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Many actin structures are nucleated and assembled by the barbed-end tracking polymerase

formin family, including filopodia, focal adhesions, the cytokinetic ring and cell cortex. These

structures respond to forces in distinct ways. Formins typically have profilin-actin binding

sites embedded in highly exible disordered FH1 domains, hypothesized to diffusively explore

space to rapidly capture actin monomers for delivery to the barbed end. Recent experi-

ments demonstrate that formin mediated polymerization accelerates when under tension.

The acceleration has been attributed to modifying the state of the FH2 domain of formin.

Intriguingly, the same acceleration is reported when tension is applied to the FH1 domains,

ostensibly pulling monomers away from the barbed end. Here we define an emerging mod-

eling method, which we call mesoscale modeling, and develop a model of formin-mediated

actin polymerization in the context of this method. In our model, we include monomer

capture and delivery by FH1, which sterically interacts with actin along its entire length.

The binding of actin monomers to their specific sites on FH1 is entropically disfavored by

the high disorder. We find that this penalty is attenuated when force is applied to the FH1

domain by revealing the binding site, increasing monomer capture efficiency. Overall poly-

merization rates can decrease or increase with increasing force, depending on the length of

FH1 domain and location of binding site. Our results suggest that the widely varying FH1

lengths and binding site locations found in known formins could be used to differentially
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respond to force, depending on the actin structure being assembled.
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Chapter 1

Introduction

Life is all around us and has existed for billions of years. From small microorganisms that live

at the bottom of the ocean to plants and trees that harness energy from the sun to humans

that build planes and study the universe, the diversity of life is striking. Surprisingly, in all

of this complexity and diversity there is simplicity as well. Physics tells us that all matter

is composed of atoms. Atoms can combine to form a molecule, which can, in turn, combine

with other molecules to form macromolecular complexes, and so on. Therefore, the stuff of

life is composed of very basic building block with known rules of interactions. But living

things seem to behave much differently than the lifeless molecules that give rise to them.

Thus, we might ask specific questions about living organisms: What makes something living

or not? What are the rules and laws of living organisms? Can we study these systems and

use the knowledge gained to improve human life? Of course, this is the triumph of modern

medicine. And so we push forward toward a deeper understanding of these systems in hopes

of even greater success.

The first question we might ask, like physicists, is what is the basic unit of life, i.e., the

smallest, simplest thing we may describe as living? In biology, the answer is the cell. The
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cell is the smallest unit of life. All living things are either unicellular (such as bacteria) or

multicellular (such as human). To study life, then, we must study cells and their behaviour.

Figure 1.1: Diversity of biomolecules found in nature. Biomolecules (especially proteins)
exist in a broad range of shapes and sizes. They can range in size from a few nanometers
to more than a micron (e.g., peptidoglycan, titin). Probing these various lengthscales
presents difficult challenges both experimentally and computationally. Source: Online at
https://en.wikipedia.org/wiki/Proteinstructure.

We should understand the various parts of the cells and how they interact to do a specific
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job. Cells are made up of a great diversity of parts, parts which are of course made up of

atoms and molecules, so we can call them biomolecules. Most biomolecules can be classified

into one of four major groups: lipids, which play important roles in compartmentalization;

carbohydrates, which are involved in energy storage; nucleic acids, which are crucial in storing

information that allow cells to build biomolecules; and finally, perhaps the most diverse of

all, proteins.

Figure 1.1 illustrates the great diversity of biomolecules found in nature. These molecules

come in in many different length scales and assume a wide variety of shapes. Biomolecules

can range in size from a few nanometers to more than a micron (e.g., peptidoglycan, titin).

The following chapters focus exclusively on the study of proteins.

The vast number of proteins found in nature is staggering. In the human genome alone,

there are roughly 20,000 genes that code for proteins [1]. As one might expect, these proteins

performs a remarkably diverse array of jobs in the cell. Proteins can function as signaling

molecules that notify a cell to do something like activate the immune system [2], proteins can

play the role of enzymes that speed up chemical reactions [3], they can be molecular motors

that deliver cargo to different parts of the cell [4], and also structural components that can

serve as tracks for cargo delivery [5]. It is no surprise, then, that the study of proteins is

crucial to the study and understanding of life.

The understanding of protein structure and function has not only academic value but is

also a necessary step for the development of new therapeutics and diseases treatments.

Protein malfunction is associated with many different diseases including cystic fibrosis [6],

Huntingon’s disease [7], and Crohn’s disease [8].

Proteins have great physical and functional diversity. For the scientist, probing these vari-

ous length scales presents difficult challenges both experimentally and computationally. In

Chapter 2, I will review current methods for studying proteins, both experimentally and
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computationally. In this chapter, I also introduce an emerging coarse-grained computational

method called mesoscale modeling. We will give a definition of the method and few examples

in which this method has been applied. Our goal here is to distinguish this method from

other computational and coarse-grained methods and make explicit it’s techniques.

In Chapter 3, we introduce the actin-associated formin family of proteins. We discuss recent

puzzling experimental results concerning their force response behavior.

In Chapter 4, we employ the mesoscale modeling techniques described in Chapter 2 to formin.

We describe a mesoscale model of formin and two computational approaches to studying this

model.

In Chapter 5, we discuss the results of our computational study of formin and find good

qualitative agreement with experiment. We also provide experimental prediction that may

test the model.

And, finally, in Chapter 6 we discuss the implications of our results and give general remarks

on the future of similar methodologies.
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Chapter 2

Background on Mesoscale Modeling

This chapter describes a joint work with Matt Bovyn and Lara Clemens. Here we review

two of the most common experimental methods for studying proteins. We discuss their

applications and limitations. We then review a few common theoretical techniques and

introduce an emerging method that is proving useful to a growing number of researchers.

We provide our own definition of this approach and discuss its applications. In the following

chapter, we then apply this method to study formin proteins.

2.1 Existing methods

2.1.1 Experimental techniques

One of the most powerful and advanced techniques for studying proteins and their structure

is X-ray crystallography. This technique has been used successfully for decades to understand

protein structure and has played crucial roles in drug discovery and design.

In this method of study, a large solution of a single protein is created and formed into a
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crystal. Since X-ray wavelengths are on the order of angstroms, they are perfectly suited

to study the angstrom-scale atomic distances in proteins. The protein crystal is irradiated

with X-rays, which creates a diffraction pattern in a detector. The details of the diffraction

pattern can be used to determine the distances between atoms in the protein and thus map

out a 3D structure of the entire protein. An illustration of this is shown in Figure 2.1.

Figure 2.1: X-ray Crystallography. To study proteins via X-ray crystallography protein
crystal must first be created. The protein crystals are then irradiated with X-ray frequency
light which cause diffraction. The resultant diffraction pattern can be analyzed to give
a three-dimensional structure of the protein.Source: Retrieved September 25, 2016, from
http://oregonstate.edu/instruction/bi314/fall11

X-ray crystallography is not without its shortcomings. First, proteins are usually not stud-

ied in vivo using this method because X-rays damage cells and tissue. Second, the proteins

studied must be crystallizable: they must be able to exist in a static conformation that is

6



repeated in the crystal structure, a necessary condition for X-ray diffraction. This makes it

difficult to study proteins that have inherent flexibility in their conformations, such as intrin-

sically disordered proteins which may be present in more than 20 percent of some eukaryotic

genomes [9]. Third, many protein crystals do not diffract to atomic resolution and this

results in significant errors in the estimations of their structures. One group of researchers

studied several X-ray structures and stated that the accuracy of X-ray crystallography has

been largely overestimated [10]. Lastly, studying a single protein via this method can be

time consuming and may take up to 6 months to solve a single structure [11].

Figure 2.2: Nuclear Magnetic Resonance. In NMR, a highly purified protein solution
is obtained which is placed inside a strong magnetic field. Radio frequency light is sent
through the sample and absorption of the sample is measured. The absorption information
obtained can be used to calculate distances between adjacent nuclei and thus map out
the 3D structure of the protein. In addition to structural information, protein flexibility
can be studied with this technique, important for the growing field of disordered proteins
[12].
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But where one method falls short, often other methods are developed to fill in some of

the gaps. Nuclear Magnetic Resonance Imaging (NMR) is perhaps the next most common

method of studying proteins. In this technique, protein crystals are not required to crystal-

lize; instead, what is studied is a sample typically in solution. As a side note, though, solid

state methods are being developed [13].

In a typical NMR experiment, samples are placed inside a large magnet and irradiated with

radio frequency light, as illustrated in figure 2.2. The nuclei of the atoms in the protein absorb

different frequencies of light and thus the signals detected can be mapped to individual nuclei

and distances between nuclei are measured. This information is then used to map out the

3D structure of the protein.

NMR has a few advantages over X-ray crystallography. First, the protein is being observed in

a solution and not a crystal structure and so, ideally, we are minimizing the risk of changing

its native structure. Second, NMR gains a big advantage in being able to examine the motion

of segments and conformational changes in the protein, which was totally lacking in X-ray

spectroscopy. Third, NMR is often the only way to obtain high resolution information on

intrinsically disordered proteins.

Naturally, NMR has its own limitations and these must be recognized as well. The informa-

tion from NMR studies is much more complex. The technique does not provide an image

of the sample, but rather an NMR spectrum, which requires high computational cost to

convert the data into a 3D structure.The cost of implementation is much higher than with

X-ray crystallography. Furthermore, while we gain the advantage of studying multiple pro-

tein conformations, the technique is limited to the study of smaller proteins(≤40 kDa) due

to the large amounts of data extracted from the system (each atom).

Thus, in the study of proteins we are often led to questions that greatly benefit from the

services of another kind of microscope: the computational microscope.
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2.1.2 Theoretical Techniques

In principle, the most accurate way to quantitatively describe any system composed of atoms

would be to take the ab initio quantum approach: write down and solve the time-dependent

Schrodinger equations for all particles in the system. However, current computational meth-

ods are insufficient to solve this equation for large systems. Presently, the time-independent

equation can only be solved for systems of up to 15 electrons [14]. Therefore, the application

of this method to a cell or even to a single protein is far out of reach.

