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Abstract 24 

Natural Rubber (NR)-producing guayule (Parthenium argentatum Gray) has been developed as 25 

an alternative crop to diversify NR production. Guayule NR is mainly synthesized in its stem and 26 

is upregulated by cold temperatures. A guayule C-repeat binding factor 4 (PaCBF4) was highly 27 

expressed in cold-treated stem tissue, coinciding with active rubber biosynthesis and 28 

accumulation. Sequence alignments of PaCBF4 with other CBFs indicated that PaCBF4 contains 29 

DNA-binding domains responsible for regulating cold-regulated (COR) gene expression. Spatial 30 

gene expression profiling of PaCBF4 revealed that stems had the highest expression level among 31 

different organs examined. We further confirmed the function of PaCBF4 as regulator of cold-32 

signaling processes by expressing it in the model plant Arabidopsis under a constitutive ubiquitin 33 

promoter from potato. The resulting transgenic Arabidopsis lines expressing PaCBF4 turned on 34 

expression of a set of Arabidopsis COR genes under both room (24˚C) and cold (4ºC) 35 

temperatures, in contrast to the wild-type Arabidopsis that expressed these COR genes solely 36 

upon cold treatment. Furthermore, the transgenic plants displayed enhanced freezing tolerance at 37 

-5ºC, exhibiting a survival rate of 88–98% compared with 0% survival rate of wild-type plants. 38 

Our results suggest that PaCBF4 is a functional member of the guayule CBF gene family and 39 

plays a significant role in cold and freeze tolerance. Interestingly, overexpressing PaCBF4 in 40 

Arabidopsis did not affect the normal phenotype of the plant during vegetative and inflorescence 41 

growth, but the gene led to more undeveloped siliques after flowering. 42 

 43 

 44 

Keywords: guayule, Parthenium argentatum, C-repeat binding factor, dehydration responsive 45 

element binding factor1, Arabidopsis thaliana, gene expression, freezing tolerance.   46 
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1. Introduction 47 

 48 

Natural rubber (NR) production from the hevea rubber tree (Hevea brasiliensis) faces numerous 49 

challenges, including susceptibility to diseases, limited germplasm diversity, land use 50 

constraints, and geopolitical uncertainties in certain Southeast Asian nations (Guyot and Le 51 

Guen, 2018; Vaysse et al., 2012). To address the challenges, the cultivation of alternative rubber-52 

producing crops such as guayule (Parthenium argentatum Gray), a perennial woody shrub, and 53 

rubber dandelion (Taraxacum kok-saghyz) are being explored to diversify global rubber supply 54 

(Cornish, 2017; Kuluev et al., 2023; Rasutis et al., 2015; Rousset et al., 2021; Salehi et al., 2021; 55 

van Beilen and Poirier, 2007). Despite its potential, guayule NR production remains less cost-56 

effective compared to Hevea rubber. Efforts have been undertaken to increase NR yield in 57 

guayule through germplasms utilization and agricultural practices (Abdel-Haleem et al., 2018; 58 

Cruz et al., 2022; Foster and Coffelt, 2005; Ilut et al., 2017; Placido et al., 2021; Rasutis et al., 59 

2015; Ray et al., 1999; Sulas et al., 2020). Extensive studies explored the molecular mechanisms 60 

underlying NR biosynthetic pathways and rubber particle accumulation to elucidate the genes 61 

and pathways involved in NR synthesis (Amerik et al., 2021; Cherian et al., 2019; Dong et al., 62 

2021; Kwon et al., 2023; Men et al., 2018; Nelson et al., 2019; Stonebloom and Scheller, 2019; 63 

Yamashita and Takahashi, 2020). Nonetheless, despite attempts to overexpress genes related to 64 

NR biosynthesis and rubber particle accumulation, tangible enhancements in NR production in 65 

guayule field crops have yet to be achieved (Chen et al., 2023; Dong et al., 2013; Placido et al., 66 

2020; Placido et al., 2019; Ponciano et al., 2018; Veatch et al., 2005). Therefore, identifying new 67 

targets for genetic engineering of guayule with increased NR production remains a pressing 68 

objective. 69 
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NR biosynthesis in guayule is highly upregulated by cold temperatures (Allen et al., 70 

1987; Benedict et al., 2008; Bonner, 1943; Bucks et al., 1985; Cornish and Backhaus, 2003; 71 

Dong et al., 2021; Downes and Tonnet, 1985; Hunsaker et al., 2019; Miyamoto and Bucks, 1985; 72 

Nelson et al., 2019; Ponciano et al., 2012; Veatch-Blohm et al., 2007). To unravel the 73 

mechanisms of cold-induced NR production in guayule, several studies have examined gene 74 

expression and enzyme activities in rubber biosynthetic pathways (Cornish and Backhaus, 2003; 75 

Ponciano et al., 2012). Given that NR production requires transcriptional activation of gene 76 

expression, a transcriptome study was conducted to identify differentially expressed genes in 77 

cold-treated guayule stems (Stonebloom and Scheller, 2019). Among these genes, the guayule C-78 

repeat binding factor transcriptional activator (PaCBF4), also known as dehydration responsive 79 

element binding factor 1D (DREB1D) was found to be highly induced in cold-treated stem tissue 80 

where active rubber synthesis and accumulation occurred (Stonebloom and Scheller, 2019). The 81 

potential of PaCBF4 as a novel target for genetic engineering to increase NR production in 82 

guayule has since piqued interest. The CBF/DREB1 transcription factor family has been 83 

extensively studied, especially in Arabidopsis, including members like AtCBF1/DREB1B, 84 

