Since this exercise

involves solving 6 equations in 6 unknowns, we check it numerically.

Proof of Claim 3

Proof. An equilibrium of this form is a vector

(q0
m, x

0
m, q

0
1, p, x

m
0 , x

m
1 , q

1
m, x

1
m, x

1
0),

such that q0 = q1 = 1. An equilibrium, therefore can be characterized by 5 quanti-

ties:

x = (x1, x2, x3, x4, x5) = (x0
m, p, x

m
0 , x

m
1 , x

1
m)

At an equilibrium, it must be that the following list of conditions hold. Although

these conditions are characterized by inequalities, in equilibrium, they must hold with

equality since otherwise the proposer can increase the proportion they keep while still

ensuring his proposal is accepted. This gives us 5 equation in 5 unknowns:

1) 0 accepts m’s offer
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f1(x, vm) = (1− xm0 )X + u
(vm

2

)
− u0 = 0

2) 1 accepts m’s offer

f2(x, vm) = (1− xm1 )X + u

(
1− vm

2

)
− u1 = 0

3) m accepts 0’s offer

f3(x, vm) = (1− x0
m)X + u

(vm
2

)
− um = 0

4) m accepts 1’s offer

f4(x, vm) = (1− x1
m)X + u

(
1− vm

2

)
− um = 0

5) m is indifferent between proposing to 0 and 1

f5(x, vm) = xm0 X + u
(vm

2

)
− xm1 X − u

(
1− vm

2

)
= 0

ui is i’s continuation payoff:

u0 =
δ

3

[
x0mX + u

(vm
2

)
+ p

(
(1− xm0 )X + u

(vm
2

))
+ (1− p)

(
0 + u

(
1 + vm

2

))
+ 0 + u

(
1 + vm

2

)]
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um =
δ

3

[
(1− x0m)X + u

(vm
2

)
+ p

(
xm0 X + u

(vm
2

))
+ (1− p)

(
xm1 X + u

(
1− vm

2

))
+ (1− x1m)X + u

(
1− vm

2

)]

u1 =
δ

3

[
0 + u

(
2− vm

2

)
+ p

(
0 + u

(
2− vm

2

))
+ (1− p)

(
(1− xm1 )X + u

(
1− vm

2

))
+ x1mX + u

(
1− vm

2

)]

Let x = (x0
m, p, x

m
0 , x

m
1 , x

1
m) be the unknowns of this system of equations, and vm

be the parameter. We know that a symmetric equilibrium exists, and so the system

of equations can be solved at (x̄, 1/2). To show that there exists another vm close to

1/2 at which an equilibrium exists, we need to show that we can locally solve these

equations at (x̄, 1/2). By the implicit function theorem, this is equivalent to showing

that the Jacobian of this system with respect to x evaluated at x̄ is non-singular:

Det(J) =

∂f1(x̄,1/2)
∂x1

. . . ∂f1(x̄,1/2
∂x5

...
...

∂f5(x̄,1/2)
∂x1

. . . ∂f5(x̄,1/2
∂x5

6= 0

Det(J) =

− δ3X − δ3
(
(1− xm0 )X + u

(
vm
2

))
− u

(
1+vm

2

)
(p− 1)X 0 0

0 −δ
3

(
u
(
2−vm

2

)
− (1− xm1 )X − u

(
1−vm

2

))
0

(
δ
3 (1− p)− 1

)
X −δ

3 X

X
(
δ
3 − 1

)
− δ3
[
xm0 X + u

(
vm
2

)
− xm1 X − u

(
1−vm

2

)]
− δ3pX − δ3 (1− p)X

δ
3X

δ
3X − δ3

[
xm0 X + u

(
vm
2

)
− xm1 X − u

(
1−vm

2

)]
− δ3pX − δ3 (1− p)X X

(
δ
3 − 1

)
0 0 X −X 0
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We want to show that Det(J) 6= 0. Notice that J is a matrix of the following form:

a b c 0 0

0 d 0 e f

g h i j k

l m n o p

0 0 q r 0

Moreover, for any matrices A (n × n), B (n × m) and C (m × m), the following

equality holds:

Det

 A B

0 C

 = Det(A)Det(D)

We want to transform J into this form. To do so for the general matrix above, we

need to do the following operations that leave the determinant unchanged:

• multiply the first row by −l/a and add it to the 4th

• multiply the second row by 1
d

(
l
a
b−m

)
and add it to the 4th
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These two operations yield a matrix of the form:

a b c 0 0

0 d 0 e f

g h i j k

0 0 n− lc
a

o+ e
d

(
l
a
b−m

)
p+ f

d

(
l
a
b−m

)
0 0 q r 0

The determinant of this matrix is then simply the following:

Det(J) = Det


a b c

0 d 0

g h i

×Det
 o+ e

d
l
a
b−m) p+ f

d
( l
a
b−m)

r 0



= (adi+ 0 + 0− cdg − 0− 0)×−r
[
p+

f

d

(
l

a
b−m

)]
= (adi− cdg)× r

[
f

d

(
m− l

a
b

)
− p
]

Whenever δ2p/9 6= (p− 1)(δ − 3)/3, the first term in the multiplication is not zero.

Whether the second term is equal to zero or not is tedious to verify and, for the time

being, we conjecture that it’s not. The numerical exercises we conduct, the results of

some of which are included in the appendix support this conjecture: that there exist

equilibria of this form for vm 6= 1/2.
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3.6.2 Numerical exercises

4 6 8 10 12 14 16 18 20
0
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1

X (total resources)

δ

The upper and lower bounds of the equilibrium range of δ as X increases, v=0.6

 

 

Upper bound

Lower bound

Figure 3.2: The range of δ for which an equilibrium exists (all xi’s ∈ [0, 1]) as X
increases, vm = 0.6
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Figure 3.3: Equilibrium strategies for a fixed amount of resources, as δ changes with
vm = 0.6 (part 1)
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Figure 3.4: Equilibrium strategies for a fixed amount of resources, as δ changes with
vm = 0.6 (part 2)
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Figure 3.5: Equilibrium strategies for a fixed δ as X changes
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Figure 3.6: The range of X for which 0 prefers P(0,m) over P(0,1) (part 1)
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Figure 3.7: The range of X for which 0 prefers P(0,m) over P(0,1) (part 2)
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