In a manner of speaking, one level above the quantum-level description lies the atomistic

molecular dynamics (aMD) approach [15]. This simulation approach foregoes consideration

of electronic degrees of freedom, and instead involves modeling whole atoms as point particles

using approximated force fields to solve Newton’s equations of motion. A rough outline of

this routine is illustrated is figure 2.3

Figure 2.3: Atomic molecular dynamics. In a simplified representation of atomistic molec-
ular dynamics, proteins are studied with the Newtonian equations of motion. Each atom is
modeled in this technique and once inital positions and velocities are chosen, the following
time dynamics of the system can be evolved forward arbitrarily.

A well-known method that can handle some mesoscopic phenomena is called Dissipative
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Figure 2.4: The multiscale nature of biology and how to study it. Shown here is various
processes in biology plotted against their approximate lengthscale. These are plotted next
to the various modeling and experimental approaches used to study them. The separation
of lengthscales is 10 orders of magnitude and the separattion of timescales for biological
processes can be as large as 18(!) orders of magnitude. Source:[16]

Particle Dynamics (DPD) [17]. This method is typically interested in addressing complex

fluids in the context of biomolecules. In a DPD simulation, whole proteins are often rep-

resented as single particles. To explicitly model the fluid several water molecules are often

grouped into a single DPD particle [18]. Soft potentials are typically used to allow for larger

timesteps. Simulations for systems on the order of 100 nm3 and for timescales of 10’s or

100’s of microseconds can be performed.

At the macroscale, continuum approximations can be made instead of working on a discrete

molecular scale[19]. PDEs and ODEs can be solved numerically for much larger systems and
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timescales than molecular methods can currently handle [20].

There is practically no bound on the time and length scales that these types of models can

handle. However, continuum models typically must restrict themselves to high numbers

of particles, ignoring the discrete nature of particle interactions. Furthermore, continuum

approximations are often unable to handle crucial physical details such as micromechanics

and chemical and steric interaction between particles [21]. In the following sections, we

will argue for the need to recognize a coarse-grained modeling approach to biomolecular

modeling. We will then present an application of this method to formin proteins.

2.1.3 Discussion

Biology is a multiscale field. To describe and study biological phenomenon requires a large

variety of tools and techniques. Common experimental methods such as X-ray spectroscopy

and NMR can supply structural information for many proteins, but have difficulty directly

observing arbitrary protein dynamics that are important for understanding overall protein

function. The methods that do exist to observe dynamics are limited to local structural infor-

mation [22]. New experimental methods are constantly being developed and older methods

are being improved, but even with these improvements, computational modeling can pro-

vide a powerful tool to study real-time dynamics of evolving systems. While simulations

can never replace experiments, they allow us to test hypotheses and assumptions about

cellular mechanisms. Atomistic MD simulations allow the most accurate reconstruction of

biomolecular architecture, but computational costs are currently prohibitively large to study

large systems (∼ µm) and long timescales (∼ 10−3 s). But to reach beyond the millisecond

timescales in which these systems evolve currently requires a coarse-grained approach. This

type of approach is taken implicitly by a growing number of scientists but has yet to be

formally recognized. In the following section, we further motivate the need to recognize this
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modeling approach.

2.2 Motivation

Defining boundaries between disciplines and distinguishing between closely related disci-

plines is important for generating the correct questions each unique discipline is best suited

to answer. For example, the fields of molecular biology and biochemistry are closely related,

but their distinction allows one to decide which methodologies are best used in approach-

ing related problems. The biochemist wants to understand the chemical basis of a biological

system, while the molecular biologist is interested in identifying the molecules involved in cer-

tain cellular tasks as well as their contextual importance in the presence of other molecules.

Historically, there was some controversy in separating the field of molecular biology from bio-

chemistry but, retrospectively, the distinction has had important and beneficial implications

[23], such as the study of distinct subject matter and the development of techniques unique

to each field. In this chapter, we will similarly define a coarse-grain modeling approach called

which we call mesoscale modeling and identify example systems where such an approach is

needed.

Cell processes happen on multiple length and time scales. Understanding these processes

on all relevant scales is necessary for understanding disease states. For example, chemical

changes to membrane element organization at the nanoscale can result in a disease state at

the much larger cell scale [24]. Current molecular modeling methods are either fine-grained to

the extent that they are restricted to microscopic phenomena on length-scales of nanometers

and timescales of microseconds, or are so coarse-grained that they ignore crucial structural

molecular details such as protein flexibility, often a key factor in overall protein function.

Consider the well-studied field of biochemical networks. Computational tools are indis-
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pensable for understanding these complex multiple-component networks. Typically, when

studying biochemical networks, one defines the chemical species of interest in a system and

their reaction kinetics. If concentrations are high, number of species is high, and the system

is well-mixed, one can used well understood ordinary differential equation techniques. If the

number of molecular species is low the chemical master equation can be used [25].

There are a few disadvantages to both of these approaches to studying biochemical net-

works: both methods treat molecules as point particles and so ignore steric effects due to

the spatial extent of the molecules, which can become important in crowded environments.

Traditionally, biochemistry has worked with ideal solutions where molecules are assumed to

be point-like and concentrations are low enough that molecular crowding is not a significant

effect. In other words, traditional biochemistry has worked in environments that are unlike

actual cellular evironments [26]. Furthermore, both ODE and PDE methods are plagued

with a problem of combinatorial complexity, i.e., with the addition of each new chemical

species, the number of equations increases factorially. For example, to model a receptor with

only 10 phosphorylation sites using these techniques, one would need to define and keep track

of more than 10,000 states [27]. For more complex networks, even with modern computing

power, generating complete networks could theoretically take hundreds of year [28].

2.3 Summary of Method

A class of methods, used by many researchers, sits at a length-scale between aMD and con-

tinuum methods. We will refer to these types of models as mesoscale models. By mesoscale

models, we mean models in which proteins are modeled as collections of two or more rigid

bodies connected by flexible linkers. In this technique, the modeling resolution goes no

smaller than the size of an amino acid. Therefore, this method separates itself from an

aMD approach in that it ignores atomic degrees of freedom and models groups of atoms as
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single rigid bodies. We also distinguish the method from other closely related coarse-grained

approaches; for example, dissipative particle dynamics (DPD), where concern is largely fo-

cused on studying complex fluids and protein interaction with the fluid. In DPD, proteins

are often represented by a single sphere, and groups of water molecules are represented as

spheres. In mesoscale modeling, the focus is not on fluid interactions and instead the solvent

is modeled implicitly with random Brownian forces. The method is therefore not suited to

answer questions about solvent-molecule interactions or fluid dynamics. In exchange, the

method accesses longer timescales (one second) and length scales (micrometer).

The method also distinguishes itself from other common particle-based coarse-grained meth-

ods such as MCell [29] and Smoldyn [30]. Steric effects and protein flexibility present sig-

nificant challenges to typical particle based diffusion reaction methods. The latter method

also faces the problem of combinatorial complexity [27] in systems with many interacting

particles.

In mesoscale modeling, proteins are modeled as a collection of multiple rigid bodies (for

definitiveness, we say more than one rigid body but a number less than or equal to the

number of amino acid residues). The rigid bodies are connected by linkers which can be stiff

or soft springs, freely jointed chains, or worm-like chains. Steric effects are modeled by soft

Lennard-Jones potentials, springs, or hard wall interactions. Time dynamics can be studied

according to the overdamped Langevin equation,

ζi
dxi

dt
=
∑
all

Fi + Fbr
i , (2.1)

where xi is the coordinate of the ith particle, ζi is the drag coefficient of the particle in the

solvent, the sum is over any forces acting on the particle, and the last term represent random

Brownian forces. The solvent is therefore modeled implicitly by random Brownian forces.

The algorithm used to solve to this equation is often called the Euler-Maruyama method. If
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only the equilibrium properties of the system are of interest and energetic interactions are

known, Metropolis algorithms can be used to derive steady state equilibrium distributions

and study system state probabilities.

Often in coarse-grain simulations, the coarsening of a protein into elements is a problem

in itself. In many cases, it can be argued that a domain-based approach to coarse-grain

modeling is most sensible. In this approach, a solid body may represent a different protein

domain or collection of domains, i.e., conserved parts of a protein sequence that fold into a 3D

structure and can exist independently of the remaining protein amino acid chain. Example

of such protein domains are the Src homology 2 (SH2) domain, the Phosphotyrosine-binding

(PTB) domain, and the Fibronectin (FN) domain, among many others. The occurrence of

the same domains in multiple proteins suggests that the domain’s function is independent

of any particular protein and instead it modulates or enhances the function of its resident

protein in a particular way. Mesoscale modeling is well-suited to address question about

such independent domains without getting caught up in atomistic details. Figure 2.5 shows

an example of how one might construct a coarse-grained model of the T-cell protein Zap70

in this method. In other cases, segmenting the protein into rigid bodies may have different

motivations. In this approach the grouping of proteins into solid bodies is not necessarily

limited to pre-defined protein domains. Identifiable sites that may have functional relevance

can be represented as solid bodies too. For example, in formin proteins, consecutive proline

residues bind to profilin [32], so it may be ideal to model consecutive proline tracks as single

rigid bodies for their functional significance.

By modeling proteins as rigid bodies connected by flexible linkers the method is also well

suited to investigate the roles of intrinsically disordered domains, which are receiving in-

creased attention in scientific literature [33, 34, 35]. In the next section, we present a few

example systems that have been studied successfully using a mesoscale modeling approach.
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N-SH2

Kinase domain

SH2-kinase Linker

Interdomain-A

C-SH2

Figure 2.5: An example of coarse-grain modeling: Domain based coarse-graining. Here is
an example of how the T-cell associated protein Zap70 might be modeled at the mesoscale.
Each rigid domain is model as a sphere with proportionate size and each flexible domain is
modeled as a soft spring. Figure adapted from [31]

2.4 Systems

In this section we present a few examples of systems whose properties and behavior call for

a mesoscale modeling approach.