AtCBF2/DREB1C, AtCBF3/DREB1A and AtCBF4/DREB1D (Agarwal et al., 2017; Hwarari et 85 

al., 2022; Liu et al., 2019; Mehrotra et al., 2020; Shi et al., 2018; Zhang and Xia, 2023). While 86 

AtCBF1, AtCBF2, and AtCBF3 are well known for their major roles in cold and freezing 87 

tolerance (Gilmour et al., 2000; Jaglo-Ottosen et al., 1998; Novillo et al., 2004), AtCBF4 was 88 

initially associated with drought tolerance (Haake et al., 2002), but has also shown significance 89 

for cold and freezing tolerance (Liu et al., 2021; Oh et al., 2007; Tillett et al., 2012; Wang and 90 

Hua, 2009; Welling and Palva, 2008). The CBFs are considered the main components in early 91 

phases of cold signaling pathways, involving Inducer of CBF Expression (ICE), CBF, and cold-92 



5 
 

regulated (COR) genes (Hwarari et al., 2022; Liu et al., 2019). Cold stress is perceived by 93 

receptor proteins, triggering signal transduction, and leading to activation of ICE, which 94 

subsequently regulates the expression of CBF genes. The CBFs then bind to the C-95 

repeat/dehydration responsive element (CRT/DRE) of COR gene promoters, initiating the ICE-96 

CBF-COR transcriptional cascade for activating cold and freezing responses (Hwarari et al., 97 

2022; Liu et al., 2019). The CBFs belong to the superfamily of APETALA2/Ethylene Responsive 98 

(AP2/ERF) transcription factors containing a 60-amino acid consensus AP2/ERF domain present 99 

in numerous plant proteins (Nakano et al., 2006; Sakuma et al., 2002; Xie et al., 2019; Xu et al., 100 

2011). CBF/DREB1 sub-family has unique CBF signature sequences, 101 

PKK/KPAGRxKFxETRHP and DSAWR, located at the N-terminal or C-terminal of the 102 

AP2/EFR domain (Figure 1B) (Canella et al., 2010; Gilmour et al., 1998; Medina et al., 2011; 103 

Stockinger et al., 1997). In Arabidopsis, these CBF signatures have been shown to be important 104 

for CBF to bind the DRE/CRT cis-acting element (Canella et al., 2010). In addition to 105 

responding to the abiotic stresses, CBFs expression is also affected by hormones (Zhang and Xia, 106 

2023) and circadian clock (Fowler et al., 2005). 107 

Arabidopsis has over 200 COR genes that are either activated or repressed by CBFs (Li et 108 

al., 2020). Among these genes, some encode key enzymes involved in osmolyte biosynthesis and 109 

regulation  for maintaining hydrophobic interactions, ion homeostasis, cryoprotective proteins, 110 

and soluble sugars that stabilize cells and membranes to prevent damage caused by freezing 111 

temperatures (Meng et al., 2021; Okawa et al., 2008; Ramachandra Reddy et al., 2004; Shi et al., 112 

2018; Wang et al., 2003). COR genes are directly regulated by CBF transcription factors, making 113 

COR transcripts useful markers for assessing the function of CBFs (Jia et al., 2016; Shi et al., 114 

2017; Zhao et al., 2016). Arabidopsis COR15a and KIN1 (Cold-Inducible 1) are well-established 115 
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indicators of CBF functions (Artus et al., 1996; Kurkela and Franck, 1990; Lin and Thomashow, 116 

1992; Meng et al., 2015; Shi et al., 2017; Wang et al., 1994). The COR15a gene encodes a 15 117 

KDa protein with high amino acid sequence similarities to Late Embryo Abundant Protein 118 

(LEA) proteins, which accumulate in plants in response to cold stress (Lin and Thomashow, 119 

1992). COR15a is located in the stromal compartments of chloroplasts, protecting chloroplastic 120 

enzymes from freeze-induced inactivation and contributing to protecting membrane function 121 

against low temperature stress (Artus et al., 1996). Arabidopsis KIN1 encodes a 6.5 KDa kinesin 122 

protein with sequence similarity to anti-freeze proteins, playing a role in cold/freeze tolerance by 123 

stabilizing cellular compartments in plants (Wang et al., 1994; Wang et al., 2014; Wang and 124 

Hua, 2009). Functional evaluation of CBF/DREB1 genes has been conducted through their 125 

overexpression in transgenic plants, often resulting in higher survival rates than controls when 126 

exposed to cold/freezing temperatures, drought, high salinity, and other abiotic stress (Agarwal 127 

et al., 2017; Zhang and Xia, 2023). However, in some cases the overexpression of certain 128 

CBF/DREB1 genes resulted in retarded growth (Agarwal et al., 2017; Zhang and Xia, 2023). 129 

There are reports where the constitutive overexpression of CBF/DREB1 genes caused few or no 130 

negative growth changes in transgenic plants. For example, overexpressing a BB-CBF from 131 

blueberry (Vaccinium corymbosum) enhanced freezing tolerance in Arabidopsis and native 132 

blueberry without affecting growth (Polashock et al., 2010; Walworth et al., 2012). Similarly, 133 

transgenic Arabidopsis lines overexpressing a NnDREB1 from lotus (Nelumbo nucifera) (Cheng 134 

et al., 2017) or a GthCBF4 from cotton (Gossypium hirsutum) (Liu et al., 2021) grew normally 135 

but exhibited increased drought (Cheng et al., 2017) or cold (Liu et al., 2021) tolerance 136 

compared to wild type. Transgenic paper mulberry (Broussonetia papyrifera) lines constitutively 137 
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expressing a FaDREB1 from tall fescue (Festuca arundinacea) exhibited no growth retardation 138 

and had higher salt and drought tolerance than wild-type plants (Li et al., 2011).  139 

