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Abstract

Novel therapeutic strategies are required for the effective and lasting treatment of metastatic 

melanoma, one of the deadliest skin malignancies. In this study, we determined the anti-melanoma 

efficacy of 4′-bromo-resveratrol (4′-BR), which is a small molecule dual inhibitor of SIRT1 

and SIRT3 in a BrafV600E/PtenNULL mouse model that recapitulates human disease, including 

metastases. Tumors were induced by topical application of 4-hydroxy-tamoxifen on shaved backs 

of 10-week-old mice, and the effects of 4′-BR (5-30 mg/kg b.wt.; intraperitoneally; 3d/week 

for 5 weeks) were assessed on melanoma development and progression. We found that 4′-BR 

at a dose of 30 mg/kg significantly reduced size and volume of primary melanoma tumors, as 

well as lung metastasis, with no adverse effects. Further, mechanistic studies on tumors showed 

significant modulation in markers of proliferation, survival and melanoma progression. As SIRT1 

and SIRT3 are linked to immunomodulation, we performed differential gene expression analysis 

via NanoString PanCancer Immune Profiling panel (770 genes). Our data demonstrated that 

4′-BR significantly downregulated genes related to metastasis-promotion, chemokine/cytokine-

regulation, and innate/adaptive immune functions. Overall, inhibition of SIRT1 and SIRT3 by 4′-
BR is a promising anti-melanoma therapy with anti-metastatic and immunomodulatory activities 

warranting further detailed studies, including clinical investigations.
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INTRODUCTION

Recent advances in the understanding of melanoma biology have led to the development of 

promising targeted therapies. The BRAF inhibitors vemurafenib and dabrafenib achieved 

significant improvement over traditional chemotherapy and were approved for patients 

with metastatic melanomas harboring BRAF-mutations. More recently, the combination 

of dabrafenib with the MEK inhibitor trametinib demonstrated improved progression-free 

survival as compared to monotherapy, and has received approval from the US FDA. 

However, even with the combination treatment, most patients develop resistance, thereby 

failing to achieve lasting tumor regression (Flaherty et al., 2012, Gowrishankar et al., 2012). 

Interestingly, melanoma has been characterized as one of the most immunogenic tumors and 

immune-targeted therapeutics have been successful and approved for melanoma treatment. 

However, the high rates of resistance acquisition, large percentage of partial responders and 

lack of durable responses remain obstacles to the success of these therapies (Jenkins and 

Fisher, 2020). Since melanoma is notoriously resistant to treatment and current therapeutic 

approaches have not been able to effectively manage this neoplasm, additional novel target-

based approaches are needed.

The mammalian sirtuins (SIRTs) constitute a family of seven known members (SIRT1 – 

SIRT7) with NAD+-dependent protein deacetylase and/or ADP-ribosyltransferase activities 

(Singh et al., 2018). SIRTs play critical roles in important cellular processes, and are shown 

to be involved in the pathogenesis of a variety of diseases, including cancer (Sebastian et al., 

2012). The role of SIRTs in cancer is extremely complex and they appear to have distinct 

functions depending on cell contexts (Bosch-Presegue and Vaquero, 2011). The founding 

member of this family, the nuclear SIRT1, has been extensively studied and is linked 

with several health conditions including metabolic syndrome, inflammation, and cancer 

(Singh et al., 2018). We have earlier shown that SIRT1 is overexpressed in melanoma, 

and its inhibition imparts anti-proliferative responses against melanoma cells (Singh et al., 

2014, Wilking et al., 2014a, Wilking et al., 2014b). One of the other well-studied sirtuins, 

SIRT3, is a mitochondrial sirtuin that coordinates global shifts in mitochondrial activity by 

deacetylating proteins involved in diverse mitochondrial functions (Su et al., 2020). SIRT3 

also plays important roles in the regulation of a variety of cellular processes, including 

transcription, insulin secretion, and apoptosis (North and Verdin, 2004). The fact that SIRT3 

can regulate several cellular processes which are critical in cancer cell proliferation makes 

it a promising therapeutic target for cancer management (Alhazzazi et al., 2013). In a study 

from our laboratory, we have demonstrated that SIRT3 is overexpressed in melanoma and its 

inhibition resulted in significant anti-tumor responses against melanoma in vitro as well as 

in vivo (George et al., 2015, Singh et al., 2021).

Recently, we discussed the potential usefulness of combined inhibition of specific sirtuins 

in the management of melanoma (Singh et al., 2020b). In a recent study, Nguyen et al. 
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demonstrated that the small molecule 4′-bromoresveratrol (4′-BR) completely inhibited 

the activity of both SIRT1 and SIRT3 at the 0.2 mM concentration in the deacetylation 

assays using FdL-1 fluorophore. Further, they identified two compound binding sites and 

substrate competition with NAD+ as the mechanism for this inhibition (Nguyen et al., 

2013). Using this compound, we have previously shown that 4′-BR treatment of multiple 

melanoma cell lines in vitro resulted in decreased cell proliferation and clonogenic survival, 

induction of apoptosis, and inhibition of melanoma cell migration (George et al., 2019). 