2.4.1 Pleomorphic Ensembles and Signaling networks

Our first important example involves the formation of protein complexes which pervades

nearly all cell and multi-cellular activities. In some cases, these complexes are made up of

weakly interacting multivalent molecules, i.e., molecules which contain multiple sites to which

other molecules may bind. Such complex behavior is found in many different systems such in

mRNA granules, cell signaling networks, and focal adhesions [28]. These protein ensembles

that form may be dimers or large complex structures. As discussed above, problems of

combinatorial complexity arise when multiple protein interactions are considered and large
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numbers of variable complexes are formed. In many of these systems, large molecular clusters

can form even when binding affinities are weak. Such clusters may lead to increased local

concentrations of various molecules and may induce signaling events [28] . In the N-Wasp-

Nephrin-Nck, system such interactions lead to a sol-gel phase change that is governed by

the degree of protein phosphorylation. The many weakly interacting particles render an

MD approach unfeasible; and the combinatorially growing number of possible bound states

renders an ODE approach unfeasible. Excluded volume effects are also significant in many

of these systems; for example, when receptors cluster and result in less access to interior

proteins.

Generally, micrometer-sized protein clusters at membranes are observed in many signaling

pathways [36]. It has been suggested that interactions between multivalent proteins could

be a general mechanism for cytoplasmic adaptor proteins to organize membrane receptors

into micrometer-scale signaling zones [36].

2.4.2 Molecular Motors

Microtubules are cytoskeletal polymeric proteins that play important roles in many cell

functions. They provide the cell with structure along with other filamentous proteins like

actin [38]. They are important for cell division in the formation of the mitotic spindle [38].

And they are also important in transporting organelles and other cargo to different parts of

the cell [38]. This transport process happens via the microtubule motor families, dynein and

kinesin, which convert energy from ATP hydrolysis into mechanical work. Molecular motors

are implicated in disease states [39]. For example, in neurons clogging of axional transport

[40] can result if the kinesin protein does not deliver its cargo down its microtubule track

correctly. Also, since kinesins are involved in mitosis they are important targets for possible

cancer therapy. Characterizing kinesin motors at the single-molecule level and predicting
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Figure 2.6: An important, multi-component signaling network: the T-cell signaling network.
Following T Cell receptor a series of downstream signaling molecules interact. Each of
these proteins have unique structural features that may be crucial to the performance and
robustness of the network. This signaling network is currently under intense investigation.
Adapted from [37]

their ensemble behavior remains challenging and requires coordination between experiments

and modeling to understand and predict single motor dynamics.

There have been many different approaches in the modeling of molecular motors. Modeling

molecular motors at the atomic level remains unfeasible due to motor size and the timescale

of motor dynamics (on the order of µs per step [41]).

Bouzat et. al modeled individual kinesin motors and added steric interactions between the

motors [42]. They studied run lengths that happen on the order of seconds. They found that
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steric interactions have a large influence of the behavior of the cargo (force-velocity curve,

run length, stall force). They also found that, in the presence of interacting motors, multiple

tracks are necessary for cargos to move efficiently. Mesoscale modeling allows us to assess

the effects of steric interactions, which in this case turn out to be crucial to overall behavior

and experimental results.

Kutys et al. studied several different models for the neck linker of kinesin-1 [43]. They

attempted to recapitulate experimental data from kinesin mutants which found that run

length decreases with increased neck linker length. They found that neither worm-like chain

nor Hookean spring models for the kinesin neck linker can match the decreased processivity

of the mutant. Surprisingly, a physically non-intuitive model was able to reproduce the

decreased processivity with increasing neck-linker length. Biologically, this gives insight

into kinesins stepping mechanism and the biophysics of the neck linker. This is a powerful

example of mesoscale modeling: a model any more coarse-grained (or fine-grained) would

not be able to connect micrometer scale run lengths with neck linker properties.

Figure 2.7: The molecular motor Kinesin. This protein is important in microtubule trans-
port. It is made up of two microtubule-binding heads connected to a stalk by a flexible neck
linker, which is in turn linked to a C-terminal tail that binds to cargo. Many questions still
stand about its full structure and function. Source: [44]
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2.4.3 DNA

DNA is a ubiquitous molecule essential to all forms of life. It encodes the instructions for

all the basic building blocks of living organisms. Its importance in biology can hardly be

overstated. DNA malfunction and mutation underlies many genetic disorders and cancers.

Understanding DNA from a biophysical perspective is essential in developing new approaches

to curing these types of diseases.

DNA looping is a key behavior of the DNA molecule that is important for transcriptional

regulation. The malperformance of DNA looping can adversely affect the survival rate of the

organism. Chen et. al studied DNA looping dynamics using the DNA binding Lac repressor

protein [45] and found that looped and unlooped lifetimes depend on a thermodynamic

quantity called the J-factor. Their results imply that looped and unlooped lifetimes depend

on protein and DNA elasticity. Later, the same group studied this effect closer with a

mesoscale polymer chain DNA model [46] that includes the energetic effects of bending and

twisting. One of their key findings was that the lifetime dependence of the J-factor is largely

due to the interaction length between the protein and the DNA. With their model, they are

also able to address questions about the twist energy vs. bending energy when the DNA

begins to loop and interact with itself.

DNA has been modeled in many ways with varying degrees of success. Atomic models

of DNA are currently unable to explore the polymers full conformational space. Coarse-

grained mesoscale modeling can provide a useful computational tool to investigate DNA

biomechanics.
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2.5 Discussion

Many modeling approaches exist in mathematical and computational biology. Distinguishing

fields and subfields has many useful advantages; among them are the development of new,

unique tools and discovering new questions and insights. We have explicitly defined an

approach which we call mesoscale modeling. This approach is used implicity by some [42,

43, 45, 46]. This is a coarse-grained modeling approach that addresses the substructure of the

proteins it studies without getting lost in atomic detail. The approach also respects protein

flexibility (disordered proteins, as some may say), a feature that has been largely ignored in

past approaches. The importance of this approach is found in many systems. More than

20% of the proteins in some eukaryotic genomes are predicted to be disordered [9] and it

has also been estimated that the occurrence of intrinsically disordered regions is significantly

higher in cancer-associated and signaling proteins than other eukaryotic proteins [47].
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Chapter 3

Background on formin

3.1 Formin proteins

Cells respond to force — both internal forces, e.g., generated by molecular motors, and exter-

nal forces, e.g., during migration through the extracellular matrix. The entire mechanosen-

sation pathway is under intense investigation [48, 49]. In many cases, a major downstream

output is to the actin cytoskeleton, via changes in actin assembly and disassembly. Under-

standing cell mechanosensation therefore requires understanding actin regulatory molecules

and, specifically, how these respond to force [50, 51]. In this chapter, we study the protein

formin using mesoscale methods described in Chapter 2.

The formin family of molecules comprise one of two main actin nucleators in cells, along

with Arp2/3. Formins also accelerate actin assembly by up to 15-fold [52, 53]. They are

the primary actin assembly factors for the cytokinetic ring [54, 55], stress fibers and focal

adhesions [56], nuclear [57] and perinuclear [58] actin, and the general cytoplasmic actin

network [59]. They also play a role in assembling actin in filopodia [60], lamellipodia [61],

and the cell cortex [62, 63].
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Formin family members vary widely in length and sequence [52, 64]; however. they all have a

structured FH2 domain that binds to the F-actin barbed-end, and an unstructured FH1 do-

main. The FH2 domain homo-dimerizes and promotes nucleation of new F-actin filaments.

This dimer can remain attached to the barbed-end upon polymerization, processively track-

ing the most recently polymerized F-actin. The dominant model for how formin accelerates

polymerization [53], shown schematically in Fig. 5.1A, relies on the FH1 domains. These

contain polyproline tracks that have high affinity for actin monomers bound to profilin. Two

attributes lead to the rapid binding of profilin-actin to the polyproline tracks: first, there

are multiple tracks on most FH1 (and two copies of FH1, since formin is dimerized at FH2);

second, since FH1 is disordered, it is presumed to extend several nanometers in space, and

rapidly explores a region, searching for profilin-actin monomers. Once the profilin-actin

monomer is bound to FH1, the effective concentration experienced by the barbed-end is

magnified, allowing rapid polymerization. We refer to this as a capture-and-deliver model,

which has been quantitatively analyzed [32, 53, 65, 66].

The above-mentioned actin structures, assembled by formin, all respond to force in differ-

ent ways. Recent simulation of the cytokinetic ring required the assumption that formin-

mediated actin polymerization responds to tension by reducing polymerization velocity in

some models [67, 54], but not others [55]. On the other hand, focal adhesions increase F-actin

assembly upon application of force [68]. Filopodia can extend and retract, producing both

tensile and compressive forces on actin [60, 69], suggesting complex force-assembly curves.

To understand formin’s role in mechanosensation, two recent in vitro experiments applied

picoNewton-scale tensile forces to the FH2 domain of barbed-end-bound formins mDia1 [70]

and Bni1p [71]. In both cases, the researchers found significant acceleration in polymeriza-

tion rates in the presence of profilin. This is consistent with previous theoretical models in

which the FH2 dimer acts as a gate [70, 72]. The FH2 dimer’s ability to track the barbed-

end necessitates the gate being occasionally closed, temporarily disallowing polymerization.
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Forces bias the gate to be open or closed, leading to force-dependent polymerization. How-

ever, the researchers found that tensile force applied to the distal end of the FH1 domain

also led to an acceleration [70]. This is counter-intuitive, since, according to the capture-

and-deliver model, FH1 must “bunch up” to deliver the profilin-actin to the barbed-end.