Given the pronounced increase in guayule's NR production under cold conditions during 140 

the winter, we hypothesize that a master transcriptional regulator could upregulate the entire NR 141 

biosynthestic pathway via the cold signaling cascade. To better understand rubber synthesis 142 

through cold-mediated signaling in guayule, we isolated and characterized the PaCBF4 gene. 143 

This study considers the sequence, organ-specific expression, functionality, and influence of the 144 

PaCBF4 gene on COR15a and KIN1 gene expression. The study of cold tolerance in transgenic 145 

Arabidopsis aims to show the potential of using PaCBF4 for NR production enhancement. 146 

 147 

2. Materials and Methods 148 

 149 

2.1. Sequence and phylogenetic analysis 150 

 151 

The PaCBF4 (Genbank ID, GFTW01034449.1) protein sequence was used as a query to search 152 

the protein databases using the BLASTP method with an E-value threshold of <1E-20. The 153 

protein databases were downloaded from NCBI. If a gene had multiple isoforms, the longest 154 

protein was selected to represent the gene. Some CBFs/DREBs from crop species were included 155 

as they are better studied for their biological function. In addition, the presence of the AP2-156 

domain was examined using the hmmscan function of HMMER3 v3.3.2 (http://hmmer.org) 157 

(Eddy, 2011) with AP2 domain profile (PF00847) used as a query. The protein sequences were 158 

excluded from further consideration if the AP2 domain was incomplete, or the AP2 domain 159 

match E-value was greater than 1E-5. Multiple protein sequences were aligned using Clustal 160 

http://hmmer.org/
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Omega (Sievers and Higgins, 2018). with default parameters. The phylogenetic tree was 161 

generated based on the alignment using the Neighbor-Joining method in MEGAX (Kumar et al., 162 

2018) with default parameters. These alignments were then used to infer phylogenetic 163 

relationships by using the Maximum Likelihood method and JTT+G matrix-based model (Jones 164 

et al., 1992) and 100 bootstraps (Felsenstein, 1985). Branches corresponding to partitions 165 

reproduced in less than 50% bootstrap replicates are collapsed. 166 

 167 

2.2. Plasmid construction, plant material, plant transformation, and growth conditions 168 

 169 

The PaCBF4 sequence used in this study is the same gene (TR78450_c1_g1_i1 or Genbank ID 170 

GFTW01034449.1) as described previously (Stonebloom and Scheller, 2019). The guayule 171 

genotype is the industrial standard cultivar AZ2 (www.ars-grin.gov/npgs) (Dierig et al., 1989; 172 

Ray et al., 1999). The other genes in the T-DNA cassette in plasmid pND_PaCBF4 (Suppl 173 

Figure. S1A) were constructed as described previously (Dong et al., 2013).  174 

Shoot tip clones derived from one seedling of AZ2 germplasms, designated as AZ2-D, 175 

were maintained in tissue culture as described previously (Dong et al., 2013). Newly sub-176 

cultured shoot tips usually generated 3-5 roots within 1-2 weeks. Regenerated plantlets were 177 

carefully removed from the tissue culture medium and transplanted into 4-inch pots for 178 

continued growth in a chamber set at 24°C, with 12 h light (500 µmol/m2) and 12 h dark cycle. 179 

Guayule plants reached the flowering stage after three months in the chamber. Various tissues 180 

from 3-month-old plants were harvested for analysis. Low-temperature treatments were 181 

conducted by placing separate sets of 3-month-old guayule plants at 4°C in a refrigerator, or at -182 

5°C in a freezer for 6 h in dark. Control plants were incubated in a dark chamber at 24°C for 6 h. 183 
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Arabidopsis transformation was carried out in wild-type (Col-0) genotype using a floral 184 

dip method as described previously (Clough and Bent, 1998). Arabidopsis were grown in a 185 

chamber under 24°C, continuous light (24 h light, 100 µmol/m2). Leaf tissues from the T3 and T4 186 

generations of the transformed lines were used in all experiments. For Arabidopsis cold or 187 

freezing treatment, 23-day-old plants were exposed to 4°C for 12 h or -5°C for 24 h, 188 

respectively. The survival rate was scored 5 days after the freezing-treated plants were returned 189 

to their normal growth conditions. Cold and freezing experiments were repeated three times. Soil 190 

mix, growth conditions, and plant care were performed in accordance with previously described 191 

methods (Placido et al., 2019).  192 

 193 

2.3. Genomic DNA extraction and confirmation of PaCBF4 integration 194 

 195 

Genomic DNA from T3 transgenic Arabidopsis lines and PCR reaction mixtures were prepared 196 

following the instruction described (REDExtract-N-Ampa Plant PCR kit (Sigma-Aldrich, 197 

Carlsbad, CA, United States). PCR primers spanning the 409 promoter (5’-198 

AACCCTATGAGGCGGTTTC-3’) and PaCBF4 (5’- CCTCTTAAGCGGAGCACCAA-3’) 199 

region were used to amplify the genomic DNA with predicted amplicon size of 892 bp (Suppl 200 

Figure S1). PCR primers of Arabidopsis Actin2 gene (Genbank ID, AY087751), forward (5’-201 

CTGCTGGAATCCACGAGACA-3’) and reverse (5’-CCTGCCTCATCATACTCGGC-3’) were 202 

used as internal control to the genomic DNA with predicted amplicon size of 371 bp (Suppl 203 