Moreover, as both SIRT1 and SIRT3 have been implicated in the regulation of cancer 

cell metabolism, their inhibition by 4′-BR treatment caused metabolic reprogramming 

by decreasing mitochondrial function, reducing glucose uptake and dampening NAD+/

NADH ratio (George et al., 2019). In this current investigation, we determined the in vivo 
efficacy of 4′-BR against melanoma in a genetically engineered BrafV600E/PtenNULL mouse 

model which is known to recapitulate human melanoma’s cardinal features, including lung 

metastases (Dankort et al., 2009). We have also analyzed potential mechanisms of action 

of 4′-BR against melanoma using tumors obtained from BrafV600E/PtenNULL mice and 

NanoString technology (PanCancer Immune Profiling Panel).

RESULTS AND DISCUSSION

4′-BR significantly reduces melanoma tumor growth in vivo in BrafV600E/PtenNULL mice

In order to determine the translational value of combined inhibition of SIRT1 and SIRT3, 

in this study, we determined the in vivo efficacy of SIRT1 and SIRT3 dual inhibitor 4′-
BR against melanomas in a genetically engineered BrafV600E/PtenNULL melanoma mouse 

model. This mouse model was designed to allow 4-hydroxytamoxifen (4-HT)-inducible, 

melanocyte-specific expression of mutant BrafV600E and deletion of tumor suppressor gene 

Pten, which are genetic events relevant in human melanoma. 4-HT specifically induces 

Cre recombinase-mutated estrogen receptor fusion transgene that is under the control of 

melanocyte-specific tyrosinase promoter (Tyr::CreER) (Dankort et al., 2009). Due to this, 

topical application of 4-HT results in development of black pigmented skin lesions that 

progress to malignant melanoma. In our study, pigmented spots developed 2 weeks after 

4-HT treatment, at which point mice were randomly assigned to treatment groups of either 

vehicle or 4′-BR (5, 10, 20 or 30 mg/kg b.wt.) as described in Materials and Methods and 

shown in Figure 1a. The treatments were continued for 5 weeks and tumor volumes were 

estimated weekly.

As shown in Figure 1b, melanoma tumors in BrafV600E/PtenNULL mice were noticeably 

smaller after 4′-BR treatment. Images of all mice (n=6 per group) at the end of study 

(17 weeks) have been shown in Supplementary Figure S1. Measurement of tumor volume 

(Figure 1c) and tumor weight (Figure 1d) revealed that there was indeed a trend toward 

reduced tumor growth upon 4′-BR treatment at all tested doses in BrafV600E/PtenNULL 

melanomas. This difference was statistically significant at 30 mg/kg b. wt. (4′-BR) after 5 

weeks, therefore, tumor tissues derived from this group and control were used subsequently 

for molecular analyses. Further, we found no significant change in body weight after 

treatment (Figure 1e) and there were no noticeable adverse effects of 4′-BR treatment at the 

tested doses. A previous study has demonstrated that 4′-BR inhibited the activity of SIRT1 
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and SIRT3, by binding to the allosteric site and substrate competition with NAD+ (Nguyen 

et al., 2013). We determined the expression of these sirtuins in 4-HT-induced mouse 

melanomas and verify if 4′-BR modulated their expression in these tumors by performing 

a quantitative immunodetection analysis using ProteinSimple. Our results suggested that 

both SIRT1 and SIRT3 are expressed in BrafV600E/PtenNULL tumors validating the target 

expression. Furthermore, we found no significant change in protein levels of SIRT1 and 

SIRT3 after 4′-BR treatment, suggesting that 4′-BR does not affect the protein expression 

of these sirtuins (Supplementary Figure S2), and the observed effects could be due to the 

inhibition of their activity.

Since 4′-BR has not been investigated in in vivo cancer models including melanoma, these 

are important and promising pre-clinical observations in BrafV600E/PtenNULL melanoma 

mouse model, which is an excellent model for pre-clinical evaluation of anti-melanoma 

agents due to its close resemblance with human melanoma (Marsh Durban et al., 2013, 

Vitiello et al., 2019).

4′-BR treatment modulates key markers of melanoma progression in BrafV600E/PtenNULL 

mice

Next, tumor samples obtained from the 30 mg/kg and control groups were analyzed for 

Ki67 and PCNA (proliferating cell nuclear antigen) as biomarkers of cell proliferation 

(Li et al., 2015). Additionally, we used survivin as a biomarker of cell survival, as it 

prevents programmed cell death and is shown to be associated with melanoma progression 

(McKenzie and Grossman, 2012). As shown in Figure 2a, 4′-BR treatment significantly 

reduced the percent of Ki67-positive cells in tumors, indicating decreased proliferative 

indices in this group. Further, our results showed a marked reduction in PCNA and survivin 

both at mRNA and protein levels (Figure 2b). Furthermore, we analyzed growth factor 

signaling markers insulin-like growth factor 1 (IGF1) a tumor-promoting growth factor, 

and insulin-like growth factor-binding protein 5 (IGFBP5) a tumor suppressor protein. 

We observed decreased Igf1 and increased Igfbp5 in response to 4′-BR treatment at 

mRNA levels as well as an increase in IGFBP5 at protein level (Figure 2b). IGF1 has 

been shown to promote melanoma progression by increasing proliferation, tumor cell 

mobility and dissemination, maintaining stemness features crucial for the immune escape, 

chemoresistance, and tumorigenicity (Le Coz et al., 2016). Further, IGFBP5 has been 

shown to function as an important tumor suppressor gene in melanoma tumorigenicity 

and metastasis using both in vitro and in vivo experiments (Wang et al., 2015). Thus, 

the observed decrease in Ki67, PCNA, survivin and IGF1, as well as increase in IGFBP5 

by 4′-BR treatment, demonstrate anti-melanoma potential of this dual SIRT1 and SIRT3 

inhibitor.

