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Graphical Abstract

1 Introduction

Molecular dynamics (MD) simulations are useful for a broad range of applications, 

including protein folding studies1, drug discovery2, and the determination of liquid structure 

and properties3. Various approaches have been taken to improve the ability of simulations to 

explore the thermodynamically relevant parts of configuration space, including hardware 

advancements4–9 and more effective sampling algorithms10–14. While these efforts have 

dramatically improved our ability to generate well-converged results, errors persist in 

simulations, as highlighted for example, in the SAMPL series of blinded prediction 

exercises15–21. Therefore, attention is now turning again to the potential functions, or force 

fields (FF), as sources of error, as recently reviewed22.
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Currently, most biomolecular simulations are still carried out with FFs having a simple 

functional form comprising harmonic bond-stretches and angle-bends, sinusoidal torsional 

terms, harmonic improper dihedrals, Lennard-Jones (LJ) interactions for van der Waals 

forces, and Coulombic interactions among atom-centered point charges for electrostatic 

interactions and hydrogen bonding23. This common functional form has the merit of being 

supported by many well-developed simulation packages and of affording great 

computational speed and therefore effective conformational sampling. From this starting 

point, a number of strategies may be adopted to improve the accuracy of the FF. One is to 

move to a functional form that captures the physics more faithfully and in more detail. For 

example, one may add terms that explicitly account for effects, such as electronic 

polarizability24–27, that are accounted for only implicitly, at best, in the common functional 

form; or, one may substitute a more realistic form for an existing term, such as a Coulombic 

term that accounts for charge penetration26–31. Another strategy is to remain with today’s 

common functional form and instead look for parameters, such as atomic partial charges, 

torsional barriers, and Lennard-Jones well-depths and radii, that will lead to greater accuracy 

when used to compute experimental and/or quantum chemical reference data. This strategy 

may be pursued by using more, and more relevant, experimental data in the parameterization 

process. For example, data on host-guest binding thermodynamics have recently been used 

to guide parameter adjustment, leading to improved accuracy in calculated binding 

thermodynamics. Another approach to improving accuracy of force fields with the common 

functional form is to more comprehensively and systematically define32 and adjust33–38 the 

parameters so they more closely approach an optimal parameterization against a fixed 

dataset.

However, the large number of independently adjustable FF parameters in a typical FF can 

make full, multidimensional parameter optimization daunting. For example, the 

SMIRNOFF99Frost39 FF, whose list of parameters has already been condensed through the 

replacement of atom-typing with direct chemical perception, still has 35 different Lennard-

Jones types and hence 70 Lennard-Jones parameters. Simultaneous optimization of these 

parameters becomes particularly challenging when evaluating the objective function requires 

running time-consuming simulations, such as if one wishes to tune parameters against 

liquid-state properties. Even more extensive sampling of parameters will likely be needed if 

one moves from optimization to Bayesian sampling40–42 in the parameter space. If either an 

optimization or a Bayes sampling algorithm misses a key sector of parameter space, the 

accuracy of the resulting parameterized FF will not be a measure of the quality achievable 

within the common functional form. This situation is problematic for at least two reasons. 

First, simulations using the incompletely optimized FF will not be as accurate as they could 

have been. Second, the resulting errors may provide misleading guidance regarding the need 

to move to a more complex functional form. Consequently, a methodology of fitting FF’s 

that use fewer adjustable parameters would in principle make the problem more tractable.

We therefore propose a step toward reducing the dimensionality of the adjustable parameter 

space of the common FF functional form. The basic idea (Figure 1) is to use a QM 

calculation on the molecule to be parameterized (or on a suitable fragment of a large 

molecule) to extract properties of the electron density that correlate with the FF parameters 

to be assigned—here the Lennard-Jones parameters of each atom in the molecule. We then 
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set up a mathematical mapping from the electron density to the targeted FF parameters. The 

mapping is outfitted with a small set of adjustable parameters, and it is these mapping 

parameters, not the targeted FF parameters, that are subjected to optimization or sampling 

based on calculations of experimental observables. This approach reduces the number of 

adjustable parameters, because the FF parameters assigned to each atom in the molecule are 

largely controlled by the QM results. Only the mapping parameters are adjusted to maximize 

the agreement of simulated properties with experiment. Thus, the dimensionality of the 

optimization problem is greatly reduced. By the same token, this approach allows each atom 

in a molecule to have unique FF parameters without requiring a large number of atom types.

The present study aims to prove the principle of this approach by demonstrating that such a 

QM-to-FF mapping, trained to generate Lennard-Jones FF parameters that best replicate a 

small set of experimental liquid-state data, yields a competitive level of accuracy for an 

informative set of properties. It thus sets the stage for future applications aimed at building a 

comprehensive FF for general use. The current implementation builds on promising 

approaches from other groups28,43–50, as it uses Slater orbitals to model the electron density 

associated with each atom in the molecule and extracts key correlates of the LJ parameters 

from these fits. The present FF-development approach is therefore termed the Slater-Derived 

Lennard-Jones (SDLJ) method. The following subsections detail the concepts and 

methodology, describe how the mapping parameters are adjusted against experimental 

liquid-state data for a small training set of compounds, and report on the quality of the 

results when the trained method is tested on a larger, non-overlapping set of compounds and 

additional observables. Implications and prospects are considered in the Discussion section.

