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Abstract

Extracting Computational Representations of Place with Social Sensing

by

Song Gao

Place-based GIS are at the forefront of GIScience research and characterized by tex-

tual descriptions, human conceptualizations as well as the spatial-semantic relationships

among places. The concepts of places are difficult to handle in geographic information

science and systems because of their intrinsic vagueness. They arise from the complex

interaction of individuals, society, and the environment. The exact delineation of vague

regions is challenging as their borders are vague and the membership within a region

varies non-monotonically and as a function of context. Consequently, vague regions are

difficult to handle computationally, e.g., in spatial analysis, cartography, geographic in-

formation retrieval, and GIS workflows in general. The emergence of big data brings

new opportunities for us to understand the place semantics from large-scale volunteered

geographic information and data streams, such as geotags, texts, activity streams, and

GPS trajectories. The term “social sensing” describes such individual-level big geospatial

data and the associated analysis methods. In this dissertation, I present a generalizable,

data-driven framework that complements classical top-down approaches by extracting

the representations of vague cognitive regions and function regions from bottom-up ap-

proaches using spatial statistics and machine learning techniques with various social

sensing sources. I demonstrate how to derive crisp boundaries for cognitive and func-

tional regions from points of interest data, and show how natural language processing

techniques can enrich our understanding of places and form a foundation for the semantic

characterization of place types and the generalization of regions.

xii



This work makes contributions to the development of computational methodologies

for extracting vague cognitive regions and functional regions using data-driven approaches

as well as the novel semantic generalization processing technique.
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Chapter 1

Introduction and Motivation

Chapter 1 provides a general introduction to this dissertation. First, it introduces the

background and the motivation of this research with a literature review on the roles

of space and place, types of regions in Geography and GIScience, and explains why the

computational representation of place is challenging with regard to its intrinsic vagueness

and the formalization need in computerized information systems and databases. And

then, two theoretical frameworks of Semantic Signatures and Social Sensing to study

the geographical and socioeconomic environment in the Big Data age from the GIScience

literature are summarized. Moreover, the chapter poses three research questions and

associated research hypothesis. Finally, the organization structure of this dissertation is

outlined.

1.1 Space and Place in GIScience

Space and Place are two fundamental concepts in geography [1, 2]. In the past

decades’ development of GIS and spatial analysis methods, there exist rich studies about

the role of space but only a few about the role of place from the GIScience perspec-

1



Introduction and Motivation Chapter 1

tive. Space is more abstract and generic while the notion of place is more tangible to

humans. Agnew (2011) [2] suggested that the definition of place includes three aspects:

(1) location – where an activity or object is located; (2) locale – the environment where

everyday human activities take place; and (3) sense of place – the experiences offered

by a place or a community to a group of people and their shared perceptions and con-

ceptualization of a place. Goodchild (2011) discussed the formalization of the concept

of place and addressed the relationship between the informal world of human discourse

and the formal world of digitally represented geography [3]. He also reviewed the role

of place in GIS, in formal gazetteers, in volunteered geographic information (VGI) and

on defining context. The typical spatial perspective in GIS is mainly based on geometric

reference systems that include coordinates, distances, topologies, and directions; while

the alternative “platial” perspective is usually characterized by place names and textual

descriptions as well as semantic relationships between places [4]. Couclelis (1992) dis-

cussed the commonality and differences among several related terms including location,

space, place, and region [5]. She also compared the different notions of mathematical

space, physical space (absolute space and relative space), socioeconomic space, behavior

space and experiential space. In our study, a place is characterized by its semantics and

human conceptualizations instead of just an abstract geometry in space.

A place name is usually taken to differentiate one place from another or as a mental

handle for communication. These names, however, are not unique identifiers and there

is also ambiguity to which specific space they exactly refer to. In order to locate place

names on a map with precise coordinates and to support geographic information retrieve

(GIR), efforts have been taken to convert place to space. One major mechanism is the

use of gazetteers, which conventionally contains three core elements: place names, fea-

ture types, and footprints [6, 7]. In GIR, place plays an important role for interlinking

other information. [8] analyzed the Excite Web query logs to investigate the extent and

2
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variation of Web queries containing geographic terms, and found that geographically

related queries formed nearly one fifth of all queries submitted to Excite in which the

terms occurring most frequently being place names. Researchers have made significant

efforts toward georeferencing place names and linguistic descriptions to the surface of the

Earth, such as using ontologies of place [9], using fuzzy objects [10], using a qualitative

spatial reasoning framework [11], using probability models in combination with uncer-

tainty [12, 13], using kernel-density estimation[14, 15] and using description logics [16].

The granularity of locations or the scale of maps to which place descriptions can refer

has also attracted researchers’ interests [17, 18, 19]. To answer the question “where it is”

or locating place names, the granularity is very important because places are most likely

hierarchically organized. [19] developed two algorithms to identify the finest level of lo-

cation granularity of a paragraph of place descriptions with spatial relations or without

that. They also proposed a categorization of spatial relationships which include topo-

logical relations, relative orientation relations, absolute orientation, qualitative distance

relations, and quantitative distance relations. In summary, state-of-the-art developments

in computational representations of place for georeferencing, mapping and information

search applications mainly rely on “points of interest” but not “areas of interest”. More

generally speaking, searching for “place of interest” is still challenging since the intrinsic

vagueness of place.

The concepts of place in general are difficult to handle in geographic information

science and systems. One gap lies between the vagueness of place in human mind and the

formalization need for place-based representations in computerized information systems.

One of the most challenging questions is what are those core attributes of place that

should be stored in GIS? How to derive them computationally? The emergence of big

data brings new opportunities for us to understand the place semantics from large-scale

volunteered geographic information and data streams, such as georeferenced tags, images,
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activity streams, and GPS trajectories. This provides a great opportunity to extract the

computational representations of place for GIS using data-driven approaches, which will

be the focus of this dissertation.

1.2 Types of Regions in Geography and GIS

Geographic region usually describes a spatial extent at or (near) the Earth surface

characterized by the similarity or invariance of a set of properties with respect to their

magnitudes [20, 21, 22]. Note that space and place are two alternative views that com-

plement each other but focus on different aspects in geography and GIS as described in

the previous section, while the concept of region generally refers to the internal similarity

and external dissimilarity of locational properties.

There exist various taxonomies of region types in the literature. A popular taxonomy

was proposed by Hartshorne (1969) [20], including formal, functional, and general re-

gions. Formal regions are “distinguished by a uniformity of one or more characteristics”,

such as soil regions, dialect region, and political regions. Functional regions are “defined

by the particular set of activities or interactions that occur within it”. General regions

“stand out in one’s mind”, which often refer to perceptual regions that only exist as a

human conceptualization. Furthermore, Montello (2003) [21] split the formal region into

administrative region and thematic region, and proposed another taxonomy of regions

which consists of four types: administrative, thematic, functional, and cognitive regions.

Administrative regions are formed by political entities which reflect property control and

geopolitical power, such as census blocks, tracts, county, state and country. Thematic

regions are categorized and mapped by one or multiple characteristics such as population.

Functional regions are formed with the consideration of patterns of spatial interactions

among separate locations. And finally Cognitive regions are formed by people’s informal
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perceptions, attitudes, and memories.

In daily dialogues, people usually communicate via the administrative divisions in a

hierarchy [23] (e.g., Santa Barbara County, California State), or vernacular place names

and cognitive regions (e.g. downtown, southern California, or northern England) in-

stead of geometric coordinates when location needs to be explored or specified. Thus,

these types of regions have to be formalized and transformed from human mind into

computational models with computerized binary code. The concepts of vague cognitive

regions in this dissertation align with existing literature and are difficult to handle in

geographic information science and systems. They arise from the complex interaction

of individuals, society, and the environment. The exact delineation of vague cognitive

regions is challenging as their borders are vague and the membership within a region

varies non-monotonically and as a function of context. Consequently, vague cognitive

regions are difficult to handle computationally, e.g., in spatial analysis, cartography, ge-

ographic information retrieval, and GIS workflows in general. In typical GI systems,

regions have usually been represented using sharp boundaries but vague cognitive re-

gions have intrinsic fuzziness (i.e., admitted ambiguity) and partial membership instead

of full membership for those locations within the region boundary [24]. In this research,

we will investigate the computational representations (membership, boundary, and the-

matic characteristics) for vague cognitive regions and how to sharpen the indeterminate

boundary based on point-based observations and spatial clustering methods for mapping

and geovisualization purpose or the point-in-region spatial analysis in GIS.

The concept of functional region will be used throughout this dissertation. It has dif-

ferent definitions in the literature of regional science and urban geography studies. One

popular definition is that functional regions are usually characterized by connections

or interactions between different areas and locational entities and those connections or

interactions could be labor, capital, human movement, transportation, commodity, ser-
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vices, and so on [25, 26, 21]. One classic approach to delineating functional regions is

based on the journey-to-work commuting flows [27]. The objective of delineating bound-

aries for different regions is maximizing the interactions within the same region while

minimizing the interactions between different regions [25, 28]. There are four general

classes of functional regionalization procedures in the literature: (1) hierarchical cluster-

ing [25]; (2) multistage aggregation [27, 29]; (3) central place aggregation [30]; and (4)

modularity-based network approaches [31, 32].

In this dissertation, we use part of the Hartshorne’s definition on functional region

with emphasis on “supporting the particular set of activities and depending on the struc-

ture of the area” [20]. The functions of certain (sub)regions are originally defined in

urban planning and then reshaped by actual needs and usages of human activities [33].

The activities include living, working, shopping, eating, recreation, and so on. We will

use place venues that support specific types of human activities on the ground as a proxy

to delineate functional regions with various co-location patterns of place types. The same

type of points of interest (POIs) can be located in different land use types and may also

support different functions. For example, restaurants are found in residential areas and

in commercial areas, as well as in industrial areas. The main function of the place-type

universities is education, but they also support sports activities, music shows, and so on.

The function of a region can be grounded by the co-location pattern of POIs that may

be considered as a good proxy.
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1.3 Semantic Signatures and Social Sensing

1.3.1 Semantic Signature

Semantic signatures proposed by Janowicz (2012) [34] is a concept that is used to

characterize different types and instances of places from three perspectives, namely, spa-

tial bands, temporal bands, and thematic bands in analogy to the spectral signatures in

remote sensing. In the POIPulse project, researchers extracted the semantic signatures

from large scale point of interest (POI) data and developed an interactive information

observatory of places in Los Angeles.

A semantic generalization of space-based maps into place-based maps based on min-

ing the semantic signatures of places may bridge the gap between geometries and human

cognition, and help the understanding of complex interactions between human and places.

[35] analyzed the spatial-semantic interaction of POI types (e.g., bar, cafe, restaurant,

and post office) based on OpenStreetMap data. They argued that such an approach

can assist volunteered geographic information (VGI) [36] contributors in suggesting the

types of new features, cleaning up existing data, and integrating data from different

sources. However, there are several problems about the feature representations in Open-

StreetMap data which might affect the spatial-semantic interaction patterns. First, most

of the polygonal feature instances in OpenStreetMap are represented as single-polygon

instead of multi-polygon. For example, the POI type university has been suggested by

OpenStreetMap community tagging as “amenity=university”. However, the individual

elements of the amenity such as the buildings of the university should not be tagged as

“building=university” which were actually common to see in OpenStreetMap. Thus, the

university type might be classified as spatially clustered group that was in fact resulted

from the feature annotation problems, i.e., university buildings tend to be spatially clus-

tered but might not be true for the POI type of university. Second, the fuzzy feature
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representations (e.g., downtown, Southern California) are still missing from VGI sources,

such as on the OpenStreetMap. But human frequently communicate with such fuzzy

places. Third, the hierarchical relationships were missing and thus it didn’t directly sup-

port spatial reasoning. In fact, some of the thematic tags associated with the subClassOf

property of a POI might also be true for the parent entity. For instance, considering the

spatial containment relationship, the characteristic tags attached to a BBQ facility inside

a beach park should be included to this park for further semantic similarity calculation.

If the spatial patterns of POI types could be studied, the multi-polygon regions and their

hierarchical relationships might be derived, e.g, the spatial footprint of a university could

be derived from the spatial distribution of university buildings, parking lots, dinning and

residential halls, and so forth. Fourth, the topological relationships are still missing for

most features except the nodes and ways for street networks. The study of geometric

properties and spatial relations unaffected by the continuous change of shape or size of

places could be beneficial to the semantic map generalization process.

When users navigate digital maps, different hierarchical levels of places and regions

associated with their spatial footprints and thematic (or functional) topic annotations

should be dynamically shown on the place-based maps. Such semantically meaningful

maps could be customized and beneficial for different groups of maps users in variety

of domains. For example, the tourist maps would highlight the prominent landmarks,

attractions and transportation accessibility. The related POI types, entities and their

geometries should have higher weights than others during the semantic generalization

process for particular purposes. A user might be interested in finding a locally charac-

teristic hotel near popular bar regions in a city core, while he wants to make sure that

the distance or time cost from the bar region (which spatially contains the potential

target hotel) to the airport should be within certain acceptable threshold. But current

space-based maps doesn’t support such functionality since it usually don’t have the vague

8



Introduction and Motivation Chapter 1

cognitive regions nor the urban functional zones. To solve this problem, we aim to de-

velop a data-synthesis driven framework for automatically extracting the vague cognitive

regions and the urban functional zones, as well as the semantically generalized regions in

this research.

1.3.2 Social Sensing

We have entered an era of Big Data. Emails, blogs, photos, videos, and geographic

datasets have been generated every day by possibly anyone with access to digital devices

with necessary technologies. These data are also widely disseminated over the Internet

through websites such as Twitter, Flickr, Youtube and OpenStreetMap, commonly re-

ferred to user-generated content (UGC). For the first time in history, people are able to

collect vast volumes of data on various aspects of human life, from conversations about

daily life and fluctuation of emotions, to discussions on major scientific breakthroughs

and debate on critical political decisions. Big Data is ”big” not only because it involves a

huge volume of data, but also because of the velocity, the variety, the high-dimensionality,

and inter-linkage characteristics of those datasets [37, 38]. The Web has lowered the bar-

rier to produce, share, publicize, and access voluminous and various information about

all sorts of things, linked to places. VGI [36] has gradually been taking the lead as one

of the largest sources of geographic data. In addition to features with explicit locational

information stored in geodatabases, places are also mentioned and discussed in social

media, blogs, and news, and forums. This type of unstructured geographic information

is abundant, with a great potential to benefit scientific research and decision making.

With the rapid development of information and communications technology (ICT),

location-based services (LBS), location-based social networks (LBSN), the emergence of

big geo-data brings new opportunities for researchers to understand our physical and
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socioeconomic environments. Several types of big geo-data (such as mobile phone call

detailed records, geotagged social media posts, taxi trajectories, smart card transactions,

and LBSN check-in behaviors) are available to capture the spatiotemporal patterns of

human activities and thus provide an alternative approach to uncovering land uses and

exploring how cities function in a fine temporal resolution [39, 40, 41, 42, 32, 43, 44].

The term social sensing was introduced by Liu et al. (2015) [45] for such individual-level

geospatial big data and the associated analysis methods. The word “sensing” suggests

two natures of data. First, they can be viewed as the analogue and complement of remote

sensing, as big data can capture well socioeconomic features while conventional remote

sensing data do not have such privilege. Second, in social sensing data, each individual

plays the role of a sensor. Social sensing data contain rich information about spatial in-

teractions and environmental semantics, which go beyond the scope of traditional remote

sensing data.

In the big data era, researchers have been investigating issues on synthesizing multi-

sources, including data representativeness, scale quality, and new analytics methods to

deal with social sensing data [45, 46]. As shown in Figure 1.1, analyzing large-scale

datasets collected at the individual-level about human movement and activities, social

ties, emotion and perception could help reveal the aggregated patterns about geographic

environment such as the spatial interaction flows, land uses, and the place semantics. In

this dissertation, the semantics of place and computational models of place in GIScience

are the focus.

1.4 Research Questions and Research Hypotheses

In this dissertation, three research questions that help set the main scope and the

‘boundary’ of our place-based GIS research in this work are described in the following.
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Figure 1.1: The social sensing diagram (Credit to Xi Liu).

RQ1: Is it possible to extract computational representations for vague cognitive

regions from archival user-generated content such that they align with direct assessments

of human participants using concordance measures?

RQ2: Is it possible to extract the co-location patterns of different place types and un-

derlying characteristics that could be utilized to describe functional regions that support

specific types of human activities?

RQ3: What kinds of analyses/operations on places can be employed for deriving

semantically generalized regions in order to address the regional/cultural variability by

broadening the thematic topics that form the functional regions?

In order to answer these research questions, the following stated research hypotheses
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are the assumptions based on previous place-based studies or observations that require

to be tested using well-designed scientific experiments.

Hypothesis 1: Labeled geo-referenced data extracted from user-generated content

can be used to estimate the location and shape of vague cognitive regions as well as to

reproduce their membership strength of individual locations to said regions as compared

to direct assessments from human participants tests.

In order to test this hypothesis, we will conduct a data-synthesis-driven research com-

pared with the traditional human participates survey in a vague cognitive region study

with regard to the conceptual membership, the boundary, and the thematic characteris-

tics of ’Southern California’ and ’Northern California’ (Chapter 2).

Hypothesis 2: The co-location distributions of different place types (e.g., restau-

rants, museums, parking lots) are indicative of functional regions that support specific

human activities and those underlying patterns could be derived by applying topic model-

ing on POI data and corresponding user check-in behavior extracted from location-based

social networks.

In order to test this hypothesis, we will study the spatial patterns of different POI

types as well as their mixture patterns in ten most populated urban areas in the U.S.,

and then use the statistical topic modeling technique to learn their co-location patterns

in order to derive urban functional topics and regions (Chapter 3).

Hypothesis 3: The thematic topics of regions can be generalized into broadened

ones based on the semantic generalization operation on place-type hierarchy of points of

interest and associated human activities on location-based social networks.

In order to test this hypothesis, we will develop a semantic generalization process

based on topic modeling on LBSN points of interest data and their place-type hierarchal

structure and apply in Los Angeles to search for semantically generalized regions with

the target high-level place types. (Chapter 4).
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1.5 Dissertation Structure

This dissertation is structured based on an accumulation of four individual but related

articles including chapter 2, 3, and 4, and respectively, which will address the aforemen-

tioned research questions with hypothesis on the umbrella of place-based research in

GIScience. The remainder of this dissertation is organized as follows.

Chapter 2 presents a data-synthesis-driven approach for studying vague cognitive re-

gions. This work explains why vague cognitive regions and the concept of place in general

are difficult to handle computationally, e.g., in spatial analysis, cartography, geographic

information retrieval, and GIS workflows in general. In order to conquer this challenge,

this work introduces a comprehensive framework that consists of deriving the member-

ship score, hardening the crisp boundary, and extracting the thematic characteristics

from natural language descriptions of places to computationally represent the vague cog-

nitive regions. A case study has been conducted for the concepts of “Southern California”

and “Northern California”. The presented framework contains several core techniques

for extracting computational representations (e.g., thematic topics, spatial footprints) of

place, which will also be used in other chapters as well.

Chapter 3 presents a statistical framework to discover semantically meaningful topics

of place types and further derive functional regions based on the co-occurrence pat-

terns of place types and spatial clustering techniques in relation to urban planning. The

framework applies latent Dirichlet allocation (LDA) topic modeling and incorporates user

check-in activities on location-based social networks. A case study has been conducted

using a large corpus of about 100,000 Foursquare venues and user check-in behavior in

the ten most populated urban areas of the United States. This research shows that a

region can support multiple functions but with different proportions, while the same type

of functional region can span multiple geographically non-adjacent locations. Since each
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region can be computationally modeled as a vector consisting of multinomial topic distri-

butions, similar regions with regard to their thematic topic signatures can be identified.

Compared to remote sensing images which mainly uncover the physical landscape of ur-

ban environments, the proposed popularity-based POI topic modeling approach can be

seen as a complementary social sensing view on urban space based on human activities.

Chapter 4 presents a semantic generalization framework for converting point-based

representation of place into region-based representations witch rich semantics. This re-

search develops a new methodology that can take both spatial distributions of venues

and the place-type hierarchical relationships into consideration to derive spatially and

semantically coherent high-level generalized regions. While this research focuses on the

theoretical contribution, a case study of extracting the semantic regions that relate to

the Beach, Shopping, and Asian Food topics in Los Angeles has been conducted using

the proposed semantic generalization methodology.

Finally, Chapter 5 summarizes this dissertation. Particularly, we answer the posed

three research questions and state our research contributions. We also discuss the broader

implications and limitations of this research, and present planned future work.
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Chapter 2

A Data-Synthesis-Driven Method

for Detecting and Extracting Vague

Cognitive Regions

Chapter 2 presents a data-synthesis-driven approach for studying vague cognitive regions.

This work explains why vague cognitive regions and the concept of place in general

are difficult to handle computationally, e.g., in spatial analysis, cartography, geographic

information retrieval, and GIS workflows in general. In order to conquer this challenge,

this work introduces a comprehensive framework that consists of deriving the membership

score, hardening the crisp boundary, and extracting the thematic characteristics from

natural language descriptions of places to computationally represent the vague cognitive

regions. A case study has been conducted for the concepts of “Southern California”

and “Northern California”. The presented framework contains several core techniques

for extracting computational representations (e.g., thematic topics, spatial footprints) of

place, which will also be used in the following chapters as well.

15



Vague Cognitive Regions Chapter 2

Peer-reviewed Publication

Title
A Data-Synthesis-Driven Method for Detecting and Extracting
Vague Cognitive Regions

Authors
Song Gao, Krzysztof Janowicz, Daniel R. Montello, Yingjie Hu, Jiue-an Yang,
Grant McKenzie, Yiting Ju, Li Gong, Benjamin Adams, Bo Yan.