Since melanoma has been linked with dysregulated oxidative stress with deteriorated cell 

functioning at the mitochondrial level (Bisevac et al., 2018, Denat et al., 2014), we assessed 

the effects of 4′-BR treatment on selected markers of oxidative stress, viz. nuclear factor-

erythroid 2 related factor (NRF2) and Kelch-like ECH Associated Protein 1 (KEAP1). Using 

RT-qPCR, we found that 4′-BR treatment significantly up-regulated Keap1 compared to 

a slight decrease in Nrf2, resulting in a significant decrease in the ratio of Nrf2/Keap1 
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(Figure 2c). NRF2 is known to play an important role in cell survival and defense against 

endogenous/exogenous stresses, and generally, its overexpression in cancer cells enhances 

the expression of cytoprotective genes, resulting in increased cell proliferation and inhibition 

of apoptosis (Sajadimajd and Khazaei, 2018). KEAP1, a negative regulator of NRF2, 

is known to bind and restrict NRF2 activation. Recently, some reports have shown that 

NRF2 expression in melanoma is related to invasion, thereby worsening melanoma-specific 

survival (Hintsala et al., 2016).

Overall, our data demonstrate the ability of 4′-BR to exert anti-proliferative and 

anti-tumorigenic effects in a human-relevant melanoma mouse model with significant 

modulations in markers of cell proliferation, cell survival, tumor growth and oxidative stress.

4′-BR modulates genes associated with cancer immune pathways

Given that BrafV600E/PtenNULL is an inducible melanoma mouse model with an active 

immune system, it is a powerful tool to study the immune modulations in response to 

therapy. As sirtuins are linked to immunomodulation, and melanoma is an immunologically 

“hot” cancer, we performed differential gene expression analysis using high throughput 

multiplex analysis via NanoString nCounter PanCancer Immune Profiling panel, which 

analyzes 770 genes related to cancer-immune pathways (cancer progression, chemokines 

and cytokines and their receptors, and innate and adaptive immune response). nSolver 

software was used to analyze the data and a heat map was generated to show differential 

expression of 770 genes (Figure 3a). Further, using a fold cut-off of ≥2 and p-value <0.05, 

we observed that 4′-BR significantly modulated the expression of multiple genes as shown 

via volcano plot (Figure 3a). Moreover, several cancer immune pathways were significantly 

downregulated by 4′-BR treatment, while senescence and T-cell functions were significantly 

upregulated (Figure 3b). Overall, this high throughput gene expression analysis suggested 

that 4′-BR treatment strongly favored systemic antitumor immunity, resulting in inhibition 

of tumor growth in mice.

At a more granular level, we found that 49 genes were significantly (fold cut-off of ≥2 

and p-value <0.05) affected by 4′-BR treatment, the associations and interactions of which 

were further studied by performing network analysis. As shown in Figure 4a, found that 

a majority of the 49 genes modulated by 4′-BR treatment were highly interconnected. 

Interestingly, out of these 49 genes, 41 were downregulated, while only 8 were upregulated 

after 4′-BR treatment (indicated with dashed outlines in Figures 4a and 4b). Three genes 

out of the 49 did not show evidence of interaction within the other genes in the network: 

Colec12, Rae1c, and Prg2. However, Itgam (integrin subunit alpha M) demonstrated to have 

the most interactions (25 interactions with other genes), which is not unexpected as it is a 

member of the integrin family of transmembrane adhesion molecules that facilitate cell-cell 

and cell-extracellular matrix attachments. On the other hand, Sigirr, Fap, and Jam3 had the 

least interactions (1 interaction each). Overall, network analyses of the genes affected by 

4′-BR treatment revealed that 18 genes were involved in innate/adaptive immune functions, 

14 genes were associated with cancer progression/adhesion/apoptosis, 9 genes had basic/

immune cell functions, and 8 genes which were chemokines/cytokines (Figure 4a).
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Furthermore, genes that had evidence of roles in melanoma were analyzed using network 

visualization (Figure 4b). Out of the 49 total genes that were affected by 4′-BR treatment, 

30 genes have been associated with melanoma. A literature analysis of the 30 genes reported 

to be associated with melanoma and significantly affected by 4′-BR treatment in BrafV600E/
PtenNULL mice has been detailed in Table 1. Interestingly, in our network analysis, all 

the 30 genes showed evidence of at least one interaction with each other. Fn1 had the 

most interactions (14 interactions with other genes) while Il21r, Fap, and Jam3 had the 

least interactions (1 each). Importantly, in a recent study, Fn1 (Fibronectin 1) was shown 

to promote melanoma proliferation and metastasis by inhibiting apoptosis and regulating 

epithelial to mesenchymal transition (EMT) (Li et al., 2019), suggesting it may be directly 

affected by 4′-BR treatment. Of these 30 melanoma-involved genes, 23 were downregulated 

and 7 were upregulated after 4′-BR treatment. From the 23 downregulated genes, 21 have 

been shown to support melanoma progression and 2 to inhibit it. Of the 7 upregulated 

genes, 6 genes are known to inhibit melanoma, and 1 has been associated with melanoma 

development (Figure 4b).