2 Methods

2.1 Overview

The present method provides an approach to mapping from the electronic structure of a 

molecule, obtained from a quantum mechanical (QM) calculation, to suitable σ and ε 
Lennard-Jones parameters for each of its atoms. The mapping contains two adjustable 

parameters for each element (C, N, O, H), except that polar and nonpolar hydrogens have 

separate parameters. Here a polar hydrogen is defined simply as one directly bound to a 

nitrogen or oxygen atom. We separated polar and nonpolar hydrogens because initial studies 

showed that lumping all hydrogens made it impossible to reach a set of LJ parameters that 

would afford competitive accuracy (results not shown). We use the ForceBalance software34 

to optimize the 10 mapping parameters in order to minimize the error of simulated liquid 

state properties vs. experimental measurements. The trained mapping is then tested against 

the properties of a larger set of liquids, and the results are compared with those obtained 

with the pioneering and widely used GAFF force field51. For this proof-of-concept study, we 

focused on consequences of adjusting only Lennard-Jones parameters, thus the electrostatic 

interactions are modeled with atom-center partial charges assigned with the AM1/BCC 

method and all non-LJ force field terms were drawn from GAFF in accordance with 

established procedures.

The mapping from a molecule’s electronic structure to σi and εi for each of its atoms, i, uses 

an atoms-in-molecules (AIM) approach similar, but not identical, to ones that have been 
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published before43,44. We model the electron density around each atom i in terms of a Slater 

orbital, where the electron density decays exponentially with distance from the nucleus: ρi(r) 
∝ exp(−βir). The decay coefficient βi associated with each atom i then is used to assign both 

the effective atomic polarizability and the effective ionization potential, both key quantities 

in the LJ interaction term. The following subsections detail each step summarized in this 

overview. The code used to go from a QM result to Lennard-Jones parameters are available 

at (https://github.com/SKantonen/PyBLJ). It is written in Python, and its inputs are a 

Lebedev grid file and a mol2 file to generate βi coefficients for each atom in the given mol2 

structure. The level of QM to be run can be manually set inside of the code, if so desired.

2.2 Electron density calculations

Each molecule to be studied was built with the open-source software Avogadro52, and its 

structure was energy-minimized using the GAFF force-field. The Gaussian0953 package was 

used to obtain the electron density at the CCSD/cc-pVTZ level of theory. CCSD was chosen 

as it is considered to be among the most accurate post Hartree-Fock methods for calculations 

on small molecules54. We found that the values of β changed by <1% when the size of the 

basis set was increased further. The electron density distribution around each atom was 

computed using spherical Lebedev grids (110 points, order 17)55 and a uniform radial grid 

of 0.05 Å spacing out from 0–12 Å. The code used to generate these grids is built into the β 
parameter fitting code, using the aforementioned spacings and grid sizes.

2.3 Fitting electron-density decay coefficients (beta) to atoms-in-molecules.

While there exist multiple useful electron partitioning methods56–58, we chose to use the 

Minimal Basis Iterative Stockholder (MBIS) method of Verstraelen59. The MBIS method 

partitions the total electron density of the molecule (Section 2.2) into atom-centered Slater 

orbitals centered on atoms i, in a manner that minimizes the Kullback-Liebler (KL) 

divergence59 between the electron density distribution provided by a QM calculation ρ(r), 

and the sum of the atomic densities. The MBIS method is attractive because it allows pro-

densities to vary (allowing individual atoms to have unique parameters governing their pro-

densities as opposed to predetermined pro-densities) and has already been successfully 

applied to force field development46,59.

Thus, each atom, i, is assigned a “pro-density”, ρi(r), of Slater form whose integral over all 

space gives the total number of electrons assigned to the atom, Ni. The Slater orbital of atom 

i is characterized by βi, the spatial decay constant of the electron density60. This quantity is 

expected, on physical grounds, to correlate with both the size and the dispersion interactions 

of the atom60,61, as detailed below.

