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IMPROVED CLASSICAL PATH»APPROXIMATION
FOR THE BOLTZMANN DENSITY MATRIX*

William H. Miller
Inorganic Materials Research Division, Lawrence Berkeley Laboratory

and Department of Chemistry; University of California,
- Berkeley, California 94720 '

" Abstract

‘A classical path approximation for diagonal matrix e]éments ofvﬁhe_'
Bot]zmann‘dénsify operator, i.e., the equilibrium particle density, is'
derived and its properties analyzed, which is not_bn]y more éccurate
than an earlier result, but considerably sfmp1er to apply to systems
with many degrees of freedom. The most impdrtant sihp]ifying feature
is thaf‘it fs‘not hecessary to deal with classical- trajectories with
6oub1e-ended‘boundary condifions, The partition function , for examp]e,
is given by a phase'space average bver initial conditions of an exponential
functipn of a c]assica]_action.1ntegra1 aldng the trajectory'wjth these

initial conditions.

1. INTRODUCTION.

A It has récently been shown]"z how the semiclassical épproximations
now commonly used in moTecuiar collision dynamics3 can be carried over
info statistical mechanics.‘ This "classical path approximation" was

dekived by app1ying a steepest descént.approximation to the evaluation of
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Feynman's4'path integral representation of the Boltzmann density operator,
exp(-8H). - Alternatively, one obtains the same result by beginning with the

semiclassical ‘approximation to the propagator>2>3P

, exp(-iHt/fi), and making
the formal rep]acement t = -ifB. |
The c1a551ca1 path approx1mation for the diagonal matrix eiements of

1- 2 to be

exp(-gH), i.e., the equilibrium partic]e density; was seen
considerabiy'more accurate than that obtained from‘ordinary classical
statistical mechanics; i.e., many‘of‘the'quantum effects are accurately
contained within the classical path approximation. It was seen , for
example, that & good approximation to the particle density was obtained
even on the limit of zero temperature (8 > =), a case for which the
purely c]a551ca1 resuit is meaningiess The reason the semiclassical
approach goes so much further than a strictly classical treatment is that
the latter 1ncorporates an inherent short time limit for the propagator,
whereas the former does not.

The primary'shortcoming,of the previous semiclassical resu]ts."2 is
the difficulty in applying them to anything but one dimensional systems..
This difiiCuity arises because it is necessary to find classical tra-
jectories that satisfy certain double-ended boundary conditions, and
since for systems with more than one degree of freedom the trajectories
must in general be computed numerica]iy,ithis means one must deal with a
.non—iinear boundary ua]ue.prob]eh with many variabies. The situation'is
further complicated by the fact that there may be several different
trajectories obeying the same boundary conditions, and it is necessary

to include them all.

In this paper an improved classical path approximation is presented’
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which is more accurate than the previous ohe, but more important]y; it
~is of a form that can be readi]y applied to systems with'many degrees

- of freedom. 'In particular, there is no reference at all to double-

ended bouhdary’conditions'in the final expressiohs derived in Section I1;

the relevant trajectorie§ are required only as a-funcfion of a complete

set of‘ihitial'cOnditiOns; a problem that can be readily handled numeri-

cally. The expression for the partition function [Equation (2.T1)], for
example, ihvo1ves the avérage of an exponential function of the classical
action over the phase space'of initial conditions.

In Section III the 1mproyed classical path approximation for the particle
density [Equation (2.10)] is expanded in powers of fi in order to compare term
by term with the éxact'quantum correctioné; this gives additional insight
into the nature of the'quahtum effects that are Contained withih‘thé"
classical path approximation. Section IV concludes with a discussion of
thé‘principa1 limitation of the classical path approximation for many-
body systems, the inabiifty to deal with exchangefdf identical particles

- in a simple manner.