A review of available literature revealed that 10 of these downregulated genes (Ccr1, Itgam, 

S100a8, C1qb, F13a1, Il1b, Fap, Col3a1, Angpt2, and Spp1) were associated with increased 

risk of melanoma and their expression was dysregulated in melanoma (detailed in Table 

1). Additionally, their expression has been correlated with poor survival in melanoma 

patients, suggesting they could be explored as melanoma markers. Similarly, 6 genes 

(Fn1, Jam3, Thbd, Angpt1, Ptgs2, and Ccr5) downregulated following 4′-BR treatment 

were involved in promoting tumorigenesis, cell migration and invasion, and epithelial to 

EMT. Furthermore, 5 downregulated genes (Nlrp3, Cd33, Serping1, Tlr2, and Gpr183) have 

been reported to play immune-related roles, which contribute to melanoma progression. On 

the other hand, two genes (IL21R and OSM) downregulated after 4′-BR treatment have 

been reported to inhibit melanoma progression by suppressing tumorigenesis as well as 

blocking cell proliferation and invasion. Interestingly, all 7 genes that were upregulated 

after 4′-BR treatment (Il12rb2, Xcl1, Ccl1, Zap70, Rorc, Tnfsf10, and Ccl19) have been 

reported to inhibit melanoma progression, which is consistent with the anti-melanoma 

effects of 4′-BR. Specifically, 4 upregulated genes (Xcl1, Ccl1, Zap70, and Ccl19) share 

immune-related functions which have anti-tumor effects and thus are correlated with good 

prognosis. The remaining 3 upregulated genes (Il12rb2, Rorc, and Tnfsf10) are tumor 

suppressor genes which are associated with prolonged survival of melanoma patients and 

even could be potential candidates for treatments against melanoma. Overall, our findings 

support the antiproliferative effects of 4′-BR and suggest that this response may occur via 

modulation of important tumor suppressor pathways, immune responses, and reductions in 

cell proliferation and invasion pathways.

4′-BR modulates protein expression of immune and inflammatory markers

Considering that melanoma has been classified as an immunogenic malignancy (Franklin 

et al., 2017) together with the immune- and inflammatory-related roles that SIRT1 and 

SIRT3 carry out (Vachharajani et al., 2016), we determined the potential immunomodulatory 

effects after 4′-BR treatment in melanoma tumors. Likewise, to confirm our Nanostring 

transcriptomic data on immunomodulatory activities of 4′-BR, we performed IHC analysis 
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for certain immune and inflammatory markers obtained from Nanostring analysis. Using 

melanoma tumors from control and 4′-BR at 30 mg/kg b. wt. dose groups (n=6), we 

determined the potential differences in protein levels of program death-ligand 1 (PDL-1), 

interleukin-1 beta (IL-1β), and NOD-like receptor family pyrin domain containing 3 

(NLRP3).

PDL-1, found in cancerous or infiltrating immune cells, is a ligand of the programmed death 

receptor 1 (PD-1), which together can provide cells the ability to evade the immune system 

(Kythreotou et al., 2018). In our Nanostring analysis, we found that the gene that encodes 

for PD-L1 (CD274) was slightly increased in 4′-BR treated group, although the change 

was not statistically significant. In our IHC analysis, we observed no significant changes in 

PDL-1 expression in 4′-BR when compared to control group (Figure 4c). It is possible that 

this slight/no change in PD-L1 levels in both assays may be due to the complexity of using 

PD-L1 as a biomarker, since it has been shown that PD-L1 levels widely vary across tumor 

tissues (Patel and Kurzrock, 2015, Schats et al., 2017).

To further evaluate the effects of 4′-BR treatment on inflammatory markers, we used 

IHC to confirm our results from Nanostring analysis on selected statistically significant 

downregulated genes after 4′-BR treatment, IL-1β and NLRP3. IL-1β is a proinflammatory 

cytokine that can be produced by malignant cells to increase their invasiveness (Jiang et 

al., 2015). NLRP3 is an inflammasome that is constitutively activated in melanoma cells 

and when it is inhibited this leads to decreased melanoma invasion and metastasis in vitro 
and in vivo (Lee et al., 2019). Interestingly, it has been shown that melanoma cells activate 

NLRP3 which induces IL-1β secretion (Lee et al., 2019, Zhai et al., 2017). Accordingly, 

increased levels of IL-1β and NLRP3 have been associated with melanoma development and 

progression (da Silva et al., 2016, Zhai et al., 2017). Using IHC, for both IL-1β and NLRP3, 

our results showed a clear reduction of protein levels in 4′-BR when compared to control 

group (Figure 4c). Altogether, these experiments provide preliminary data in terms of the 

immunomodulatory effects that 4′-BR treatment imparts in melanoma tumors.

4′-BR treatment reduces melanoma metastasis in BrafV600E/PtenNULL mice

The BrafV600E/PtenNULL mouse model is an excellent model as it has a high rate of 

metastatic disease in a manner that recapitulates the clinical course of melanoma in humans, 

which provides an opportunity for studying mechanisms of melanomagenesis, melanoma 

progression and metastasis (Dankort et al., 2009). To explore the effects of 4′-BR on 

melanoma metastasis, we analyzed the resected lungs from the mice at the termination of the 

experiment. Visually, we observed a marked decrease in lung metastasis at the end of study 

(17 weeks) as shown in Figures 5a. Additionally, using melanoma tumors, we also found a 

significant decrease in vimentin at both protein and mRNA levels following 4′-BR treatment 

(Figure 5b). This is an interesting data, as vimentin has been reported to be a metastatic 

indicator in melanoma and its higher expression in primary human melanoma tissues may 

indicate patients with high risk of hematogenous metastasis (Li et al., 2010).