Figure S1B). The PCR reaction and gel electrophoresis were performed as described previously 204 

(Chen et al., 2005). 205 

 206 
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2.4. RNA extraction, cDNA synthesis and quantitative PCR (qPCR) 207 

 208 

Tissues were collected from 3-month-old guayule plants. Arabidopsis leaf leaves were collected 209 

from homozygous T4 generation plants grown in a chamber as described above. Samples were 210 

immediately frozen in liquid nitrogen after collection and stored at -80 ºC until RNA extraction 211 

using Total RNA Isolation Kit (Ambion, Pittsburg, PA, United States). Guayule young leaves 212 

were the first three leaves from shoot tip in size between 25–40 mm. Mature leaves were near 213 

shoot tips and newly reached full-size of 50–70 mm. The cDNA samples and qPCR reactions 214 

were performed as described previously (Kim and Chen, 2015). Genes and their primer 215 

sequences are listed in Suppl Table S1. PaEF1a or AtACT2 was used as an internal control to 216 

normalize gene expression in guayule or Arabidopsis. Relative gene expression was calculated 217 

according to the Pfaffl model (Pfaffl, 2001). 218 

 219 

2.5. Light Microscope  220 

 221 

The flowers were photographed using a stereoscopic microscope (Leica MZ16F, Leica 222 

Microsystems Inc., Buffalo Grove, IL).  Digital images were collected using a MicroPublisher6 223 

color camera (Qimaging, Surrey, BC, Canada) and Image-Pro software (Media Cybernetics, 224 

Rockville, MD).   225 

 226 

3. Results and Discussion 227 

 228 

3.1 Sequence analysis of guayule CBF4 gene 229 
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 230 

The full length of PaCBF4 (or PaDREB1D) encodes a small protein with 199 amino acid 231 

residues (Genbank ID, GFTW01034449.1). Using PaCBF4 as a query, we retrieved 17 232 

CBF/DREB1 protein family members from 9 plant species and conducted a phylogenetic 233 

analysis. The resulting phylogeny tree can be divided into four groups (Figure 1A). Arabidopsis 234 

CBF1 to CBF4 and a Hevea rubber tree HbDREB1A were grouped in Group I (Figure 1A). 235 

PaCBF4 showed the greatest identity (80.8%) with a sunflower (Helianthus annuus) 236 

HaDREB1D, followed by rubber dandelion TkCBF6 (65.7%) and TkCBF1 (59.4%), all of which 237 

are Asteraceae, clustered to group II (Figure 1A, Suppl Table S2). Compared to members in 238 

group I, PaCBF4 was more closely related to HbDREB1A (58.8%), followed by AtCBF4 (55%) 239 

(Figure 1A, Suppl Table S2). Group III and Group IV contain members from dicot woody 240 

species, such as cottonwood (Populus trichocarpa), tea (Camellia sinensis), apple (Malus 241 

domestica), peach (Prunus persica) and Eucalyptus (Eucalyptus grandis). Alignment of CBF 242 

sequences allowed us to compare three important domains: the AP2/ERF domain, and two CBF 243 

signature domains (Figure 1B). The PaCBF4 protein had 100% conservation with the 244 

Arabidopsis CBF Signature Sequence I, PKKPAGRKKFRETRHP. Regarding the CBF 245 

Signature Sequence II, DSAWR, there was a valine in PaCBF4 resulting in DSVWR, while this 246 

position is alanine in all AtCFBs (Figure 1B). The substitution of alanine with valine was also 247 

found in many other species, including CaDREB, HaDREB1D, TkCBF1, and TkCBF6 (Figure 248 

1B), as well as five bilberry species (Oakenfull et al., 2013) and two blueberry species 249 

(Polashock et al., 2010). One of the blueberry CBF sequences, BB-CBF derived from northern 250 

cultivar Bluecrop (Vaccinium corymbosum), was demonstrated to activate COR gene expression 251 

in transgenic Arabidopsis (Polashock et al., 2010) and in southern blueberry cultivars Legacy (V. 252 
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darrowii and V. virgatum) (Walworth et al., 2012). Therefore, it is evident that the change from 253 

the alanine to valine does not impede the binding of CBF to the DRE/CRT cis-acting element. In 254 

general, the CBF Signature Sequences in PaCBF4 are highly conserved compared to known CBF 255 

sequences. 256 

 257 

3.2 Expression of PaCBF4 in guayule 258 

 259 

To study the potential role of PaCBF4, we first characterized its organ-specific expression in 260 

guayule. Under normal growth condition (24°C, 12 h light, 12 h dark), the relative expression 261 

levels of PaCBF4 were quantified in guayule samples taken from 3-month-old plants after light 262 

was on for 6 h. We calculated the relative expression of PaCBF4 in each organ by comparing 263 

with the level of PaCBF4 in stem (set at 100) under light and 24°C. As shown in Figure 2A, the 264 

expression of PaCBF4 was more than 90% higher in stems than in leaves, peduncles, flowers 265 

and roots. As most CBFs, including those from Arabidopsis, are expressed only under low-266 

temperature or other stress conditions, it is intriguing to investigate if the constitutive expression 267 

of PaCBF4 in stems is associated with NR synthesis in guayule. We also examined samples from 268 

plants placed in dark chambers (24°C) for 6 h. The spatial expression pattern of PaCBF4 269 

remained consistent with that observed under light conditions (Figure 2A, 2B). However, the 270 

transcript levels in all examined organs decreased to lower levels, showing 80% reduction in 271 

stem and residual levels in the other organs (Figure 2B). These findings suggest that PaCBF4 272 

expression may be regulated by light or circadian clock. The regulatory mechanisms PaCBF4 273 

expression in guayule is currently under investigation.  274 
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   We conducted cold (4°C) and freezing (-5°C) treatments in parallel with the controls in 275 

the dark, as temperature drops during nighttime in winter. Under cold temperature, PaCBF4 276 

exhibited a slight increase in expression in stems (1.2-fold). In contrast, in peduncle and root, 277 