As previously shown, the KL divergence is minimized by an iterative procedure, 

diagrammed in Figure 2. For a given iteration, k, of the MBIS method,

Ni, k + 1 = ∫ ρ r ρi, k r, βi, k, Ni, k
ρ0, k r dr (1)
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βi, k + 1 = 3Ni, k∫ ρ r ρi, k r, βi, k, Ni, k
ρ0, k r r − Ri dr (2)

Here ρI,k(r) is the pro-density around atom i at iteration k; βik is the estimate of βi for atom i 
at iteration k; ρ0(r) is the sum of all atomic pro-densities at position r; and Ri is the location 

of the nucleus of atom i. In practice, these integrals are estimated as sums over Lebedev 

grids, as noted above:

Ni, k + 1 = ∑
g = 1

Np
ρ(rg)ρi, k rg, βi, k, Ni, k

ρ0 rg
(3)

βi, k + 1 = ∑
g = 1

Np
ρ(rg)ρi, k rg, βi, k, Ni, k

ρ0 rg
rg − Ri   (4)

For the sums, the density at each grid point g is considered, with the sum being over all Np 

grid points, each located at rg. As per the MBIS method, an initial value, corresponding to 

iteration k=1, is chosen for all Ni1 and βi1, allowing for the determination of starting pro-

densities via:

ρi1 r = Ni1βi3
8π e −βi1 r − Ri (5)

These pro-densities are used to generate Ni,k and βi,k for the next iteration (k=2), and the 

process is iterated until the changes in N and β between iterations k and k+1 falls below 

some threshold, here a 0.05% absolute change. The initial values of these quantities are 

detailed in the following paragraph.

In accord with Verstraelen et al, we assigned and fit two pro-densities to each non-hydrogen 

atom. (Only one pro-density is used for each hydrogen atom.) The “core” pro-density 

captures electrons held close to the nucleus, while the “valence” one includes all other 

electrons, and the number of electrons in core versus valence is adjusted as part of the 

procedure. Thus, we allow two β’s and two N’s to be fit for each non-hydrogen atom, and 

we use only the valence β to generate LJ parameters. The rationale is that core electrons 

only contribute to non-bonded interactions at distances much too close to be relevant, mostly 

due to exchange repulsion61. The initial values of N are set to 2 for the core pro-density and 

the number of valence electrons of the element for the valence pro-density. Initial values of 

βi for all atoms are set to 12 and 4 Å−1 for the core and valence orbitals, respectively. These 

values, which correspond to those obtained for a single nitrogen atom, suffice to generate 

convergent results in the iterative procedure just outlined. As expected, core occupancy was 

on average very near two electrons, but the addition of the core exponential allowed for a 

better fit of the valence exponential. Values of β typically converge relatively quickly, with 

the final value being insensitive to the starting value, as shown in Supplementary Figure 1.
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2.4 Mapping QM results to Lennard-Jones Parameters

The Lennard-Jones model gives the van der Waals interaction energy between atoms i and j 
as

ELJ =   Aij
rij12 − Bij

rij6 = 4εij
σij
rij

12
− σij

rij

6
(6)

where Aij, Bij, σij and εij may be obtained from atomic “self” parameters σi, σj, εi, and εj by 

mixing rules, such as σij = 0.5(σi + σj) and εij = εiεj
1
262. The next two subsections describe 

how σi and ϵi are assigned to each atom in a molecule, based on the QM electron densities.

2.4.1 Lennard-Jones sigma—The parameter σ is essentially an atomic diameter, and 

β−1 is proportional to the expectation value of the distance of the electron density from the 

nucleus59, so we write

σi =  
Cσ,  ei

βi
(7)

Here ei is the element of atom i, and Cσei is the associated element-specific mapping 

parameter, which is adjusted with ForceBalance34 (Section 2.5).

2.4.2 Lennard-Jones epsilon—The coefficient of the dispersion component of the 

Lennard-Jones interaction (Eq 6) can be estimated from the London Equation63:

Bij =  32
ηiηj

ηi + ηj
αiαj (8)

where η and α are the ionization energy and polarizability, respectively, of the subscripted 

atoms. We follow Tkatchenko43 in writing the homonuclear B coefficient in the form

Bi ∝ ηiV i2 (9)

where ηi and Vi are, respectively, the effective ionization energy and volume of atom i. (This 

assumes that the polarizability is simply proportional to volume; it is worth noting that 

Gould has argued for an element-specific scaling between these quantities78.) As noted 

above, β−1 is related to the atomic radius, so V i
2 ∝ β−6. For a single atom, the ionization 

energy is given by η = β2
8

61, and we assume the same to be true for the effective ionization 

energy of an atom in a molecule. This is distinct from the Tkatchenko method, in that we 

allow each atom to have a unique effective ionization energy, which contributes to the 

determination of the LJ parameters. Hence, inserting the element-specific fitting parameter 

CB, ei, we have

Bi =   CBeiηiβi
−6 =

CBei
8 βi

−4 (10)
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Intuitively, the lower the value of βi, and hence the more diffuse the electron density, the 

greater the dispersion coefficient. The element-specific fitting parameters CB, ei are adjusted 

with ForceBalance, as detailed in Section 2.5.