Venue International Journal of Geographical Information Science
Editors Yuan May

Publisher Taylor and Francis
Pages 31(6): 1245-1271

Submit Date 15 August, 2016
Accepted Date 12 December, 2016

Publication Date 08 January, 2017
Copyright Reprinted with permission from Taylor and Francis

Abstract: The concepts of cognitive regions and places are notoriously difficult to

manage in geographic information science. They arise from the complex interaction

of individuals, society, and the environment, their exact delineation is challenging as

borders are vague, membership of places within a region varies non-monotonically, and

homogeneity and regularity between raters cannot be assumed. Consequently, regions

and places are difficult to handle computationally, e.g., in spatial analysis, cartogra-

phy, geographic information retrieval, and GIS workflows in general. In a recent study,

Montello and colleagues have devised a novel grid-based task in which participants rate

the membership of individual cells to a given region and contrasted this new task to

standard boundary-drawing. The authors used the regions of ‘Northern’ and ‘Southern’

California for their experiment on thematically influenced regions. They concluded that

membership is about attitude, not just latitude. In this work, we reproduce their study

by approaching it from a computational fourth paradigm perspective, i.e., by the syn-

thesis of high volumes of heterogeneous data provided by various sources. We compare

our results in identifying these regions to the results from Montello et al. and discuss

differences and commonalities. At its core, however, this paper is not about ‘Northern’

and ‘Southern’ California but about the differences in study and task design, advantages

and limitations of both approaches, and about the relation between conventional human
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participants tests and the increasingly popular data-synthesis-driven research designs in

GIScience.

2.1 Introduction

In its broadest sense, the concept of a region describes a bounded spatial extent

characterized by the similarity or invariance of a set of properties. This includes the

region defined by the property of always facing away from the Earth, i.e., the dark side

of the moon, as well as regions defined by convention such as the thoracic anatomical

region that encompasses the chest. Geographic information science is typically concerned

with regions in geographic space that enable us to differentiate places inside of a region

from those outside of it [21]. This includes administrative regions with fiat, institutional

boundaries [47, 48] where the membership of places is exclusively determined by a binary

containment relation [49], e.g., all counties in the state of California are completely and

equally within California. Consequently, such regions do not have a graded structure;

Santa Barbara County is not a lesser part of California than Los Angeles County. In-

terestingly, such administrative regions are generally the only type of regions that can

accurately be described by the infinitely thin-line geometries that dominate GIS to date

[50]. Instead, geographic regions typically have boundaries that are more or less vague.

Boundary vagueness occurs for one or more of a variety of specific reasons; [21] listed

measurement, temporal, multivariate, contested, and conceptual vagueness. For example,

the boundaries of the Kashmir region are disputed. Nonetheless, India, China, and

Pakistan have their own national policies that exactly specify those boundaries [51]; this

is contested vagueness. Other types of regions, such as thematic regions, are potentially

multivariate. For example, the precise boundaries of ecological biomes can neither be

acquired by measurementas this would require an infinity dense mesh of simultaneous
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observations of all their properties, nor by theoretical considerationsas the concept of a

biome is not specified to a degree that would enable the extraction of crisp boundaries

[52, 21]. Consequently, thematic regions generally have two-dimensional boundaries and

a graded structure. Places near the boundary may be less characteristic of the region than

those in the center. In fact, the boundary zone between two regions is often of particular

scientific interest, such as in studies of the upper timberline [48, 53]. As noted by [54],

fiat boundaries are often projected onto physical space without a clear discontinuity

of property values, e.g., in the case of valleys and their relation to mountains, or by

introducing different kinds of barriers [55].

Another type of region arises from the complex interaction of individuals, society, and

the environment. These cognitive regions [21] are informal regions that are also charac-

terized by vague boundaries [52] and variable membership functions. Furthermore, the

membership of places within a cognitive region may vary non-monotonically; membership

strength does not necessarily decrease towards the boundaries, and in theory may vary

up and down within the region. Cognitive regions can also vary in extent, shape, and

location among groups and individuals, and can be highly specific to a local population;

therefore neither homogeneity nor regularity can be assumed. Consequently, cognitive

regions and places are difficult to handle computationally, e.g., in spatial analysis, car-

tography, geographic information retrieval, and GIS workflows in general. Interestingly,

the spatial properties of cognitive regions are driven by individual and cultural beliefs

about thematic properties to such a degree that metric, directional, or mereotopological

[56] properties are relaxed or even ignored. For instance, as will be discussed later in

this work, San Diego (SD) is perceived as less Southern California than is Los Angeles

(LA), despite SD being more than 150 km to the south of LA. We call this a platial

effect (rather than a spatial effect) in this paper, to highlight the fact that thematic and

cultural aspects of the landscape can distort or relax spatial properties.
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Understanding, assessing, and characterizing cognitive regions and their vague bound-

aries have been ongoing research activities for years. To give just a few examples, the

egg-yolk theory proposes the use of concentric subregions to distinguish between an inner

(certain) subregion, the yolk, and one or more outer, less certain region, called the white,

those jointly form the egg [57]. In their Where’s downtown paper, [58] reviewed three

strategies to elicit an individual’s representation of a region: by sketching the boundary,

through a binary regular grid, and by selective binary trial-and-error sampling. Prior to

this, [59] analyzed the cognition of neighborhood continuity and form by their residents.

In their most recent work, [60] (MFP, for short) proposed a novel grid-based technique

in which participants rated the membership of individual cells at a high resolution. This

allows participants to express their beliefs about non-uniform region membership and

vague boundaries in detail, and it puts few restraints on the spatial distribution of re-

gion membership patterns. For example, it allows membership variation to weaken and

strengthen not non-linearly but even non-monotonically.

In the MFP study, 44 students from UCSB were presented with an outline map of

California covered by a hexagonal tessellation of 90 cells (see Figure 2.1). The students

were asked to rate each and every cell on a 1-7 scale, with 1 meaning very Northern

Californian, 7 meaning very Southern Californian, and 4 meaning equally northern and

southern Californian. The students were explicitly asked to base their judgment on

not just cardinal directions but what people informally mean when they say Northern

California and Southern California, i.e., to take feelings, lifestyles, and so forth into

account. Those regions are widely known to locals and colloquially referred to often

as NorCal and SoCal. Participants were asked to take their best guess for cells that

they felt unsure about. Each of the 90 hexagons covers an area of approximately 4920

km2. The tessellation was considered to be a (relatively) high-resolution grid by the

study authors, considering that rating 90 cells for the entire state represents much higher
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Figure 2.1: Means and standard deviations of ratings of Northern and Southern Cal-
ifornia based on [60]; dashed borders and asterisks indicate interpolated cells. Those
cells marked with an asterisk were not part of the original study but have been added
by us in order to fully cover the land area of California.

spatial resolution than is common when, e.g., participants divide the city into two regions

of north and south, or three regions of north, south, and central. The statement also

implies that rating 90 cells is close to the maximum that can be meaningfully asked of

human participants. A detailed description of all studies, the Alberta control study, the

study design, and the participants, can be found in the original MFP publication.

Figure 2.1 shows a slightly altered reproduction of the results of the MFP study.

Cells with an asterisk are not part of the original study but have been added by us via

linear interpolation in order to fully cover the land area of California and thereby collect
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postings from these areas. Point-in-polygon analysis has been used to aggregate point

observations and assign them to the hexagonal cells; more details are provided in Section

2.3.3. Interestingly, region membership is not monotonic, i.e., cells south of another

cell may be less Southern California and cells to the north of another cell may be less

Northern California. For instance, the hexagon containing the city of El Centro which

borders Mexico, is considered to be less Southern California than the cell containing

Santa Barbara which is to the northwest of Los Angeles. Similarly, on average, the

cells in the San Francisco Bay Area are considered to be more Northern California than

the most northern cells on the outline map. Furthermore, there is a clear coast-inland

trend by which places at the coast are considered to be more Northern or Southern

California than places to the east at the same latitude. This leads to a vague central

boundary between Northern or Southern California that is of heterogeneous thickness,

being thinner to the west and thicker to the east. Finally, the standard deviations across

participant rankings are higher for northern than southern core areas of the respective

regions. As we noted above, we call such phenomena platial effects to highlight the

fact that thematic and cultural aspects of the environment can distort or relax spatial

properties, including distance, direction, latitude & longitude, size, and so on.

The MFP research is a representative example of human participants studies carried

out in cognitive and behavioral geography [61], spatial cognition, and geographic informa-

tion science. It demonstrates a new methodology—grid-based interval-level rating—by

applying it to an interesting geographic phenomenon. In this work, we reproduce their

study, using the same California example and grid-based interval-level rating. However,

we approach data acquisition and study design from a radically different angle, namely

from a computational fourth-paradigm perspective [62], i.e., through the synthesis of high

volumes of heterogeneous data provided by various online sources [63]. In this paper, we

discuss the differences in study and task design between the two approaches, present the
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results of this computational approach, compare them to the original human-participants

study, and relate our results to the ongoing debate over the use of social media in GI-

Science.

The research contributions of this work are as follows:

• We propose an automatable (and thus scalable) framework which can synthesize

multiple heterogeneous datasets from different sources to study vague cognitive

regions.

• We compare the results from our data-synthesis-driven approach with those from

a human-participants experiment, and discuss the pros and cons of the two ap-

proaches.

• In addition to the grid-based membership study, we also approximate crisp bound-

aries for the cognitive regions and explore their underlying thematic topics.

• We explore the use of topic modeling to gain further insights into how vague cog-

nitive regions can be represented and delineated.

To date, the literature on data-synthesis-driven approaches to quantitative geographic

analysis is very sparse. Online social media records represent a form of secondary archival

data1 [64], which is not particularly novel in itself. However, the automated filtering

and analysis of such data, particularly to analyze cognitive concepts such as cognitive

regions, is novel. We introduce the term data-synthesis-driven here as an alternative

to the popular notion of data-intensive science for two reasons. First, the term data-

intensive could be misunderstood as implying that the MFP work (or any other work

1From a broad research-methods perspective, such as that in Montello and Sutton (2013), social
media records are not data until they are coded for contentthey are sources of data. In this paper,
however, we follow the convention of the data-synthesis (big data) research community and refer to the
collected records as data.
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along the same lines) is not heavily based on data merely on grounds of the amount of

data used. Second, we believe that the real and radical novelty of the fourth paradigm

lies in the way data are acquired and handled, and in the role they play in asking certain

types of scientific questions [63].

The remainder of this chapter is structured as follows. In Section 2.2, we discuss

existing studies related to the present work. Next, Section 2.3 presents the design of

our study, the required data collection, changes that had to be made to the data from

the MFP study for comparison to our work, as well as the processing workflow and

methods employed. Section 2.4 presents our results, and compares them to the results of

the original MFP study. Section 2.5 discusses the broader impact of this research, and

finally, Section 2.6 summarizes this work and gives an outlook for future research and

technology directions.

2.2 Related Work

Cognitive places are examples of vague places that are also referred to as vernacu-

lar places [65, 66], at least when they are concepts shared by groups of people and not

idiosyncratic to one person. While typically not included in authoritative gazetteers,

vague places are frequently used in our everyday dialogue, such as when describing lo-

cations and asking directions. The intrinsic nature of a vague place is its boundary

vagueness, as seen in examples such as downtown. Fuzzy-set-based methods have been

widely used to extract the indeterminate boundaries of vague places in GIScience and

spatial cognition [24, 58]. Given their indispensable role in human thought and culture,

researchers have conducted studies to acquire a better understanding of vague places.

Based on a human-participants study, [67] discussed the user needs and implications for

vague place modeling. [68] harvested Web pages related to particular vague places in the
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UK, and identified their approximate boundaries based on the geo-referenced locations

in the pages. [69] proposed a point-set-based region model to approximate vague areal

objects and conducted a cognitive experiment to investigate the borders of South China.

[70] collected geotagged Flickr data for studying vague places, and constructed spatial

boundaries using kernel density estimations. Recently, [71] presented a computational

framework which employed natural language processing and machine learning techniques

to derive the geographic footprint of the cognitive region historic center of Vienna based

on the TripAdvisor website and OpenStreetMap entries, and validated the results by

comparing them with a historical map of the city.

Social media provides an alternative data source for studying the interactions between

people and places. While often being criticized for concerns of representativeness [72, 73],

social media data nevertheless reflect the behavior of millions of users throughout the

world, and therefore have value [74, 75, 76]. The wide availability of social media has

greatly enriched traditional volunteered geographic information (VGI) approaches, such

as OpenStreetMap and Wikimapia [77, 78, 79]. Unlike these traditional VGI platforms

which focus on online collaborative mapping, geotagged social media data reflect the

spatial footprints of people in the real world, and therefore can be employed for studying

human behavior. For example, [80] demonstrated a strong positive correlation between

traffic flow in the greater Los Angeles area and geotagged Twitter data. Using geotagged

Flickr data, [81] developed a bottom-up approach to construct place entities that can help

enrich official gazetteers. Also based on Flickr data, [82] extracted urban areas of interest

(AOI) for six different cities in the past ten years, and analyzed the spatiotemporal

dynamics of the extracted AOI.
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2.3 Study Design

In this section, we describe the datasets used, our workflow and methods, pre-

processing steps, and the three analysis tasks we performed in order to reproduce the

MFP study with a data-synthesis-driven approach.

2.3.1 Data Collection

In contrast to the MFP study, we did not collect data by interacting with selected

participants but by automatically observing the use of terms in existing data. To do so,

we filtered our data with two sets of keywords. The first grouped the keywords “SoCal”,

“South California”, and “Southern California” into one set, which we call SoCal, and the

keywords “NorCal”, “North California”, and “Northern California” into a second set,

which we refer to as NorCal.

With these two sets of keywords, we collected data from five sources: Flickr, Insta-

gram, Twitter, Wikipedia, and TravelBlog.org. Flickr is a photo sharing portal that stores

millions of tagged and geo-referenced pictures. We believe that Flickr represents a more

tourism-oriented view of California than the other social media sources. Twitter and

Instagram are examples of online social media networks that are popular among both

residents and visitors to California. These sources capture daily activities, news, visited

points of interest, and so forth. We retrieved geo-referenceable entries from TravelBlog

that provides trajectory-style data and capture outdoor locations well, including parks.

While all these sources provide data and views from individuals, Wikipedia provides a

consensus truth (broader agreement) about NorCal and SoCal, as articles containing

these terms are the results of edits done by a larger community. As shown in Table 2.1,

we collected 344,475 data entries/postings (203,713 for SoCal and 140,762 for NorCal)

within the contiguous California State boundary (without islands). As for social media

25



Vague Cognitive Regions Chapter 2

Table 2.1: Data collection counts from five different sources

Source SoCal Group NorCal Group Total
Flickr 22,132 19,706 41,838
Instagram 169,648 116,984 286,632
Twitter 10,376 3,294 13,670
Travel Blogs 107 78 185
Wikipedia 1,450 700 2,150
SUM 203,713 140,762 344,475

postings, the location mentions in the content might be different from where they were

generated. We discuss the distinction between the said place and the locale further in

Section 2.5. However, we only selected those georeferenced (Twitter and Instagram)

postings which were generated from mobile devices and provided the users’ GPS coordi-

nates; therefore, we can be confident from where the postings were actually generated.

More detailed information about each source is presented below.

(a) Flickr: We extracted 41,838 postings contributed by 1,338 unique users that

contain the keywords (tags) mentioned above for the SoCal group and the NorCal group

from 99.3 million Flickr photos taken from 2004 until 2014 and released by Yahoo Labs

[83]. The photos are either geo-referenced manually or by the built-in positioning tech-

nologies in the mobile device or the camera. The location could either be the place where

a photo was taken or the location of an object in the photo. Automatic recording by a

GPS receiver is always the former case, while the human manually georeferenced photos

could be either way. The photo metadata includes photo ID, title, description, textual

tags, time when a photo was taken and uploaded, latitude and longitude etc.

(b) Instagram: Instagram is an online mobile photo (and video)-sharing social net-

working service. According to a Pew Research report [84], Instagram has grown in

popularity with more than half (53%) of internet-using young adults (age 18 to 29) using
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the service. The content shared on Instagram is georeferenced by built-in positioning

technologies on mobile devices or by manually selecting the location from the preloaded

Facebook gazetteer. We retrieved a total of 286,632 geo-referenced and SoCal & NorCal

keyword-filtered postings by 79,371 unique users between 2011 and 2015. The metadata

of the Instagram media includes the media ID, user ID, latitude, longitude and textual

captions.

(c) Twitter: Combining the Twitter Streaming API and Search API, we retrieved

a total of 13,670 geo-referenced and SoCal & NorCal keyword-filtered tweets posted by

8,482 unique users during the winter of 2014–2015. When posted from an Android or iOS

application, the locations of the tweets were geo-referenced by the built-in positioning

technologies if the user opted in to the location service. The metadata of our tweet

collection includes the tweet ID, user ID, latitude, longitude, and the textual content of

each tweet.

(d) TravelBlogs.org: Over 440,000 raw blog entries were downloaded. Each place

name was matched to an entry in the GeoNames gazetteer, providing a latitude and longi-

tude. More detailed information about the geoparsing procedure for these unstructured,

natural language documents can be found in [75]. We extracted 185 travel blogs which

mentioned at least one of the keywords from the SoCal or NorCal sets. Because this is

such a small number of travel blogs extracted, we combined them with the Wikipedia

articles discussed below for further analysis.

(e) Wikipedia: We extracted 2,150 articles which contained the SoCal or NorCal

group of keywords, and inside the California State boundary. If the articles were not

directly geo-referenced, information from DBpedia was applied for geo-referencing [85,

75].

Among the five selected sources, the number of data entries vary substantially, due

to API access restrictions, limited geo-referenced content, and so forth. We discuss the
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Figure 2.2: The processing framework for studying cognitive regions using a data-syn-
thesis-driven approach.

differences among these data sources in the discussion Section.

2.3.2 Workflow & Methods

The overall analysis procedure for our data-synthesis-driven approach involves (a)

extracting data that are frequently tagged with SoCal and NorCal in social media post-

ings, (b) examining the spatial patterns of these data, and (c) defining the variability and

boundary vagueness of SoCal and NorCal. The most challenging part of this approach

is to select a large number of good quality data that meet our criteria from the raw data.

We design a standard processing workflow (see Figure 2.2) to calculate the membership

scores for the hexagon-cell-based representation of cognitive regions (Task I), to identify

and characterize the vague boundaries (Task II), and to extract prominent thematic

topics tied to cognitive regions from the natural language descriptions (Task III).
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Pre-processing Step 1. Cleaning Data and Selecting Appropriate Users and

Contributed Entries

The information shared on social media and online crowdsourcing platforms usu-

ally follows a power-law distribution [86, 87], which means most of the postings are

contributed by a few users. In our case, we do not want the resulting patterns to be

dominated by the most active users. In order to reduce such effects, we limited the num-

ber of entries contributed by each user. First, we calculated a cumulative probability

distribution function (CDF) for the posting counts per user (Figure 2.3) to decide on an

appropriate threshold. From there, we find the number of entries at which the majority

(i.e., 90% was chosen) of the users posted.

Taking Flickr photo postings as an example, the 90th percentile threshold value is 41

photos for the SoCal group and 40 for the NorCal group. This means that about 90% of

the users posted no more than 41 photos for SoCal and 40 photos for NorCal. For users

who contributed less than or equal to the percentile threshold p, all photos are kept. For

users who contributed more photos, we randomly selected photos up to the threshold.

Pre-processing Step 2. Spatial Clustering of Entries and Sampling for Each

User

Second, we limited the number of posts by the same users, to avoid having a few

users dominate the overall patterns of a specified local region. For a given local region

(within a certain search radius), we value contributions from multiple users because they

represent a consensus among the general public for this region, which is similar to a

human-participants test. Therefore, we spatially filtered out repeated postings from a

single user within a search radius of 100 meters so that we retained only one post per

user in this local region.
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Figure 2.3: The cumulative distribution functions (CDF) of entries contributed per
user in Flickr, Instagram and Twitter.

2.3.3 Analyzing Selected Data

Task I. Calculating Membership Scores

After the data filtering and clustering performed during the pre-processing steps, we ap-

plied point-in-polygon analysis to aggregate point observations to three different hexag-

onal tessellations at three different resolutions (Figure 2.4). The first level of hexagonal

tessellation has the same spatial resolution as used in the MFP study, with each hexagon

covering about 4920 km2. The second-level and the third-level hexagons are at higher res-

olution, covering a half (2460 km2) and a quarter (1230 km2) of the first-level area in each

cell, respectively. Varying the spatial resolution in a data-synthesis-driven approach is

easy to do, while increasing the resolution is difficult in a traditional human-participants

survey, since participants can be overwhelmed by a large number of cells to rate.
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Figure 2.4: The hexagon-based tessellations at different spatial resolutions.

After spatially joining the point observations associated with the SoCal and NorCal

group keywords to the hexagon grids, we obtained two occurrence counts in each cell

for a given data source. Let Sj
i denote the occurrence counts of SoCal mentions and

N j
i as the NorCal mentions, where i is the hexagon ID at one of three resolution levels

of tessellation grids, and j represents the data sources: Flickr, Instagram, Twitter or

Travel Blogs & Wikipedia. Cells with a sum count of N j
i and Sj

i less than 10 were

considered as providing insufficient observations, and were therefore filtered out before

the quantitative computation and comparison steps. We created two simple measures to

derive the membership value of cells (Equation 2.1 and 2.2)

M1i = Sj
i −N

j
i (2.1)

M2i = Sj
i /S

j
max −N

j
i /N

j
max (2.2)
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where Sj
max represents the maximum occurrence counts of SoCal mentions per cell across

the whole study area for a given data source j; and N j
max is the maximum for NorCal

mentions. The purpose of M1 is to quantify the absolute occurrence differences per cell

while M2 measures a normalized ratio difference. Next, the cells are classified and rated

from 1 to 7 for each data source based on ranking percentiles. From these, the spatial

distribution maps of cell memberships for each data source were derived.