PaCBF4 transcript levels increased 7.6-fold and 8.9-fold respectively (Figure 2C). The results 278 

suggest that stem, peduncle and root are important organs in protecting and reviving guayule 279 

from cold stress. The differentially expression of PaCBF4 between stems and leaves under cold 280 

conditions is consistent with the previous report (Stonebloom and Scheller, 2019). We are 281 

currently conducting experiments to measure PaCBF4 expression under longer period of cold-282 

treatment. Upon exposure to freezing temperatures, dramatic increases of PaCBF4 expression 283 

occurred in all organs. Notably, the stem exhibited the highest level of induction with a 238-fold 284 

increase compared to the control. This was followed by peduncles, roots, leaves and flowers, 285 

which exhibited increases between 16% and 44% (Figure 2D). These data indicated that PaCBF4 286 

was induced by freezing temperature and thus may regulate the freezing stress responses. In the 287 

future, we will examine the expression profile of PaCBF4 under light and cold, or light and 288 

freezing to understand whether light participates in the regulation of PaCBF4 expression under 289 

low temperatures. 290 

 291 

3.3. PaCBF4 induced COR gene expression in Arabidopsis  292 

 293 

To investigate the mechanisms underlying PaCBF4-mediated responses to low temperatures, we 294 

introduced PaCBF4 into Arabidopsis, a well-established model for studying CBF gene 295 

regulation. Multiple transgenic Arabidopsis lines constitutively expressing PaCBF4 under the 296 

control of the potato ubiquitin 409 promoter (Placido et al., 2019; Rockhold, 2008) were 297 
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generated and 37 independent transgenic T1 lines were identified by kanamycin (Km) selection. 298 

Among 20 lines analyzed, 11 T2 lines had typical segregation for one-locus T-DNA insertion and 299 

were selected for further analysis. PCR-based confirmation of PaCBF4 integration into the 300 

Arabidopsis genome was achieved by amplifying a region spanning part of the potato ubiquitin 301 

409 promoter and part of PaCBF4. This produced 892 bp amplicons in all the transgenic lines 302 

and a positive pND_PaCBF4 plasmid control, while the wild-type plants lacked these amplicons 303 

(Suppl Figure S1B). All samples, except for pND_PaCBF4 plasmid, produced a predominant 304 

PCR band for the Arabidopsis endogenous gene, Actin2, (371 bp) (Suppl Figure S1B). These 305 

PCR results confirmed the presence of PaCBF4 in all the 11 transgenic lines. The relative 306 

expression levels of PaCBF4 were quantified in T3 homozygous population of these 11 lines 307 

using qPCR. As expected, PaCBF4 transcripts were not detectable in WT but were detected in 308 

all transgenic samples (Figure 3). Line 5 had the highest PaCBF4 transcript abundance, followed 309 

by line 8, line 4 and line 2 (Figure 3). In contrast, line 1, line 6, line 7, and lines 9 to 12 had 310 

relatively low transcript levels, ranging from 2% to 20% of that observed in line 5 (Figure 3). 311 

It is well known that Arabidopsis CBFs can be induced by cold and bind to the promoter 312 

regions of downstream COR genes, including COR15a and KIN1 (Gilmour et al., 2000; Jia et al., 313 

2016; Seki et al., 2001; Shi et al., 2017; Thomashow, 1999, 2001; Wang and Hua, 2009; Zhao et 314 

al., 2016). To assess the transcriptional activation function of PaCBF4 on COR genes, we 315 

selected lines L2, L4, L5 and L8 that showed relatively high constitutive expression levels of 316 

PaCBF4 (18- to 50-fold higher than that in the lowest L9) and measured the transcript levels of 317 

AtCOR15a and AtKIN1 in these lines. Intriguingly, constitutive overexpression of PaCBF4 318 

resulted in induction of COR15a and KIN1 transcripts in all of these transgenic lines, even in the 319 

absence of exposure to cold temperature, when compared to the WT plants (Figure 4). When 320 



15 
 

plants were exposed to cold temperature (4°C for 12 h), both COR15 and KIN1 transcripts were 321 

detected in WT, and their levels were elevated in all cold-treated transgenic samples (Figure 4). 322 

These results indicate that PaCBF4 functions as an active member of the guayule CBF gene 323 

family and operates in a manner conserved between guayule and Arabidopsis. The enhanced 324 

transcript levels of AtCOR15a and AtKIN1 under cold temperature were highly likely induced by 325 

both AtCBFs and PaCBF4 in the transgenic lines (Figure 4).  326 

 327 

3.4 PaCBF4 increased freezing tolerance in Arabidopsis. 328 

 329 

Overexpression of functional CBFs in Arabidopsis or other species leads to the constitutive 330 

expression of downstream COR genes, resulting in constitutive freezing tolerance (Mehrotra et 331 

al., 2020; Shi et al., 2018; Shi et al., 2017; Zhang and Xia, 2023). We observed that PaCBF4 332 

strongly activated the expression of COR genes in Arabidopsis (Figure 4), and drastically 333 

increased its transcript levels in various organs of guayule under freezing temperature (-5°C) 334 