Tensile force should pull FH1’s polyproline tracks away from the barbed-end, dramatically

reducing overall polymerization.

In next chapter, we computationally explore a simplified coarse-grain model of the capture-

and-deliver mechanism. Following this, we find that the disorder of the FH1 domain, which

allows it to efficiently search for profilin-actin monomers, implies another effect: the FH1

is often tangled, sterically inhibiting the binding of profilin-actin to the polyproline tracks.

This steric inhibition is weak, but its reduction upon application of picoNewton-range ten-

sile forces is significant. We find this is sufficient to explain the overall force-insensitivity

reported. Interestingly, this effect is highly dependent on the length of FH1. Our work there-

fore addresses two other issues: the wide range of lengths, especially in FH1, for different

formin family members; and how these different formins may provide different force-responses

in different actin structures, thereby endowing the cell with complex mechano-responsiveness.
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Chapter 4

Mesoscale model of formin

The next two chapters describe a joint work with Lara Clemens and Jun Allard, who both

contributed portions of their code for simulations, as well as many helpful discussions and

criticisms.

Disordered chains of amino acids are often modeled as freely-jointed chains, giving good

agreement with experiment [43, 73, 74]. In these models, the polymer is assumed to be

composed of N rigid rods of length δ ≥ 0.3 nm, roughly the size of an amino acid, connected

by a joint that freely explores 3-dimensional configurations. The rod length is referred to as

the Kuhn length of the polymer. The persistence length, an alternative quantity measuring

protein flexibility, is half the Kuhn length [75].

There is evidence that some disorded proteins have local rigidity and can give rise to corre-

sponding persistence lengths of up to 3 amino acids [76]. In particular, proline rich amino

acid sequences may be more rigid than a random coil [76]. We have therefore modeled the

formin FH1 domain as a freely-jointed chain with Kuhn length, δk = 1.2 nm. We first simu-

late the FH1 polymer as a bead-spring polymer using Langevin dynamics methods and then

develop an adiabatic approximation method.
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4.1 Materials and Methods

4.1.1 Model description

The FH1 and FH2 domains of formin are the most common domains found throughout all

formins, but other domains are present in some formins. These include the diaphanous in-

hibitory domain, diaphanous auto-regulatory domain, and Rho GTPase binding to GTPase-

binding domains [52]. While these domains have regulatory roles, we omit them from our

model. The barbed-end and FH2 dimer gate are represented by a single stationary region

that switches between open and closed states, depending on applied force [70]. This is con-

nected to a bead-and-spring polymer representing the FH1 domain. In equilibrium, for small

bead size, this is equivalent to the freely-jointed chain model for a polymer. This polymer

model qualitatively describes a disordered domain and has demonstrated good quantitative

agreement in many cases [43, 73, 74]. The polymer’s flexibility is described by the Kuhn

length, representing the distance between beads. This is related to the commonly-used per-

sistence length, which is half the Kuhn length. Following Receveur et. al [76], most results

assume lk = 1.2nm. We find our results are qualitatively unchanged for different Kuhn

lengths (data not shown). Profilin-actin monomers are represented as spheres with radius

rmon = 2.2 nm. These spheres are free to diffuse in a large box of edge length Lbox. The

number of profilin-actin monomers in this box divided by its volume provides us with the

measure of profilin-actin concentration (converted to µM). The F-actin monomers in the

polymer are assumed to have a negligible effect on the FH1 configuration.

Monomers and beads in the polymer interact via a short-range repulsive force, except for

one bead, which we identify as the polyproline binding site. This bead (red in Fig. 5.1B) has

a short-range repulsive and medium-range attractive interaction with monomers. The rate

previously estimated for profilin-actin binding to polyproline is consistent with assuming

it is diffusion limited [66, 77]. Therefore, in our model, the monomer-binding site interac-
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tion does not have an energy barrier, although one would be straightforward to add. The

monomers and beads experience Langevin forces, meaning both a random force correspond-

ing to thermal diffusion, and directed forces from their interactions with each other. Finally,

an external force is added to the last bead in the polymer. This external force is in a single

constant direction, which we identify as the direction in line with the F-actin polymer (this

direction is not strictly arbitrary, since other directions may implicate the rest of the F-actin

polymer, which we do not explicitly model). When a monomer enters the FH2-barbed-end

region, we count a polymerization event.

4.1.2 Model simplifying assumptions

In order to isolate the features primarily responsible for force-response, our model omits

several features that are likely present in formin. We only consider FH1 binding to profilin-

actin, and therefore omit direct profilin binding to FH1 (where no actin monomer is present)

and direct G-actin monomer binding to the barbed-end. Including full profilin-actin inter-

action dynamics would be straightforward in this model, in a similar manner to previous

work [53, 65]. This is not expected to change the force-response results. Free profilin would

occupy polyproline sites, hindering some profilin-actin binding, while direct G-actin binding

to the barbed-end would occur at a fixed rate (that includes the occlusion factor due to the

FH1 domain).

We neglect premature dissociation, assuming that once the monomer is bound to FH1,

polymerization is favored over detachment, i.e., failure to polymerize. According to thermo-

dynamic argument we use, occlusion by the rest of the FH1 domain could influence both

association rate and dissociation rates, but the physical mechanism for influencing associa-

tion is clear, while its influence on dissociation is conceivable but less clear (e.g., the FH1

could provide a repulsive or attractive force). Therefore, as a starting point, we assume that
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dissociation is negligible and not influenced by the rest of the polymer. Further experimental

biochemical studies could support or modify this assumption.

We use the simplest polymer model, a freely-jointed chain, that omits possible Oosawa

depletion effects, solvent interactions — i.e., we assume a theta-solvent — and long-range

interactions within the chain [78].

4.1.3 Langevin simulation description

To explore the behavior of these model components, we perform Langevin simulation using

the Euler-Maruyama algorithm. At each timestep of ∆t = 10−10 s, the position of each

bead and monomer is updated according to the overdamped Langevin equation [79], shown

explicitly in the next section. For data in Fig. 4.2, we show statistics (median and full

distribution) for 6 separate simulation runs, each of total simulated time 0.1 s. The total

number of polymerization events observed in each run was at least 200. The Langevin

simulation is used in Fig. 4.2 to validate the adiabatic approximation.

We first simulated the FH1 polymer as a bead-spring polymer using Langevin dynamics

out-of-equilibrium methods. The springs connecting the beads are set to be stiff enough to

resist extension but soft enough to allow for a timestep of ∆t = 10−10 s. Let xi denote the

position of the ith FH1 bead and ibind denote the bead that represent the binding site, which

binds to profilin-actin monomers. The position of the ith bead, for i 6= ibind, is updated using

the following Langevin dynamics equation in the overdamped (i.e., low Reynolds number)

regime

ζi
dxi

dt
= Fspring

i + Fsteric
i + Fbr

i , (4.1)

where xi is the coordinate of the ith bead and ζi is the drag coefficient of the bead in the
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Table 4.1: Dynamics model parameters.

Symbol Value Meaning
α 0.9 nm Range of attractive force [80, 81]
rPA 2 nm Profilin-actin radius [82]
rFH1 1 nm FH1 monomer radius [83]
ηwater 1 mPa·s Viscosity of water
lk 1.2 nm Kuhn Length of FH1 polymer
b0 140 nm Simulation box length

kspring 200pN/nm Stiffness of spring connected FH1 beads
ksteric 150pN/nm Stiffness of spring resisting FH1-PA interaction
kbind 150pN/nm Stiffness of spring attracting FH1 binding site-PA interaction

kboundary 200pN/nm Stiffness of boundary walls
∆t 10−10 s Numerical time step
cPA 4.5µM Profilin-actin concentration

cytoplasm. we use ζ = 6πηrsphere For i = ibind, the position is updated using the equation

ζi
dxi

dt
= Fspring

i + Fbind
i + Fbr

i , (4.2)

which includes the binding force between the site and the profilin-actin monomer. Finally,

for the bead furthest from the FH2 domain we use

ζi
dxi

dt
= Fspring

i + Fsteric
i + Fbr

i + Fpull
i , (4.3)

which includes the additional constant pulling force.

The profilin-actin monomers are modeled as spheres of radius rPA. Let yj denote the co-

ordinate of the jth profilin-actin monomer. Then the position of the jth profilin-actin

monomer is updated using

ζj
dyj

dt
= −Fsteric

j + Fboundary
j +−Fbind

j + Fbr
j , (4.4)

We must assume a functional form for each of the forces on the right-hand sides of the above
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Figure 4.1: Estimate of polymer equilibration time. Mean end-to-end distance of a single
polymer simulated using Langevin dynamics from a straight initial configuration for the
formin parameters listed in Table S1. Blue line represents mean end-to-end distance from
equilibrium theory. We find it takes approximately 10−4 s for the mean to converge to the
equilibrium value. The parameters used in both simulations are: number of beads N = 25;
rest length of each spring, lk,= 2.4 nm. Smaller bead size leads to faster equilibration times.

equations. We use a Hookean spring for each of these forces. We have explored different

force functional forms (for example, hard-wall interactions) and found that the qualitative

behavior is unchanged. Specifically, we use

Fspring
i = kspring(|(xi − xi−1)]− lk)(x̂i − x̂i−1)
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Figure 4.2: Adiabatic approximation accurately matches full Langevin simulation A) The
mean time to capture is plotted vs. force for the langevin and metropolis simulations. B)
Mean time to deliver, as a function of force for the Langevin and Metropolis simulations. C)
Mean time per polymerization event is show vs. force. Metropolis and Langevin simulations
show order-of-magnitude agreement. The parameters used in simulations are: number of
rods, N = 25; length of each rod,lk = 2.4 nm; concentration of profilin-actin, cPA = 4.5
µM. For the Langevin simulation the bead size, rbead, is 0.3 nm. Number of polymerization
events for each data point are approximately 250.
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and

Fsteric
i =


∑

j ksteric(|(yj − xi)]− (rPA + rFH1)(ŷj − x̂i) if |(yj − xi)] ≤ (rPA + rFH1)

0 otherwise

Fbind
i =



∑
j kbind(|(yj − xi)]− (rPA + rFH1)(ŷj − x̂i) if (rPA + rFH1) ≤ |(yj − xi)]

≤ (rPA + rFH1 + α)

0 otherwise

Fboundary
i =


kboundary(|(yj | − b0)n̂ if |(yj)| ≥ b0

0 otherwise

where the sum over j is over all FH1 (profilin-actin) beads. Here, lc is the boundary

of the simulation box and n̂ is the inward pointing normal to the simulation box surface.