From the expressions above, we can also derive that

εi =
CB, eiηi
4Cσ, ei6

=
CB, eiβi

2

32Cσ, ei6
(11)

Since ε corresponds to the depth of the LJ energy well, this says that a more diffuse electron 

density corresponds to a smaller well-depth. This trend reflects the fact that a more cdiffuse 

electron density also increases σ and thus cause the energy well to be at a greater distance 

where dispersion forces will be weaker. Note that some prior methods of deriving the 

dispersion term by AIM methods have neglected variations in the ionization energy43–45 

among atoms. From the present expression for ε, it is apparent that this neglect causes all 

atoms of a given element to have the same value of ε. In the present approach, different 

atoms of a given element can have different values of both σ and ε. These issues are further 

considered in the Discussion section.

2.5 Optimizing the elemental mapping parameters using ForceBalance.

We used ForceBalance34, a software package that automatically adjusts fitting parameters 

using parametric gradients of simulated properties, to optimize the mapping parameters Cσ,e 

and CB,e for the elements carbon, nitrogen, oxygen, and separately for polar and nonpolar 

hydrogen. These mapping parameters were adjusted so that simulations of seven pure 

organic liquids (Section 2.6) with the resulting LJ parameters would yield properties close to 

experiment. The adjusted mapping parameters were then tested by using simulations to 

compute the properties of 24 pure organic liquids outside the training set and comparing 

these with experiment. The test- and training-set molecules were chosen to be small and 

simple, so that simulations could be rapidly converged, while still representing significant 

chemical diversity. In addition, to test transferability, we included test-set compounds with 

functional groups absent from the training set. For this initial study, atom-centered partial 

charges were assigned with the AM1/BCC method64, as noted above, and bonded 

parameters were drawn from GAFF65, using the program Antechamber66. The iterative 

ForceBalance process was initiated from a set of mapping parameters that minimize the sum 

of squared deviations between the mapped LJ parameters and GAFF LJ parameters for the 

training set compounds. The stopping criterion for ForceBalance was essentially chosen 

manually, as the history of the objective function was evaluated to see if any meaningful 

improvements were being made. When the objective function had fallen significantly from 

its starting value and appeared to plateau, the ForceBalance program was halted and the 

parameters were evaluated.

For each training set compound, liquid phase simulations were performed with the AMBER 

molecular dynamics suite67 to compute the heat of vaporization and density in the NPT 

ensemble at 298K and 1 atm. The Berendsen barostat and Langevin thermostat were used 

for all production simulations, and SHAKE was used to constrain all R-H bond-lengths. For 
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each calculation, 1000 molecules were used in the simulation box and production 

simulations of 12 ns at 2 fs time steps were run. A cutoff of 8 Å was used for both the 

Particle Mesh Ewald and Lennard-Jones calculations. The mapping parameters were 

optimized over multiple ForceBalance iterations so that they produced LJ parameters that 

minimizes a regularized, weighted least-squares objective function computed from the 

squared deviations of the calculated observables and experimental reference data34.

The ForceBalance objective function was described in previous work34 and is briefly 

summarized here. It has a hierarchical structure with the top level given by the formula:

Ltot k = ∑
T ∈ targets

wTLT k + wreg k 2

where the total objective function Ltot depends on the optimization variables k and is equal 

to the sum of contributions from the parameterization targets LT weighted by wT, plus a 

Tikhonov regularization term weighted by wreg. Each parameterization target is a weighted 

sum of contributions for one or more properties:

LT k = ∑
J ∈  properties

wj
(T)Lj

(T) k

In this study, the target weights wT and the property weights wj
(T ) were set to unity for both 

properties used (density and heat of vaporization), allowing each to contribute equally. The 

term for each property Lj
(T ) k  is given by a weighted and normalized sum over individual 

data points:

Lj
(T) k = 1

dj
(T) 2

∑p ∈  pointswjp
(T) yjp

(T ) k − yjp, ref
(T ) 2

∑p ∈  pointswjp
(T)

Where yjp
(T ) and yjp, ref

(T )  are, respectively, the simulated and reference data point for property j 

and point p within target T. The quantity dj
(T ) is a scaling factor used to normalize and 

remove physical units for property j, and has the same effect as an inverse square weight; we 

used values of 30 for density and 0.3 for heat of vaporization.

The optimization variables k are mapped to a set of physical parameters K by a exponential 

mapping as Kλ = Kλ
(0)exp kλ , where Kλ

(0) represents the original parameter values. Under 

this exponential mapping, the physical parameters do not change sign from their original 

values. The regularization term may be expressed in terms of mathematical parameters as:

wreg k 2 = wreg ∑
λ ∈ params

kλ
2 = wreg ∑

λ ∈ params
ln

Kλ
Kλ

(0)

2
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During the optimization, FB computes the gradients of simulated properties with respect to 

force field parameters, i.e. ∇kyjp
(T ) k , and uses them to construct the gradient and 

approximate Hessian of Ltot in the parameter space. In this work, yjp
(T ) k  represent ensemble 

properties obtained from thermodynamic sampling, and ∇kyjp
(T ) k  is computed using 

thermodynamic fluctuation formulas as described in previous work68.