(Figure 2D). These results prompted us to investigate the role of PaCBF4 in freezing tolerance. 335 

We selected lines L2 and L5 to determine whether the transgenic lines were more freezing 336 

tolerant than the WT. As shown in Figure 5, 23-day-old plants were subjected to freezing 337 

treatment at -5°C for 24 h and then returned to normal growth conditions at 24°C. Five days 338 

later, all of the WT plants had died, whereas most of L2 and L5 plants had recovered from the 339 

freezing treatment, with survival rates of 87.5% and 97.9%, respectively (Figure 5C). Although 340 

the mechanism of PaCBF4-mediated freezing tolerance requires further investigation, it is likely 341 

that PaCBF4 induced the expression of a set of genes known as the CBF-regulon (Seki et al., 342 

2001; Shi et al., 2017; Thomashow, 2001) in guayule. The increase in PaCBF4 transcript levels 343 
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in various guayule organs under freezing temperatures (-5°C) (Figure 2D) suggests that similar 344 

mechanisms may exist in guayule.  345 

 346 

3.5 Overexpression of PaCFB4 did not affect vegetative growth but affected silique development  347 

 348 

During the initial 30 days of growth under controlled conditions (24°C), the transgenic plants 349 

appeared phenotypically normal, indistinguishable from the WT, and initiated bolting, marking 350 

the transition from vegetative to reproductive growth. (Figure 5A, 5B). However, upon 351 

development of multiple inflorescences around day 45 of growth, it became apparent that lines 352 

L2 and L5 had many undeveloped siliques, even though their inflorescence and branch growth 353 

appeared normal (Figure 6A). These undeveloped siliques were devoid of seeds. Further 354 

examination of the flowers of WT and L2 revealed that the stigmas of WT flowers were almost 355 

completely covered with pollen, whereas many L2 stigmas had little or no pollens (Figure 6B). It 356 

is therefore likely that the undeveloped silique phenotype was caused by insufficient pollination. 357 

Interestingly, L2 and L5 occasionally developed normal siliques and seeds at random, suggesting 358 

that PaCBF4 might affect pollen desiccation in these lines, leading to unopened anthers. The 359 

precise mechanisms of pollination and silique development associated with the PaCBF4 360 

expression in Arabidopsis are currently under investigation. It should be noted that seed 361 

production in guayule is usually desirable, rubber yield in unaffected. 362 

 363 

4. Conclusions 364 

 365 
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PaCBF4 possesses an AP2 domain and CBF signature sequences, which are widely conserved 366 

features among known CBF family members. The high expression level of PaCBF4 in guayule 367 

stems indicate its important role in cold and freezing tolerance and association with NR synthesis 368 

and accumulation. We demonstrated that PaCBF4 is a functional member of CBF/DREB1 family 369 

by expressing it in Arabidopsis. The results support that PaCBF4 is a promising candidate for 370 

overexpression in guayule, potentially boosting NR production without the need for cold stress 371 

induction. To prevent any impact on reproductive development in guayule, as seen in 372 

Arabidopsis, a suitable promoter could be employed to ensure robust expression exclusively in 373 

rubber-producing tissues, such as stem. 374 
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Figure legends 396 

 397 

Figure 1. Comparison of 17 CBF/DREB1 protein family members from 9 plant species. A, A 398 

phylogenetic analysis constructed using the Maximum Likelihood method with bootstrap score 399 

(100 replicates) shown next to the branches. PaCBF4 gene ID is indicated by a rectangle. B, 400 

Alignment of AP2/EFR domains marked with a solid line and flanking CBF signature sequences 401 

marked with dotted lines. PaCBF4 sequences are indicated by rectangles. The species are 402 

Arabidopsis (At), Rubber Tree (Hb: Hevea brasiliensis); Eucalyptus (Eg: Eucalyptus grandis); 403 

Apple (Md: Malus domestica); Cottonwood (Pt: Populus trichocarpa); Sunfower (Ha: 404 

Helianthus annuus); Tea plant (Ca: Camellia sinensis); Dandelion (Tk: Taraxacum kok-saghyz); 405 

Guayule (Pa: Parthenium argentatum). Genbank ID of each sequence was listed in square 406 

brackets.  407 

 408 

Figure 2. qPCR analysis of PaCBF4 transcript abundance in various organs of guayule. Bar 409 

charts show PaCBF4 expression level from samples collected under light at 24°C (A), under 410 

dark at 24°C (B), under dark at 4°C (C), and under dark at -5°C (D). Relative expression in each 411 

http://www.jbei.org/
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organ was compared with stem (set at 100) collected under light at 24°C. Numbers in 412 

parentheses indicate relative expression levels. Data are representative of three independent 413 

experiments. Error bars represent ± SD of three technical replicates. 414 

 415 

Figure 3. qPCR analysis of PaCBF4 transcript abundance in Arabidopsis. WT, wild type. ND, 416 

not detected.  Relative expression of each T3 line was compared to transgenic line 2 (L2) set at 417 

100. Data are representative of three independent experiments. Error bars represent ± SD of three 418 

technical replicates. 419 

 420 

Figure 4. qPCR analysis of COR gene expression in Arabidopsis. Bar charts show COR15a (A) 421 

and KIN1 (B) expression levels from samples collected under 24°C (open bar) and 4°C (solid 422 

bar). WT, wild type. Numbers in parentheses indicate relative expression levels. Relative 423 

expression of each T4 line was compared to the transgenic L2 sample (set at 100).  Data are 424 

representative of three independent experiments. Error bars represent ± SD of three technical 425 

replicates. 426 

 427 

Figure 5. Freezing tolerance of wild-type and transgenic L2 and L5 plants. (A) Photos of 23-day-428 

old plants growing under normal 24°C before freezing treatment. (B) Photos of plants exposed to 429 