To further explore the mechanisms behind this reduction in metastatic potential, we 

validated several genes associated with melanoma progression and metastasis obtained 

from our network analysis of NanoString data. Using primary melanoma tumors obtained 
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from 4′-BR treatment group, our RT-qPCR analysis showed significant downregulation 

of several genes promoting melanoma progression and metastasis such as S1008a, Thbd, 
Il1b, Fap, Angpt1, Angpt2, Ptgs2, Fn1, Jam3, and Spp1 (Figure 5c). We also validated 

two tumor suppressor genes Zap70 and Rorc which have been shown to inhibit melanoma 

metastasis. Zap70 showed a significant increase, while Rorc showed a marked but non-

significant increase in 4′-BR treated tumors (Figure 5d). Further, some of the significantly 

modulated genes obtained from NanoString data analysis were found either with no change 

or not significant in our validation by RT-qPCR such as Osm, Il21r, Ccr5 and Gpr183 
(Supplementary Figure S3). Together, these results strongly support the anti-metastatic 

potential of 4′-BR treatment in BrafV600E/PtenNULL melanoma tumors.

Collectively, our investigation demonstrates the ability of 4′-BR to inhibit melanoma in 
vivo with no noticeable adverse effects in a human-relevant melanoma mouse model. 

Additionally, 4′-BR was able to visibly reduce melanoma metastasis to the lungs, which 

was associated with reductions in metastasis-related genes via RT-qPCR. These results in 

combination with high-throughput multiplex analysis using Nanostring Mouse PanCancer 

Immune Profiling Panel suggest that 4′-BR, a dual SIRT-1 and SIRT-3 inhibitor, may 

be a promising anti-melanoma agent with anti-metastatic and immunomodulatory effects, 

warranting further investigations including clinical studies.

MATERIALS AND METHODS

Animals and materials

Animal experiments were approved by the University of Wisconsin (UW) Institutional 

Animal Care and Use Committee. Genetically engineered Braftm1Mmcm Ptentm1Hwu Tg(Tyr-
cre/ERT2)13Bos/BosJ mice (8-9 weeks old) were purchased from The Jackson Laboratory 

(Stock Number: 012328; Bar Harbor, ME). Mice were maintained under defined conditions 

and experiments were performed in accordance with the NIH Guide for the Care and Use 

of Laboratory Animals and institutional guidelines. Mice were acclimatized for at least 

one week before start of the experiment. 5-([E]-2-[4-bromophenyl]vinyl)benzene-1,3-diol 

(4′-BR) was obtained from Aobious (Gloucester, MA). 4-hydroxytamoxifen (4-HT) was 

purchased from Cayman Chemical (Ann Arbor, MI).

In vivo melanoma development and treatments

Localized melanoma tumors were induced on the back skin of BrafV600E/PtenNULL mice as 

described previously (Dankort et al., 2009). Briefly, dorsal hair was removed and 2 μL of 

5 mmol/L 4-HT dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO) 

was topically applied in four discrete spots on 10-week-old mice for three consecutive days. 

Mice were monitored for overall health and the presence of cutaneous malignant melanoma. 

As shown in Figure 1a, after 2 weeks mice harboring established melanoma were randomly 

divided in 5 groups (n=6, 3 male and 3 female) and treated with 4′-BR (5, 10, 20 and 30 

mg/kg b.wt.; intraperitoneal (i.p.); 3d/week for 5 weeks) or an equivalent volume of vehicle 

(50% DMSO + 50% polyethylene glycol (PEG)).

Chhabra et al. Page 8

J Invest Dermatol. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tumor analysis and lung metastasis

During the study, mice were monitored for melanoma development. Tumor growth was 

determined using digital calipers, and tumor sizes were represented as mean±SEM (n=6). At 

the termination of the experiment, tumors were measured using a digital caliper and tumor 

volume was calculated using the formula 0.5×length×width2. Further, at the termination of 

experiments tumors were excised, and weighed before being divided into either formalin (for 

immunohistochemistry (IHC) analysis) or snap-frozen (for protein/RNA analysis). Lungs 

were harvested and fixed in Fekete’s solution (Overwijk and Restifo, 2001) to visualize 

metastasis. All other analyses related to metastatic markers were performed using primary 

melanoma tumors obtained from 4′-BR treatment and control groups. Statistical significance 

was determined via t-test using GraphPad Prism software.

Quantitative immunodetection analysis by ProteinSimple

Quantitative immunodetection analysis was done on protein lysates per manufacturer’s 

protocol (see Supplementary Materials and Methods). Briefly, protein from tumor tissues 

were isolated in 1X RIPA lysis buffer (Millipore, Burlington, MA) with Protease 

Inhibitor Cocktail (Thermo Scientific, Waltham, MA) and PMSF (Amresco, Solon, OH), 

and quantified using Pierce BCA Protein assay kit. Protein expression was measured 

with automated protein capillary electrophoresis using a ProteinSimple Wes instrument 

(ProteinSimple, San Jose, CA). The assay was optimized for the targets of interest and tissue 

samples (Supplementary Figure S4 and Supplementary Figure S5, Supplementary Table S1).