The overall computational workflow is diagrammed in Figure 3. Once the mapping 

parameters were optimized, they were used to generate LJ parameters for a larger test set 

consisting of 24 molecules, for which densities, heats of vaporization, and heat capacities 

were calculated and compared with experimental numbers. The uncertainties reported for the 

calculated properties were obtained by a previously described blocking method69,70.

2.6 Training and test data

When optimizing and testing force field parameters against experimental observables, it is 

essential to use reliable data. Here, we obtained data from the ThermoML71 archive 

provided by NIST, and used a separate compilation of liquid properties of organic 

molecules72 as a cross check to ensure accurate numbers for both the training and test sets. 

For some values from the ThermoML archive, the values were taken as averages over 

multiple experimental sources. While experimental uncertainties are not typically provided 

for these data, the few compounds that do have uncertainties typically show them to be of 

the order of less than 1% standard deviation (for all properties examined), even when 

measurements that are nearly a century old73 are included when calculating average and 

standard deviations. The experimental uncertainties for these compounds are reported as 

under ~5% for both heats of vaporization and densities. The training set comprised the 

following seven pure liquids: methanol, ethanol, aminoethanol, acetaldehyde, ethylamine, 

benzene, and acetonitrile. The test set comprises the 24 additional pure liquids listed in Table 

3. In order to rigorously assess transferability of the fitted parameters, we chose test set 

compounds with functional groups not in the training set. Radial distribution functions were 

digitized from figures in various sources74–76 to allow comparison of radial distribution 

functions calculated from simulations of both SDLJ and GAFF parameters. Radial 

distribution functions were computed for the present simulations with the cpptraj program.77

As the observation may be relevant for other studies that rely on pure liquid properties, it is 

perhaps worth also reporting that a few compounds initially included in the training or test 

sets were found to undergo very slow conformational interconversions, no matter what 

starting conformer was used, even in simulations as long as 10 ns. In particular, we observed 

few or no syn-anti conversions of the proton in the carboxylic acids formic and acetic acid, 

either in gas or liquid phases. Both QM calculations and standard force-fields point to a 

barrier between the two states of at least 6 kcal/mol78, so we do not think this problem 

results from the particular parameters used here. Simulations of these molecules led to 

significant convergence problems in the thermodynamic properties, so these compounds 

were removed and are not present in this study. Similarly, short esters were removed for the 

same reason.
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3 Results

This section first reports on the optimization of the ten elemental mapping parameters using 

ForceBalance and a small training set of molecules. Then the transferability of the resulting 

parameters is tested with a larger, nonoverlapping, set of 24 test molecules. The results are 

compared with experiment and with corresponding simulations using GAFF LJ parameters.

3.1 Optimization of elemental mapping parameters using ForceBalance

As detailed in Methods, an electronic structure calculation was run for each compound in the 

training set, and the MBIS method was used to compute βi for each atom i in each 

compound. (Final β values for all atoms in each molecule in the training set are provided in 

Supplementary Table 4.) These quantities were then used with the expressions in Section 

2.4, and after about 40 iterations of optimization of the mapping parameters using 

ForceBalance (Section 2.5), a large improvement in the ForceBalance objective function34 

was observed (Figure 4). The procedure led to modest additional improvement as it ran out 

to about 70 cycles. The values of the final Lennard-Jones parameters are provided in Table 2 

(in the standard AMBER form Rmin/2 and ε) and the densities and heats of vaporization of 

the training set molecules computed with the optimized parameters are compared with 

experiment in Table 1. Final values of the mapping parameters are provided in 

Supplementary Table 1. Additionally, select mol2 and frcmod files are provided in the 

GitHub repository for a few test set molecules.

It is expected that the value of β for each atom in a molecule, and hence the values of σ and 

ε assigned by this method, will depend to some degree on the conformation used for the QM 

calculation. To assess the sensitivity to conformation, we took several snapshots of butanol 

from a 300 K gas phase simulation and used the trained parameters to compute LJ 

parameters for all atoms in each conformation. As detailed in Supplementary Tables 2 and 3, 

the variations across conformations are small, with standard deviations in σ of at most 0.02 

Å, and standard deviations in ε of at most 0.001 kcal/mol.

3.2 Test-set validation of optimized mapping parameters

The trained SDLJ method yields densities for the test set that agree with experiment about as 

well as those in the training set, and heats of vaporization with about double the relative 

mean unsigned error of the training set (Figure 6, Table 1, and Table 3). Importantly, the 

SDLJ parameters provide good agreement with experiment even for compounds with 

functional groups distinctly different from those in the training set. For example, SDLJ 

reproduces the properties of dioxolane and furan reasonably well, and indeed more closely 

than done by GAFF, although the training set includes no substituted phenyls or furans. 