-5°C for 24 h and then returned to 24°C for 5 recovery days. (C) Survival rate, scored as the 430 

percentage of plants showing healthy leaves after 5 days recovery from the freezing treatment 431 

(solid bar). Non-freezing controls were grown under 24°C (open bar). Number in parenthesis 432 

indicate survival rate of 0% for the WT. Data are mean ± SD of three independent experiments. 433 

Each treatment had 64 individuals. 434 
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 435 

Figure 6. Inflorescence of wild-type and transgenic L2 plants showing reduced size of siliques 436 

and unpollinated flowers. 45-day-old plants were grown under normal 24°C continuous light 437 

conditions. Examples of reduced siliques are indicated by red circles (A). Unpollinated flowers 438 

are displayed in L2 (B).  439 

 440 

Supplementary figure legend 441 

Figure S1. Schematic presentation of the T-DNA construct in pND_PaCBF4 plasmid (A) and 442 

genomic DNA PCR identification of PaCBF4 (B). Black solid arrows indicate the primers 443 

locations for amplifying a PCR product (892 bp). The Arabidopsis Actin2 gene was used as an 444 

internal control with a PCR product (371 bp). 445 

  446 
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Figure 1. Comparison of 17 CBF/DREB1 protein family members from 9 plant species. A, A phylogenetic analysis 

constructed using the Maximum Likelihood method with bootstrap score (100 replicates) shown next to the 

branches. PaCBF4 gene ID is indicated by a rectangle. B, Alignment of AP2/EFR domains marked with a solid line 

and flanking CBF signature sequences marked with dotted lines. PaCBF4 sequences are indicated by rectangles. 

The species are Arabidopsis (At), Rubber Tree (Hb: Hevea brasiliensis); Eucalyptus (Eg: Eucalyptus grandis); Apple 

(Md: Malus domestica); Cottonwood (Pt: Populus trichocarpa); Sunfower (Ha: Helianthus annuus); Tea plant (Ca: 

Camellia sinensis); Dandelion (Tk: Taraxacum kok-saghyz); Guayule (Pa: Parthenium argentatum). Genbank ID of 

each sequence was listed in square brackets.



Figure 2. qPCR analysis of PaCBF4 transcript abundance in various organs of guayule. Bar 
charts show PaCBF4 expression level from samples collected under light at 24°C (A), under 
dark at 24°C (B), under dark at 4°C (C), and under dark at -5°C (D). Relative expression in 
each organ was compared with stem (set at 100) collected under light at 24°C. Numbers in 
parentheses indicate relative expression levels. Data are representative of three 
independent experiments. Error bars represent ± SD of three technical replicates.
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Figure 3. qPCR analysis of PaCBF4 transcript abundance in Arabidopsis. WT, wild-type. ND, not 
detected.  Relative expression of each T3 line was compared to transgenic line 2 (L2) set at 
100. Data are representative of three independent experiments. Error bars represent ± SD of 
three technical replicates.
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Figure 4. qPCR analysis of COR gene expression in Arabidopsis. Bar charts show COR15a (A) and KIN1 (B) 
expression level from samples collected under 24°C (open bar) and 4°C (solid bar). WT, wild-type. 
Numbers in parenthesis indicate relative expression level. Relative expression of each T4 line was 
compared to transgenic L2 sample (set at 100).  Data are representative of three independent 
experiments. Error bars represent ± SD of three technical replicates.
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Figure 5. Freezing tolerance of wild-type and transgenic L2 and L5 plants. (A) Photos of 23-day-old plants 
growing under normal 24°C before freezing treatment. (B) Photos of plants exposed to -5°C for 24 h and 
then returned to 24°C for 5 recovery days. (C) Survival rate, scored as the percentage of plants showing 
healthy leaves after 5 days recovery from the freezing treatment (solid bar). Non-freezing controls were 
grown under 24°C (open bar). Number in parenthesis indicate survival rate of 0% for the WT. Data are 
mean ± SD of three independent experiments. Each treatment had 64 individuals.
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Figure 6. Inflorescence of wild-type and transgenic L2 plants showing reduced size of 
siliques and unpollinated flowers. 45-day-old plants were grown under normal 24°C 
continuous light conditions. Examples of reduced siliques are indicated by red circles 
(A). Unpollinated flowers are displayed in L2 (B). 
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Figure S1. Schematic presentation of the T-DNA construct in pND_PaCBF4 plasmid (A) 

and genomic DNA PCR identification of PaCBF4 (B). Black solid arrows indicate the 

primers’ locations for amplifying a PCR product (892 bp). Arabidopsis actin2 gene was 

used as an internal control with a PCR product (371 bp).
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Table S1. Primer information for qPCR

Gene and primer name Genbank ID primer pairs (5' to 3')

PaEF1a-F KU176069.1 CACAGCAAACCGACCAAGTG

PaEF1a-R CGACAGACGATCCGGTAAGG

PaCBF4-F GFTW01034449.1 TGCAGCACCGGGAAACTAAT

PaCBF4-R CCCAGCCACACTCTCGATTT

AtACT2-F NM_112764.4 GGTAACATTGTGCTCAGTGGTGG  

AtACT2-R AACGACCTTAATCTTCATGCTGC  

AtCOR15-F AY057640.1 GTCGTCGTTTCTCAACGCAAGA

AtCOR15-R GCTTTCTCAGCTTCTTTACCCA 

AtKIN1-F NM_121601.3 ATGCCTTCCAAGCCGGTCAGAC

AtKIN1-R CCGGTCTTGTCCTTCACGAAGT
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amplican length (bp) Eff%