IT. IMPROVED CLASSICAL PATH APPROXIMATION.
| A. Derivation.
The improved clésﬁical pathvapproximation takes-its particu]af]y
simple form only for diagoﬁé] matrix elements of the density operator;
thus cbnsider the diagoha]reiements ih a coordinate represéntation, i.e.,

the particle density
olg) = <glexp(-8H) >, , - ~ (1)

where q = (q], 9y .;., hN) is the set of Cartesian coordinates for the
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. N-dimensional system, and B is related to the temperature in the usﬁa]
fashion, g = (kT)']. Labeling the coordinate q in Equation (2.1) as 91s
noting that | |

: exp(-BH) = exp(- %-BH) exp(- %—BH)

and 1nsert1ng a "sum" over the complete set of coordlnate states 9,

gives the following equivalent express1on
p(g]) = fdgz < Sllexp(- §'BH)|92 > <32|exp(- %-BH)|31> . (2.2)

But
<qylexp(- 7 8H)[9p > = <glexp(- 5 gH)]g >,
so that Equation (2.2) becomes
_ | . .
() = [dgpl< gplexp(- J aH)lgy > (2.3)
Equatidn.(2.3)‘is_sti11 an exact quantum mechanical expression, but
the c]asSicé]”path approximation]

in the intéorandtof Equation (2‘3), namely

| ]
"7
N(°92
< golexp(- 2 BH)lq] > = (Znﬁ) (;p]) ol

x expl-0(ap.0¢5 t6/2)H1 (2.4)

where ¢ is'the_action—1ike}integra1

' \ fi8/2 . '
¢(g,.9y; h8/2) = [ dt H(x) o - (2.8)
along the "classical trajectory" q(t) determined by the Newton-like

is now introduced for the matrix element

. g__,‘
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equations (but note the sign difference)

m a0 =+ 8 o (2.6)

1

with double-ended boundary conditions
q(0) = g o | . (2.7a)
a(fg/2) =q, . -~ (2.7)

The Hamiltonian H in the integrand of Equation (2.5) has the usual

Cartesian form

N B
() = L ey +v(g(a) . (2.8)
1= . . : o

where pi(r) = my éi(t); (agz/agl)g] in Equation (2.4) is an N-dimensional
Jacobian:determinant reiating the final coordinates 9, to the initial

],_the classical path

"momenta"” ET = p(o). As has been discussen before
approximatfon summakizéd in Equations (2.4)-(2.8) takes advantage of the
fact that'the ﬁ]assita] equations of motion for Cartesian codrdinafes in
the imagfnary'time variable T aré equiva]entvto those in real time with
the negative potential enérgy function. Conséquent]y, it is .not the
Hami]tonian H that is constant with T , but rather the Hamiltonian with
the négative potentjal, i.e., the Lagrangian.

" With the classical péth approximation of Equation (2;4) thé particle
density in EqUatiqn (2.3) becomes

-1 8/2

d Lh82 |
2) | ew|-27 armd| 5 (29
0

plgqy) = N [dg, (55;)g1

honfng q' fixed, the integration variables in Equation (2.9) can be
_ 1 s _



changed from q, to py, giving

N [ oter2 17 o

_ p(gl)'= h fdp] expl- ﬁ-[ dtH(1) C 7 _ (2.10)
_ ‘ 0 . '

The corresponding approximation for the partition function Z(g),

2(8) = [dg; olq;)

is thus a phase space average over initial conditions:
o | f8/2 o -
v = n-N 1 2
z(g) = h™"[dp, [dg, exp[-ﬁ{) d-r'-.H(r)] N (2.11)

where H(r) in Equations (2;10) andp(2.11)‘1s_given by Equation (2.8) with
the trajectory q(t) determined by Equation (2.6) with the initial condi-
tions_g(O)ﬂ:.g], 9(0) = py/m

B. -Discussion'of the Results.

Equat1ons (2.10) and (2. 11) are the primary resu]ts of the paper.
It is clear that this classical path approximation is more accurate than
that obta1ned prev1ous]y1, for the semiclassical approx1mat1on in
._Equat1on (2.4) pertains to the time interval #ig/2, whereas the ear]ier
.classical path approx1mat1on re]ated to the total time interval #B.
Insert1on of the sum over states in Equation (2.2), with the subsequent
semic]assica] approximatton cf the individual matrix elements in the