We also computed the mean values M1mean
i and M2mean

i , as well as standard devia-

tions M1sd
i and M2sd

i for each cell for both measures across all data sources. For both

M1 and M2, the higher the value of the means, the more likely the cell is rated as being

a SoCal (or NorCal) cell.

In order to determine the inter-source agreement of different data sources among the

cells, we took each data source as one rater layer and index the cells that had sufficient

observation counts in all layers with the ranks (1∼k) sorted by their occurrence counts.

This results in 4 sets of tuples [cell-id, rank (1∼k)]. For instance, a cell with the ID 19

may have a value of 2 in Twitter (moderately NorCal) but a value of 1 in Instagram

(strongly NorCal). We use Kendalls Coefficient of Concordance (W) [88] to assess the

agreement among these different rater layers.

To do this, assume there are m sources rating n subjects in rank order from 1 to k.

Let ri,j represents the rating a source j gives to a subject i. Let Ri be the total ranks

given to the subject i (i.e.,
∑m

j=1 ri,j) and R̄ be the mean of Ri, the sum of the squared

deviations S can be calculated as by Equation 2.3. Then the Kendall’s W is defined as

given by Equation 2.4.

S =
n∑

i=1

(Ri − R̄)2 (2.3)
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W =
12S

m2(n3 − n)
(2.4)

Task II. Extracting Continuous Boundaries of Cognitive Regions

Task I employed a discrete approach based on a hexagonal grid to calculate the member-

ship score of each individual cell. In the second task, we aimed at determining the core

regions of NorCal and SoCal using a continuous approach by approximating the bound-

aries of these two cognitive regions. While perceived borders of vague regions often vary

among individuals [21], our goal here is to extract the core regions which are agreed upon

by most people.

We use three social media sources, namely Flickr, Twitter, and Instagram, to identify

the core regions. Using multiple sources helps ensure that the identified regions are not

artifacts of one particular data source. In addition, it also reduces the potential bias

introduced by the different user demographics of different social media platforms.

We applied a two-step workflow to extract the approximate regional boundaries for

NorCal and SoCal. In step 1, we performed spatial clustering and identified point clusters

based on geo-referenced social media data. This step considers each mention, e.g., a

tweet about NorCal or SoCal, as a vote for the corresponding region and identify as

those core areas that are agreed upon by a significant number of people. In step 2, we

constructed polygons from the identified point clusters. While such polygons may not

be completely consistent with the understanding of each individual, they can provide

intuitive delineations of the general areas. In addition, these constructed polygons can

be used to support spatial queries, e.g., show me all the hotels in SoCal. Figure 2.5

illustrates this workflow, where subfigures 2.5a and 2.5b show the clustering process, and

subfigures 2.5b and 2.5c demonstrate the polygon construction.

To identify point clusters from geo-referenced social media postings, we use DBSCAN
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Figure 2.5: The workflow for extracting continuous boundaries for the cognitive re-
gions of NorCal and SoCal (the visualized dataset is based on Flickr).

which is a density-based spatial clustering algorithm [89]. Compared with distance-

based clustering methods such as K-means or K-medoid, DBSCAN has two advantages

which make it more suitable for our task. First, DBSCAN can identify clusters with

any arbitrary shape. In this research, the shapes of the potential cognitive regions are

unknown, and DBSCAN can help discover their perceived boundaries. Second, DBSCAN

is robust to noise which commonly exist in social media data. Clustering methods, such

as K-means, will classify noise observations into clusters and therefore can distort the

derived regions.

DBSCAN requires two parameters, namely ε and MinPts. ε defines the search radius

while MinPts specifies the minimum number of data points within the said search radius.

The two parameters together define a density threshold; clusters are identified at the

locations whose density values are higher than the defined threshold. To find a proper

ε value, we performed a nearest neighbor analysis on the three social media datasets as

suggested by [89]. We assumed 1% of the data were noise, and found the 99th percentile of

the nearest neighbor distance (NND) in each dataset. Accordingly, the 1% of data points
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which were further away from the vast majority of observations, were considered as noise.

We calculated the average of the 99th NND percentiles for the three data sources and

used the averaged value for ε. For MinPts, we cannot use a single absolute value (e.g., 4)

as in traditional DBSCAN applications, since the number of data entries from different

sources varied significantly. For example, the number of Instagram postings was much

larger than those of the other sources (see Table 2.1). Consequently, it would have been

much easier for Instagram observations to form clusters than for the other two sources, if

a single value were used for MinPts. To address this issue, we used percentages instead

of absolute counts for MinPts, namely 1%, 2%, and 3% of the total number of postings

per data source, to model the vague nature of the cognitive regions. Other settings could

be explored in future work, with larger values shrinking the core region.

With point clusters identified, the second step was to construct polygons to approxi-

mate the boundaries of the cognitive regions. A convex hull approach has been used in

many studies to represent the minimum bounding shape for a group of points [90]. Such

a hull, however, is unable to accurately delineate for the shapes of point clusters. The

chi-shape algorithm, proposed by [91], computes a concave hull for a set of points. The

chi-shape algorithm requires a normalized length parameter λP , which ranges from 1 to

100. A value of 1 creates polygons which are closest to the original point set, but may

generate spiky edges (Figure 2.6a). A larger value of λP will create smoother boundaries

but also generates more empty space within the polygon. When λP is set to 100, the

constructed polygon is equivalent to a convex hull (Figure 2.6c). Recent work by [92]

proposes a fitness function which balances the complexity and the emptiness of the con-

structed polygon. Based on their work, we iterated λP from 1 to 100, and identified the

optimal λP value (which is 24 in our experiment) that achieves the minimum value for

the fitness function. Figure 2.6d shows the resulting curve plot. The polygon generated

with λP = 24 is shown in Figure 2.6b respectively.
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Figure 2.6: Constructed polygon representations for the cognitive regions of NorCal
and SoCal using different λP values.

Task III. Inferring Thematic Characteristics via Topic Modeling

Having identified and delineated regions, we explored what these regions have in common

with each other and how they differ. To do this, we use topic modeling over social

media. We selected the Resolution 3 (Figure 2.4c) spatial data layer as our basis for

topic modeling given that it offers the most detailed depiction of California that we

assessed in our experiments, allowing for nuanced changes in topics to have an impact.

Each of the social layers (Flickr, Twitter, Instagram) was spatially intersected with the

Resolution 3 hexagons, and the unstructured textual data were grouped and aggregated

to the individual hexagon level. Next, the data were cleaned to remove standard English
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stop-words, non-alphabetic characters and words consisting of less than three characters.

The words for each hexagon were then stemmed1 and place names were removed via

DBPedia Spotlight2 and manual extraction.

We applied Latent Dirichlet Allocation (LDA) [93] for topic modeling using the MAL-

LET toolkit [94]. LDA is a generative, unsupervised model that takes a bag-of-words

approach to constructing topics. In this case, the corpus consists of all hexagons in

California while the textual references within each hexagon make up a single document.

The topics are constructed by exploring the co-occurrence of words in each document.

Provided these topics, each hexagon could then be thematically defined as a distribution

across all topics. For this research, and in line with previous work [95, 96, 97], we used

60 topics. The resulting topic distributions were then assigned back to the hexagons

allowing for visual and statistical representation through thematic layers.

2.4 Results and Discussions

2.4.1 Membership Variability and Comparisons with Survey

Figure 2.7 depicts the spatial distributions and membership values of the SoCal and

NorCal cognitive regions from the aforementioned data sources at three different resolu-

tions. The cells rated as most NorCal are color-coded as blue, whereas SoCal cells are

colored red. Darker colors represent a higher degree of membership. The core region

of NorCal is around San Francisco (the Bay Area) which is roughly 300 miles south of

the northern border of California. On the other side, cells that are most highly rated

as being SoCal are around the greater Los Angeles area, which is more than 100 miles

north of the southern border of the state. The boundary between NorCal and SoCal is

1Using the Snowball stemming method http://snowball.tartarus.org
2http://spotlight.dbpedia.org
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vague and quite similar for the different data sources with respect to its shape, width,

and location. However, the data do show different boundary transition patterns due to

varying number of postings across data sources. The Instagram dataset has adequate

observations in the transition zone between NorCal and SoCal, while other sources don’t

have sufficient data. All data sources reveal intensity values that are higher for both

regions at the coasts and decrease towards the east, mostly failing to cross our minimum

threshold to be considered part of either vague region. These results confirm the existence

of a platial effect that distorts and relaxes spatial properties such as cardinal directions,

substantially altering its monotonic variation across the landscape.

The average pattern across the social media sources is shown in Figure 2.8; each cell

contains the mean of classified ranking percentiles (on a 1-7 scale) across all data sources.

Figure 2.8 makes it evident that the cognitive regions we derive from our data-synthesis

approach are highly similar to those from the original human-participants survey by [60],

although not identical. Both empirical approaches show that the NorCal-SoCal distinc-

tion is mostly relevant to the west coast, including the coast ranges, beach communities,

and metropolitan areas of San Francisco-Oakland-San Jose, Los Angeles, and San Diego.

Indeed, the data-synthesis approach leaves several cells unclassified as either NorCal or

SoCal, especially cells in the middle and eastern parts of the state (more below). Thus,

both approaches show clearly that the boundary between the two cognitive regions is

not homogeneous but wedge-shaped, being much narrower toward the west coast and

broader toward the east; the data-synthesis boundary area is even a trapezoid or trun-

cated wedge. Both approaches show that the locations of core intensity for the cognitive

regions of NorCal and SoCal are not at the northern and southern state borders, respec-

tively, but considerably south of the northern border and north of the southern border.

The two approaches identify a Southern California core that is virtually identically lo-

catedencompassing downtown Los Angeles and the west side, including the coast. The
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core of NorCal, however, is identified by our data-synthesis approach as quite a bit fur-

ther south than it is by the human-participants approach of MFP. It is essentially the

San Francisco Bay area for the data-synthesis approach, while it is north of that for

the MFP approach, around the confluence of the counties of Lake, Colusa, Yolo, Napa,

and Sonoma. This difference aside, the data-synthesis approach agrees with the human-

participants approach that the concepts of NorCal and SoCal are not merely latitudinal

but attitudinal (i.e., both reveal platial effects).

To compare our results with the MFP results quantitatively, we computed Spear-

mans rank correlation ρ between the four layers from social media sources and the single

layer from the human-participants survey, for the 69 cells which had sufficient social

media data. As Table 2.2 shows, the correlations are uniformly very high for each of

the four sources with the human-participants data; averaging across all four sources, the

correlation with the human-participants data is 0.870 for scoring function M1, based on

absolute occurrence differences, and 0.882 for scoring function M2, based on normalized

ratio differences. All these high correlations are significant at p-value < 0.001 (df = 67),

indicating that our automated approach generated membership results for these cognitive

regions that closely approximate those of direct human raters. Moreover, Kendalls rank

correlation τ is 0.712 for M1 and 0.721 for M2 respectively, which also implies a positive

ordinal association between our approach and the human-participants approach.

As shown in Table 2.3, the value for Kendall’s W (0.953, p-value < 0.001) shows a

high agreement among our four data sources with respect to the membership rankings

of all cells. Kendall’s W remains very high (0.929, p-value < 0.001) even after adding

the survey ranks from the MFP study as the fifth source, demonstrating a consistency

between our data-synthesis-driven approach and the human-participants survey. In other

words, the effects we see are not merely artifacts of a specific data source (and its user

community).
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Table 2.2: Correlation between the data-synthesis-driven results and the human-par-
ticipants results from the original MFP study

Source ρ (M1) ρ (M2) τ (M1) τ (M2)
Flickr 0.881 0.880 0.721 0.719
Instagram 0.867 0.856 0.711 0.701
Twitter 0.874 0.838 0.714 0.673
TravelBlogs & Wikipedia 0.897 0.878 0.747 0.718
Means 0.870 0.882 0.712 0.721

Table 2.3: Kendall’s coefficient of concordance W
Source Four Raters Five Raters
Kendall’s W 0.953 0.929
Chi-sq 259 316
p-value < 0.001 < 0.001

Figure 2.8 also shows the standard deviations (SDs) for each cell, as were presented

by MFP (Figure 2.1). Our pattern of SDs is starkly different than that for MFPs results.

MFP found the least variabilitythe greatest consensusfor cells at and near the core of

NorCal and SoCal. The boundary cells between the cores show the greatest variability.

This would perfectly fit a pattern of statistical range restriction near the extremes of

the scale (i.e., floor and ceiling effects), except that the MFP participants agreed a great

deal that the eastern cells making up the boundary were neither NorCal nor SoCal. Our

data-synthesis SDs show a complex pattern. They clearly do not reveal any statistical

range restriction, perhaps understandable given the cell values are not based on a direct

numerical rating scale. References to NorCal are highly variable for cells making up the

core of that region, while they are very consistent for cells making up the core of SoCal.

Apparently users of the selected social media sources agree more strongly about the

spatial reference of SoCal than they do about NorCal. In general, we find high variance

for cells in the northern half of the state and low variance for cells in the southern half.
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2.4.2 Sharpening the Boundaries

Like the MFP results, we generated boundaries for NorCal and SoCal that are vague

or approximate. In our results, that is because social media references to NorCal and

SoCal terms do change abruptly at or for some precise location on the landscape. For the

MFP results, people do not express the belief that there is a precise transition location

for these regions. In other words, whether considered a cultural phenomenon or a mental

phenomenon (or both), these cognitive regions are conceptually vague [21].

However, aside from the basic-research motivation of understanding the nature of

vague cognitive regions, we can apply our understanding to improving the functionality

of various geographic information technologies. In several contexts, such as geographic

information retrieval, this functionality will be increased by sharpening (also called hard-

ening) the vague boundaries. The data-synthesis approach can be used to do this, even

though we recognize that the cognitive boundary as such remains conceptually vague.

Here we discuss our results from applying DBSCAN clustering and the chi-shape

algorithm to Flickr, Twitter, and Instagram results to “precisify” the vague cognitive

regions by computing crisp boundaries for their core areas.

We do this by varying the threshold of reference density we require to include a cell

as being in one of the two regions (Figure 2.9). For each of the subfigures, graduated

colors (from light to dark) represent the extracted polygons based on minimum density

thresholds of 1%, 2%, and 3% of the total number of data observations respectively.

Naturally, the region hulls shrink as we increase the threshold density. This is due to the

fact that the 3% threshold puts a higher DBSCAN requirement for point clusters to be

formed than the 2% threshold. However, the boundaries formed by the 3% threshold are

also more reliable since they are derived from more observations.

In Figure 2.9 (d), we overlap the results of all three data sources to identify the
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common core regions for NorCal and SoCal. These identified common cores can be

combined in different ways to fit specific applications. For example, a GIS which requires

high precision for its spatial query results can employ the overlapped core region (i.e.,

those in the darkest color). In contrast, an application that needs high recall for its

retrieved result can use a spatial union of the 1% polygons derived from the three sources.

As can be seen in Figure 2.9 and Figure 2.7, there is a substantial overlap between the

regions derived from the three different datasets. This consistency indicates that these

regions are not mere artifacts of a particular dataset, but reflects a broader and shared

understanding.

2.4.3 Thematic Characteristics

For Task III, we modeled topics associated with NorCal and SoCal social media

postings using latent Dirichlet allocation. This topic modeling approach considers the co-

occurrence of words in a document and constructs topics from those words often occurring

together. Upon examination, one can see that these topics are often thematically related

and coalesce around properties such as those related to Nature, Food, or Hiking. Figure

2.10 shows three examples of the total of 60 topics generated via the topic model. Each

topic is shown as a map of California with the color of each hexagon determined by the

probability value of that topic appearing in that cell. The word cloud associated with

each map shows the top terms contributing to that topic.

Figures 2.10a and 2.10b both depict topics related to physical features in the envi-

ronment and the outdoors. Words such as Mountain, Park and Tree contribute highly

to both topics. There is a clear geospatial difference in the topics, however, with Figure

2.10a showing high density in the southern interior, and Figure 2.10b presenting higher

probability values in the center and northern parts of the state. These are examples of
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topics that are clearly influenced by the linguistic characteristics of individuals contribut-

ing data from either NorCal and SoCal. In contrast, Figure 2.10c presents a topic that is

split east and west rather than north and south. This topic lists the highest probabilities

along the coast, consisting of words such as Beach, Ocean and Surf. Both NorCal and

SoCal are equally represented in this map showing that social data contributors mention

words related to this topic regardless of the norther/southern California split.

From a purely visual representation in Figure 2.10, one could assume that there is

no clear topic-wise distinction between the two cognitive regions of SoCal and NorCal.

However, this is not the case. To demonstrate this, we selected ten prototypical SoCal and

ten NorCal hexagons based on the membership intensity values reported in the original

MFP paper. We extracted topic distributions for these hexagons and calculated the

Kullback-Leibler divergence (KLD) [98] for hexagons within NorCal, SoCal and between

both. KLD is a measure of the difference between two probability distributions. Low

values indicate similar distributions while higher values suggest dissimilar distributions.

Figure 2.11 shows these KLD values plotted as a smoothed histogram.

The core hexagons for SoCal are highly similar in terms of their distribution of top-

ics. Core hexagons in NorCal are also quite similar to each other though slightly less

than those for SoCal. This reflects the less cohesive data for NorCal we have discussed

previously. When comparing inter-region hexagons, we find a peak KLD value that is

much larger, indicating substantially greater topic dissimilarity between NorCal and So-

Cal cells than between cells within each region separately. In short, the intra-region

topic similarities are substantially higher than the inter-region similarities. This means

that while no single topic on its own is sufficient to distinguish the two cognitive regions

from social media posts, the 60 topics can jointly distinguish between SoCal and NorCal.

This is an important finding, as it suggests that everyday conversation is “geo-indicative”

[99] to a degree where it can likely be used to discriminate regions and other geographic
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properties and entities [100].

2.5 Broader Implications

This study revisits the work of [60] using a very different data-synthesis-driven ap-

proach to obtaining data, instead of a human-participants survey. We demonstrated that

a data-synthesis-driven approach can be successfully used to reproduce cognitive regions

and membership like those established with a direct study of human research partici-

pants. We have also demonstrated how the used data and methods can be applied to go

beyond previous work by extracting hardened hulls to represent these regions and how to

study their thematic topics via topic modeling. Using the example of the informal cog-

nitive regions of SoCal and NorCal, our work proposes an approach to deriving human

conceptions of places, including regions, from social media data sources. The approach

potentially captures not only spatial patterns but also the semantics of cognitive regions.

Our results suggest it is possible to reproduce the results of a direct human-participants

study by mining existing social media postings from the Web. While we do not argue that

such a data-synthesis driven approach can or should entirely replace human-participants

testing, the data-synthesis approach has the clear advantage that it can be repeated for a

wide set of cognitive regions at flexible spatial scales without running into the limitations

of participants testing, e.g., the limited number of participants, limited attention span,

variable knowledge of local geography, and so forth.

This research raises some further issues about the data-synthesis-driven approach.

First is the difference between the said place which a person tags or mentions in a social-

media entry and the locale where the person is located when posting the entry. The said

place is not necessarily the same as the locale, since people can post any message about

any place no matter where they are. In fact, we assume this might happen fairly often.
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In our data, for instance, the tag SoCal was sometimes mentioned in a small number

(about 2%) of entries posted from the Bay Area, a core part of Northern California;

while about 1% of the tag NorCal mentions were posted from the core part of Southern

California. This is the nature of crowdsourced data. Researchers must pay attention to

this issue when interpreting the experiment results. Different types of location inferences

and insights can be extracted from the social Web [101, 102]. For this reason, we used

two membership measures M1 and M2 to focus on relative differences and proportions

instead of raw counts of place mentions. The results validated our proposed metrics. In

future work, natural language processing techniques (e.g., place name disambiguation,

preposition and contextual analysis) can be employed in analyzing social media entries

to better differentiate the said place and the locale.

There are also some arguments (e.g., sampling bias) with regard to the data-intensive

paradigm in scientific research. The results of this study, however, suggest that user-

generated social media data at least partially do reflect people’s experiences, focus, opin-

ions and interests in places. Thus, these rich datasets can be synthesized as social sensors

to support the study of vague cognitive regions in geography and GIScience.

An advantage of this data-synthesis-driven processing and geocomputation framework

is the flexibility with which one can change the spatial resolution of hexagons or any

other polygonal tessellation used to discretize the landscape. This includes not only finer

resolutions but coarser, more aggregated resolutions. If there were a theoretical argument

to do so, one could even create a tessellation with multiple scales in a single layer. For

example, the cognitive regions of NorCal and SoCal appear to apply much more to

coastal California than the Central Valley, the Sierra Nevada, or the eastern deserts;

thus, one might want to tessellate the state with a higher resolution in the coastal areas.

Besides the potential for resolution of nearly unlimited fineness, we recognize the general

appropriateness of matching the scale of ones analysis to the scale of the phenomenon
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one studies [103]. More generally, we recognize that the analytic possibilities of the data-

intensive approach may create phenomena that are not psychologically plausible and can

thus be misleading. We were able to analytically harden (sharpen) the boundaries of

our cognitive regions, but individual people typically do not have this ability and their

conceptions of informal regions likely do not have such precise boundaries.