Immunohistochemistry (IHC)

After excision, tumors were fixed in 10% formalin for 48 hours before rinsing and stored 

short-term in 70% ethanol. After fixation, tissues were embedded in paraffin, sectioned, 

and mounted on slides at the UW Translational Research Initiatives in Pathology (TRIP) 

lab. IHC analysis was performed as described recently (Singh et al., 2020a) utilizing ABC-

HRP reagent (Vector Labs, Burlingame, CA), Vector Red chromogen and hematoxylin 

per manufacturer’s protocol. The primary antibodies used in IHC analysis are detailed in 

Supplementary Table S2. Imaging and analysis were performed per details in Supplementary 

Materials and Methods. Statistical analysis was performed using two-tailed unpaired 

Student’s t-test using GraphPad Prism software.

RNA isolation and reverse transcription-quantitative real-time PCR (RT-qPCR)

RNA was isolated using the RNeasy Plus kit and quantified using the BioTek Synergy H1 

multimode plate reader. RNA from 6 mice were pooled in each group to make 3 groupings 

of RNA per group for further analysis. cDNA was made using M-MLV reverse transcriptase 

and oligo dT primers. RT-qPCR analysis was performed using QuantStudio 3 with SYBR 

Premix Ex Taq II with cDNA and primers (Supplementary Table S3). Relative mRNA 

levels were analyzed using ACTB as endogenous control and ΔΔCT algorithm. Statistical 

significance was determined via multiple t-tests using the Holm-Sidak method to correct for 

multiple comparisons using GraphPad Prism software.
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NanoString PanCancer Immune Profiling Panel analysis

RNA from control and 4′-BR-treated (30 mg/kg b. wt.) mice (n = 6) were used to determine 

the expression of 770 genes (730 immune genes and 40 housekeeping genes) via the Mouse 

PanCancer Immune Profiling Panel using nCounter platform in the NanoString Technologies 

laboratories. nSolver software with an advanced analysis module (NanoString Technologies, 

Seattle, WA) was used for quality control , normalization, differential gene expression, and 

functional pathways score analyses in accordance with guidance provided by Nanostring. 

Principle component analysis (PCA) was performed to assess sample grouping (Figure S6). 

The expression levels of each gene were normalized to housekeeping genes. Fold changes 

greater than 2-fold upregulation or downregulation with p-values <0.05 between the two 

groups were considered significant. The heat map for differentially expressed genes in 

4′-BR (30 mg/kg b. wt.) group compared to control group was plotted and analyzed using 

nSolver software.

Network analyses

Network analyses were carried out as described previously with a few modifications (Bates 

et al., 2019). Genes with significant fold changes (≥2) were considered for network analysis. 

The STRING database version 11.0 (https://string-db.org) was used for the prediction of 

gene interactions, based on information from previous publications (Szklarczyk et al., 

2019). Since the number of genes was relatively small (49 significantly altered genes), 

the minimum required interaction score was set at a confidence level of ≥0.4. Using 

STRING, clusters were visualized by selecting the Markov Cluster (MCL) algorithm as 

part of the analysis, with an inflation parameter of 1.5. Furthermore, network edges (lines 

that connect the genes with one another) were defined in STRING as the molecular action 

between genes, to visualize the type and effect of mode of action. Afterward, gene networks 

were transferred to Cytoscape version 3.8 for visualization (Shannon et al., 2003). Nodes 

represent genes of interest while lines or edges correspond to interactions between those 

genes. Visualizations were refined using Adobe Illustrator 2019.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 4′-BR significantly reduced melanoma tumor growth in BrafV600E/PtenNULL mice.
(a) Experimental design. (b) Representative images of BrafV600E/PtenNULL mice after 

treatments with 4′-BR (5-30 mg/kg b.wt.; intraperitoneally; 3d/week for 5 weeks) from 

each group at the end of the study (week 17). (c) Average tumor volume per group for weeks 

13-17. (d) Average tumor weight per group at the end of study (week 17). (e) Average body 

weight per group for weeks 13-17. All data are presented as mean ± standard error of the 

mean. *p<0.05.
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Figure 2. 4′-BR significantly modulated cell proliferation, survival, growth factor signaling and 
oxidative stress markers in BrafV600E/PtenNULL mice.
(a) Representative images of Ki67 protein expression by IHC (40X objective and 10X 

ocular) on an Olympus BX53 microscope. Each image is one quadrant (25%) of dimensions 

of 1360 x 1024 pixels. Ki67-positive tumor cells with bright red nuclear staining were 

counted manually. Stromal cells were excluded from counting. The fraction of Ki67-positive 

cells was determined as Ki67 positive tumor cells divided by total tumor cells. (b) 

Representative images of PCNA, Survivin, and IGFBP5 IHC (40x magnification, scale bars 

= 100 μm) and relative mRNA levels of Pcna, Survivin, Igf1, and Igfbp5 as determined by 