This boundary condition is needed to maintain a controlled concentration (particles per unit

volume) of profilin-actin monomers.

The Brownian force is a random variable that satisfies

〈Fbr
i (t)〉 = 0

〈Fbr
i (t0)Fbr

j (t1)〉 =
2kbT

ζi
δijδ(t0 − t1).

As an initial test of the Langevin simulation, we start with an FH1 polymer fully extended

and allow thermal forces alone to drive the simulation’s dynamics. Results of the mean

end-to-end length are shown in Fig. 4.1.

It takes approximately ∼ 10−4 s for the filament to reach a steady state end-to-end distance.

The mean value agrees with polymer theory. From this, we conclude that the time for

the filament to reach its equilibrium distribution, also known as the equilibration time, is

∼ 10−4 s.
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The Langevin simulation is used to compute Fig. 4.1, the equilibration time [84], which in-

dicates approximately how long the polymer takes to explore its ensemble of configurations.

For typical formin parameters, we find this is ∼ 10−5 − 10−4 s, as shown in Fig. 4.1. On the

other hand, formin-mediated polymerization occurs on 10−2−10−1 s timescales (see Results).

This separation of timescales allows us to make an adiabatic approximation in which the

polymer’s rapid exploration of space is represented as an equilibrium probability distribu-

tion. We can then use equilibrium computational techniques like Metropolis sampling [84],

vastly improving the computational time thus allowing us to explore parameter variations

efficiently. We verify that this adiabatic approximation produces the same mean times as

the full Langevin simulation in Fig. 4.2 A full derivation of equations we use in the adiabatic

approximation are found in the following sections. The equations arising from the adiabatic

approximation are used to generate the parameter exploration shown in Fig. 5.2-Fig. 5.5.

Fig 4.2 verifies agreement between our Langevin Dynamics simulations and the adiabatic ap-

proximations made above. For computational efficiency, we simulate a polymer with slightly

larger Kuhn length, lk = 2.4 nm. Results for capture, delivery, and overall polymerization

show order of magnitude agreement, as shown in Fig. 4.2.

4.2 Computational method: Adiabatic approximation

The small timestep leads to computational inefficiencies that are prohibitive for full param-

eter exploration. However, the equilibration time we find above suggests a separation of

timescales between polymer dynamics, which is fast, and binding events (profilin-actin cap-

ture and delivery). Below, we use our Langevin simulator to verify the validity of these

assumptions. We perform simulation on the polymer model described above using the

Metropolis algorithm, which generates an ensemble of polymer configurations at constant

temperature [84]. Configurations are either accepted or rejected based on their associated
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energy, as follows:

1. Generate new configuration and calculate its energy, Enew.

2. If Enew < Eold, accept configuration.

3. If Enew > Eold, accept new configuration with probability P = e
−

Enew−Eold
kBT .

Our simulation is in nondimensional coordinates R = r/lk. Force on the polymer f and

radius of the ligand are nondimensionalized to yield the nondimensional force F and ligand

radius RPA,

F =
lk
kBT

f, (4.5)

RPA =
rPA

lk
. (4.6)

The location of the ligand’s binding site is s, measured along the contour length of the

filament from the barbed-end, 0 < s < lc. The number of rods is N = lc/lk. Measured in

Kuhn lengths, the binding site has location i = s/lc.

Fig. 4.3 shows the force extension behavior of our model agrees well with analytical force-

extension for a freely-jointed chain (see, e.g., [78]), which predicts that

〈z〉 = Nlk

(
coth

(
Flk
kT

)
− kT

F lk

)
. (4.7)

From the ensemble, we compute two quantities:

• Probability of occlusion: Qocc (i, N,RPA, F ). This probability corresponds to the prob-

ability

Qocc = Pocc(s, lc, lk, rPA, f). (4.8)
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Figure 4.3: Comparison to theory. The mean z coordinate, rz, versus force in simulation is
compared to theory. The parameters used in both simulations are: number of rods N = 60;
length of each rod, lk,= 1.2 nm.

• Probability distribution of the polymer’s distal end, in dimensionless units, Q0(i, F ),

and dimensional units

P~r(0) = Q0/l
3
k. (4.9)

From these, we define the effective concentration at the barbed-end,

c0(i, f) = P~r(0; i, f) =
1

l3k
Q0 (i, F ) (4.10)

where concentration are in nm−3, rather than the (more standard) µM, to which we

convert in the main text.
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4.2.1 Dynamics under timescale separation and strong binding

Capture

Binding of the profilin-actin monomer to the polyproline on formin occurs at rate

kcap = kPAF cPA (4.11)

where cPA is the concentration of available profilin-actin monomers. From the thermo-

dynamic detailed balance condition [84], the dissociation constants K ≡ koff/kPAF in the

absence or presence of the polymer (denoted with a superscript 0 or 1, respectively) are

related by

K0

K1
= exp

(
G0 −G1

kBT

)
(4.12)

= exp

(
S0 − S1

kB

)
(4.13)

=
P 0

P 1
= 1/P 1 (4.14)

where Gj = Ej − TSj is the free energy of binding in the free or rigid state, Sj = kBlnP j is

the molecular entropy of binding, and P j is the probability in the canonical ensemble that

the configuration allows for binding.

To test whether the profilin-actin monomer is occluded or not, we exploit the chain’s local

coordinate system, where

ri ≡ xi+1 − xi (4.15)
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is the unit tangent vector, and ê1i and ê2i are the two orthonormal vectors, such that

ê2i = ri × ê1i. (4.16)

The candidate position of profilin-actin is a sphere centered at xi+rPAê1i. All other positions

along the FH1 chain are checked to see if they are within this sphere. If any are, the profilin-

actin is said to be occluded for this configuration.

If profilin-actin binding to the formin polyproline is diffusion-limited, k0
PAF = 4πDPArPP

where DPA is the diffusion coefficient of a freely diffusing profilin-actin monomer and rPP is

the effective radius of binding of a polyproline. Note that this describes the motion of the

profilin-actin monomer and not the dynamics of the FH1 chain, and is therefore independent

of chain reconfiguration (see Delivery section below). In addition, if binding is strong and

approximately irreversible until the profilin-actin monomer is delivered, then koff will be

approximately unaffected by interference by the rest of the polymer, and thus constant.

Under both of these assumptions, we arrive at

kPA−F =
4πDPArPP

(1− P 1)
(4.17)

= P 1 2kBT

3η

rPP

rPA

(4.18)

= (1− Pocc)
2kBT

3η

rPP

rPA

. (4.19)

This leads to a capture rate

kcap = (1− Pocc)
2kBT

3η

rPP

rPA

cPA (4.20)

= (1−Qocc)
2kBT

3η

rPP

rPA

cPA (4.21)

where the probability Pocc comes from Eq. 4.8.
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Delivery

We refer to transition from formin-bound to barbed-end-bound as delivery. Under either

rate-limited or diffusion-limited and ergodic binding to the barbed-end, the delivery rate is

kdel = kPABc0 (4.22)

where c0 is defined in Eq. 4.10. The association rate of actin-profilin to the barbed-end has

been measured previously and found to be kPAB ≈ 10µM−1 s−1 [53]. Like capture, delivery

can also be impeded by occlusion from the rest of the FH1 polymer. Therefore, we include

the occlusion probability of the origin (where FH1 meets the barbed-end), P 0
occ. Together,

this leads to a delivery rate

kdel = kPABP
0
occ P~r(0; i, f) (4.23)

=
2kBT

3η

P 0
occQ0

l3k
. (4.24)

Note that the occlusion effect in delivery does not significantly affect force-dependence, unlike

its effect on capture, because the force-dependence of delivery due to local concentration

reduction is a much stronger effect.

Polymerization rate

The entire process of polymerization is composed of capture and delivery. If these events are

Poisson, their total rate is

kpoly =
(
(kcap)−1 + (kdel)

−1)−1
. (4.25)
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Combining Eq. 4.8, 4.10, 4.19, 4.24 and 4.25, we arrive at

kpoly =

((
1

1− Pocc(i, N,RPA, f)

2kBT

3η

rPP

rPA

cPA

)−1

+

(
2kBT

3η
P~r(0; i, f)

)−1
)−1

(4.26)

Force sensitive gate

We now relax the assumption that the gate is force insensitive. Jegou et al. [70] propose that

the FH2 dimer has two configurations: an open configuration that allows addition of actin

monomers and a closed configuration which disallows addition of actin monomers. Then,

under tension, they propose that the FH2 favors the open conformation. In our simulation

this can be described quantitatively by setting

kdel → Pgate(F )kdel, (4.27)

where

Pgate(F ) =
p0

p0 + (1− p0)exp (−f5.4 nm/kbT )
(4.28)

with an empirical factor p0 = 0.56 [70].