The human-participants approach asks individual people to directly express the de-

gree to which they believe a particular place should be considered Northern or Southern

California. This means that data relevant to the concept or feature of interest (NorCal

and SoCal) are generated for all locations within the study framework (California). A

limitation of the data-synthesis-driven approach is that cells lacking sufficient observa-

tions have to be filtered out, which means that comprehensive spatial coverage is lost,

unlike a human-participants survey. These missing-data cells are places with small num-

bers of residents and visitors, including areas within national forests, large water bodies,

or mountain ridges. Alternatively, another way to look at this is that when people make

the NorCal-SoCal distinction (as cognitive regions), they are referring only to western,

coastal California, maybe mostly to just the San Francisco Bay Area versus the Los An-

geles Area. In that case, the human-participants approach might be misleading because

it required people to apply a distinction to every location within the state, even if the

person never thinks of that distinction as being relevant to places like the Sierra Nevada,

the northeastern Modoc Plateau, or the southern deserts. Alternatively, one could al-

low human participants to rate only cells that relate to the regional distinction as they

understand it.

The human-participants approach asks directly for expressions of ones beliefs about

informal regions, including both their spatial properties and their thematic associations.

The data-intensive approach is indirect, collecting communications that include a verbal

reference to NorCal or SoCal but not asking anyone explicitly what they actually think
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about these regions. As a case in point, modeling the topical references in the social

media postings showed us that they can statistically segregate the two regions, but it

told us nothing about the thematic content of themes related to NorCal and SoCal. That

is, it did not tell us what thematic associations come to mind when people use one of the

two region terms rather than the other; a human-participants study could presumably

do this directly. The same can arguably be done with topic modeling in a future study

but may require additional data sources. The data-synthesis approach will often tap into

cultural conventions that may or may not correspond closely to the beliefs of individuals.

Presumably, such reference occur in social media on many occasions when the creator

of the message is not thinking at all about the characteristics of places or the regions of

California. Considering all of these issues though, we find it even more impressive how

much agreement we find between our approach and that of MFP.

Going back to geographic information retrieval as one of the application areas of

research on vague cognitive regions, there is one interesting question that we have not

addressed so far. Although highly problematic for large areal features, the vast majority

of geographic features, be it museums or mountains, is still represented by point coor-

dinates. Google Maps, for instance, includes such point features for both NorCal and

SoCal3. How representative are these locations with respect to the identified regions in

both the original study and our replication? Interestingly, the SoCal point coordinates

from Google Maps are located in the middle of the desert between interstates I-15 and

I-40, more precisely at about (34.96, -116.42). This puts Google’s SoCal marker about

180km to the northeast of the centroid (33.81, -117.68) computed for the 3% common

core region (near Anaheim, CA). Google’s NorCal marker (38.84, -120.9) is placed near

Garden Valley, CA northeast of Sacramento, CA . This is about 160km to the northeast

3The interface will accept both of these terms and map them to ’Northern California’ and ’Southern
California’, respectively.
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of the centroid identified by our work (37.96, -122.21) which is located in the broader

Bay Area. In other words, the map markers for both regions differ substantially from

the result obtained by MFP and our work. They also do not follow the west-east trend,

where membership intensity values to both regions are higher at the coasts.

2.6 Conclusion

In this research, we investigated using a data-intensive approach to determining vague

cognitive regions. We compared them to the corresponding MFP study based on human

participants which validated our proposed approach. Using data sourced from social me-

dia including Flickr, Instagram, Twitter, Travel Blogs, and Wikipedia pages, we derived

region membership scores for cells within the state of California that correlated signifi-

cantly to those in the original study, both in terms of Spearmans as well as Kendalls rank

correlation statistics. Overall, the shapes of NorCal and SoCal were quite similar for

the two empirical approaches, including the non-monotonicity of the two regions and the

heterogeneity of their vague boundaries. Most importantly, our work showed the same

platial effects observed in the original study. Furthermore, our work examined the im-

plications of increasing the spatial resolution of the tessellations on the cognitive regions

that result.

In addition to assessing membership scores within the hexagons, we further explored

the continuous boundaries and the core regions for NorCal and SoCal. A two-step work-

flow based on the DBSCAN clustering method and the chi-shape algorithm was designed

to generate approximate boundaries for the cognitive regions. Experiments were con-

ducted to select optimal parameters for the workflow, and we observe consistency among

the polygon representations that are derived from the different datasets.

We also explored thematic associations for NorCal and SoCal with the help of topic
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modeling. This generated various topics most often associated with different regions of

California on our social media sources. Comparing the topic distributions of prototyp-

ical NorCal and SoCal hexagons shows high similarity within each region and a lower

similarity between the two regions.

In sum, our paper is about the prospects for utilizing multiple social media sources

to apply a data-synthesis approach to extracting and characterizing informal geographic

concepts and features, such as the cognitive regions of NorCal and SoCal. Our study

sheds light on differences in the methodology of traditional human-participants approach

and the increasingly popular data-synthesis approach, suggests advantages and limita-

tions of both approaches, and points to future avenues for research and system design in

GIScience.
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Figure 2.7: The spatial distribution of membership measures derived from different
data sources at three different resolutions.
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Figure 2.8: The results of identifying SoCal and NorCal cognitive regions using the
data-synthesis-driven ranking percentiles.
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Figure 2.9: Core regions of NorCal and SoCal extracted using different datasets.
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Figure 2.10: Three topics mapped to California along with their related word clouds.
The darker the chromatic hue, the more prominent are the topics of terms in the
postings from a particular cell.

Figure 2.11: Kullback-Leibler divergence showing similarity of topics within SoCal
hexagons and similarity of topics within NorCal hexagons, and dissimilarity of topics
between both.
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Chapter 3

Extracting Urban Functional

Regions from Points of Interest and

Human Activities on Location-based

Social Networks

Chapter 3 presents a statistical framework to discover semantically meaningful topics of

place types and further derive functional regions based on the co-occurrence patterns

of place types and spatial clustering techniques in relation to urban planning. The

framework applies latent Dirichlet allocation (LDA) topic modeling and incorporates user

check-in activities on location-based social networks. A case study has been conducted

using a large corpus of about 100,000 Foursquare venues and user check-in behavior in

the ten most populated urban areas of the United States. Compared to remote sensing

images which mainly uncover the physical landscape of urban environments, the proposed

popularity-based POI topic modeling approach can be seen as a complementary social

sensing view on urban space based on human activities.
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Abstract: Data about points of interest (POI) have been widely used in studying

urban land use types and for sensing human behaviors. However, it is difficult to quan-

tify the right mix or the spatial relations among different POI types indicative of specific

urban functions. In this research, we develop a statistical framework to help discover se-

mantically meaningful topics and functional regions based on the co-occurrence patterns

of POI types. The framework applies the latent Dirichlet allocation (LDA) topic model-

ing technique and incorporates user check-in activities on location-based social networks.

Using a large corpus of about 100,000 Foursquare venues and user check-in behaviors in

the ten most populated urban areas of the United States, we demonstrate the effective-

ness of our proposed methodology by identifying distinctive types of latent topics and

further, by extracting urban functional regions using K-means clustering and Delaunay

triangulation spatial constraints clustering. We show that a region can support multiple

functions but with different probabilities, while the same type of functional region can

span multiple geographically non-adjacent locations. Since each region can be modeled as

a vector consisting of multinomial topic distributions, similar regions with regard to their

thematic topic signatures can be identified. Compared to remote sensing images which

mainly uncover the physical landscape of urban environments, our popularity-based POI
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topic modeling approach can be seen as a complementary social sensing view on urban

space based on human activities.

3.1 Introduction

Cities support a variety of functions that relate to land use types, including resi-

dential, commercial, industrial, transportation, and business regions and infrastructure,

while affording different types of human activities, such as living, working, commuting,

shopping, eating, and recreation. Rapid urbanization and new construction have caused

land use changes and urban expansions in many areas. Remote sensing images together

with spatial metrics have been widely used to classify urban land use and monitor change

at different spatial scales [104, 105, 106]. However, human activities usually take place

in different types of points of interest (POIs). Remote sensing techniques perform well in

extracting physical characteristics, such as land surface reflectivity and texture of urban

space but are not good in identifying functional interaction patterns or in helping under-

stand socioeconomic environments [107, 45]. Compared to other datasets and methods

in remote sensing and field mapping, using POI data, social media, and their associated

methods can lead to a better understanding of individual-level and group-level utiliza-

tion of urban space at a fine-grained spatial and temporal resolution. Rich social sensing

techniques can help bridge the semantic gap between land use classification and urban

functional regions. The function of a place is determined by what type of activities can

occur there [34, 33]. The same types of POIs can be located in different land use types

and may also support different functions. For example, restaurants are found in resi-

dential areas and in commercial areas, as well as in industrial areas. The main function

of universities is education, but they also support sports activities, music shows, and

so on. Previous studies have demonstrated that different POI types have distinctive
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semantic signatures [34] (i.e., spatial, temporal, and thematic distributions) based on

crowd-sourced location-based social media data analysis, in analogy to spectral bands

in remote sensing [108]. There is a growing trend of using location-awareness sensing

data (e.g., trajectories from mobile phones), POI data, and social media feeds to study

the spatial and social structure of urban environments [107, 109, 110, 45, 108, 111, 112].

However, few studies have investigated the latent relationships among different types

of POIs and how they spatially interact with each other to support urban functions,

such as education, business, and shopping. In this research, we aim to develop a data-

driven framework to discover urban functional regions from POIs and associated human

activities on location-based social networks (LBSN).

We argue that geographic knowledge and measures of spatial distribution over POI

types (categories) can be employed to derive latent classification features for these said

types, which will then enable the detection and the abstraction of higher-level functional

regions (i.e., semantically coherent areas of interest) such as shopping areas, business

districts, educational areas, and tourist zones. To test this claim, we will study the co-

occurrence patterns of different POI categories as well as the associated human activities

(i.e., mobility, check-ins, reviews, and comments), and thus employ analytical measures

to quantify their differences and conduct classifications of functional regions.

The contributions of this research are as follows:

• We propose a novel framework to study urban functional regions by employing data

about Points Of Interest and human activities derived from social media.

• We incorporate location-based social network user check-ins into a probabilistic

topic modeling technique to discover functional co-occurrence patterns of different

POI types.

• The proposed method can support functional inferences for specific type of re-
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gions and thus serve as a new heuristic to enable the search for similar urban

places/regions, based on their POI-type distributions and corresponding human

activities, and using natural language processing and machine learning techniques.

The remainder of this article is structured as follows. Section 3.2 introduces back-

ground material and related work. Next, Section 3.3, discusses the datasets used and the

selection of study areas. Section 3.4 introduces the methods used in our framework and

specifically LDA. In Section 3.5, we present the results of topic modeling to character-

ize, cluster, and compare functional regions. Next, we conclude our work and point out

directions of future work in Section 3.6.

3.2 Related Work

With the increasing popularity of travel blogs, volunteered geographic information

(VGI), location-based social networks (LBSN), and so forth, researchers have developed

a variety of place-based studies that employ datasets from these various sources. For

instance, [113] presented a topic modeling methodology to estimate geographic regions

from unstructured, non geo-referenced text on Wikipedia and travel blogs by computing a

density surface of geo-indicative topics over the Earth’s surface. The proposed framework

combined natural language processing techniques, geostatistics methods, and data-driven

bottom-up semantics. In order to evaluate the use of topic modeling techniques on the

extraction of thematic characteristics of places, [114] applied that approach on a set of

travel blog entries to identify the themes that are most closely associated with specific

places around the world. Their proposed method is capable of measuring the degree to

which certain themes are local or global, as well as analyzing thematic changes over time.

POI data play an important role for human activity-based land use, transportation, and

environmental models. [110] utilized the Yahoo online POI data together with publicly
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available aggregated employment data from census at the block group level to derive fine

resolution of disaggregated land use estimates (i.e., employment by category) at the city

block level. For the evaluation, they first used a variety of machine learning algorithms

to match and cluster POI types into a labeled business establishment taxonomy, and

then compared it with ground-truth data from commercial business data vendors. The

results demonstrated that their proposed method got a better goodness of fit with a

lower relative mean squared error for the estimated employment population across all

city blocks than that from the traditional uniform-distribution disaggregation approach.

As for LBSN applications, [115] proposed a method to classify the geographical areas

and LBSN users based on place types and the users’ check-in statistics in Foursquare

venues. The experiments were conducted in the metropolitan cities of London and New

York and identified similar regions and user groups in each city. However, they didn’t

consider the temporal pattern of user activities. Later on, [116] employed both POI type

information and the temporal patterns of taxi pick-ups/drop-offs in segmented map re-

gions, utilized a topic modeling method based on latent Dirichlet allocation and Dirichlet

multinomial regression techniques, and discovered various urban functional regions in the

city of Beijing. The extracted region clusters were annotated as nine different groups:

diplomatic and embassy areas, education and science areas, developed residential areas,

emerging residential areas, developed commercial/entertainment areas, developing com-

mercial/entertainment areas, regions under construction, areas of historic interests, and

nature & parks. However, such rich multiple datasets that complement each other in the

same city and especially high-precision mobility data are usually hard to fully access.

One challenging issue is how to semantically classify and label the regions that are found

given only one data source, and how to find similar places and regions across different

cities. [117] proposed a novel observation-to-generalization place model and employed

natural language processing techniques to derive place attributes. The proposed meth-
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ods can support similar-place-search functions and the case studies were conducted using

over 600,000 place articles on Wikipedia as a proof of concept. Later, [118] presented

a novel method to enrich the place information on linked knowledge graphs using the-

matic signatures that are derived from unstructured text through topic modeling. This

method can also be used to clean miscategorized places on the linked data cloud. In

another study, [119] developed a semantic region growing algorithm based on the density

of POIs on OpenStreetMap to extract places that afford certain type of human activities,

e.g., shopping areas. In their model, four features including the number of banks & ATM,

restaurants, tourist facilities, and subcategories of shops were used to identify the shop-

ping areas/settings. They then compared the similarity of shopping areas/settings based

on the four features in two European capital cities: Vienna and London. By incorporat-

ing human spatio-temporal activity data from social media, [120] extracted the spatial

distribution hotspots of six types of urban functions (i.e., Travel & Transport, Education

Resource, Shop & Service, Nightlife Spot, Outdoor & Recreation, Food & Restaurant)

in the cities of Boston and Chicago. [121] introduced a low-rank-approximation-based

model to detect functional regions based on 15 million social media check-in records in

the city of Shanghai, China. This method discovered latent spatio-temporal human ac-

tivity patterns and linked these with different functional regions. Researchers are also

interested in the regional differences on discovering thematic characteristics of different

POI types. [122] identified the most and least spatially varying place types and compared

their thematic signatures internationally. The ongoing trend in this research direction

lies in data-synthesis-driven approaches to study places and vague cognitive regions as

well as the semantic generalizations of urban settings [119, 123, 124].

In summary, there is a variety of research studying places and place types from hu-

man data traces, including spatio-temporal human mobility patterns that can reveal the

functions of regions. However, only a few studies have simultaneously considered both
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POI information and human activities on location-based social network to derive urban

functional regions. Moreover, to the best of our knowledge, there is no thorough discus-

sion of the robustness of discovered urban and regional functional areas using different

numbers of topics and clusters. There has also been no attempt to develop an urban

function ontology based on the structure of POIs using a bottom-up approach.

3.3 Study Area and Datasets

3.3.1 Study Area

Urban areas – cities for short – are the highly populated places on the planet and

include metropolitan regions, urban districts, towns, and suburbs. In order to explore the

thematic characteristics and semantic clusters of urban areas in connection with urban

functions, the ten most populated U.S. cities based on the 2015 population census: New

York, Los Angeles, Chicago, Houston, Philadelphia, Phoenix, San Antonio, San Diego,

Dallas, and San Jose and their surrounding metropolitan regions were selected as our

study areas. The cartographic boundaries of those ten metropolitan areas are downloaded

from the U.S. Census Bureau’s TIGER geographic database1.

3.3.2 Points of Interest Dataset

People usually go to different POIs for different kinds of activities, e.g., studying,

working, dining, shopping, and relaxing. We assume that the spatial distributions and

interactions of different types of POIs reflect particular urban functions. Location-based

social networks such as Foursquare have created traces of social interactions based on the

physical location of users. In these LBSN systems, users can check-in to a venue (i.e., a

1https://www.census.gov/geo/maps-data/data/cbf/cbf_msa.html
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POI), rate it, and share their comments or tips. As shown in Figure 3.1, we first randomly

generated 200 points as search locations in each urban area and then identified the

surrounding Foursquare venues with their attribute information including name, location

coordinates, place category, number of check−ins, number of checked users, number of

tips,and the rating score in each search locations. Note that because of the Foursquare

developer API limits, we only retrieved at most 50 nearby venues given a random search

point. The POI data were collected in December 2016 and the attribute information

for all venues is a historic snapshot at that time. There is a total of 480 different POI

types in our data. Figure 3.2 shows the empirical cumulative density function (CDF) of

the distance distribution between each Foursquare venue and the corresponding search

location. Steeper curves (with larger slope values) before reaching the relatively steady

state (about 95% cumulative probability) show that more POIs are closer to the search

locations given the same number of Foursquare venues. In order to generate most ’nearby’

POIs around each search location, we further spatially filtered out those venues outside

the 95% inverse CDF distance threshold; i.e., we only selected those venues within a

relatively small search distance. The distance thresholds differ among cities as shown in

Table 3.1.

3.4 Methods

3.4.1 Popularity-based Probabilistic Topic Model

Probabilistic topic models have been widely used to discover latent thematic charac-

teristics and their structure when analyzing large sources of textual documents [93, 125,

126]. The latent Dirichlet allocation (LDA) is among the most popular topic modeling

methods. LDA is an unsupervised generative probabilistic model that takes a bag-of-
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Table 3.1: The 95% inverse CDF distance thresholds for all the ten urban areas

City Name
95% Inverse-CDF

Distance Threshold (km)
Chicago 7.389
Dallas 8.994

Houston 8.647
Los Angeles 4.474
New York 7.123

Philadelphia 8.894
Phoenix 7.969

San Antonio 7.475
San Diego 7.837
San Jose 4.822
Average 7.363

words approach (which implies that the order of words in the document does not matter)

to constructing topics. The key idea of LDA is that documents can be represented as

a joint probability distribution over latent topics and each topic is characterized by a

distribution over words [93]. Assume that there are total K number of topics associated

with N words in the document corpus D, and α and η represent the prior parameters

for the Dirichlet document-topic and topic-word distribution respectively. The mathe-

matical relationship between the latent variables and the observed variables is described

below:

p(β1:K , θ1:D, Z1:D,W1:D)

=
K∏
i=1

p(βi)
D∏
i=1

p(θd)(
N∏

n=1

p(Z(d,n)|θd)p(W(d,n)|β1:K , Z(d,n))) (3.1)

As shown in Figure 3.3, the generative process can be described as follows:

I. Let βk denote a probabilistic distribution over the word vocabulary for a given topic

k, and draw βk ∼ Dir(η);
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II. Let θd represent the topic proportions for the dth document, and draw θd ∼ Dir(α);

III. Let Z(d,n) denote the topic assignment for the nth word in document d and W (d, n)

represent the nth word in document d from a fixed vocabulary, and draw the multi-

nomial distributions: Z(d,n) ∼ Multinomial(θd) and W(d,n) ∼ Multinomial(βz(d,n)
).

In order to compute the conditional distribution of the topic structure given the word

observations in documents, the expectation−maximization (EM) algorithm and Gibbs

sampling are most the commonly used methods. After finishing the computation, two

matrices θ and β associated with topic proportions and assignments are generated. More

detailed notations, calculations, and explanations can be found in [93].

In analogy with LDA’s use of textual materials, we take the type (e.g., school, park,

restaurant) of each POI as a word, the search region that contains those POIs as a

document, and an urban function or a land use as a topic that represents thematic char-

acteristics and the semantics of places. By running the LDA topic modeling technique,

we can find the posterior probabilistic distribution of each POI type in a certain type of

region conditioned on the search region’s topic assignments. The LDA model running

on POI types generates summaries of thematic place topics (e.g., beach promenades, art

zones, shopping areas) with a discrete probability distribution over POI types for each

topic, and infers per-search-region probability distributions over topics. For example, one

would assume that a beach promenade topic should contain venues such as beach, seafood

restaurants, and surfing spots ; while a shopping area would more likely contain clothing

stores, cosmetics shops, and shoe stores.

Another important concept in our method is the popularity of a POI as captured by

its LBSN user check-in behaviors. For example, the neighborhood of a football stadium

usually has only one instance of stadium surrounded by dozens of sports bars, restau-

rants, and parking lots. However, a stadium usually attracts thousands of visitors and
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is the dominant feature of its neighborhood. Thus this particular POI type makes said

neighborhood distinct from other neighborhoods (e.g., nightlife zone), which also contain

cocktail bars and restaurants. We need to address such an human activity effect during

the generation of the document-word frequency matrix. More specifically, we will rescale

the POI type occurrences according to their associated POI instance check-in counts.

The rescaling process can be represented as follows:

Freq(d,t) = d
∑
i

Log(V(d,t,i))e (3.2)

where Freq(d,t) represents the rescaled occurrence for a POI type t given a search region

d; and V(d,t,i) is the number of unique users who have contributed their check-ins for a

venue i that belongs to the same POI type t in the same search region d. The ceiling

function d
∑

i Log(V(d,t,i))e gets the least integer greater than or equal to the value of∑
i Log(V(d,t,i)).