RT-qPCR. (c) mRNA expression analysis of activators of antioxidant response element, Nrf2 
and Keap1 (by RT-qPCR) and their ratio. Data are presented as mean ± standard error of 
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the mean, with statistical analysis performed using one-way analysis of variance with Tukey 

multiple comparisons. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Each bar represents 

a pool of six animals, as described in the Materials and Methods section. 4′-BR, 30 mg/kg 

body weight of 4′-bromo-resveratrol; IHC, immunohistochemistry.
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Figure 3. 4′-BR significantly modulated genes associated with cancer immune signaling, as 
determined using NanoString PanCancer Immune Profiling Panel.
RNA from primary tumor tissues of control and 4′-BR treated groups were subjected to 

NanoString analysis of 770 immune-related genes. (a) Left: Heatmap displaying each gene 

with color-coding for up- or down-regulation (orange and blue, respectively). Right: Volcano 

plots displaying each gene’s −log10 (P-value) and log-two-fold change in 4′-BR treated 

group normalized with control group. Some of the most statistically significant genes are 

labeled in the plot. (b) Cancer immune pathways significantly (*P<0.05) modulated by 

4′-BR treatment. Data are presented as mean ± standard error of the mean (n=6) of the 

pathway score.
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Figure 4. 4′-BR significantly modulated immune genes/proteins that are interconnected and have 
supporting or suppressing roles in melanoma.
Network analysis and IHC analysis were carried out as described in the Materials and 

Methods section. (a). Representative network of all differentially expressed genes. Genes 

were grouped according to their main functions provided by Nanostring as well as their GO 

term biological process. Gene roles include innate/adaptive immune functions (yellow/top 

group), basic and immune cell functions (purple/right group), chemokine/cytokines (green/

left group), and cancer progression/adhesion/apoptosis (pink/bottom group). Grey lines 

indicate interactions. (b). Representative network of differentially expressed genes with 

previous evidence of being linked with melanoma. Genes were categorized according 

to previous evidence suggesting that they either support melanoma progression (orange) 

or hinder melanoma progression (blue). Downregulated genes have black solid outlines, 

while upregulated genes have black dashed outlines. Line color and termini indicate types 

of interactions: uncategorized evidence of interaction (grey), binding (purple), reaction 

(brown), catalysis (pink), transcriptional regulation (yellow), activation (green), inhibition 

(red), positive interaction (arrow), and negative interaction (bar-headed line). (c) IHC 

analysis of immune and inflammatory markers in 4′-BR treated BrafV600E/PtenNULL 

melanoma tumors. Representative images of PDL-1, IL-1β, and NLRP3 protein expression 
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by IHC (20X magnification, scale bars = 100 μm) in a Lionheart FX automated microscope. 

4′-BR: 4′-bromoresveratrol (30 mg/kg body weight).
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Figure 5. 4′-BR significantly reduced melanoma metastasis in BrafV600E/PtenNULL mice.
(a) Lungs were harvested and stored in Fekete's solution at the end of study (week 17). 

Images of all collected lungs are shown. Data is available for 4-5 mice per group. (b) 

Expression of vimentin protein (by IHC, 40x magnification, scale bars = 100 μm) and 

mRNA (by RT-qPCR). (c) RT-qPCR validation of melanoma promotor genes identified by 

NanoString analysis (d) RT-qPCR validation of melanoma suppressor genes identified by 

NanoString analysis. Data are presented as mean ± standard error of the mean. *P<0.05, 

**P<0.01, ***P<0.001, ****P<0.0001. Each bar represents a pool of six animals, as 

described in the Materials and Methods section. 4′-BR, 30 mg/kg body weight of 4′-bromo-

resveratrol.
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Table 1.

A detailed literature analysis of the 30 genes associated with melanoma and significantly affected by 4′-BR 

treatment in BrafV600E/PtenNULL mice.

Gene Fold 
change Gene functions in melanoma

FN1 −3.20 • Regulates EMT and blocks apoptosis; Promotes melanoma metastasis (Li et al., 2019, Olbryt et al., 2011).

CCR1 −3.40 • Present in melanocytes and melanoma cells; Expression increases with melanoma progression (Seidl et al., 
2007).

ITGAM −2.43 • Linked with more risk of melanoma (Lenci et al., 2012).

NLRP3 −4.25 • Enhances tumorigenesis (Zhai et al., 2017); Activates IL-1β secreted by advance stage melanoma cells 
(Okamoto et al., 2010); Inhibition diminishes migration and invasion (Lee et al., 2019).

S100A8 −2.58 • Enhances melanoma carcinogenesis (Ruma et al., 2016); Supports metastatic progression (Chen et al., 2019, 
Xiong et al., 2019); Higher expression in metastatic than primary melanoma (Wagner et al., 2019).

C1QB −2.06 • Upregulated in blood samples of melanoma patients from all stages, especially in patient’s leukocytes (Luo et 
al., 2011).

CD33 −2.13
• CD33+ myeloid-derived suppressor cells (MDSCs) are associated with increased risk of melanoma progression 
as well as less survival; A potential predictive and prognostic biomarker for advanced melanoma (Jordan et al., 
2013, Sade-Feldman et al., 2016, Stanojevic et al., 2016)

F13A1 −2.04 • Highly expressed in advanced tumors and functions in blood coagulation cascade and resistance to treatments 
(Azimi et al., 2014).

IL1B −8.19 • Expression increases with melanoma progression (Jiang et al., 2015); Upregulated in metastatic melanoma (da 
Silva et al., 2016).