Correction for moving polyproline

Since polyproline is exploring a small region of space, it presents a larger target for binding

compared to if it were stationary. We can account for this change by setting the effective

binding target size, rPP , to

rPP → max(rbead, Rg), (4.29)
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with

Rg =
1√
6

√
〈r2

ee,i − (〈ree,i〉2〉 (4.30)

and ree,i is the end-to-end distance of the ith FH1 monomer, in this case the location of the

binding site. This number decreases with force, since force tends to confine the polymer

(and thus the polyproline) to a smaller region of space. We find, however, that the effect is

small, and our results are not significantly changed with or without this correction factor.
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Chapter 5

Results

5.1 Coarse-grain model of formin at the actin barbed-

end

A snapshot of our model simulation is shown in Fig. 5.1B. To describe the main features

of capture-and-deliver, our model is highly simplified. It is composed of: the FH2 dimer

gate (black rounded rectangle) that allows or disallows polymerization depending on force; a

single FH1 domain (blue chain), represented as a freely-jointed chain withN elements; several

profilin-actin monomers (orange); and we study one or several binding sites (red, one shown

here) on FH1 at a time, at location i, which we identify with a polyproline track. A force F

is applied to the distal element of the chain, in a direction we identify as away from the F-

actin filament. A detailed description of these components is provided below. To explore the

behavior of this model, we first simulate it using a time-explicit Langevin simulation. We then

exploit several properties of the model, such as a separatation of timescales between polymer

relaxation timescale and monomer binding rates, to derive adiabatic equations describing

process. This allows rapid exploration of parameters not possible with the full Langevin
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A
 Profilin-Actin monomer

FH1

Binding Site on FH1

FH2

B
 

x(nm)y(nm)

z(nm)

F-actin
barbed end

Figure 5.1: (A) Schematic of model components. Formin FH2 dimer (black rounded rectangle)
binds processively to the F-actin barbed-end. It is connected to two FH1 disordered polymers,
modeled as freely-jointed chains (blue). These contain one or multiple binding sites (red) which
may bind to profilin-actin monomers (orange circle). (B) Langevin simulation of a single FH1
domain. For clarity the Kuhn length used here is lK = 2.2 nm and polymer bead size of 0.6 nm,
whereas most results we present use lK = 1.2 nm and polymer bead size of 0.3 nm.

simulation. We verify that the adiabatic model recapitulates the Langevin simulation and

compute model behavior using the adiabatic equations. Importantly, we explore different

parameters describing FH1 including total length of the FH1 domain and the location along

its length of the binding site.

As expected, pulling on a freely jointed chain elongates it. Fig. shows the probability dis-

tribution of the distance between the barbed-end and the binding site under various forces.

Forces as small as 3.4 pN — comparable to in vitro experiments [70, 71] and in vivo per-

filament forces on actin [50] — are sufficient to pull the ends away from each other by tens

of nanometers, much larger than the size of a profilin-actin monomer.
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Figure 5.2: Forces in the pN can pull FH1 a
significant distance from the barbed end. Prob-
ability distribution of the distance between the
F-actin growing end and the G-actin site on
FH1 versus force. At 3.4 pN (dark green curve),
the binding site is on average ∼ 25 nm from
the barbed-end. At ∼ 30 pN (light purple) the
polymer is approximately straight. Parameters
used in both simulations: Kuhn length lk = 1.2
nm; Location of binding site in Kuhn lengths:
ibind = 60.

5.2 Model predicts that delivery rate to barbed ends

is decreased by force on FH1.

The above results suggests that force on FH1 should be a significant impediment to polymer-

ization. We therefore use our full Langevin simulation to simulate the full polymerization

process. We find that formin-mediated polymerization process can be divided into two se-

quential steps. Capture occurs at rate kcap, and delivery occurs at rate kdel. Together, these

lead to the overall polymerization rate is given by kpoly. In this section, we use our adiabatic

equations to investigate how the delivery rate changes under tension as a function of FH1

properties.

Once a profilin-actin monomer is captured, the barbed-end will experience a magnified local
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Figure 5.3: Monomer delivery rates decrease
dramatically under pN range forces. (A) The
local concentration of the binding site at the
growing end decreases with increasing pull
force. (B) The delivery rate, kdel, decreases ex-
ponentially with force. This delivery rate ac-
counts for the FH2 gating factor, shown in in-
set, taken from [70]. The parameters used in
both simulations are: number of rods N = 60;
length of each rod, lk = 1.2 nm. Results are
shown for different binding sites along the poly-
mer, (ibind/N) = 0.3, 0.5, 0.7 and 0.9 (shown as
different colors).

concentration of profilin-actin [74]. Fig. 5.3A shows the local concentration versus force for

fixed FH1 length and varying binding site locations. We compute the local concentration of

the binding site at barbed-end by simulating the polymer explore its equilibrium ensemble of
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configurations, giving us a three-dimensional probability density describing the location of

the binding site. The local concentration is equal to the three-dimensional probability density

of the binding site at the barbed-end (converted from nm−3 to µM). At zero force, this

concentration is ∼ 104 µM, demonstrating the potential for acceleration of polymerization of

several orders of magnitude. However, the local concentration is reduced with force as the

binding site is pulled away from the growing end. This effect is exponential in character,

leading to a reduction of several orders of magnitude for just a few pN of force.

The overall delivery rate to the barbed-end is computed as follows. We use the local con-

centration of the binding site at the barbed-end, together with the measured barbed-end

binding kinetic rate, to compute the frequency of polymerization “attempts.” Because of

FH2 gating, not all of these attempts will be successful. Therefore, this rate is multiplied by

the probability of the FH2 to be in an open configuration, Pgate(F ). Together, this leads us to

the delivery rate, kdel (see Supporting Material for details). Results are shown in Fig. 5.3B.

We find that regardless of binding site location, when a pulling force is applied to the FH1

domain, kdel will be reduced, despite the force-induced opening of the FH2 gate.

5.3 Force acceleration arises naturally in capture rate

due to entropic cryptic binding.

Rough estimates of formin-mediated polymerization assume, for simplicity, that FH1 is a

“ghost” polymer that does not sterically exclude nearby volume. However, at a molecular

level, profilin-actin cannot access the binding site if the FH1 polymer is significantly “tan-

gled,” as shown in Fig. 5.4A (right). Under zero force, the polymer takes more tangled

configurations, occluding profilin-actin monomers from the binding sites. To study this ef-

fect, we examine the polymer as it rapidly explores an ensemble of configurations. A fraction
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Figure 5.4: Force acceleration arises due to cryptic binding. (A) As the FH1 polymer en-
tropically explores a range of configurations, some configurations allow profilin-actin binding
(left), while for others, the binding site is sterically occluded from the monomer (right).
(B) Probability of steric occlusion decreases slightly under pN forces. (C) Capture rate kcap

increases with force as the occlusion probability decreases. The parameters used in both
simulations are: number of rods N = 60; length of each rod, lk,= 1.2 nm. Note that the
capture rate is shown per µM of free profilin-actin concentration. Results are shown for
different binding sites along the polymer, (ibind/N) = 0.3, 0.5, 0.7 and 0.9. Occlusion proba-
bilities (and therefore capture rates) are approximately symmetric for binding sites an equal
distance from either end of FH1, and maximal for binding sites half-way along FH1.
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of these configurations, the parts of the FH1 chain occupy the same space as the monomer

would if it were bound, and thus prevent monomer binding. We refer to this fraction as

the occlusion probability. We compute this by simulating the FH1 domain as it explores its

equilibrium configuration ensemble, and, for each configuration, checking whether a spher-

ical monomer can access the binding site (in a pre-defined, specific orientation). Fig. 5.4B

shows this probability for fixed FH1 polymer length and proflilin-actin concentration, cPA,

and varying binding site location. At zero force, the occlusion probability is ∼ 80%, mean-

ing that the binding site is accessible approximately one-fifth of the time. In all cases, the

occlusion probability is reduced under force.

The location of the binding site along FH1 influences the occlusion probability. For binding

sites close to either proximal (barbed-end) or distal ends of FH1, occlusion is weak (green

and pink curves). Occlusion is maximal for binding sites located half-way along the polymer

(Fig. 5.4B and Fig. S4-S5), as intuitively expected.

We find that the monomer capture rate, kcap, is inversely related to the occlusion probability

(see Supporting Material for details), as shown in Fig. 5.4C. Capture rate increase with

force for all binding site locations as the binding site is revealed under tension. The effect is

several-fold for pN range forces.

5.4 Overall polymerization rate shows complex force

dependence.

We have established two competing effects in the formin polymerization process: delivery

rate decreases under force, while capture rate increases as the FH1 polymer is straightened

out. We examine overall polymerization rate force dependence for varying FH1 lengths

and binding site location. We find that the full Langevin simulation produces an overall

47



Force (pN)

Lo
ca

tio
n 

of
 B

in
di

ng
 S

ite
 (f

ra
ct

io
n 

of
 c

on
to

ur
 le

ng
th

)

FH1 domain length (nm)

B

A

k
( s

  )
p
o
ly

A
cc

el
er

at
io

n
D

ec
el

er
at

io
n

, p
ol

ym
er

iz
at

io
n 

ra
te

-1

Fold Change in Polymerization
Rate under 3pN Force

0.1
0.3
0.5
0.7
0.9

40 60 80 100 120 140 160
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3
0.5

1

1.5

2

2.5

3

3.5

Figure 5.5: Polymerization rate shows complex force dependence. (A) For dif-
ferent locations of binding sites, polymerization rates can show a net increase
or decrease under pN range forces. (B) The ratio of polymerization rates at
3 pN to force-free polymerization, shown for different polymer lengths (hori-
zontal axis) and varying locations of binding sites along the polymer (vertical
axis). For short polymers with binding sites near FH2, 3 pN leads to acceler-
ation (orange-red), while for long polymers with binding sites far from FH2,
3 pN leads to deceleration (blue). Both sub-figures assume: length of each
rod lk,= 1.2 nm, concentration of profilin-actin, cPA = 0.16 µM . In (A), the
number of rods is N = 60, and results are shown for different binding sites
along the polymer, (ibind/N) = 0.3, 0.5, 0.7 and 0.9.

polymerization rate in agreement with the formula

kpoly =

(
1

kdel

+
1

kcap

)−1

. (5.1)
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This is expected for approximately uncorrelated sequential Poisson processes. The lack of

correlation suggests that, e.g., capture is not significantly more likely when the FH1 is further

from the barbed-end.