We then test whether such an unsupervised popularity-based LDA topic modeling

technique can support the discovery of characteristic semantic regions across different

U.S. cities with a similar structure of POI type mix distribution.

Finding the appropriate number for latent topics is important but difficult given a

dataset using the LDA topic model. Several metrics and methods have been developed

to address this issue. [95] used the Gibbs sampling algorithm to obtain samples from the

posterior distribution over topic assignments Z at different choices of the total K number

of topics, and then calculated a log-likelihood P (W |Z, k). The value of K at which the

log-likelihood gets the maximum and stabilizes after hundreds of iterations will be taken

as the right number of topics for a specific document corpus. With the consideration

of one issue that sometimes words have too many overlaps across those generated latent

topics, [127] proposed a density-based method for adaptive LDA model selection. The key
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idea of this algorithm is to maximize the intra-topic similarity while minimize the inter-

topic similarity. They calculated the average cosine distance between pairwise topics with

their word assignments and then used a heuristic to find the most stable topic structure

given the best K value based on the topic density measure. [128] viewed the LDA topic

model as a matrix factorization mechanism and applied the symmetric Kullback−Leibler

(KL) divergence [98] on the distributions generated from topic-word and document-topic

matrices for finding the right number of topics. The best K value at which the symmetric

KL-divergence is the minimum would derive the most discriminative topics and their

distributions become orthogonal. In several empirical geographic information studies

[118, 108, 124], different K numbers (e.g., 60, 100, 300) of topics have been deployed

to investigate place characteristics. An optimal value of K may vary between different

datasets and has influence on the thematic similarity of POI types [122].

3.4.2 Functional Region Aggregation

After deriving those latent thematic topics by running the proposed popularity-based

LDA model, each region can be represented as a vector of the K-dimensional POI type

topics. Those regions that are semantically similar in the topic space might contribute

to the same urban function and can be aggregated into the same cluster as a functional

region. Two clustering approaches are applied in this work: K-means clustering and the

Delaunay triangulation spatial constraints clustering methods.

K-means clustering only takes the thematic characteristics of multivariate topic dis-

tributions of places into consideration without any spatial constraints [129]. It is an

unsupervised clustering approach in which the number K needs to be predefined. The

silhouette criterion has been widely used for determining an appropriate value of K [130].

The silhouette value s(i) quantifies how well an object i is appropriately clustered. The
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range of silhouette value is between -1 and 1. A high s(i) value (close to 1) indicates that

an object is appropriately clustered and is very dissimilar from other clusters. In the

region clustering process for our POI datasets, we tried different K values ranging from

1 to 30 and identified the maximum average silhouette value across all clusters and chose

that K as the optimal K-means clustering parameter for reporting the corresponding

results.

Delaunay triangulation spatial constraints clustering has been introduced by [131].

This approach consists of three steps: (1) building a connectivity graph to capture the

adjacency relations between points based on Delaunay triangulation spatial constraints;

(2) creating a minimum spanning tree (MST) [132] from the neighboring connectivity

graph with minimizing the sum of the dissimilarities over all the edges of the tree; (3)

partitioning the derived MST into different subtrees as spatial clusters using a hierarchical

division strategy to minimize the intra-cluster square deviations. More implementation

details about this clustering algorithm can be found at [131].

3.5 Analysis and Results

3.5.1 Topic Modeling Results

As proposed in Section 3.4, before running the LDA model, we first incorporated the

number of visitors for each venue as a popularity score in the rescaling process to generate

a new document-word matrix (i.e., a search region−POI type occurrence matrix) across

all search regions in the ten urban areas. Next, we evaluated the performance of different

choices of K as the total number of topics for the LDA topic model using three intro-

duced measures. As shown in Figure 3.4, by choosing the value of K from 5 to 200 and

then running LDA topic models on our POI data, we derived different topic assignment
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results. The measure proposed by [95] aims to maximize the log-likelihood of word-topic

probability in the documents, while other two measures [127, 128] aim to minimize the

proposed criteria. In the ideal case, one would expect those three measures converge at

the same value of K. Unfortunately, in empirical studies, they do not necessarily present

such perfect convergence patterns. In our parameter tuning experiments, the optimal K

value for the “CaoJuan2009” and “Arun2010” measures is in the range of 90−160, while

the “Griffiths2004” metric gets relatively stable when K reaches 130 topics.

Therefore, we set K = 130 as the total number of topics and ran 2000 iterations of the

Gibbs sampling process to derive the posterior probabilistic distribution over topic assign-

ments. In Figure 3.5, we show nine of those interesting topics related to urban functions.

Note that the probability assignments for those POI types are weighted and ranked by

their term frequency−inverse document frequency (i.e., POI type frequency−inverse re-

gion frequency) so that each topic can display more distinctive and meaningful POI types

that are directly proportional to the frequency in documents while inversely proportional

to the region frequency at which a POI type occurs in the whole corpus. For instance,

coffee shop has a very high frequency but also widely exists in most of the regions in

our POI data so it plays a less important role than other categories (e.g., theme park) in

distinguishing the function of a region. Some of those meaningful topics are illustrated

as follows.

Topic 67 is a shopping-plaza topic that consists of various frequent occurring POI

types including shopping mall, accessories store, chocolate shop, and a few restaurants.

It is one of the most prominent topics across all cities. Topic 109 is a beach-related topic

that consists of beach, surf spot, island, beach bar, pier, and so on. In terms of spatial

distribution, one would expect such topics should be located in coastal or lake-side cities

only. Both Topic 21 and Topic 25 contain history museum and art museum, but Topic

21 is more related to college/university regions since it also contains pool, college rec
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center, tourist information center, and several other educational facilities; while Topic

25 is more likely an art museum district since it also consists of art gallery, antique shop,

scenic lookout, and so on. Topics 6, 117, and 119 relate to outdoor sports and leisure

activity places, such as national park, ski lodge, gym, golf course, tennis court, and various

restaurants and studios. Topic 36 and Topic 74 describe mix distribution patterns of

bar, restaurant, government building, residential apartment, and business service, which

may suggest central-city areas.

In order to explore the variability of the above discovered nine topics while changing

the total number of topics, we further investigate whether we can find exactly matching

or most similar topics with different values for K. Two evaluation criteria, namely Cosine

Similarity and Jaccard Index, were applied for this purpose [133]. Assume that each topic

vector is a sequence of probabilistic values between 0 and 1 for all the 480 POI categories.

Considering each pair of one target topic (e.g., Topic 6 when K=130) and another one

comparing topic (e.g., Topic 1 when K=10), the cosine similarity measures the cosine of

the angle between two non-zero vectors defined using an inner product. It is well suited

to evaluate sparse vectors such as document-word matrices and the topic-POI matrices in

our experiments. Unlike the cosine similarity that is frequently used for numeric vectors,

the Jaccard index is a popular similarity measure for binary and categorical data, which

is defined as the cardinality of the intersection divided by the cardinality of the union of

two sets. We use the Jaccard index to quantify the topic structure similarity for their

top-fifteen probabilistically ranked POI types. The larger the value, the more similar two

topics are, where 1 equals a perfect match while 0 indicates no overlapping top-terms

(i.e., POI types) in the comparison of two topics. The comparison batch processing was

conducted from K=10 to K=150 with a step of 10. During each run with a given K, the

maximum similarity values to each of the nine topics were computed. As shown in Figure

3.6, the maximum cosine similarities for Topics 74 and 117 reach almost 1 and remained
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stable when the total number of topics exceeded 30. As for Topics 6, 36, 67, and 109,

we can also identify most semantically similar (≥0.9) topics to them with K value equals

to 150, 120, 150 or 140 respectively. This indicates the stability of identifying those

prominent urban functional topics related to frequently co-occurrent physical facilities

and services, a variety of bars and restaurants, and leisure activity places. However, we

cannot find very similar (≥0.8) topics to Topics 21, 25, and 119 when choosing different

K values, which implies that these topics may be more characteristic of a specific K

value. In a similar manner, we analyze the topic structure similarity using the Jaccard

index. As shown in Figure 3.7, those low similarity values illustrate the large composition

variability existed in the top-fifteen probabilistically ranked POI types for all discovered

topics with different K values.

In short, rather than a traditional top-down approach for describing urban functions

based on familiar compositions of POI types, we demonstrated a bottom-up statistical

topic-learning approach for finding underlying co-occurrence relationships among differ-

ent types of POIs based on data on human activities extracted from location-based social

networks.

3.5.2 Searching for Similar Places

Searching for similar places is an important task in geographic information retrieval

and also valuable in many applications, such as tourism, real estate, and immigration.

People may consider many factors such as job market, affordability, natural environment,

and quality of life. When people consider moving into new cities, they may also want to

know how they will like these new places and whether they can find similar neighborhoods

to the ones they will be leaving. Such places typically contain a mix of types of POIs that

people would like to visit. Fortunately, such information can be retrieved from popular
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location-based social network platforms that have been used as a lens of social sensing

to capture human-place interactions. In the following, we illustrate this idea with two

scenarios:

(1) Search for similar regions given a dominant theme. We selected the city of Denver

as our target city, which was ranked as the best metropolitan area to live in the U.S. ac-

cording to a survey2 from the U.S. News in 2016. It has a variety of local attractions and

support many activities. Here we aim to find regions that are similar to those represented

by Topic 25, which is related to art districts. We collected the Foursquare POIs and user

check-in data for Denver by randomly sampling search locations and then searching for

50 nearby POIs given each sample location. Based on the aforementioned data process-

ing procedures and the LDA topic model by incorporating the popularity score based on

unique Foursquare check-in users, we can infer the probabilistic combination of different

topics for a search region given its POI type co-occurrence pattern. As shown in Figure

3.8, within this search neighborhood, we discovered a high probabilistic topic distribution

for Topic 25, which consists of a variety of prominent POI types such as art museum, art

gallery, history museum, concert hall and American restaurant. Such a place may serve

multiple functions. The second largest probabilistic topic in this search neighborhood is

Topic 121 that contains a large percentage composition of brewery places. By looking

up other geographic background information and Web pages, we realize that local people

actually also identify this region near the “Santa Fe Dr.” as an “Art District” in Den-

ver, which attracts many local residents, artists and tourists3. This example illustrates

the inference capability of our method to identify similar neighborhoods given certain

thematic characteristics.

(2) Search for similar places considering all themes. After running the LDA topic

2http://realestate.usnews.com/places/rankings/best-places-to-live
3http://www.denver.org/about-denver/neighborhood-guides/artdistrict-on-santa-fe
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model, each place can be represented as a multinomial distribution of K-dimensional

POI type topics, denoted as a probability vector [p1,p2,...,pk], where all the probability

values sum to one. Thus we can apply a variety of probabilistic distance or similarity mea-

sures (e.g., Hellinger distance, cosine similarity, and Jensen-Shannon divergence (JSD)

[134] to quantify the pairwise similarity among all search regions in our POI data with

regard to their POI type mix distributions. JSD is a symmetric distance measure derived

from the Kullback-Leibler divergence (KLD) asymmetric distance measure between two

probability distributions P and Q [98].

KLD(P |Q) =
∑
i

P (i)log
P (i)

Q(i)
(3.3)

M =
P +Q

2
(3.4)

JSD(P |Q) = JSD(Q|P ) =
KLD(P |M)

2
+
KLD(Q|M)

2
(3.5)

The JSD is bounded by 0 and 1 if using the base 2 logarithm for the two KLD relative

entropy calculation. And thus we can define a JSD-similarity metric (S(JSD)) as follows:

S(JSD) = 1− JSD(Q|P ) (3.6)

where the base 2 logarithm is used in the KLD and JSD calculations.

Therefore, according to the proposed similarity measure S(JSD), we can analyze the

pairwise similarity among our randomly selected search places that contains those POIs.

Figure 3.9 shows a JSD-similarity matrix for 200 randomly selected places in Los Angeles,

derived from one part of our whole dataset in Section 3.3, and each place is represented as

a vector of 130-dimensional thematic topics. The similarity score in each grid is between
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0 and 1. The higher the value, the more similar the two places are with regard to their

topic distributions. The values in the diagonal are all 1. By visualizing this similarity

matrix, one can easily identify two anomalous red stripes (i.e., the labeled Rth row and

the Cth column) with relatively low similarity values across the grid cells. Interestingly,

as shown in Figure 3.10, further investigation reveals that this place was sampled at a

location inside the Disneyland Resort in the Los Angeles metropolitan area, which is very

different from all other randomly sampled places and the dominant topic (Topic 56 ) has

unusual POI types such as theme park, theme park ride/attraction, and gift shop. The

frequent co-occurrence of those distinctive types of POIs in this region causes the very

low similarity to all other places. Thus, given any place, we can find the most similar or

dissimilar places in another geographic region based on this similarity matrix.

3.5.3 Discovering Functional Regions

Another goal for us is to discover urban functional regions where semantically similar

places group together. As described in Section 3.4, two clustering methods are applied

for aggregating similar places into functional regions. Figure 3.11 shows the K-means

clustering result for 200 randomly sampled places in Los Angeles. The silhouette value

for determining the optimal number of clusters in Los Angeles is 15, and thus we group

those places into fifteen clusters. The circles with the same color on the map belong to the

same cluster within which POI structures are more similar in their topic space of types.

The numeric label on the top of each circle displays the top ranked topic that has the

largest probability over the 130-dimensional thematic topic vector in this location. Note

that purely K-means clustering doesn’t consider any spatial constraints, and thus distant

places sharing similar functions or thematic characteristics can also be grouped into the

same cluster. For example, several places are dominated by food-related Topic 30, which
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contains frequent distributions of various restaurants such as Korean restaurant, Mon-

golian restaurant, Portuguese restaurant, and Polish restaurant are grouped into Cluster

8, although those places are spatially separated. However, if we take spatial constraints

into considerations, only places that are semantically similar in the topic space and also

located near each other can be aggregated into the same cluster. Figure 3.12 shows the

Delaunay-triangulation-spatial-constraints clustering result for those 200 sampled places

in Los Angeles. Note that we keep the same color scheme for the visualization of two

clustering results, but those clusters in the same color from two maps are not identical.

In the West Coast area, we can see that several places are dominated by the beach Topic

109 and related leisure activity categories are spatially clustered together into Cluster

7. Although Cluster 7 and Cluster 3 are spatially close and share beach characteristic,

Cluster 3 tends to have another dominant POI type (shopping plaza) in this region,

which distinguishes it from Cluster 7 and Cluster 10.

By analyzing the spatial distribution of similar places and clusters, researchers can

have a better understanding of how certain types of POIs co-locate in order to serve dif-

ferent urban functions from the bottom-up perspective. In addition, urban planners or

managers are able to further investigate the needs for complementary physical facilities

and services related to the thematic characteristics derived from the human activities

on the location-based social networks. This keeps in line with the human-centered and

community-oriented perspectives in traditional top-down urban planning and design.

Furthermore, we create the bounded functional regions as convex polygons derived from

those points in the same cluster (Figure 3.12). This can help geographic information

service providers develop topic-related POI search services within certain functional re-

gions. Because the POI type assignments for all topics are semantically interpretable, we

can also select multiple dimensions of topics in geographic information queries such as

the beach + shopping plaza topics. Cluster 3 (in Figure 3.12) would be a good candidate
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since it has a mix of the dominant beach topic and the shopping topic.

In addition, in order to test the robustness of discovered urban functional areas with

different probabilistic topics, we perform a series of clustering result comparisons by

choosing different numbers of topics ranging from 10 to 150. We use their correspond-

ing probabilistic POI type compositions as clustering features and run both K-means

clustering and the Delaunay-triangulation-spatial-constraints clustering. Two popular

metrics for comparing clustering results are applied in our tests: the Rand index [135]

and normalized mutual information (NMI) [136]. The Rand index measures the per-

centage of decision agreements between two clustering results X and Y. It contains two

types of decision agreements: (1) the number of pairs of search locations within the same

clustering region in X that are also in the same clustering region in Y; (2) the number of

pairs of search locations that are in different clustering regions in X and also in different

clustering regions in Y. The NMI quantifies the mutual dependence/similarity between

two clustering results using information theory. The detailed formula descriptions can be

found in the original article [136]. For both the Rand index and NMI, their value range

is between 0 and 1 and larger values indicate higher similarity between two clustering

results. Figure 3.13 shows the K-means clustering comparisons using the Rand index

and the NMI metric between the target scenario (130 topics and 15 clusters) and other

scenarios with different number of topics but with the same total number of clusters. Fig-

ure 3.14 shows the comparison results for the Delaunay-triangulation-spatial-constraints

clustering in a similar manner. We find that the Rand index keeps a high value around

0.85 for both clustering methods, which indicates a large percentage of agreements on the

clustering membership of those search locations and derived functional areas. But the

NMI values show a fluttering pattern that indicates the existence of cluster membership

variability. Furthermore, as for both evaluation metrics, the Delaunay-triangulation-

spatial-constraints clustering has a higher similarity value in most comparison scenarios
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and seems to be more stable than the K-means clustering results. It may imply that the

spatial constraints play a role in deriving the functional regions.

3.6 Conclusion

In this work, we develop a statistical framework that applies the LDA topic modeling

technique and incorporates user check-ins on LBSN in order to help discover semantically

meaningful topics and functional regions based on co-occurrence patterns of POI types.

The “functions” derived from probabilistic topic modeling techniques can reveal the latent

structure of POI mixtures and the semantics of places. Based on a large corpus of about

100,000 Foursquare venues and check-in behavior in the ten most populated urban areas

in the U.S., we demonstrate the effectiveness of proposed methodology by identifying

distinctive types of latent topics and further, by extracting urban functional regions using

the K-means clustering and the Delaunay triangulation spatial constraints clustering

methods. A region can have multiple functions but with different probabilities, while the

same type of functional region can span multiple geographically non-adjacent locations.

Compared with the remote sensing images that mainly uncover the physical landscape of

urban environments, results derived from the popularity-based POI topic model can be

seen as a complementary social sensing view of urban space based on human activities

and the place settings of urban functions. However, there may exist gaps between the

real-world business establishments and the online available POI information. Data-fusion

and cross-validation relying on multiple sources may help reduce such gaps.

Although we have successfully identified several types of semantically meaningful ur-

ban functional topics, LDA topic modeling is an unsupervised approach that has certain

limitation with respect to discovering plausible urban functions. In the future, we plan

to investigate additional semantic signatures such as those incorporating the spatial pat-
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terns of POI distributions and using supervised-versions of probabilistic topic models to

compare the performance of two families of topic models (unsupervised or supervised)

in discovering urban functional regions. Last but not least, we also aim at developing a

functional region ontology by combing the data-driven approach as outlined in this work

with the top-down knowledge engineering approach based on our understanding of urban

functional regions from human geography and urban planning.
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Figure 3.1: The spatial distributions of sampling locations and the collected
Foursquare venues (POIs) in ten urban areas.
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Figure 3.2: The cumulative density function of the distance distribution between each
Foursquare venue and the corresponding search location.

Figure 3.3: The graphical representation for latent Dirichlet allocation. The topic-re-
lated random variables in the generative process are the unshaded nodes while the
observed words in documents are represented as a shaded node. The rectangles are
”plate” notation that denotes replication.
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Figure 3.4: Find an appropriate K value for the total number of topics using three metrics.
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gas station 0.309651 pool 0.122166 museum 0.065636

italian restaurant 0.028574 history museum 0.047285 art museum 0.047585

flower shop 0.013235 historic site 0.043474 art gallery 0.046691

national park 0.002077 college basketball court 0.015107 american restaurant 0.038677

ski lodge 0.000968 concert hall 0.012485 record shop 0.025063

jewish restaurant 0.000899 art museum 0.012412 antique shop 0.024183

auditorium 0.000847 college rec center 0.010488 building 0.002540

southern food 0.000226 park 0.007814 cycle studio 0.001103

ice cream shop 0.000123 sculpture garden 0.007216 health food store 0.000462

farmers market 0.000109 outdoor sculpture 0.005112 history museum 0.000430

club house 0.000105 college soccer field 0.004028 soup place 0.000350

bbq joint 0.000100 college cafeteria 0.003933 concert hall 0.000281

pizza place 0.000100 tourist information center 0.003731 scenic lookout 0.000264

winery 0.000072 molecular gastronomy 0.003120 animal shelter 0.000179

grocery store 0.000059 stables 0.002947 burger joint 0.000179

yoga studio 0.105001 shopping mall 0.207709 bar 0.511221

science museum 0.065819 accessories store 0.056738 board shop 0.000046

boutique 0.029987 chocolate shop 0.013896 asian restaurant 0.000046

gay bar 0.015371 shoe store 0.000288 brewery 0.000036

sculpture garden 0.012688 breakfast spot 0.000282 ice cream shop 0.000030

government building 0.008197 gaming cafe 0.000196 parking 0.000025

israeli restaurant 0.004401 optical shop 0.000180 buffet 0.000025

apartment / condo 0.003005 post office 0.000114 business service 0.000019

pakistani restaurant 0.002829 bistro 0.000105 apartment / condo 0.000016

street food gathering 0.001212 dumpling restaurant 0.000096 fried chicken joint 0.000012

track stadium 0.000872 korean restaurant 0.000090 resort 0.000007

college baseball diamond 0.000602 german restaurant 0.000080 gourmet shop 0.000007

mexican restaurant 0.000542 herbs & spices store 0.000079 lighthouse 0.000006

gym / fitness center 0.000526 airport terminal 0.000078 indian restaurant 0.000006

cheese shop 0.000481 outlet store 0.000076 train 0.000006

beach 0.285864 italian restaurant 0.082055 french restaurant 0.090092

surf spot 0.028952 fast food restaurant 0.000131 cocktail bar 0.072534

italian restaurant 0.015458 gym 0.000064 lounge 0.035774

island 0.005920 golf course 0.000056 tennis court 0.005389

beach bar 0.004078 sushi restaurant 0.000044 whisky bar 0.003636

board shop 0.003793 salon / barbershop 0.000043 american restaurant 0.000697

bridge 0.001484 boutique 0.000034 dry cleaner 0.000168

indie theater 0.001235 café 0.000030 pizza place 0.000118

pier 0.001187 szechuan restaurant 0.000030 café 0.000117

outdoor sculpture 0.001121 japanese restaurant 0.000030 art museum 0.000110

sri lankan restaurant 0.001040 paella restaurant 0.000027 bakery 0.000106

bistro 0.000891 men's store 0.000023 jazz club 0.000082

nature preserve 0.000851 caribbean restaurant 0.000017 chinese restaurant 0.000074

arepa restaurant 0.000751 deli / bodega 0.000016 neighborhood 0.000068

neighborhood 0.000726 massage studio 0.000014 cycle studio 0.000040

Topic 109

Category                            Prob.