FAP −1.97 • Expressed at high levels in melanoma (Wong et al., 2019, Zhang and Ertl, 2016); Promotes metastasis by 
deteriorating the ECM, which helps cancer cells disseminate and invade other tissues (Waster et al., 2017).

JAM3 −2.36 • Associated with cell invasion and metastasis (Arcangeli et al., 2012); Expressed in metastatic melanoma cell 
lines (Ghislin et al., 2011).

COL3A1 −2.36 • Mutation in Col3a1 gene is linked to melanoma progression and less survival (Zhao and Pritchard, 2016).

SERPING1 −2.27 • Forms part of a network formed by immune-related genes which in melanoma is dysregulated (Martins et al., 
2011).

TLR2 −2.14 • Expressed in melanoma cells (Mauldin et al., 2015); Activates chemokines, cytokines, dendritic cells, and 
tumor-associated macrophages (Wang et al., 2018).

ANGPT2 −2.40
• Stimulates angiogenesis (Huang et al., 2017, Monteiro et al., 2019, Pomyje et al., 2001); A tumor promoter 
that can be used as a predictive and prognostic biomarker in melanoma; High expression is correlated with less 
survival; involved in resistance to treatments (Wu et al., 2017).

SPP1 −2.36 • Spp1 gene is mutated in melanoma (Tu et al., 2019); Consistently upregulated in metastatic stages (Hill et al., 
2015).

THBD −2.02 • Loss is associated with tumorigenesis, invasion, and metastasis (de Oliveira Ada et al., 2014, de Wit et al., 2005, 
Furuta et al., 2005); Decreased levels are correlated with less survival (Hsu et al., 2012).

IL21R −8.00
• A tumor suppressor gene progressed to clinical trials in metastatic melanoma for a plausible treatment (Davis 
et al., 2007); Can be used in combination with chemoimmunotherapy to improve the treatment response by 
increasing the tumor-specific T cells (Petersen et al., 2010).

OSM −5.12
• In both early and advanced melanoma tumors and cell lines, this cytokine has tumor suppressive functions 
(Lazar-Molnar et al., 2000, Xu et al., 2014); Decreases cell adhesion and invasion both in vitro and in vivo in 
mouse metastatic cells (Ouyang et al., 2006).

ANGPT1 −2.19 • Play important role in angiogenesis and tumor development (Gardizi et al., 2012); However, ANGPT1 deficient 
mice exhibited increase in lung metastasis of B16F10 melanoma cells (Michael et al., 2017).

PTGS2 −1.97

• Commonly present in advanced melanomas, increases cell proliferation, migration, and invasiveness as well as 
promote tumor growth and metastasis (Ercolano et al., 2019); Elevated levels are significantly correlated with 
thicker melanomas as well as high proliferation and poor survival (Ercolano et al., 2019, Minisini et al., 2013, 
Panza et al., 2016).

GPR183 −2.15 • Upregulated in metastatic melanoma (Qin et al., 2011, Sun and Liu, 2015); High levels decrease immune 
responses, increases cell proliferation, and activate B-cell migration (Niss Arfelt et al., 2017).
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Gene Fold 
change Gene functions in melanoma

CCR5 −2.68

• Associated with cancer progression and EMT with higher expression in melanoma cells (Liu et al., 2019, 
Umansky et al., 2017); Decreasing levels have inhibitory effects on primary tumors as well as metastasis (Liu 
et al., 2019); Stimulates MDSCs when inflammation occurs during melanoma progression (Blattner et al., 2018, 
Umansky et al., 2017).

IL12RB2 2.62
• Acts as a tumor suppressor which activates immune responses and stops angiogenesis and even tumor growth 
(Airoldi et al., 2007); In invasive cells, expression decreases due to hypermethylation, which is associated with 
increased tumorigenesis (Koroknai et al., 2020).

XCL1 2.52
• High expression is correlated with good prognosis (Xiong et al., 2020); It recruits dendritic cells (DCs) to tumors 
(de Andrade et al., 2019), slow down and protect against tumor growth and even cause tumor regression (Botelho 
et al., 2019, Terhorst et al., 2015).

CCL1 2.52 • Both T cells and NK cells depend on CCL1 to activate immune reactions leading to antitumor effects (Klarquist 
et al., 2016, Vilgelm et al., 2015).

ZAP70 2.00 • An immune response gene associated with longer patient survival (Bogunovic et al., 2009); Activated T cells 
with increased levels of ZAP70 leads to T cell toxicity against melanoma (Kong et al., 2009).

RORC 2.27

• Expression decreases as melanoma progress, lowest expression in advanced stages and metastasis. High 
expression is correlated with good prognosis (Brozyna et al., 2016); A tumor suppressor which regulates local 
homeostasis (Fan et al., 2018, Slominski et al., 2014). High levels lead to inhibition of melanoma in vivo (Purwar 
et al., 2012).

TNFSF10 3.00
• TNFSF10, a proapoptotic gene, decreased in melanoma cells suggesting it contributes to better survival and 
growth (Su et al., 2009); Induces an immune response and has a very high and selective capability to kill cancer 
cells (Eberle, 2019, Huang et al., 2020).

CCL19 2.36
• Presence of CCL19, an immune and inflammation-related chemokine, is significantly associated with longer 
survival (Messina et al., 2012); Contributes to T cell and DCs survival as they migrate to the lymph nodes 
(Gonzalez et al., 2014, Vilgelm and Richmond, 2019).
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