Fig. 5.5A shows polymerization rate versus force for fixed FH1 length and profilin-actin

concentration cPA with varying binding site location. Depending on the location of the

binding site, polymerization may exhibit a net increase in polymerization rate or a net

decrease over this force range. Polymerization also exhibits a maximum with respect to

force for the binding site location at 90% of the contour length. This is a general feature of

the force-polymerization curves: For sufficiently high forces, the penalty in delivery rates is

much larger than the enhancement in capture rates, and the polymerization rate will drop.

Thus, a modest increase of the capture rate of a few tens of percent can compensate the

large decrease of the delivery rate of several orders of magnitude. This surprising result can

be understood heuristically from the above equation for the overall rate of sequential events.

If the two processes have rates that are different by more than an order of magnitude, the

overall process will be dominated by the slowest rate. At low force, capture is slower than

delivery, therefore even as the delivery rate drops by orders of magnitude, it has little effect

on the overall rate. At a critical force, which depends on the polyproline location (e.g., 2.5

pN for i/N = 0.9), the delivery rate has been reduced so much that delivery is now the

slower process. Above this force, even a large change in capture would not influence the

overall rate.

Fig. 5.5B shows overall change in polymerization for varying FH1 lengths and binding site

locations by comparing the ratio of the polymerization rate at 3 pN to the polymerization

rate at zero force. See also Fig. 5.6 and 5.7 for the same data plotted against absolute

position along the FH1 chain, i, rather than i/N . The yellow region marks the boundary

between overall polymerization increase and overall polymerization decrease. For binding

sites far away from the barbed-end, delivery is the rate limiting process. For binding sites
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close to the barbed-end, delivery is faster and capture is the rate limiting process, thus

reduction in monomer occlusion results in overall increase in polymerization rate. Note

that for parameters outside the ranges shown in Fig. 5.5B, the same trends continue. For

example, shorter polymers exhibit less acceleration, but they never exhibit deceleration.

Taken together, these results predict a complex force-dependence by formin family members

depending on the location of binding sites and FH1 length.
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Figure 5.6: Full exploration of FH1 length and binding site location. Same as Fig. 5.7 but
the horizontal axis shows the binding site as a fraction of total length. Note the symmetry
in capture rates. The parameters used in simulations are: lk = 1.2 nm; concentration of
profilin-actin, cPA = 1 µM.

Figure 5.7 and 5.6 show how the capture, delivery, and polymerization rates change with

force for varying FH1 lengths and binding site locations. Also shown is the fold change in

these rates. The two plots are essentially the same with Fig. 5.7 being on an absolute length

scale instead.
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Figure 5.7: Full exploration of FH1 length and binding site location. The parameters used
in simulations are: lk = 1.2 nm; concentration of profilin-actin, cPA = 1 µM. In contrast to
Fig. 5.6, here we plot against the absolute position of the binding site (vertical axis).

5.5 Multiple polyproline tracks and simultaneous bind-

ing.

Many FH1 domains have multiple polyproline tracks and, therefore, it is possible for more

than one profilin-actin to be bound to a single FH1 simultaneously. Vavylonis et. al [53],

however, found that for Bni1p, where FH1 has 3 polyprolines, the occupation probability

with profilin-actin was much less than 1, suggesting that multiple simultaneous binding by

two profilin-actin subunits is rare, and by three or more is even more rare. On the other

hand, Zhao et. al [85] constructed a theoretical model under the assumption that multiple

binding is common. The question of multiple binding is, in any case, interesting from a

biophysical standpoint. Therefore, we performed limited exploration of FH1 domains with
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Figure 5.8: Multiple simultaneous binding of profilin-actin to an FH1 domain. (A) Bound
monomers swell FH1 polymer, as indicated by the increasing mean end-to-end distance (inset).
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rate is decreased slightly, ∼ 15%, by a bound monomer. The location of the bound monomer
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more than one bound monomer.

Fig. 5.8A shows the end-to-end distribution for FH1 with zero to four bound monomers.

We place the monomers at equally-spaced intervals along the polymer, avoiding the ends

themselves, as shown in the legend of Fig. 5.8A. As intuitively expected, the presence of a

profilin-actin monomer along the chain has the effect of “swelling” the polymer and increasing

its mean end-to-end distance. The effect is relatively weak, ∼ 30% increase in mean length

by four bound monomers.

The presence of a profilin-actin at one polyproline influences the ability of a subsequent

profilin-actin to undergo the capture-and-delivery process at another polyproline. To explore

this influence, we performed simulations in which, first, profiln-actin is bound to the middle

of FH1, and we study the capture-and-delivery by the distal end (Fig. 5.8B), and, second, a

profilin-actin is bound to the distal end, and we study capture-and-deliver by a polyproline
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site at the middle (Fig. 5.8C). In both cases, and at all forces, the presence of profilin-actin

on the polymer hinders the polymerization of another proflin-actin monomer. In Fig. 5.9, we

show the occlusion probability and resulting capture rate (i,ii), and local concentration and

resulting delivery rate. Interestingly, the strongest difference is in occlusion and capture,

whereas delivery is not significantly affected by the presence of the other profilin-actin.

Fig 5.9 shows capture rate, delivery rate, monomer occlusion probability and local concen-

tration of the binding site vs force for an FH1 domain that already has one monomer bound

to it. For the first case the monomer is bound in the middle for the second case the monomer

is bound at the end.

The effects of multiple simultaneous binding are relatively weak. This clarifies how to in-

terpret our results for single binding in the context of formins with multiple polyprolines:

These polyproline sites behave approximately independently, and therefore each have a poly-

merization rate that add linearly to a total, full-chain polymerization rate.
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Chapter 6

Discussion

6.1 Implications for formin

We find that the capture-and-deliver mechanism, previously proposed to explain polymer-

ization enhancement by formin, naturally leads to a complex response to force. Simulation

of our coarse-grain model provides parameter regimes (profilin-actin concentration, FH1

properties) under which polymerization may be accelerated, decelerated, or both at differ-

ent forces. The deceleration arises because pN-range forces pull the captured profilin-actin

monomer away from the barbed-end. The acceleration arises in part because the profilin-

actin binding site is weakly hidden at zero-force, and revealed under tensile forces. This is

similar to mechanically-activated cryptic binding sites exhbited by many molecules includ-

ing talin binding to vinculin [86, 87] and F-actin itself, which, under tension, has increased

binding to cofilin [88]. However, in our model, cryptic binding arises from purely entropic

effects [89].

A major prediction of our model is that the force response depends sensitively on the length of

FH1 and the location along FH1 of the polyproline tracks that serve as profilin-actin binding
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sites. The length of FH1 and, specifically, number of polyproline tracks have been previously

demonstrated to influence the polymerization rate at zero force [90]. As noted above, different

members of the formin family have widely varying lengths and distributions of polyproline,

in many cases absent from large regions of the FH1, including the 10-20% of FH1 furthest

from the barbed-end. If the cellular function of formin is to accelerate polymerization, what

is the role of short FH1 domains, and regions of FH1 without polyproline?
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Figure 6.1: Formin family members have FH1 domains that vary widely in length (horizontal
axis) and location of polyproline sites (vertical axis). Our model predicts that, all else being
equal, formins near the top-right will decelerate under force, while formins towards the
bottom-left will accelerate under force. Selected formins implicated in the cytokinetic ring
are shown in blue, while formins implicated in focal adhesions are shown in red. Data taken
from Uniprot [64], except for Bni1p, for which we show both Uniprot (P41832) and the
sequence reported in [65].

In Fig. 6.1, we show a selection of sixteen FH1 domains, defined by their annotations in

the Uniprot database [64]. We define a polyproline track as more than three consecutive

prolines [65] (for more than six consecutive prolines, we counted multiple polyprolines). We
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label formins that have been associated with cytokinesis or focal adhesions [54, 91, 92, 93,

94, 95]. Because specific biophysical parameters, such as persistence length and in vivo

profilin-actin availability, are unknown and likely are different for different formins, it is

not possible to directly identify Fig. 6.1 with the phase diagram in Fig. 5.5B. However,

generally, our simulations predict that formins with longer FH1 domains and polyprolines

further from the barbed-end (top-right) will decelerate under force, while formins with shorter

FH1 domains and/or polyprolines closer to the barbed-end (bottom-left) will accelerate

under force. Inspecting this data, it is tempting to speculate that certain actin structures,

including the cytokinetic ring, require actin assembly to halt upon exposure to tensile force,

while other actin structures, such as focal adhesions, require actin assembly that is enhanced

under tension. These different force-response requirements could have led to the emergence of

different length FH1 domains with different polyproline positioning. Formin genes duplicated

several times in various organisms [96]. The different formin homologues may have arisen to

satisfy these different cell-mechanical needs.

Our model is consistent with previous theoretical studies of formin. Courtemanche et. al

[65] performed experiments on FH1 domains of various lengths. To integrate their quantita-

tive experimental data, they simulated a quantitative model of polymerization in which all

spatial information, including the physical polymer properties of FH1, are implicitly sum-

marized in a single “loop closure rate”, corresponding to our delivery rate, that depends

phenomenologically on the polymer properties, including location of polyproline. Our model

lies “upstream” of their work in the sense that it provides a physical basis for their loop clo-

sure rates. The researchers also demonstrated formin-mediated polymerization by a single

FH1 domain attached to an FH2 dimer, lending support to our decision to study a single

FH1 is relevant.