Taken together, these observations suggest that the parameters were not overfitted. Overall, 

the new method yields accuracy on the test set similar to that obtained with GAFF LJ 

parameters (Table 3 and Figure 6). This is despite the fact that the SDLJ method has only ten 

fitting parameters and was trained on only 14 observables. In contrast, the test-set 

compounds span 16 GAFF atom types and thus include 32 LJ parameters that are, at least in 

principle, independently adjustable. However, it should also be noted that GAFF was not 

parameterized against the present training set of liquid properties.
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At the same time, it is worth noting that some compounds show undesirably large errors 

when modeled with either SDLJ or GAFF. Examples include the density of formamide for 

SDLJ and especially GAFF, the heat of vaporization of propionitrile for SDLJ, and the heat 

of vaporization of o-xylene and butanol for GAFF. Further work is needed to assess whether 

such errors should be attributed to problems with the LJ parameters; problems with other 

parameters, such as partial charges; from limitation in the training set; or, perhaps, from 

limitations of the common functional form itself.

We further probed the reliability of the SDLJ-based FF by computing radial distribution 

functions (RDFs) and comparing them with available experimental72–74 data. As shown in 

Figure 7, SDLJ tends to overestimate the sharpness of the first shell hydration peaks for H-

bonding atoms in methanol and ethanol, while GAFF tends to underestimate these first-shell 

peaks. However, SDLJ does a better job of capturing longer ranged structure in these liquids, 

such as the subtle valley in the tail of the ethanol O-O interaction. It perhaps worth noting 

here that, unlike GAFF, SDLJ assigns polar hydrogens a nonzero radius. For methylamine 

and benzene (Figure 8), SDLJ does a somewhat better job than GAFF of capturing the 

overall shape and details of these less peaked RDFs. Overall, SDLJ does a reasonable job of 

capturing the fine structure of these liquids, even though the method was not trained on these 

data.

4 Discussion

This study has demonstrated the feasibility of constructing a physics-based, QM-to-FF 

mapping, which generates LJ parameters that yield pure liquid properties whose accuracy is 

similar to that of the well-accepted GAFF force field, despite having many fewer adjustable 

parameters. The transferability of the mapping is supported by the fact that good results 

were obtained for test set compounds having functional groups not represented in the 

training set. This work is founded on important prior advances in AIM analysis57, dispersion 

interactions43, and automated parameter optimization34.

A key feature of our approach is the abandonment of atom-typing in the assignment of LJ 

parameters. Instead, under the present schema, each atom of a molecule is assigned unique 

LJ parameters based on the QM calculation. This is advantageous, as it largely side-steps the 

challenge of categorizing atoms according to their chemical environment. Indeed, although 

the atom type categorizations used in today’s FFs are useful and are well-motivated by 

chemical logic, it is not clear that they represent an optimal balance between parsimony and 

accuracy, and the requirement for atom-typing has been cited as a problematic aspect of FF 

parameterization42,76. Recently, this problem has been addressed with a demonstration that 

the typing itself, rather than just the parameters associated with a fixed set of types, can be 

sampled effectively36. Here, we have considered a second approach, one which does away 

entirely with LJ types. Further work is needed to ascertain which, if either, of these broad 

approaches will be most effective. An advantage of atom-typing is that it allows ad hoc 
adjustments that may at times be helpful. On the other hand, the present approach is 

advantageous in that it can facilitate comprehensive parameter optimization or Bayesian 

sampling by reducing the number of adjustable parameters, and removes the need to sample 

over the typing itself. It is perhaps encouraging that one of the leading methods of assigning 
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atomic partial charges, namely RESP, similarly eschews typing and instead using a purely 

physics-based QM-to-FF mapping.

The adjustment of the mapping parameters presumably allows them to capture or 

compensate for several issues in the primary QM calculation and the physical model used 

for the mapping. First, although the AIM concept is intuitively pleasing, is at best a physical 

approximation, so it is probably inevitable that some adjustment is needed. Second, even if 

an AIM analysis could provide flawless LJ parameters, adjustment would be needed to 

compensate for deficiencies in other FF terms, such as charge-charge interactions, for 

complexities that arise on going from gas to condensed phase, such as many-body effects, 

and for the neglect of nuclear quantum mechanics in typical classical simulations. By the 

same token, although gas-phase QM interaction data may be used to guide the adjustment of 

FF parameters, these interactions will inevitably change in subtle ways upon going into the 

condensed phase. We therefore chose to omit any gas phase QM data in the actual training of 

the mapping parameters, opting instead to use only condensed phase experimental 

observables.