142 91.06

170 94.64

109 98.68

213 97.41

170 98.27



AtCBF2 [NP_567719.1]AtCBF3 [NP_567720.1]AtCBF1 [NP_567721.1]AtCBF4 [NP_200012.1]PaCBF4 [GFTW01034449.1]TkCBF1 [GWHTAAAA022478]

AtCBF2 [NP_567719.1] 87.16 87.10 65.78 52.75 52.75

AtCBF3 [NP_567720.1] 12.89 86.24 65.33 55.30 55.76

AtCBF1 [NP_567721.1] 13.02 12.55 65.78 54.63 54.84

AtCBF4 [NP_200012.1] 36.88 37.55 36.62 55.00 54.22

PaCBF4 [GFTW01034449.1] 57.87 54.84 53.83 52.96 65.70

TkCBF1 [GWHTAAAA022478] 61.62 56.71 56.98 59.87 41.79

TkCBF6 [GWHTAAAA034733] 65.43 66.88 63.93 62.68 49.61 54.10

PtCBF4 [ABP64695.1] 58.45 58.02 55.55 55.55 51.27 50.71

MdCBF/DREB4 [AGL07696.1] 59.91 58.22 57.75 62.29 57.81 54.78

CaDREB [AHL69786.1] 70.24 67.48 66.99 69.31 60.94 59.91

EgDREB1F [XP_10038979.1] 90.85 92.15 89.26 95.04 86.22 76.85

HbDREB1A [XP_21691379.1] 50.62 46.81 47.38 48.03 49.61 49.03

HbDREB1B-like [XP_21655860.1] 86.75 84.40 80.59 83.24 80.44 73.09

HbDREB1F-like [XP_21655864.1] 92.89 90.39 86.44 89.16 86.50 78.74

HbDREB1F-like [XP_21658826.1] 86.75 80.97 81.73 84.73 75.91 69.31

HaDREB1F [XP_22008098.1] 96.14 92.37 86.07 91.87 82.00 78.34

HaDREB1D [XP_21984743.1] 44.75 39.61 39.92 38.34 9.10 27.74

Upper: Percent Identity

Lower: Evolutionary Divergence
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TkCBF6 [GWHTAAAA034733]PtCBF4 [ABP64695.1]MdCBF/DREB4 [AGL07696.1]CaDREB [AHL69786.1]EgDREB1F [XP_10038979.1]HbDREB1A [XP_21691379.1]HbDREB1B-like [XP_21655860.1]HbDREB1F-like [XP_21655864.1]HbDREB1F-like [XP_21658826.1]HaDREB1F [XP_22008098.1]

48.86 53.23 48.96 48.72 39.07 57.80 43.06 41.51 39.22 38.07

47.49 54.23 49.79 50.00 38.60 58.99 44.23 41.83 40.95 40.55

47.91 54.23 51.05 49.13 41.04 60.93 44.50 41.63 41.08 42.33

46.46 54.37 48.98 50.00 42.15 59.91 43.72 41.86 39.22 42.15

59.42 57.81 48.74 51.29 39.51 58.80 43.48 41.63 40.43 44.44

56.76 59.69 51.41 51.82 42.08 59.23 44.93 42.51 41.18 46.08

51.83 47.20 44.00 37.31 48.50 41.06 38.65 37.77 37.27

62.38 58.11 54.84 40.84 61.81 46.77 44.28 42.54 44.00

62.92 43.48 51.37 36.60 54.76 44.16 41.56 45.38 40.59

78.85 45.95 62.42 37.12 54.76 42.67 40.44 42.45 39.06

96.44 81.39 95.75 101.94 41.59 51.87 49.53 45.45 45.54

64.28 47.22 54.03 60.84 89.03 45.89 43.00 44.02 44.44

82.15 73.35 81.22 89.44 51.79 80.47 95.63 50.21 52.15

87.02 79.41 86.87 93.12 56.36 86.25 4.47 48.09 50.24

82.97 64.30 71.78 83.44 64.66 77.15 57.21 60.78 48.51

94.95 74.47 87.08 89.28 73.05 81.34 62.19 65.92 67.37

35.40 47.76 39.93 44.67 67.24 33.90 59.84 64.78 56.80 64.84



HaDREB1D [XP_21984743.1]

54.50

57.14

56.08

55.21

80.77

70.79

63.84

56.59

50.70

50.49

44.32

62.23

44.74

43.16

40.09

43.16



Table. Estimates of Evolutionary Divergence between SequencesThe number of amino acid substitutions per site from between sequences are shown. Analyses were conducted 

using the Poisson correction model [1]. This analysis involved 18 amino acid sequences. All ambiguous positions 

were removed for each sequence pair (pairwise deletion option). There were a total of 305 positions in the final 

dataset. Evolutionary analyses were conducted in MEGA X [2]

1. Zuckerkandl E. and Pauling L. (1965). Evolutionary divergence and convergence in proteins. Edited in Evolving 

Genes and Proteins by V. Bryson and H.J. Vogel, pp. 97-166. Academic Press, New York.

2. Kumar S., Stecher G., Li M., Knyaz C., and Tamura K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis 

across computing platforms. Molecular Biology and Evolution 35:1547-1549.
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