integrand, may in fact be viewed as a first crude step toward evaluation

4

'of the path 1ntegra1 1tse1f Thus the exact quantum mechan1ca1 result

"‘cou1d be obta1ned 1f one further sub- d1v1ded the - t1me interval by 1ntro-

vduc1ng additional "sums" over states,

p(g])#.!d‘gz [dgg ... [dgy < q;lexp(-gH/L)|q, >

X <q,|exp(-H/L) [qq >...< SLIeXP(”BH/L)ISi > (2.12)



and then used the classical path approximation of Equation (2.4) for each

~ individual matrix element in Equation (2.12), letting L + « . (Feynman

abtua]ly,usés a free particle approximation for‘each‘matrix element in
Equation (2.12), but use of the classical path appfoximation would make
the procedure cthergé faster; the two are formally equivalent since the
c]assica1'path approximation gives the exact quahtum result for free
particle'dynamics.) The results obtained in Section IIA éorrespond to
Equation (2.12) with L =-2; the particularly simplifying features of
Equationé'(z 10) and (2. 11) - i.e., elimination of the double-ended
boundary conditions and the Jacob1an determinant - unfortunately do not
occur: for-any choice other than L_-.2. |

Much more'important than this increased accUraéy, however,. is the
.dradt1ca11y increased ease with which Equations .(2.10) and (2. 11) can be
app11ed to mu]t1u1mens1ona1 systems. The prev1ous classical path
approx1mat1on] required one to deal explicitly with the double-ended
boundary  conditions in EQuatiOnu(2.7), a difficulty perhaps insurmountab]é
ﬁfoh mandeimensiona1~systems The change of intégration variab]es
involved in go1ng from Equation (2. 9) to Equation (2. 10) however,
e11m1nates a11 reference to the final coord1nates and to the Jacobian factor
as wej]. | |

To evaluate fhe pakfition function from Equation (2.11),_for example,
one must simply carryV6Ut an integral over the phasé_space of initial
conditions; for syStems with many degrees of'freédom this integral would
‘most convenient1y be carried outvby a Monte Carlo procedufe. Having thus
chosen a Set'of initial conditions_(g],g]),‘ohe integrates the équations of

motion with the negative potential [Equation (2.6)] from 1= O.to‘r= hB/Z;“



the time integral of H(t) being computed in the process; the exponentia]
of this action 1ntegra1 is then Monte Carlo averaged over the initial

.cond1t1ons

Equat1ons (2. 10) and (2.11) can be written in var1ous equ1va1ent forms

by using the fact that the quant1ty

N 2
I p;(0)%em - vig())

is conServéd in time and thus equal to its value at T = 0. The particle
density [Equation (2.10)], for example, can be expressed as

(gy) = exp[8V(q;)] h™"fdp; exply Bpy-qq - & [ dr p(1)-q(1)] (2.13)
_ Fina]ly;vif is a simple matter to see how the purely classical
expressions are recovered if one makes a short time approximation to the

dynamics. For small fip(i.e., high temperature) one has

fig/2 ' :
27 de(n) = (hu“B) H(0) = sH(p],q]) L (2
o

so that Equation (2.10), for example, becomes
olgy) = 07 [dpy exp[-BH(p.9y)] o (2.15)

the standard expression of classical statistical mechanics.

T11. QUANTUM CORRECTION EXPANSION.

A quantitative measure‘of'the degree that quantum mechanical effects
are cohtaihed in the classical path approximation can be obtained by
expanding Equation (2.10) in powefé'of'ﬁ and comparing term for term with

the known® quantum mechanical "quantum corrections". This quantum
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correction expansion is carried out only for purposes of comparison with

‘the exact quantum correction terms, and one would not wish to use it in

practice - for the classical path{apprbximation contains avlarge.fraction
of the quantum effects to infinite onder. a feature that is iost, of course,
if ‘one expands in powers of fi. |

For simplicity the notation in this section applies to a one

2

dimenSional system, and as before™ the goal is. to express the particie

density of Equation (2. 10) 1n the form

plx) = pCL(") [1+C 1(x,8) + A C2(x B) +...1 . (3.1)
‘where
‘ 1 _ . _
o () = (2n/anh28)2expl-8V(x)] C - (3.2)
r = 722/ ; | : | (3.3)

i.e., one seeks the quantum correction functions CK(x,B) that result from
Equation (2 10).