Important recent studies have also used a tuned QM-to-FF mapping to assign LJ parameters 

without atom-typing44,45. The present approach is different in two key respects. The first 

difference is that we have modified only the LJ term and applied the GAFF and AM1/BCC 

partial charges without change, rather than simultaneously refitting bonded terms and adding 

off-atom partial charges. This approach makes it possible to isolate the effect of this one 

change on the accuracy of the FF, and also maintains the common functional form and thus 

compatibility with widely used simulation packages. It is worth noting that all such methods 

are expected to generate parameters that depend to some degree on the conformation of the 

molecule used in the QM calculations. In the present case, at least, initial testing shows only 

an encouragingly small dependence on conformation. It should nonetheless be noted that, if 

cases are encountered with the dependence on conformation is nontrivial, it should be 

possible to address these by averaging over thermodynamically accessible conformations 

and/or using molecular fragmentation approaches so that parameters can be assigned to 

relatively rigid molecular components.

The second difference is in the QM-to-FF mapping itself. In particular, prior studies have 

used the Tkatchenko-Scheffler (TS) approach43, in which the AIM volume of each atom 

yields its AIM polarizability77, which is used in turn to determine the coefficient of the 

dispersion interaction (Bi in our notation). Although the London dispersion interaction is 

determined by not only the polarizability but also the ionization energy61, the TS approach 

assumes, in effect, that any effect of variations in the effective ionization energy across 

atoms on dispersion interactions is ultimately cancelled by other factors. As noted here 

(Section 2.4.2), this assumption causes all atoms of a given element (e.g. all carbons) to be 

assigned the identical value of epsilon, and thus, the same depth of the LJ energy well. 

Although this approach has led to methods of deriving non-bonded parameters which can 

provide good agreement with experiment41,42,57, it runs counter to the empirical knowledge 

of typed force fields which allow both sigma and epsilon to vary for a given element. The 

present approach thus uses additional physical reasoning to extract not only the atomic 
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volume but also an effective AIM ionization energy for each atom, and thus allows for 

variation in both sigma and epsilon across atoms of a given element.

As discussed above, the great potential benefit of the general approach taken here is the 

reduction in the dimensionality of the space of LJ parameters that need to be optimized or 

sampled. This is particularly important when evaluation of the objective function requires 

running simulations, as this causes each iteration to be computationally costly and thus 

increases the risk of missing key sectors of LJ parameter space. Thus, we envision applying 

the SDLJ approach within a broad FF optimization scheme, where the decreased 

dimensionality will make it easier to carry out a more thorough parameter optimization. We 

also anticipate using QM-to-FF mappings to generate other parameter types, such as 

torsional potentials. Additionally, we are working on a version of RESP charges which 

includes one adjustable parameter that scales the overall polarity of a molecule81. Together, 

these efforts could be combined in a coordinated optimization of an entire force-field with 

only a small set of parameters that need to be optimized against experimental observables. 

The relatively thorough sampling of parameter space this enables should not only lead to 

better parameters but also help to assess with greater confidence whether a proposed 

improvement in the functional form truly enables more accurate simulations than the starting 

functional form. Thus, the present approach is supportive of a systematic approach to 

advancing both the parameterization and the form of future force fields.
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Figure 1. 
Generic scheme for use of a parameterized mapping from QM results to FF parameters, with 

benzene as an example.
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Figure 2: 
Schematic of the iterative stockholder method used to fit β and N for each atom-in-molecule 

i to the molecular electron density from a QM calculation. Symbols are defined in the main 

text.
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Figure 3: 
Optimization of the ten QM-to-FF mapping parameters. Quantum mechanical calculations 

are carried out on training set molecules to compute beta for each atom. These values are 

mapped to LJ parameters using the mapping parameters. Simulations are carried out to 

compare simulation results to experiment, and the parameters are iteratively updated based 

on the gradient of the objective function in parameter space. Once the mapping parameters 

are optimized, they are saved and used to generate LJ parameters for other molecules.
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Figure 4: 
Molecules used to train the elemental mapping parameters.
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Figure 5: 
History of objective function of training set over entirety of the optimization run using 

ForceBalance.
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Figure 6: 
Scatter plots of experimental values of density and heat of vaporization versus SDLJ or 

GAFF simulated results. (A) Experimental and SDLJ densities. (B) Experimental and GAFF 

densities. (C) Experimental and SDLJ heats of vaporization. (D) Experimental and GAFF 

heats of vaporization. Linear regression results are provided on each panel.
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Figure 7: 
Radial distribution functions of various pair interactions in neat methanol and ethanol.
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Figure 8: 
Radial distribution functions of various pair interactions in neat methylamine and benzene.
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Table 1.

Final results for training set molecules. Percent mean unsigned errors (MUE) are computed as 

100∑i
Ndata Ci − Ei

Ci
 where Ndata is the number of data (compounds), and Ci and Ei are the computed and 

experimental quantities, respectively, for compound i. Uncertainties were obtained by the blocking method 

(see Methods).