Topic 117

Category                            Prob.

Topic 119

Category                            Prob.

Topic 36

Category                            Prob.

Topic 67

Category                            Prob.

Topic 74

Category                            Prob.

Topic 6

Category                            Prob.

Topic 25

Category                            Prob.

Topic 21

Category                            Prob.

Figure 3.5: Nine interesting topics with their top-15 ranked POI types related to
urban functions.
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Figure 3.6: Maximum cosine similarity between the selected nine topics and the re-
sulting topic models by choosing different total number of topics.

Figure 3.7: Maximum Jaccard similarity between the top-15 POI types of the selected
nine topics and that from the resulting topic models by choosing different total number
of topics.
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Figure 3.8: The topic probability distribution and the spatial distribution of
Foursquare POIs around the Denver art district and museums.
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Figure 3.9: The JSD-similarity matrix for 200 randomly selected places in Los Angeles,
where each place consists of 130 dimensional thematic topics.
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Figure 3.10: The topic probability distribution and the spatial distribution of
Foursquare POIs in the Los Angeles Disneyland Resort.
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Figure 3.11: The K-means clustering result for 200 sampled places in Los Angeles.

Figure 3.12: The Delaunay triangulation spatial constraints clustering and convex
polygon generation result for 200 sampled places in Los Angeles.
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Figure 3.13: K-means clustering similarity evaluation using the NMI and Rand metrics
with different number of topics.

Figure 3.14: Delaunay triangulation spatial constraints clustering similarity evaluation
using the NMI and Rand metrics with different number of topics.
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Chapter 4

Semantic Generalization of Regions

Chapter 4 presents a semantic generalization framework for converting point-based rep-

resentation of place into region-based representations witch rich semantics. This research

develops a new methodology that can take both spatial distributions of venues and the

place-type hierarchical relationships into consideration to derive spatially and seman-

tically coherent high-level generalized regions in order to address the regional/cultural

variability by broadening the thematic topics that form the functional regions. While this

research focuses on the theoretical contribution, a case study of extracting the semanti-

cally generalized regions that relate to the Beach, Shopping, and Asian Food topics in Los

Angeles has been conducted using the proposed semantic generalization methodology.
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Abstract: Map generalization is the process whereby information is selected and

represented on a map for adapting to a specific map scale with not necessarily preserving

all intricate cartographic details. Most of existing generalization methods mainly rely

on geometry-based operations while the semantics of places and regions may not be

well preserved. In this study, we introduce a novel semantic generalization framework

operated on points of interest data to generate semantically coherent regions that bridge

the gap between the abstract geometries and the human conceptualization of places. The

proposed generalization methodology takes both spatial distributions of venues and place-

type hierarchical relationships into consideration to derive spatially and semantically

coherent high-level generalized regions. While this research focuses on the theoretical

contribution, a case study of extracting the semantic regions that relate to the Beach,

Shopping, and Asian Food topics in Los Angeles has been conducted with a spatial

sampling technique using large-scale Foursquare venue data. The results demonstrate

the effectiveness of our proposed semantic generalization framework for converting point-

based representation of places into region-based representations with coherent semantics

in order to address the regional/cultural variability by broadening the thematic topics

that form the functional regions.

4.1 Introduction

Map generalization, or cartographic generalization, is the process whereby informa-

tion is selected and represented on a map in a way that adapts to the scale of the display

medium of the map, not necessarily preserving all intricate geographical or other carto-

graphic details. It bridges the gap between the scientific and artistic perspective of the

cartography [137].

As described in [138],“map makers are human”. Every map is a reflection of both
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objective realities and subjective elements. It emphasizes the importance of human mind

by stating that the map is drawn by human hands but controlled by operations in a human

mind. A series of versions of the textbook led by Arthur H. Robinson [139] summarized

the cartographic generalization process as having three significant components: (1) to

select the objects and features to be shown on the map; (2) to simplify their forms; (3)

to evaluate the relative significance of the items to make sure that the appearance of the

important items are more prominent. The principle of selection was proposed in [140],

which is expressed as an equation relating the number of occurrences of a particular

feature at the source map scale and at derived map scale. Later, it has been further

developed into the formal structure of generalization and become a standard reference:

simplification, classification, symbolization, induction. Robinson also speculated on the

significance of subjectivity towards the generalization process and distinguished two types

of cartographic generalization: one is the intellectual generalization which focuses on the

selection and organizing the map items and features that need to be portrayed; and the

other is the visual generalization which addresses the symbolization and visualization

effectiveness.

With the invention of computer-assisted digital environment, the digital map gener-

alization continuously attracts cartographers’ attention. The computer-assisted general-

ization and the spatial modeling process can be simulated by strategies based on human

understanding and not by a mere sequence of operational processing steps. Thus, a con-

ceptual framework for automated map generalization has been proposed by [141], which

consists of five steps: (1) structure recognition; (2) process recognition, (3) process mod-

eling, (4) process execution, and (5) medium display. With the fast development of the

geographic information systems, the map display of both vector and raster spatial data

needs more holistic investigation regarding the complex generalization conditions, mea-

sures, controls and the needs. [142] gave a comprehensive research on a logic framework
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of the digital map generalization processing which consists of three main components:

(1) the intrinsic objectives of why to generalize, (2) the assessment of situation which

indicates when to generalize, and (3) an understanding of how to generalize using spatial

and attribute transformation. The goal of the generalization is to reduce the data volume

of storing while keeping the key features. However, the map generalization also needs

to address the importance of geography which indicates preserving the recognizability

of geographical features and their positional accuracy. [143] introduced the conceptual

basis for geographic line generalization (e.g., contours, streams, shorelines, roads, rail-

ways) and stated that “Geographical generalization must incorporate information about

the geometric structure of geographic phenomena.”

The past decades of research on digital map generalization mainly rely on the geo-

metric properties of spatial data but not considering the platial effects. A semantic

generalization of space-based maps into place-based maps may bridge the gap between

the abstract geometries and human cognition, and help a better understanding of the

interaction between human concepts and places.

In the following, we will present a novel methodology for the semantic region gener-

alization by integrating spatial sampling, topic modeling, and platial buffer techniques.

The remainder of this chapter is structured as follows. Section 4.2 reviews the related

work. Next, Section 4.3 introduces the proposed semantic generalization framework.

In Section 4.4, we present a case study in the urban area of Los Angeles. Finally, we

conclude our work and point out directions of future work in Section 4.5.

4.2 Related Work

Due to the proliferation of location-based social network data, researchers started con-

sidering the integration of spatial patterns, temporal rhythms, and thematic attributes of
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POIs to derive more semantically meaningful regions or zones. In the Livehoods Project,

[144] introduced a clustering-based research methodology for studying the structure and

composition of a city and deriving the neighborhood boundaries based on large-scale

Foursquare POI data. [113] presented a topic modeling methodology to estimate ge-

ographic regions from unstructured, non geo-referenced text on Wikipedia and travel

blogs by computing a density surface of geo-indicative topics over the Earth’s surface.

The proposed framework combined natural language processing techniques, geostatistics

methods, and data-driven bottom-up semantics. [109] proposed a density-based clus-

tering framework for extracting and understanding urban AOI from Flickr geotagged

photos and then constructing concave-hull bounding polygons from point clusters. [145]

proposed a geo-clustering approach for the detection of area-of-interest (AOI) and their

underlying semantics. Based on the Flickr photo tagging data in Greece, they divided the

study region into grid cells and merging adjacent similar tagging cells. After extracting

those regions, they applied the textual analysis to rank the geo-cluster tags and selected

top-ranking ones as representational tags. The results were evaluated based on both

quantitative and qualitative metrics from human subject survey.

The harvesting of rich place-based data and associated human activities from so-

cial media or VGI is a novel research exploration in the map generalization field. [119]

developed a semantic region growing algorithm based on the density of POIs on Open-

StreetMap to extract places that afford certain type of human activities, e.g., shopping

areas. In their model, four features including the number of banks & ATM, restau-

rants, tourist facilities, and subcategories of shops were used to identify the shopping

areas/settings. The growth of regions relies on spatial adjacency and place type similar-

ity.
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Figure 4.1: The workflow of semantic generalization processing.

4.3 Methodology

In this research, we aim to develop a new methodology that can take both spatial

distributions of POIs and their hierarchical relationships into consideration to derive

spatially and semantically coherent high-level generalized regions.

To this end, we propose a novel semantic generalization processing framework that

can produce semantically coherent high-level generalized regions and their polygonal

representations on maps from points of interest (POI) data. The workflow consists of the

following six steps (in Figure 4.1):

(1) POI Data Collection: Most of popular location-based service providers and

mapping companies (such as Yelp, Foursquare, and Google Maps) provide their applica-

tion programming interfaces (API) for allowing programmers to access millions of POI

data but limited to their intrinsic data coverage and API request limits. For a given POI

(a venue), we could extract its placename, address, coordinates, categories/types, users’

visit statistics, reviews, ratings, and tips, etc. Note that a POI could have one or multiple
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place types. For example, a venue in Santa Barbara named as The Neighborhood Bar

& Grill has three user-assigned place types on Foursquare: Bar, Arcade, and General

Entertainment (Figure 4.2). Users think that it provides not only drinks but also pool

tables and ping-pong tables for entertainment activities. Human activities could happen

at one type or multiple types of POIs. Such crowdsouced POI data reflect what kind of

places that people visit but only those available with the digital format of POI databases.

In the sampling process, generally speaking, there are two approaches for collect-

ing POI data. The first approach divides the study area into regular grid cells with

the same size (e.g., 100-meter side length) and utilizes the centroid of each cell as the

search location for requesting the nearby available POI from data providers. The other

approach randomly generates a large number of points with coordinate information spa-

tially bounded by the study area and then uses them as search locations for nearby POI

queries. Note that because of the POI data provider API access limits, we can only

retrieve certain number (e.g., 50 in Foursquare) of nearby venues given a random search

point. Thus, we need to generate large number of random search points to fully cover the

study area. The retrieved raw data can be further uniquely filtered and selected based

on the POI unique identifier and the spatial boundaries of urban areas. A unique set of

POI data with attribute information is generated after the preprocessing for the study

area.

(2) Topic Modeling: As introduced in Chapter 3, in analogy to topic modeling of

textual documents in natural language processing, we take the place type (e.g., restau-

rant, pub, park) of each POI as a word, a region that contains those POIs as a document,

and an urban function or a land use as a topic that represents thematic characteristics

and the semantics of place. By running the LDA topic modeling technique, we can find

the posterior probabilistic distribution of each POI type in a given region conditioned on

the search region’s topic assignments. The LDA model running on POI types generates
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Figure 4.2: The screenshot of a POI named as The Neighborhood Bar & Grill on Foursquare.

summaries of thematic place topics (e.g., beach promenades, art zones, shopping areas)

with a discrete probability distribution over POI types for each topic, and infers per-

region multi-probability distributions over topics. For example, one would assume that

a beach promenade topic should contain venues such as beach, seafood restaurants, and

surfing spots ; while a shopping area would more likely contain clothing stores, cosmetics

shops, and shoe stores.

Another important concept in our method is the popularity of a POI as captured by

its LBSN user check-in behaviors. For example, the neighborhood of a football stadium

usually has only one instance of stadium surrounded by dozens of sports bars, restau-

rants, and parking lots. However, a stadium usually attracts thousands of visitors and

is the dominant feature of its neighborhood. Thus this particular POI type makes said

neighborhood distinct from other neighborhoods (e.g., nightlife zone), which also contain

cocktail bars and restaurants. We need to address such a human activity effect during the
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generation of the document-word frequency matrix. More specifically, we will rescale the

POI type occurrences according to their associated POI instance check-in counts. The

rescaling process can be represented as follows:

Freq(d,t) = d
∑
i

Log(V(d,t,i))e (4.1)

where Freq(d,t) represents the rescaled occurrence for a POI type t given a search region

d; and V(d,t,i) is the number of unique users who have contributed their check-ins for a

venue i that belongs to the same POI type t in the same search region d. The ceiling

function d
∑

i Log(V(d,t,i))e gets the least integer greater than or equal to the value of∑
i Log(V(d,t,i)).

Furthermore, one advantage of using topic modeling techniques is that researchers

can define their own vocabulary for model training such that derived topics only reveal

a pre-defined vocabulary (i.e., place types in our case).

(3) Identify Functional Topics and Clustering: After running the LDA topic

modeling on place documents that contain a variety of POI type information, we can

identify those semantically meaningful topics over a set of different POI types. Note

that the probability assignments for those POI types are weighted and ranked by their

term frequency−inverse document frequency (i.e., POI type frequency−inverse region

frequency) so that each topic can display more distinctive and meaningful POI types

that are directly proportional to the frequency in documents while inversely proportional

to the region frequency at which a POI type occurs in the whole corpus. For instance,

coffee shop has a very high frequency but also widely exists in most of the regions in

our POI data so it plays a less important role than other categories (e.g., theme park) in

distinguishing the function of a region.

After deriving those latent thematic topics by running the proposed popularity-based
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LDA model, each region document can be represented as a vector of multi-dimensional

POI type topics. Those regions that are semantically similar in the topic space might

contribute to the same urban function and can be aggregated into the same cluster

as a functional region. Their mean topic probabilistic distributions can be taken as

the representative vector (P topic1, P topic2, ..., P topicK) of sampled topics for a theme (e.g.,

shopping plaza), which will also be used in the semantic generalization process.

(4) Search for Semantically Generalized Regions: Searching for similar places

is an important task in geographic information retrieval and also valuable in many ap-

plications, such as in tourist map exploration. After running the LDA topic model, each

place can be represented as a multinomial distribution of K-dimensional POI type top-

ics, denoted as a probability vector [p1,p2,...,pk], where all the probability values sum

to one. Thus we can apply a variety of probabilistic distance or similarity measures

(e.g., Hellinger distance, cosine similarity, and Jensen-Shannon divergence (JSD) [134]

to quantify the pairwise similarity among all search regions in our POI data with regard

to their POI type mix distributions.

One challenge is finding the semantically generalized regions with similar topics. For

example, because of the natural weather conditions, one can find a winery bars & art

gallery neighborhood in California such as the Funk Zone1 in the city of Santa Barbara

but may not find exactly the same type of neighborhood in the city of Columbus, Ohio.

However, if replacing ’winery’ by ’brewery’, we can find a very similar neighborhood: the

Franklinton that also consists of a dozen of brewery venues, bars, and artist places. One

common characteristic of the two regions is that both have a variety of drinking spots for

human social interactions and make people relaxed and immersed in such an art district

with inspiration. These place types, including Wine Bar, Brewery, Cocktail Bar etc., all

1https://funkzone.net/funk-zone-directory/.
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Table 4.1: The ten top-level venue categories in Foursquare and the number of subcategories
Type Subcategories Type Subcategories

Arts & Entertainment 64 Outdoors 104
College & University 39 Professional & Other Places 105

Event 11 Residence 6
Food 341 Shop & Service 170

Nightlife Spot 25 Travel & Transport 54

belong to the generalized type: Nightlife Spot in the Foursquare category schema2.

The hierarchical structure exists in all the POI database schemata, which allows us to

build the semantic relationships between place types such as the parent-child relation and

the sibling relation in a hierarchical tree of place types. In Foursquare, there are over 900

POI types and can be generalized into ten top-level (more abstract) categories accessed

in January 2017 as shown in Table 4.1. The Food type has the most subcategories (341).

Its hierarchical diagram is visualized in Figure 4.3. We find that the tree structure of

place types is also heterogeneously organized in which different subtrees have varying

levels (depths) of children nodes. For example, the Latin American Restaurant has four

levels of subcategories while the Asian Restaurant has three levels of subcategories.

In this work, we propose a semantic generalization approach based on the place

type hierarchy and topic modeling techniques. In [146], a novel place-based operator:

platial buffer was introduced. It is based on the topological distance (connectivity or

hierarchy) and semantic relations between places. Rada et al. (1989) introduced a

conceptual distance between two entities by counting the number of links in the shortest

path on the semantic net [147]. Given such a distance, if someone is interested in higher-

level interlinked place types, we can derive this information based on the platial buffer

operation for identifying n-degree connected place types in a place graph. The n-degree

represents the number of links that connect the two target entities using the shortest

2https://developer.foursquare.com/categorytree.
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path on a semantic graph. Here, we define a different version of the n-degree buffering

based on the POI type hierarchy. The degree n is the steps for a target node moving from

its current level to the higher n level in a tree [148]. As shown in Figure 4.4, for a set of

nodes [A, B, C, D, E, F, G] in four hierarchical levels (0,1,2,3), 0 represents the root level;

the smaller the numeric value is, the higher the hierarchy level is for all nodes on this

level. The root-node A represents the most abstract place type while node B and node

C are subcategories of A, so on and so forth. The path for node D and node E to reach

B is just 1-step upper move. Therefore, if we apply the first-degree generalization buffer

on node D or node E, we should get the place type of node B since they are directly

connected parent-child nodes. The generalization process ’buffer’ is always towards the

more abstract place type. Accordingly, we should reach the root-node A by applying the

second-degree generalization buffer on node D or node E from level 2 to level 0.

The scale is an important concept cartographic generalization. In analogy to it,

during the training phase for topic modeling, we can pre-define the level of detail on the

POI type hierarchy and buffer those lower-level place types to the high-level types that

are within the required generalized levels. Formally, we can represent this processing as

follows:


B v A,

D v B,

D(i),

 ` B(i), A(i). (4.2)

It means that if we know that a POI instance i (“Sichuan Spicy Food”) belongs to a

place type D (Chinese Restaurant); place type D is a subcategory of place type B (Asian

Restaurant); and place type B is a subcategory of place type A (Food). We can infer

that the POI instance i also belongs to higher-level place type B in the hierarchy level

L1 and place type A in the hierarchy level L0 (Figure 4.4). After the preprocessing, all
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the POI types are generalized to specific levels in the hierarchical tree and then trained

using LDA topic modeling.

In the phase of searching for generalized regions, we first select a referencing region

topic vector
−→
R : (P topic1, P topic2, ..., P topicK) with its representative topic distributions for

a theme (e.g., shopping plaza). One search challenge is that those semantic regions might

have varying sizes and thus the classic spatial buffer operation with a fixed search distance

might not be appropriate for our purpose. After investigation, we take the Openshaw’s

spatial sampling technique [149] to generates a large number of search circles with random

sizes, and places them (throws them) randomly over the study area. Those POIs that

spatially fall into a search circle will be the candidates. Then their associated place types

will be used as words for the search-region document. Based on the trained LDA topic

model generated in the previous step, the topic distribution
−→
S for a search region can be

derived. Before comparing the topic similarity between the search region topic vector
−→
S

and the referencing region topic vector
−→
R, we also take the area size of the search circle

as an adjustment factor into consideration. The key idea is that we hope to generate the

regions to be as homogeneous as possible in the topic space. Larger regions that usually

contain richer place types should be more restrictive comparisons. Only those large-size

regions that have a higher similarity to the referencing topic vector than that of small-

size regions could stay. Mathematically, we define the similarity function to control the

sampling process:

Similarity(
−→
R,
−→
S ) = 1− JSD(

−→
R,
−→
S )− f(r) (4.3)

KLD(
−→
R|
−→
S ) =

∑
i

−→
R(i)log2

−→
R(i)
−→
S (i)

(4.4)
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−→
M =

−→
R +

−→
S

2
(4.5)

JSD(
−→
R|
−→
S ) = JSD(

−→
S |
−→
R) =

KLD(
−→
R|
−→
M)

2
+
KLD(

−→
S |
−→
M)

2
(4.6)

f(r) = C − e−r, (0 6 C 6 1) (4.7)

The Jensen-Shannon divergence (JSD) is a symmetric distance measure derived from

the Kullback-Leibler divergence (KLD) asymmetric distance measure between two prob-

ability distributions [98].The JSD is bounded by 0 and 1 if using the base 2 logarithm

for the two KLD relative entropy calculation. The original similarity without considering

the area adjustment factor can be defined as (1-JSD). The area adjustment factor f(r)

for a circle can be defined using the radius r and a constant parameter C with a range

of [0,1]. The exponential component e−r makes sure that the derived value can be only

within the range of [0,1]. In applications, the constant parameter C can be tuning using

labeled ground truth data. After the processing, only those search regions that meet the

requirement of similarity threshold δ could keep.

(5) Group and Merge Semantically Interlinked Regions: After running the

search step, a set of regions that meet the topic similarity criteria might spatially overlap,

we can dissolve those regions that are similar to the same topic theme (e.g., beach

promenades, shopping plaza). In addition, we can also merge multiple semantically

interlinked topics into one, such as the ThemePark and Hotel topics as tourist regions.