Reeves et. al [73] undertook a general study of capture by a tethered receptor (polyproline in

the case of formin), and defined a quantity they term the “opacity” related to the probability
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a ligand (profilin-actin) that enters the range of the tether will bind, or escape. Their

calculations assume that steric hindrance of the tether is unimportant. We find that this

assumption is reasonable in the absence of force, since the correction factor is less than an

order-of-magnitude (see Fig. 5.4A). However, when external forces are considered, we find

that force can lead to changes in steric effects that are significant in biologically-relevant

regimes.

Zhao et. al[85] performed a theoretical study of formin emphasizing multiple simultaneous

binding (in contrast to [53], who found that simultaneous binding is rare). Their model

predicts that FH1 will lengthen upon multiple binding, increasing by ∼ 3.4 nm when four

profilin-actin are bound. This is in rough agreement with the ∼ 2 nm we find in Fig. 5.8A.

However, they interpret their results as supporting the notion that multiple simultaneously-

bound profilin-actin subunits have an influence on each other, whereas we find that influence

is relatively weak. One possible explanation for this discrepancy is the location of the

polyproline sites: the nearby neighbors they study could have a greater interaction compared

to the relatively far sites we study.

The FH2 gate itself remains mysterious. The results of [71] in the absence of profilin are

attributed by the authors to the force-response of the FH2 gate. This is consistent with the

model that the FH2 gate is the main player in profilin-free behavior of formin, while FH1

becomes important only in the presence profilin. However, it suggests that the gate may

also lead to force-deceleration under some conditions, for example, the absence of profilin.

Rapid molecular assembly is a general phenomenon in cells. The capture-and-deliver scheme,

which requires flexible molecules with disordered domain, is not unique to the formin family.

Ena/VASP molecules [91] and Sca2 in Rickettsia [97] both accelerate actin polymerization

and have the requisite properties for capture-and-deliver. For microtubules, XMAP215/mor1

uses a similar tethered delivery mechanism [98]. In these cases, the force-response has not

been elucidated. Since our model is conceptually simple, it provides an appealing start-
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ing point to understand general capture-and-deliver force-response; these molecules may fit

somewhere in the phase diagram of Fig. 5.5B.

The complex behavior we report arises from the internal polymer dynamics of formin’s

intrinsically-disordered domain. Disordered domains are of increasing importance in cell

biology [99], including their role as signaling scaffolds [100] and in liquid-like assemblies

[101]. Theoretical techniques like atomistic molecular dynamics and traditional experimental

techniques encounter major challenges when studying these highly-disordered molecules —

largely because of their long equilibration times ∼ 104 s (see Fig. 4.1), and their widely-

distributed configurations in equilibrium (see Fig. 5.2). Here, we use an alternative approach

of coarse-grain Langevin modeling [43, 73, 102] in which the molecules and sub-molecular

domains are represented as simple geometrical objects like hard spheres for actin-profilin and

a freely-jointed chain for the FH1 domain. This approach demands many simplifications, for

example in ignoring the impact of the sequence or role of the solvent. The strength of this

approach is the ability to model with few assumptions, therefore the qualitative features of

our conclusions are expected to be robust to atomistic and chemical details. We anticipate

that approaches similar to ours will help reveal complex molecular behavior for other systems,

for example cooperativity of binding to unstructured domains of signaling molecules [103].

6.2 The future of mesoscale modeling

In this thesis we first set out to distinguish a biological modeling approach, which we called

mesocale modeling. This approach serves to bridge the gap between atomic-level modeling

approaches, such as MD and coarser, particle-based methods, and continuum methods. We

looked at a few key examples where mesoscale modeling has been successfully applied.

We believe this approach addresses a key problem: it is capable of studying long timescale
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and large lengthscale systems, such as signaling networks, DNA looping, and microtubule

transport, without ignoring the important structural information about the proteins and

molecules involved. Molecular geometry and protein spatial extent is getting more atten-

tion in recent papers. Gruenert et. al utilized a coarse-grained particle based approach to

modeling proteins where each protein is represented by a particle with an orientation and

geometry of its own [104]. With this approach they obtain results that differ from classical

approaches, such as PDEs. Surprisingly, they also find that systems that forms stable states

when modeled with differential equations maybe be unstable when molecular geometry is

considered and vice versa.

In the modeling of protein folding dynamics, coarse-grained models have been successfully

implemented. This suggests that for some biomolecular systems the atomic degrees of free-

dom are unessential [105]. Mesoscale modeling always ignores atomic degrees of freedom

and models molecules, such as proteins, as rigid bodies connected by linkers. Indeed, many

eukaryotic proteins are modular and contain rigid domains connected by flexible(disordered)

linker regions [34]. Disordered regions are also closely associated to protein folding diseases

[34].

The method, of course, is not without its own limitations. Interactions between coarse-

grained elements arent known a priori so a certain degree of physical intuition(and guessing)

is necessary in determining interaction parameters and effective force fields. Since the fluid

is modeled implicitly important fluid dynamic interactions would be missed.

One could argue that in an ideal world we would have infinitely fast computers that could

solve the Schrodinger equation for any system and, in a sense, all coarser method would

be unneccessary. However, this vast amount of information would require simplification

for human understanding. We would argue coarse-grain methods are valuable regardless of

the feasibility of finer methods. They allow us to have an intuitive understand of systems

and give us understanding of the crucial details without overcomplicating our view. Coarse
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grained methods are becoming increasingly use and defining methods will help researchers

better decide when specific techniques apply. One can speculate, then, that exciting new

discoveries await in the future from mesoscale modeling studies.
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Joseph Dwyer, James Hone, Elisabeth Ehler, and Michael Sheetz. Fhod1 is needed for
directed forces and adhesion maturation during cell spreading and migration. Devel-
opmental cell, 27(5):545–559, 2013.

[94] Hiroaki Hirata, Hitoshi Tatsumi, and Masahiro Sokabe. Dynamics of actin filaments
during tension-dependent formation of actin bundles. Biochimica et Biophysica Acta
(BBA)-General Subjects, 1770(8):1115–1127, 2007.

[95] Sadanori Watanabe, Yoshikazu Ando, Shingo Yasuda, Hiroshi Hosoya, Naoki Watan-
abe, Toshimasa Ishizaki, and Shuh Narumiya. mdia2 induces the actin scaffold for the
contractile ring and stabilizes its position during cytokinesis in nih 3t3 cells. Molecular
biology of the cell, 19(5):2328–2338, 2008.

[96] Dimitra Chalkia, Nikolas Nikolaidis, Wojciech Makalowski, Jan Klein, and Masatoshi
Nei. Origins and evolution of the formin multigene family that is involved in the
formation of actin filaments. Molecular biology and evolution, 25(12):2717–2733, 2008.

[97] Laurent Blanchoin, Rajaa Boujemaa-Paterski, Cécile Sykes, and Julie Plastino.
Actin dynamics, architecture, and mechanics in cell motility. Physiological reviews,
94(1):235–263, 2014.

[98] Pelin Ayaz, Sarah Munyoki, Elisabeth A Geyer, Felipe-Andrés Piedra, Emily S Vu,
Raquel Bromberg, Zbyszek Otwinowski, Nick V Grishin, Chad A Brautigam, and
Luke M Rice. A tethered delivery mechanism explains the catalytic action of a micro-
tubule polymerase. Elife, 3:e03069, 2014.

[99] Peter E Wright and H Jane Dyson. Intrinsically disordered proteins in cellular sig-
nalling and regulation. Nature Reviews Molecular Cell Biology, 16(1):18–29, 2015.

[100] Matthew C Good, Jesse G Zalatan, and Wendell A Lim. Scaffold proteins: hubs for
controlling the flow of cellular information. Science, 332(6030):680–686, 2011.

[101] Xiaolei Su, Jonathon A Ditlev, Enfu Hui, Wenmin Xing, Sudeep Banjade, Julia Okrut,
David S King, Jack Taunton, Michael K Rosen, and Ronald D Vale. Phase sepa-
ration of signaling molecules promotes t cell receptor signal transduction. Science,
352(6285):595–599, 2016.

[102] Haosu Tang, Tamara C Bidone, and Dimitrios Vavylonis. Computational model of po-
larized actin cables and cytokinetic actin ring formation in budding yeast. Cytoskeleton,
72(10):517–533, 2015.

[103] Himadri Mukhopadhyay, Ben de Wet, Lara Clemens, Philip K Maini, Jun Allard,
P Anton van der Merwe, and Omer Dushek. Multisite phosphorylation modulates the
t cell receptor ζ-chain potency but not the switchlike response. Biophysical journal,
110(8):1896–1906, 2016.

69



[104] Gerd Gruenert, Bashar Ibrahim, Thorsten Lenser, Maiko Lohel, Thomas Hinze, and
Peter Dittrich. Rule-based spatial modeling with diffusing, geometrically constrained
molecules. BMC Bioinformatics, 11(1):1–14, 2010.

[105] Cecilia Clementi. Coarse-grained models of protein folding: toy models or predictive
tools? Current opinion in structural biology, 18(1):10–15, 2008.

70


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Background on Mesoscale Modeling
	Existing methods
	Experimental techniques
	Theoretical Techniques
	Discussion 

	Motivation
	Summary of Method
	Systems
	Pleomorphic Ensembles and Signaling networks
	Molecular Motors
	DNA

	Discussion

	Background on formin
	Formin proteins

	Mesoscale model of formin
	Materials and Methods
	Model description
	Model simplifying assumptions
	Langevin simulation description

	Computational method: Adiabatic approximation
	Dynamics under timescale separation and strong binding


	Results
	Coarse-grain model of formin at the actin barbed-end
	Model predicts that delivery rate to barbed ends is decreased by force on FH1.
	Force acceleration arises naturally in capture rate due to entropic cryptic binding.
	Overall polymerization rate shows complex force dependence.
	Multiple polyproline tracks and simultaneous binding.

	Discussion
	Implications for formin
	The future of mesoscale modeling

	Bibliography