Density (mg/ml) ΔHVap (kJ/mol)

Compound Experimental Computed ± Experimental Computed ±

Methanol 784 762.5 0.50 31.3 36.1 0.28

Ethanol 789 784.0 0.55 42.3 42.3 0.68

Aminoethanol 1011 1024.8 0.34 58.0 60.2 0.71

Ethylamine 688 709.1 0.21 29.0 29.3 0.51

Acetaldehyde 784 813.0 0.41 26.1 28.3 0.50

Benzene 876 880.9 0.53 33.9 32.6 0.52

Acetonitrile 786 747.3 0.40 33.4 31.8 0.52

MUE 2.4% 5.0%
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Table 2:

Values of Rmin/2 and ε for training set molecules generated from the final optimized values of the elemental 

mapping parameters.

Molecule Atom Rmin/2 (Å) ε (kcal/mol)

Methanol

c 1.936 0.079

h-c 1.448 0.025

o 1.486 0.149

h-o 0.776 0.028

Ethanol

c1 1.916 0.081

c2 2.012 0.074

h-c1 1.439 0.025

h-c2 1.423 0.025

o 1.488 0.148

h-o 0.779 0.028

Aminoethanol

c-n 1.946 0.079

c-o 1.939 0.079

o 1.497 0.146

n 1.958 0.304

h-n 0.782 0.027

h-o 0.755 0.029

h-c-n 1.412 0.026

h-c-o 1.447 0.025

Ethylamine

c1 2.010 0.074

c2 1.928 0.080

h-c1 1.426 0.025

h-c2 1.435 0.025

n 1.957 0.304

h-n 0.802 0.026

Acetaldehyde

c1 1.999 0.075

c2 1.843 0.088

h-c1 1.419 0.026

h-c2 1.423 0.025

o 1.478 0.150

Benzene

c 1.972 0.076

h-c 1.368 0.028

Acetonitrile
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Molecule Atom Rmin/2 (Å) ε (kcal/mol)

c-c 1.986 0.075

c-n 1.845 0.088

h-c-n 1.374 0.027

n 1.891 0.326
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Table 3.

Test-set results for SDLJ method and GAFF. See Table 1 for definitions. Uncertainties were obtained by the 

blocking method (see Methods).

Density (mg/ml) ΔHVAP (kJ/mol)

Compound Exp. SDLJ ± GAFF ± Exp. SDLJ ± GAFF ±

Propyl acetate 888 903.8 0.29 892.3 0.44 38 37.1 0.59 41.1 0.62

Acetone 784 805.5 0.34 769.0 0.28 31.3 29.5 0.44 29.0 0.45

THF 889 859.9 0.42 884.5 0.32 32.2 27.1 0.51 30.9 0.56

DMF 944 987.5 0.27 965.7 0.54 46.8 53.6 0.51 46.4 0.57

Propionitrile 792 818.6 0.48 767.4 0.29 36.3 26.1 0.41 34.0 0.42

Methylamine 700 677.3 0.29 658.9 0.51 23.8 26.8 0.38 24.2 0.31

Butylamine 740 745.6 0.24 753.6 0.45 34 37.3 0.62 33.9 0.59

Butanol 810 735.7 0.49 794.8 0.29 52 48.0 0.71 45.0 0.68

Isopropanol 786 808.2 0.29 790.0 0.35 45 46.5 0.43 42.2 0.59

Glycol 1110 1143.8 0.47 1125.2 0.39 65.6 55.7 0.55 59.7 0.43

Phenyl-2-propanone 1001 1015.6 0.41 981.7 0.25 55.5 60.6 0.68 54.6 0.73

Furan 936 971.0 0.42 946.4 0.41 27.7 26.4 0.46 24.9 0.36

Formamide 1130 1214.5 0.39 1260.9 0.96 60.2 62.9 0.37 55.7 0.37

Propenal 839 884.9 0.43 828.6 0.34 32.3 31.4 0.34 31.1 0.41

Dioxolane 1065 1057.3 0.40 1123.6 0.41 35.5 33.3 0.50 40.0 0.44

Propenoic Acid 1050 1063.0 0.44 1055.5 0.32 53.1 56.2 0.59 52.9 0.55

Toluene 867 865.5 0.32 843.3 0.34 37 35.1 0.52 31.1 0.54

1,3-propanediol 1060 1086.3 1.72 1056.4 0.54 70 60.1 0.59 64.8 1.09

3-Pentanone 809 807.6 0.38 772.7 0.31 38.7 34.9 0.66 34.5 0.54

o-xylene 880 864.8 0.28 848.1 0.61 42 38.9 0.64 35.8 2.85

Pyridine 982 1009.8 0.49 974.8 0.40 40.5 50.5 0.51 39.2 0.42

Pentylamine 755 746 0.39 745.9 0.36 39.7 47.5 0.62 41.8 0.56

3-Pentanol 815 863.2 0.38 793.0 0.29 54 47.0 0.70 45.9 0.63

%MUE 3.0% 2.5% 11% 7.8%

MSE 13.8 −0.1 −0.8 −2.2
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