(6) Map Representation and Visualization: In order to generate the final se-

mantic generalization map, the transparency setting is applied for each map layer and

the geographic background information as a basemap is also added for a context-aware
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geovisualization.

4.4 Case Study

In this section, we present a case study using the proposed semantic generalization

method and apply it on the Foursquare POI data in Los Angeles to generate a place-

based map relevant to the Beach, Shopping, and Asian Food topics. As shown in Figure

4.5, over 85,000 Foursquare POI data in the urban area of Los Angeles were collected

for the testing and the POI Data in the ten most populated urban areas used in the

previous Chapter 3 will be utilized as our training data for topic modeling. Each POI

has an attribute information including name, location coordinates, place type, number of

check−ins, number of checked users, number of tips,and the rating score.

Before running the LDA topic model, we first buffered the place type of each POI to

its corresponding Level-2 category. For example, as shown in Figure 4.3 and Figure 4.6 for

the Food subtree, all the subcategories of Asian Restaurant including Chinese Restaurant

and its children types, Korean Restaurant and its children types, Thai Restaurant and

so on will be generalized to the same place type Asian Restaurant in the topic modeling

training phase. In addition, we still incorporated the number of checked-in visitors for

each POI as a popularity score in the rescaling process to generate a new document-word

matrix (i.e., a search region−POI type occurrence matrix) across all sampling locations

in the ten urban areas.

Next, we evaluated the performance of different choices of K as the total number of

topics for the LDA topic model using three introduced measures. As shown in Figure

4.7, by choosing the value of K from 5 to 200 and then running LDA topic models on

our POI data for the second-level place types, we derived different topic assignment

results. The measure proposed by [95] aims to maximize the log-likelihood of word-
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topic probability in the documents, while other two measures [127, 128] aim to minimize

the proposed criteria. In our parameter tuning experiments, the optimal K value for

the “CaoJuan2009” and “Arun2010” measures is in the range of 90 − 110, while the

“Griffiths2004” metric gets relatively stable when K reaches 100 topics. Therefore, we

set K = 100 as the total number of topics and ran 2000 iterations of the Gibbs sampling

process to derive the posterior probabilistic distribution over topic assignments for place

types within the second-level hierarchy.

In Figure 4.8, we show six of those topics related to Beach, Shopping, and Asian

Restaurant. Note that the probability assignments for those POI types are weighted and

ranked by their term frequency−inverse document frequency (i.e., POI type frequency−inverse

region frequency) so that each topic can display more distinctive and meaningful POI

types that are directly proportional to the frequency in documents while inversely pro-

portional to the region frequency at which a POI type occurs in the whole corpus.

Two topics 20 and 34 are shopping-plaza topic that consists of various frequent occur-

ring POI types (e.g., men’s clothing store, women’s clothing store, and shoes store) that

were generalized into the more abstract place types: shopping mall and clothing store.

Interestingly, if we search for the region that has the top-ranked shopping Topic 67 (in

previous chapter) before semantic generalization, only the Westfield Topanga Shopping

Plaza in Los Angeles can be found (Figure 4.9). However, after the place-type-buffer op-

eration, nine shopping regions can be successfully identified and have top-ranked Topic

20 or Topic 34 in their multi-dimensional probabilistic topic distributions. As shown

in Figure 4.10, after overlaying the OpenStreetMap data layers, we can clearly find that

all of nine sampling locations contain at least one big shopping plaza. The histogram of

JSD-based similarity values among the nine identified shopping regions is shown in Fig-

ure 4.11. The mean of the similarity distribution is about 0.59 with a standard deviation

of 0.08. Therefore, we can use the similarity value (mean + standard deviation) = 0.67
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as the threshold in the searching phase for finding shopping regions.

For the new beach-related topic 87, the top-ranked place-type that has the largest

probability assignment for this topic is the second-level category beach with a probabilistic

value 0.46 and has increased by 58.6% from its original probability 0.29 before semantic

generalization. The mean of similarity values among those discovered beach regions is

high around 0.8 and will be taken as the threshold for searching beach regions in the

testing data.

Three topics 3, 18, and 26 are related to the Asian Food theme that consists of variety

of place types including asian restaurant, tea room, bubble tea shop, dumpling restaurant,

and so on. The asian restaurant was generalized from a lot of aforementioned subcate-

gories such as Chinese Restaurant, Korean Restaurant and Thai Restaurant. We would

assume that the regions that are dominated by the same higher-level place type should

be more similar after the semantic buffer. For instance, we selected three sampling re-

gions (with unique document identifiers: LA-Doc-92, LA-Doc-93, and LA-Doc-146) that

belong to the Asian Food topic after the semantic generalization topic modeling pro-

cess. Their original topic distributions and the spatial distributions are shown in Figure

4.12, 4.13, and 4.14 respectively. We can find that the region (LA-Doc-92) consists of

frequent place types such as Korean restaurant, Ramen restaurant (Janpanese), Grocery

Store, Sandwich Place etc.; the region (LA-Doc-93) is dominated by the Thai Restaurant

topic; and the region (LA-Doc-146) is a typical Chinese Restaurant region. The topic

similarity between (LA-Doc-146) and (LA-Doc-92) is 0.557 and increased to 0.674 after

generalization; the topic similarity between (LA-Doc-146) and (LA-Doc-93) is 0.442 and

increased to 0.508 after generalization. The Shannon information entropy [150] (with

a logarithmic-base 2) for their topic distributions are also slightly reduced accordingly,

region (LA-Doc-92) reduces from 5.70 to 5.42; region (LA-Doc-92) reduces from 5.57 to

5.28; and region (LA-Doc-92) reduces from 5.29 to 4.8. Generally speaking, the entropy
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refers to disorder or uncertainty. The reduced topic entropy indicates a more predictable

structure after the semantic generalization, which meets our expectation as well. The

mean of the similarity distribution is about 0.64 with a standard deviation of 0.06. There-

fore, we can use the similarity value (mean + standard deviation) = 0.70 as the threshold

in the searching phase for finding Asian Food regions.

After we set the search similarity thresholds for the three groups of topics respectively,

the experiments of randomly throw-circles with varying sizes for the spatial sampling are

conducted as shown in Figure 4.15. The POIs within each search circle are selected and

their generalized place-types are used for the topic prediction using the previous trained

LDA topic model. Based on the criteria introduced in Section 4.3, we further derived

the semantic generalized regions that meet the topic similarity requirement for Beach,

Shopping, and Asian Food (in Figure 4.16). We find that the beach-topic regions are

not necessarily continuously distributed along the beach side although most of them are

still close to the Ocean. It might because that some regions lack sufficient venues or

they are dominated by other thematic topics. Note that some of those discovered regions

with varying topic themes are spatially overlapping together, which indicates that those

regions have co-existing multiple prominent topics. For example, as shown in Figure 4.17,

the identified region (LA-Doc-192) could be a good candidate region for both shopping

and eating Asian Food.

4.5 Conclusion

In summary, in this work, we demonstrate the effectiveness of the proposed semantic

generalization methodology on extracting the semantic regions that relate to the Beach,

Shopping, and Asian Food topics in Los Angeles. The proposed theoretical framework

can also be applied in other thematic topics and the extraction of associated semantic
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generalized regions. The throwing-circle spatial sampling technique is also just one im-

plementation in the search phase. Other techniques based on the place-type hierarchy

can be developed for the semantic generalization process as well. The spatial footprints

of the vernacular places and cognitive regions might also be constructed based on the

semantic generalization framework.

Note that the testing process for large-scale region documents is computationally ex-

pensive. Thus the presented results might only reflect the scope of the collected data.

This problem also raises the need for high-performance computation and scalable geo-

processing framework in future work.
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Figure 4.3: The hierarchical structure of the POI type ’Food’ and its subcategories
Foursquare. Only some types are labeled because of a large visual load.
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Figure 4.4: The hierarchical tree structure of nodes.

Figure 4.5: The collected Foursquare POI data in Los Angeles.
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Figure 4.6: The hierarchical structure of the POI type ’Asian Restaurant’ and its
subcategories Foursquare.
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Figure 4.7: Find an appropriate K value for the total number of topics on the Level
2 categories using three metrics.
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asian restaurant 0.341470 asian restaurant 0.185822 asian restaurant 0.281990

tea room 0.050206 vegan restaurant 0.111357 coffee shop 0.050223

dessert shop 0.001295 bubble tea shop 0.062268 smoothie shop 0.028113

coffee shop 0.000781 hawaiian restaurant 0.009922 falafel restaurant 0.014617

dumpling restaurant 0.000657 animal shelter 0.000756 bakery 0.000260

sandwich place 0.000356 hobby shop 0.000668 hardware store 0.000222

burger joint 0.000286 coffee shop 0.000212 clothing store 0.000203

diner 0.000270 juice bar 0.000182 sandwich place 0.000132

seafood restaurant 0.000166 breakfast spot 0.000150 garden center 0.000032

italian restaurant 0.000158 gunrange 0.000028 fastfood restaurant 0.000018

steakhouse 0.000152 nature preserve 0.000022 convenience store 0.000017

college bookstore 0.000146 clothing store 0.000017 brewery 0.000016

athletics & sports 0.000096 fastfood restaurant 0.000017 hotel 0.000016

spiritual center 0.000040 convenience store 0.000016 seafood restaurant 0.000016

community center 0.000022 brewery 0.000015 bar 0.000016

clothing store 0.982139 shopping mall 0.433009 beach 0.459725

chocolate shop 0.000466 coffee shop 0.073150 italian restaurant 0.088272

outlet store 0.000220 athletics & sports 0.006028 municipalities 0.015231

wings joint 0.000138 outdoor supply store 0.003895 american restaurant 0.010109

pet store 0.000071 american restaurant 0.002169 bar 0.007362

food & drink shop 0.000055 hunting supply 0.001597 harbor / marina 0.006024

music venue 0.000052 dessert shop 0.001488 boat or ferry 0.004842

miscellaneous shop 0.000035 brewery 0.000248 asian restaurant 0.001714

fastfood restaurant 0.000011 bar 0.000237 island 0.000859

laser tag 0.000011 park 0.000233 coffee shop 0.000636

convenience store 0.000011 italian restaurant 0.000226 board shop 0.000589

brewery 0.000010 museum 0.000172 lighthouse 0.000305

hotel 0.000010 farm 0.000133 athletics & sports 0.000272

seafood restaurant 0.000010 gastropub 0.000123 food & drink shop 0.000244

bar 0.000010 hobby shop 0.000040 steakhouse 0.000226

Category                            Prob. Category                            Prob. Category                            Prob.

Topic 3 Topic 18 Topic 26

Category                            Prob. Category                            Prob. Category                            Prob.

Topic 20 Topic 34 Topic 87

Figure 4.8: The six selected topics relevant to beach, shopping, and Asian restaurant.
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Figure 4.9: The topic probability distribution and the spatial distribution of
Foursquare POIs around the Westfield Topanga Shopping Plaza in Los Angeles.
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Figure 4.10: The spatial distribution of Foursquare POIs (blue dots) around nine
prominent shopping regions in Los Angeles.

Figure 4.11: The histogram of JSD-based similarity values among the nine identified
shopping regions in Los Angeles.
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Figure 4.12: The topic distribution and the spatial distribution of Foursquare POIs
in the search region (LA-Doc-146).
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Figure 4.13: The topic distribution and the spatial distribution of Foursquare POIs
in the search region (LA-Doc-92).
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Figure 4.14: The topic distribution and the spatial distribution of Foursquare POIs
in the search region (LA-Doc-93).
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Figure 4.15: The spatial locations of those randomly search regions and an illustration
for throwing varying-size circles in the study area.
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Figure 4.16: The resulting semantic generalization of regions for the three topics:
Beach, Shopping, and Asian Food in Los Angeles.
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Figure 4.17: The spatial distribution of Foursquare POIs in the search region (LA-Doc-192).
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Chapter 5

Conclusions and Future Work

Chapter 5 summarizes this dissertation. Particularly, we answer the posed three research

questions and state our research contributions. We also discuss the broader implications

and limitations of this research, and present planned future work.

5.1 Conclusions

In this section, we first conclude this dissertation by answering the aforementioned

three research questions.

RQ1: Is it possible to extract computational representations for vague cognitive re-

gions from archival user-generated content such that they align with direct assessments

of human participants using concordance measures?

In Chapter 2, we investigated using a data-intensive approach to determining vague

cognitive regions. We compared them to the corresponding MFP study based on human

participants which validated our proposed approach. Using data sourced from social me-

dia including Flickr, Instagram, Twitter, Travel Blogs, and Wikipedia pages, we derived

region membership scores for cells within the state of California that correlated signifi-
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cantly to those in the original study, both in terms of Spearmans as well as Kendalls rank

correlation statistics. The results also show a high agreement/concordance among our

user-generated data sources with respect to the membership rankings of all cells, even

after adding the survey ranks from the MFP study as the fifth source, demonstrating

a consistency between our data-synthesis-driven approach and the human-participants

survey. In other words, the effects we see are not merely artifacts of a specific data

source. Overall, the shapes of NorCal and SoCal were quite similar for the two empiri-

cal approaches, including the non-monotonicity of the two regions and the heterogeneity

of their vague boundaries. Most importantly, our work showed the same platial effects

observed in the original study. Furthermore, our work examined the implications of

increasing the spatial resolution of the tessellations on the cognitive regions that result.

In addition to assessing membership scores within the hexagons, we further explored

the continuous boundaries and the core regions for NorCal and SoCal. A two-step work-

flow based on the DBSCAN clustering method and the chi-shape algorithm was designed

to generate approximate boundaries for the cognitive regions. Experiments were con-

ducted to select optimal parameters for the workflow, and we observe consistency among

the polygon representations that are derived from the different datasets.

We also explored thematic associations for NorCal and SoCal with the help of topic

modeling. This generated various topics most often associated with different regions of

California on our social media sources. Comparing the topic distributions of prototypical

NorCal and SoCal hexagons shows high similarity within each region and a lower simi-

larity between the two regions. The temporal characteristics of regions were not studied

in this work and related works will be conducted with regard to different granularity of

temporal bands in future work.

RQ2: Is it possible to extract the co-location patterns of different place types and

underlying characteristics that could be utilized to describe functional regions that support
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specific types of human activities?

In Chapter 3, we developed a statistical framework that applied the LDA topic mod-

eling technique and incorporated user check-ins on LBSN in order to help discover se-

mantically meaningful topics and functional regions based on the co-location patterns

of POI types. The “functions” derived from probabilistic topic modeling techniques can

reveal the latent structure of POI mixtures and the characteristics of places. Based on a

large corpus of about 100,000 Foursquare venues and check-in behavior in the ten most

populated urban areas in the U.S., we demonstrate the effectiveness of proposed method-

ology by identifying distinctive types of latent topics and further, by extracting urban

functional regions using the K-means clustering and the Delaunay triangulation spatial

constraints clustering methods. A region can have multiple functions but with different

probabilities, while the same type of functional region can span multiple geographically

non-adjacent locations. Compared with the remote sensing images that mainly uncover

the physical landscape of urban environments, results derived from the popularity-based

POI topic model can be seen as a complementary social sensing view of urban space

based on human activities and the place settings of urban functions. However, there

may exist gaps between the real-world business establishments and the online available

POI information. Data-fusion and cross-validation relying on multiple sources may help

reduce such gaps.

Although we have successfully identified several types of semantically meaningful

urban functional topics, LDA topic modeling is an unsupervised approach that has certain

limitations with respect to discovering plausible urban functions. One limitation of this

particular research is that we cannot systematically evaluate the accuracy of those derived

functional regions without labeled ground truth data or the detailed urban land-use GIS

data. But we have tested the intrinsic robustness of identifying functional topics with

different parameter settings. The variability analyses were carried out at two levels: the
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topic-level and the cluster-level. At the topic level, we found the stability in identifying

prominent urban functional topics related to frequently co-occurrent physical facilities

and services, a variety of bars and restaurants, and leisure activity places regardless of

the total number of topics. But the topic composition of top-ranked POI categories varies

in different scenarios. It implies the variability of the semantic structure of functional

topics. Although choosing an optimal K in topic modeling can either maximize the log-

likelihood of the term-topic probability in the training document corpus, or minimize the

inter-topic similarity, we may miss the opportunity for discovering some interesting topic

composition structures that can only be identified with a different K value or with other

model parameter settings. At the cluster level, a series of clustering result comparisons

by choosing different numbers of topics were evaluated using the Rand index and the

NMI metric. We found a large percentage of agreements on the clustering membership

of those search locations with their surrounding POIs and derived functional areas that

can be supported by the mix types of POIs.

RQ3: What kinds of analyses/operations on places can be employed for deriving

semantically generalized regions in order to address the regional/cultural variability by

broadening the thematic topics that form the functional regions?

In Chapter 4, presented a novel methodology for the semantic region generaliza-

tion by integrating spatial sampling, topic modeling, and platial buffer techniques. We

proposed a novel semantic generalization processing framework that can produce seman-

tically coherent high-level generalized region representations on maps from POI data.

The workflow consists of six steps: (1) POI Data Collection; (2) Topic Modeling; (3)

Identify Functional Topics and Clustering; (4) Search for Semantically Generalized Re-

gions (based on platial buffer in the hierarchical structure of POI types); (5) Group and

Merge Semantically Interlinked Regions; and (6) Map Representation and Visualization.

Based on the collected over 85,000 Foursquare POI data and associated human
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check-in behaviors, we successfully extracted semantically coherent regions that relate

to the Beach, Shopping, and Asian Food topics in Los Angeles and demonstrated the

effectiveness of the proposed semantic generalization methodology to address the re-

gional/cultural variability by broadening the thematic topics that form the functional

regions. The proposed theoretical framework can also be applied in other thematic top-

ics and the extraction of associated semantic generalized regions. The throwing-circle

spatial sampling technique is also just one implementation in the search phase. Other

techniques based on the place-type hierarchy can be developed for the semantic gener-

alization process as well. The spatial footprints of the vernacular places and cognitive

regions might also be constructed based on the semantic generalization framework.

In sum, this dissertation presents a comprehensive computational framework for ex-

tracting the representations of place (using vague cognitive regions, functional regions,

and semantically generalized regions as examples) and those representations could be

further coded in geographic information systems and applied in spatial search or other

applications. This research sheds light on differences in the methodology of traditional

human-participants approach and the increasingly popular data-synthesis driven ap-

proaches, suggests advantages and limitations of both approaches, and points to future

avenues for research and system design in GIScience.

Last but not least, advanced places-based studies can engage citizens in knowledge

production and sharing experiences on places for sustainable development of our society

and environment.
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5.2 Research Contributions

The main contribution of this dissertation is an advancement to the computational

representations and models of place in GIScience, which is a challenging issue in geo-

graphic information retrieval, mapping and information visualization, and GIS processing

workflows in general. The broad umbrella term for place-centered analyses and the for-

malization of place in GIScience has been informally defined as “Place-based GIS” [3, 4].

Central to all research branches concerned with place-based GIS is the computational

modeling of place with regard to human mind or activities in order to assess human-place

interactions. This dissertation has made a number of contributions to the place-based

GIS theories, methodologies and applications, which are summarized as follows:

• A Theoretical Contribution for Computational Models of Place in GI-

Science. As is known from the computer modeling and programming implementa-

tion perspective, coordinates should be included in the “Space Class Constructor”

to represent a location on the Earth Surface. In order to model the concepts

of place from informal human conversations and natural language descriptions into

formalized computerized informations systems, we suggest that thematic topics and

location are the key characteristics that need to be included in the “Place Class

Constructor”. In addition, a place could also have placename, time constraint,

and semantic linkages to other places and entities. The thematic topics of regions

contain one prominent or multiple co-located place-types as well as the character-

istics described in natural language. The location of a place maybe specified by its

membership or by a geometry.

• A Formalized Computational Representation for Vague Cognitive Re-

gions. Most vague cognitive regions only exist in human mind but are not suffi-

ciently represented in GIS or Web mapping systems. In order to let computers and
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GIS handle vague cognitive regions, they have to be formalized and transformed

from human mind into computer binary code. This research develops a frame-

work for representing vague cognitive regions with their fuzzy membership scores,

geometric boundaries, and textual thematic characteristics.

• A Data-Synthesis-Driven Method for Extracting Vague Cognitive Re-

gions and Functional Regions. Although vague cognitive regions and urban

functional regions have been extensively studied in spatial cognition and urban

studies, most existing works were conducted in a top-down research design man-

ner and relied on expert knowledge. In this dissertation, we present an automat-

able framework that can synthesize multiple heterogeneous datasets from different

sources to study vague cognitive regions and urban functional regions, which can

provide a human-centered social sensing view of those concepts and bottom-up

derived computational representations.

• A Popularity-based Statistical Topic Modeling Technique for Charac-

terizing the Semantics of Place. Probabilistic topic models have been widely

used to discover latent thematic characteristics and their structure when analyzing

large sources of textual documents. In analogy to the use of textual documents

in topic modeling, this research takes the place type of each POI as a word, the

search region that contains those POIs as a document, and an urban function or

a land use as a topic that represents thematic characteristics and the semantics

of places. In order to address the human activity effect, the popularity of places

based on their user check-in statistics has been taken into consideration during the

sampling process. The case studies in this dissertation demonstrate that the pro-

posed popularity-based LDA topic modeling technique can learn low-dimensional

thematic representations to differentiate different vague cognitive regions or dis-
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tinctive types of urban functions.