 The systematics of carrying out the expansion in powers of fi is
somewhat simpler with the present expressions than beforez. For a one

dimensional system Equation (2.10) becomes

@ +g/2 | v
o(x) = h7! f dp exp[-%j dt H(-r)]. , ' (3.4) .
. -00 0 . ' ’ ) )

'and to-expand in powers of h one simpiy expands H(t) in the integral of

Equation (3.4) in a Taylor 's series about T = 0, 1ntegrat1ng term by

term. Equation (3.4) thus becomes

- . o n [n] . . )
p(x) = fdp exp’[ Bn_gO(%ﬁ) H,,H(O?:’_ -, (3.5)

i+ ]
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where H["](O) is the nth derivative of H(t) = H(p(x), x(r))veva1uated at
T = 0. These der1vat1ves are easily evaluated by mak1ng use of the

equat1on of motlon [Equation (2.6)], and the f1rst few are

Wol(g) = pZr2m + Vi)

HU](O) = 2p V'(x)/m
H[ZJ(O)'=-ZV'(x52/ﬁ + 2 p2v (x)/m? | . (3.6)
,Hmhmespwu)WQM$+2£wam3 B »
4300y = v ()2 v (x)/ml + 8 p% v (x)%/m> + 14 p2 VE(x) VU (x)/mS

+ 2 phvr (et |

Substituting these expressions into Equation (3.5),_expending the -
exponential in powers of fi, and carrying out the momentum ‘integral gives
the result in Equation (3.1) with the quantum correction functions

identified as

6,008 = 1y 6 v ()2 -%wuy- BNER)
Cxi) = g 82V 00T - T s v 02 v + Iy V()2 |
1 V' (x) v (X) 1 .B-] vuu(X) : | : - (3.8)
0 | §_0' | .v . .
Just as befdrez,vthe first quantum correction [Equation (3.7)] is
identical’td the exact.quantUm mechanicallresults, The exact quantum ¢
; . . . o -

expression” for C,(x,8) is the same as Equation (3.8) but with the
coefficient of the fourth derivative term being -1/60 rather than -1/80.

The 1mproved_c]assica] path approximation thus makes a 254 error in the
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coefficient of the fourth der1vat1ve term, whereas th1s term was comp]ete]y

' absent in the ear11er semiclassical resu]tz, this. is a man1festat1on of

the po1nt d1scussed in Section IIA, that the new . express1on must be more

accurate than the earlier one. - The fact that the emiclassical approximation
does not include the h1gher der1vat1ves exact]y correctly is understandable

2, that sem1c1ass1ca1 approx1mat1ons

on the basis, as d1scussed before
relie on slowly varying potent1a1 energy funct1ons._

IV. CONCLUDING REMARKS.

The eXpressions in Equations (2.10) and (2.11) are of a form that can

| be readily applied to multi-dimensional systems, and much of the effect

of quantum dynam1cs is contained within this c1a551ca1 path approximation..

As has been discussed before'l -2

, for example, the quantum effects asso-
ciated with the Tinear and harmonic part of the potential are treated
exactly, to infinite order in 1.

The_most important quantum feature of many body systems that is not
included in_the present classical path approximation'is that of exchange
of identicalaparticles. For a system of identical bosons, for example,

the partic}e density is not just the diagonal matrix element of the

~ Boltzmann operator, but in addition a sum of all off-diagonal elements

- that correspond to the exchange of identical partic]essz

olg) = (N1)] J < Palexp(-s)]g > .

where P is one of the N! permutations of the N identical particles and Pq

is a 3N-dimensiona1'coordinate vector that differs from q by the corres-
ponding exchange of coordinates of the identical particles. Td obtain

such terms within the c1assica1‘path apprdx%mation is would be necessary
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to use Equations (2.4)-(2.8) and actually find thé trajectories fhat
result 1h identical partié]es exchanging their positions. Thus it does
not appear at present that it is possible to fnc]ude-ekéhange in the
'c1a551ca1 path approx1mat1on without dealing exp11c1t1y with traJector1es

w1th double ended boundary conditions,

[
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