• A Novel Methodology for Semantic Generalization of Regions. The exist-

ing research on digital map generalization mainly rely on the geometric properties

of spatial data but not considering the platial effects. A semantic generalization of

space-based maps into place-based maps may bridge the gap between the abstract

geometries and human cognition, and help a better understanding of the interaction

between human concepts and places. This research develops a new methodology

that can take both spatial distributions of POIs and the place-type hierarchical rela-

tionships into consideration to derive spatially and semantically coherent high-level

generalized regions in order to address the regional/cultural variability by broaden-

ing the thematic topics. The presented throwing-circle spatial sampling technique

is also just one implementation. Other techniques based on the place-type hierarchy

can be developed for the semantic generalization processing as well.

5.3 Broader Implications and Limitations

This research has its own limitations on the data sampling, methods, and derived

results that could be improved in the future. In the following, we summarize these

limitations and discuss possible improvements.

• Bias and Noise in Social Media Data. In order to capture the human effect and

take human activities into consideration for the study of place in this research, large-

scale multi-source social media data have been collected and processed. However,

the datasets might still be bias to only specific groups of people’s opinions instead

of that from the whole population, although we have applied several filtering and

resampling strategies to best reduce such bias. It also raises some further issues
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about the data-synthesis-driven approach. There is a difference between the said

place which a person tags or mentions in a social-media entry and the locale where

the person is located when posting the entry. The said place is not necessarily

the same as the locale, since people can post any message about any place no

matter where they are. Such mismatch is common to see in our crowdsourced

data. In future work, natural language processing techniques (e.g., place name

disambiguation, preposition and contextual analysis) can be employed in analyzing

social media entries to better differentiate the said place and the locale.

• Ground-truth Testing. Regardless of the extracted urban functional regions

or the semantically generalized regions, human participant experiments or other

labeled ground-truth data are still necessary to further test the performance of

the proposed methods in this dissertation. Depending on the ground-truth data

availability, we may also collect and process the location-based social network data

in other study areas in future work.

• The Temporal Dimension of Place. Although we didn’t explicitly include

the role of “time” in characterizing different places and regions, we do recognize

the importance of the temporal dimension of place. Existing researches show that

place-types can be uniquely identified by the temporal patterns of their visitors. For

instance, people are more likely to visit restaurants during typical lunch and dinner

hours than at midnight, while visiting bars at night than at daytime [151, 97].

Since we took POIs as a proxy for delineating functional regions that support

specific human activities, those extracted regions may only be tangible at specific

time periods. In addition, certain types of places (e.g., football stadium) are more

prone to regional and international differences with respect to the temporal check-

in behavior than others (e.g., drug store & pharmacy because of the socioeconomic
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and culture differences) [152]. Moreover, some places and cognitive regions only

exist at specific historical time, and thus those entries should be only available for

place-based queries with certain time-constraints in the databases or file systems.

• Non-spatial Topic Modeling Technique. In this dissertation, we applied the

non-spatial version of LDA topic modeling technique to discover the hidden co-

occurrence patterns of POIs to support specific urban functions. However, the

original methods didn’t consider the spatial distributions of “place-type terms” in

“region documents”. Therefore, the distance metrics or spatial relations among

those “terms” were still not the first-citizen during model training and prediction

processes. Thus the results didn’t explicitly show the spatial patterns (with distance

measure) among place types. We will discuss potential solutions for this in the

future work section.

5.4 Future Work

5.4.1 A Combination of Bottom-up with Top-down Ontology

Design for Urban Functional Regions

Based on the analysis results in Chapter 3, we showed that several latent topics

of POI types are spatially and semantically related to certain urban functions. For

example, the college/university topic that consists of buildings, pool, sports fields, and

apartments, is also co-located with several restaurant and bar like topics; the shopping

plaza topic is often also co-located with the parking and resort like topics. This reveals

the underlying relations of how POI categories function in urban settings. We have also

discovered various urban functional regions as clusters of multinomial topic distributions

over POI categories. However, one limitation is that we cannot systematically evaluate
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the accuracy of those derived functional regions without labeled ground truth data or the

detailed urban land-use GIS data. Future work need to include the labeled groundtruth

data as testing cases for comparisons.

One broader question of this research is whether we can automatically identify those

topological and hierarchical relations in order to support the development of an ontology

for urban functional regions. As shown in Figure 5.1, we applied the Ward hierarchical

clustering method [153] on those 130-topics derived from the aforementioned LDA topic

model. Each topic is a 480-dimensional probabilistic vector over all POI types in our

datasets. Those semantically related topics are grouped together in each step by mini-

mizing the increment of within-cluster variance after merging. This process repeats until

all topic vectors merge into the same group. This tree diagram is derived from a bottom-

up approach and can be used as a starting point with regard to constructing the urban

functional region ontology. However, it does not yet include the spatial relationships nor

the dichotomous relationship among POIs. It may be more promising to combine this

bottom-up approach with the top-down approach of the expert urban geographers or

planners to develop a more holistic ontology in the future.

5.4.2 Spatial-LDA Topic Modeling Methods

Currently, topic modeling techniques that originated from natural language processing

domain have been widely applied in many other domains including geography. Although,

the non-spatial version of topic modeling could also generate the co-occurrence patterns

of places. However, the original methods didn’t consider the spatial distributions of

“place-type terms” in “region documents”. Therefore, the distance metrics or spatial

relations among those “terms” were still not the first-citizen during model training and

prediction processes.
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Figure 5.1: The dendrogram for the hierarchal clustering result on the 130-LDA topics
using the Ward clustering method. The topics highlighted with a black filled-in circle
are those mentioned in chapter 3.

Generally speaking, there exists at least two groups of approaches to including the

distance metric into consideration. The first group of methods rely on a deep understand-

ing of the statistical topic modeling methods and can directly change the probabilistic

formulas for developing new family of spatial-metric-oriented topic modeling methods.

The second groups of methods rely on the oversampling of places or rescaling process

when generating region documents. For example, we could encode the distance bins into

the “term” as an interaction format of “place A - distance bin (or a topology) -place

B”. And then running the LDA topic modeling technique on those interaction terms,

we could generate the spatial-interaction patterns of POI types, such as “bar-close-bar”

and “fire station-intermediate distance-hospital”. One challenge is how to decode those

interaction terms from discovered topics. Basically, each place-type can interact with all

other types, which will generate a ginormous vocabulary for the topic modeling and the
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results will be very hard to interpret.

Another idea is to unitize the spatial indexing tree during the POI spatial sampling

process, we can use the hierarchal level of the spatial index for all those POIs to generate

different region documents. We assume that those generated documents intrinsically

carry the spatial interaction information and thus the discovered topics could reveal be

spatial co-location patterns of places.

5.4.3 Automatic Semantic Generalization of Regions in Multi-

Scales

The presented semantic generalization framework in Chapter 4 only considers the

scenario with a fixed spatial scale, but didn’t consider the dynamic exploration process

across multiple spatial scales.

One future study could be exploring the conditions under which the semantic general-

ization should be invoked, and what operators that the semantic generalization procedure

should employ, as well as the measures on which the generalization evaluation should rely.

To this end, future study will explore the automatic semantic generalization theories

and techniques using OpenStreetMap Data and POI databases. Case studies of identify-

ing and abstracting different scales of vague cognitive regions will be employed to evaluate

the proposed operators, measures, controls, and so on for enabling automatic semantic

generalization procedures. To develop the automated semantic generalized maps, the

generalization operators should be appropriate to multiple scales and the quantitative

characteristics of the selection should be consistent. The evaluation criteria should be

developed to assess the usability of the seamlessly automated semantic map generaliza-

tion system.

Future research work will eventually integrate all aforementioned aspects into the
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semantically enabled place-based digital map generalization process. An implementation

of place-based mapping system will support searching, browsing and exploring the se-

mantically coherent neighborhoods, downtowns, functional regions, and vernacular places

in multi-scales.

5.4.4 Crowdsourcing Place Graphs for Supporting Knowledge

Discovery

Based on the experiments conducted in the dissertation, we find that many places and

place types are frequently co-located in physical space or co-existed in social media posts.

The linkages among those places and place types can be constructed as a graph. We plan

to evaluate the effectiveness of data-driven approach for constructing place graphs from

user generated content and to quantify the place relatedness in human mind in future.

Two types of place graphs will be developed. One is the place graph based on natu-

ral language descriptions reflecting human perception and the other is based on human

behavior in social media data. To measure place relatedness from natural language de-

scriptions, the co-occurrence model will be employed to quantify the frequency that two

places occur together given a smoothing window. The co-occurrence frequency will then

be normalized to give a quantitative measure between places. To measure the place

relatedness from human behavior, the human check-in pattern from social media data

will be examined. The number of co-checkins from the same users in different places

will be used to quantify the relatedness between these places. While only two types of

place graphs will be constructed, each type will contain multiple graphs depending on

the specific data source. For example, the natural language based place graphs can be

generated through data from News Articles, Wikipedia, Travel Blogs, and even govern-

ment textual documentation. Similarly, the human behavior-based place graphs can be
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developed using data from Foursquare, Twitter, or Flickr.

The developed place graphs can be used to facilitate spatial search and knowledge

discovery. In addition, for users who have visited one place, a Web service can recommend

closely related places based on the graph. This recommendation can also be applied to

Spatial Data Infrastructures (SDI). A user who have browsed the geospatial data of one

city may also be recommended with the data in closely related cities.

The quality and usefulness of the constructed place graphs will be evaluated based on

their capability to meet the application requirements. Thus, two evaluation experiments

will be conducted for the two applications respectively. To evaluate the improvement

of information search based on place graph, a human participant experiment will be

conducted and the baseline will be the purely space-based search. 50 human participants

will be recruited, and each need to evaluate 20 queries and the quality of returned results

from platial search and spatial search. The human participants will give a score from

0 to 5, and all the scores will be summarized to see if the platial approach received a

statistically significant larger score than the pure spatial approach.

To evaluate the recommendation system, another human participant experiment will

be conducted. This experiment will compare the place-based recommendation with

space-based recommendation (i.e., recommending places only based on the geographic

distance). Similarly, 50 participants will be recruited, and each participant will need to

give a score from 0 to 5 for the recommended places. It is expected that the recommenda-

tion based on place graphs will be scored higher than the space-based recommendation.

5.4.5 Investigating Place-based Analysis Functionality

The most challenging part in the place-based research should be the formalization of

platial analysis functionalities to their spatial counterparts.

134



As a start, we have developed the platial-join and platial-buffer operations [4]. In

analogous to the spatial join, the purpose of the platial join is to attach the properties

or characteristics from the join entities to the target place using semantics references. In

other words, the platial join operation involves the aggregation of properties (attributes)

from one or multiple place entities to the target place entity based on merge rules (such

as sum, average, first, last) and their topological predicates, including the “part-whole”

relation, the “part-whole”, the “parent-child” relation, and other topological relation-

ships, e.g., touch, overlap, equals, contains, disjoint, and intersects [154]. A merge rule

is applied when more than one entity are matched to a target place.

The platial buffer operation involves identifying neighboring places (first-degree buffer)

or other n-degree connected places for a target based on the semantic relations (upper-

level class and lower-level class). The n-degree represents the number of shortest-path

steps that connect the places under consideration on a semantic net.

As presented by Goodchild (2015)[155], if someone asks a spatial question: “Is A near

B?” In a spatial approach, the answer is yes if B is within a buffer around A, and the

buffered distance defines “near”. In a platial analysis approach, the answer is yes if A

and B are within some higher-level place (or place-type) C, and the difference in level or

the graph path-length defines “near”. Another question: “Is B nearer to A than is C?”

In a spatial approach, it is required to compute the distance of (A, B) and the distance

of (A, C). In a platial approach, B is nearer to A if A and B are in the same higher-level

place hierarchy and C is not.

A number of research questions are worth of investigation in future work. Example

include but not limit to: What should be the platial association function? What about

place-based map algebra? Does “platial hot-spots” exist?
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[81] C. Keßler, P. Maué, J. T. Heuer, and T. Bartoschek, Bottom-up gazetteers:
Learning from the implicit semantics of geotags, in GeoSpatial semantics
(K. Janowicz, M. Raubal, and S. Levashkin, eds.), pp. 83–102. Springer, 2009.

[82] Y. Hu, S. Gao, K. Janowicz, B. Yu, W. Li, and S. Prasad, Extracting and
understanding urban areas of interest using geotagged photos, Computers,
Environment and Urban Systems 54 (2015) 240 – 254.

[83] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland,
D. Borth, and L.-J. Li, The new data and new challenges in multimedia research,
arXiv preprint arXiv:1503.01817 (2015).

[84] M. Duggan, N. B. Ellison, C. Lampe, A. Lenhart, and M. Madden, Social media
update 2014, tech. rep., Pew Research Center, January, 2015.

[85] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and
S. Hellmann, Dbpedia-a crystallization point for the web of data, Web Semantics:
science, services and agents on the world wide web 7 (2009), no. 3 154–165.

[86] H. Kwak, C. Lee, H. Park, and S. Moon, What is twitter, a social network or a
news media?, in Proceedings of the 19th international conference on World wide
web, pp. 591–600, ACM, 2010.

142



[87] S. Gao, L. Li, W. Li, K. Janowicz, and Y. Zhang, Constructing gazetteers from
volunteered big geo-data based on hadoop, Computers, Environment and Urban
Systems (2017).

[88] M. G. Kendall and B. B. Smith, The problem of m rankings, The annals of
mathematical statistics 10 (1939), no. 3 275–287.

[89] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, A density-based algorithm for
discovering clusters in large spatial databases with noise., in Kdd, pp. 226–231,
AAAI Press, 1996.

[90] F. P. Preparata and S. J. Hong, Convex hulls of finite sets of points in two and
three dimensions, Communications of the ACM 20 (1977), no. 2 87–93.

[91] M. Duckham, L. Kulik, M. Worboys, and A. Galton, Efficient generation of
simple polygons for characterizing the shape of a set of points in the plane,
Pattern Recognition 41 (2008), no. 10 3224–3236.

[92] F. Akdag, C. F. Eick, and G. Chen, Creating polygon models for spatial clusters,
in Foundations of Intelligent Systems (T. Andreasen, H. Christiansen, J.-C.
Cubero, and Z. W. Ra, eds.), pp. 493–499. Springer, 2014.

[93] D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent dirichlet allocation, Journal of
Machine Learning Research 3 (2003), no. Jan 993–1022.

[94] A. K. McCallum, Mallet: A machine learning for language toolkit, tech. rep.,
University of Massachusetts Amherst, 2002.

[95] T. L. Griffiths and M. Steyvers, Finding scientific topics, Proceedings of the
National Academy of Sciences 101 (2004), no. suppl 1 5228–5235.

[96] B. Adams and K. Janowicz, Thematic signatures for cleansing and enriching
place-related linked data, International Journal of Geographical Information
Science 29 (2015), no. 4 556–579.

[97] G. McKenzie, K. Janowicz, S. Gao, J.-A. Yang, and Y. Hu, Poi pulse: A
multi-granular, semantic signatures-based approach for the interactive
visualization of big geosocial data, Cartographica: The International Journal for
Geographic Information and Geovisualization, The University of Toronto Press
50 (2015), no. 2 71–85.

[98] S. Kullback and R. A. Leibler, On information and sufficiency, The Annals of
Mathematical Statistics 22 (1951), no. 1 79–86.

[99] B. Adams and K. Janowicz, On the geo-indicativeness of non-georeferenced text.,
in ICWSM, pp. 375–378, 2012.

143



[100] M. M. Louwerse and N. Benesh, Representing spatial structure through maps and
language: Lord of the rings encodes the spatial structure of middle earth,
Cognitive science 36 (2012), no. 8 1556–1569.

[101] Y. Ikawa, M. Vukovic, J. Rogstadius, and A. Murakami, Location-based insights
from the social web, in Proceedings of the 22nd International Conference on
World Wide Web, pp. 1013–1016, ACM, 2013.

[102] O. Ajao, J. Hong, and W. Liu, A survey of location inference techniques on
twitter, Journal of Information Science 41 (2015), no. 6 855–864.

[103] D. R. Montello, Scale in geography, in The international encyclopedia of social
and behavioral sciences (2nd ed.) (J. Wright, ed.). Oxford: Elsevier, 2013.

[104] M. J. Barnsley and S. L. Barr, Inferring urban land use from satellite sensor
images using kernel-based spatial reclassification, Photogrammetric Engineering
and Remote Sensing 62 (1996), no. 8 949–958.

[105] M. Herold, H. Couclelis, and K. C. Clarke, The role of spatial metrics in the
analysis and modeling of urban land use change, Computers, Environment and
Urban Systems 29 (2005), no. 4 369–399.

[106] E. Banzhaf and M. Netzband, Monitoring urban land use changes with remote
sensing techniques, Applied Urban Ecology: A Global Framework (2012) 18–32.

[107] T. Pei, S. Sobolevsky, C. Ratti, S.-L. Shaw, T. Li, and C. Zhou, A new insight
into land use classification based on aggregated mobile phone data, International
Journal of Geographical Information Science 28 (2014), no. 9 1988–2007.

[108] G. McKenzie, K. Janowicz, S. Gao, J.-A. Yang, and Y. Hu, Poi pulse: A
multi-granular, semantic signature–based information observatory for the
interactive visualization of big geosocial data, Cartographica: The International
Journal for Geographic Information and Geovisualization 50 (2015), no. 2 71–85.

[109] Y. Hu, S. Gao, K. Janowicz, B. Yu, W. Li, and S. Prasad, Extracting and
understanding urban areas of interest using geotagged photos, Computers,
Environment and Urban Systems 54 (2015) 240–254.

[110] S. Jiang, A. Alves, F. Rodrigues, J. Ferreira, and F. C. Pereira, Mining
point-of-interest data from social networks for urban land use classification and
disaggregation, Computers, Environment and Urban Systems 53 (2015) 36–46.

[111] E. Steiger, R. Westerholt, and A. Zipf, Research on social media feeds–a giscience
perspective, European Handbook of Crowdsourced Geographic Information (2016)
237.

144



[112] Y. Yao, X. Li, X. Liu, P. Liu, Z. Liang, J. Zhang, and K. Mai, Sensing spatial
distribution of urban land use by integrating points-of-interest and google word2vec
model, International Journal of Geographical Information Science 31 (2017), no. 4
825–848.

[113] B. Adams and K. Janowicz, On the geo-indicativeness of non-georeferenced text,
in ICWSM, pp. 375–378, 2012.

[114] B. Adams and G. McKenzie, Inferring thematic places from spatially referenced
natural language descriptions, in Crowdsourcing Geographic Knowledge,
pp. 201–221. Springer, 2013.

[115] A. Noulas, S. Scellato, C. Mascolo, and M. Pontil, Exploiting semantic
annotations for clustering geographic areas and users in location-based social
networks., The Social Mobile Web 11 (2011) 02.

[116] J. Yuan, Y. Zheng, and X. Xie, Discovering regions of different functions in a city
using human mobility and pois, in Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 186–194,
ACM, 2012.

[117] B. Adams, Finding similar places using the observation-to-generalization place
model, Journal of Geographical Systems 17 (2015), no. 2 137–156.

[118] B. Adams and K. Janowicz, Thematic signatures for cleansing and enriching
place-related linked data, International Journal of Geographical Information
Science 29 (2015), no. 4 556–579.

[119] H. Hobel, A. Abdalla, P. Fogliaroni, and A. U. Frank, A semantic region growing
algorithm: extraction of urban settings, in AGILE 2015, pp. 19–33. Springer, 2015.

[120] X. Zhou and L. Zhang, Crowdsourcing functions of the living city from twitter
and foursquare data, Cartography and Geographic Information Science 43 (2016),
no. 5 393–404.

[121] Y. Zhi, H. Li, D. Wang, M. Deng, S. Wang, J. Gao, Z. Duan, and Y. Liu, Latent
spatio-temporal activity structures: a new approach to inferring intra-urban
functional regions via social media check-in data, Geo-spatial Information Science
19 (2016), no. 2 94–105.

[122] G. McKenzie and K. Janowicz, The effect of regional variation and resolution on
geosocial thematic signatures for points of interest, in Proceedings of the 2017
AGILE Conference, pp. 237–256, Springer, 2017.

[123] H. Hobel, P. Fogliaroni, and A. U. Frank, Deriving the geographic footprint of
cognitive regions, in Geospatial Data in a Changing World, pp. 67–84. Springer,
2016.

145



[124] S. Gao, K. Janowicz, D. R. Montello, Y. Hu, J.-A. Yang, G. McKenzie, Y. Ju,
L. Gong, B. Adams, and B. Yan, A data-synthesis-driven method for detecting
and extracting vague cognitive regions, International Journal of Geographical
Information Science (2017) 1245–1271.

[125] M. Steyvers and T. Griffiths, Probabilistic topic models, Handbook of Latent
Semantic Analysis 427 (2007), no. 7 424–440.

[126] D. M. Blei, Probabilistic topic models, Communications of the ACM 55 (2012),
no. 4 77–84.

[127] J. Cao, T. Xia, J. Li, Y. Zhang, and S. Tang, A density-based method for adaptive
lda model selection, Neurocomputing 72 (2009), no. 7 1775–1781.

[128] R. Arun, V. Suresh, C. V. Madhavan, and M. N. Murthy, On finding the natural
number of topics with latent dirichlet allocation: Some observations, in
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 391–402,
Springer, 2010.

[129] J. MacQueen et. al., Some methods for classification and analysis of multivariate
observations, in Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, pp. 281–297, Oakland, CA, USA., 1967.

[130] P. J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis, Journal of Computational and Applied Mathematics 20 (1987)
53–65.

[131] R. M. Assunção, M. C. Neves, G. Câmara, and C. da Costa Freitas, Efficient
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