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Proper Orthogonal Decomposition for Reduced Order

Dynamic Modeling of Vapor Compression Systems
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177 S. Russell Street, West Lafayette, IN, USA

bBuilding Technology & Urban Systems Division, Lawrence Berkeley National
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Abstract

A computationally efficient but accurate dynamic modeling approach for
vapor compression systems is important for many applications. Nonlinear
model order reduction techniques which generate reduced order models based
on high fidelity vapor compression cycle (VCC) models are attractive for
the purposes. In this paper, a number of technical challenges of applying
model order reduction methods to VCCs are described and corresponding
solution approaches are presented. It starts with a reformulation of a stan-
dard finite volume heat exchanger model for matching the baseline model
reduction structure. Reduced order models for evaporator and condenser
are constructed from numerical snapshots of the high fidelity models using
Proper Orthogonal Decomposition (POD). Methodologies for system stabil-
ity and numerical efficiency of POD reduced order models are described.
The reduced order heat exchanger models are then coupled with quasi-static
models of other components to form a reduced order cycle model. Transient
simulations were conducted over a wide range of operating conditions and re-
sults were compared with the full order model as well as measurements. The
validation results indicate that the reduced order model can execute much
faster than a high-fidelity finite volume model with negligible prediction er-
rors.
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Nomenclature

Symbols

ṁ Mass flow rate [kg s−1]

Q̇ Heat transfer rate [kW]

A Flow or surface area [m2]

Cp Specific heat [kJ kg−1C−1]

h Specific enthalpy [kJ kg−1]

L Tube length [m]

M Mass [kg]

P Pressure [kPa]

T Temperature [C]

t Time [s]

u Specific internal energy [kJ kg−1] or control inputs

V Volume [m3]

v Velocity [m s−1]

Greek letters

α Heat transfer coefficient [kW m−2 C−1]

ρ Density [kg m−3]

τ Shear stress [N m−1]

Subscript

c Cross-sectional
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cwi Condenser water inlet

ewi Evaporator water inlet

i Inlet

o Outlet

r Refrigerant

set Set point

t Tube

w Water

1. Introduction

Since transient models for vapor compression cycles (VCC) are partic-
ularly important for designing and evaluating control and fault detection
diagnostic (FDD) algorithms, transient modeling of VCCs has become an
active area of research over past decades. The finite volume (FV) and mov-
ing boundary (MB) methods are the two dominant approaches to capture
the complex thermo-fluid dynamic behavior of VCCs (Rasmussen, 2012; Ras-
mussen and Alleyne, 2006; Desideri et al., 2016). The fundamental difference
between them is in the discretization schemes for solving the governing con-
servation equations.

In the literature, the MB method has received significant attention for
control applications (He et al., 1998; Rasmussen and Alleyne, 2006, 2004) be-
cause of its lower dimensionality and faster execution speed. Bendapudi et al.
(2008) presented comparative studies of transient predictions for a chiller
system using both methods Pangborn et al. (2015) . However, the model
complexity and inherent discontinuities associated with switching model rep-
resentations when a phase region disappears or reappears can result in sim-
ulation failure and limit capability of the MB for advanced control and FDD
purposes (Qiao et al., 2016). Recently Kim et al. (2020) presented a general
solution to eliminate the discontinuities during mode switches by adopting a
Fuzzy modeling approach. However, further studies are needed for better de-
sign of membership functions and understanding of the numerical robustness
and reliability of this MB approach.
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Figure 1: Conceptual diagram of proposed fast simulation approach

In this paper, we present an alternative modeling strategy which applies
a well-developed nonlinear model order reduction method (NL-MOR) from
other fields (e.g., turbulent flow, applied mathematics and control). The
proposed process is depicted in Fig. 1. It starts from a high fidelity dynamic
heat exchanger model (denoted as FVM). The proposed approach applies
a NL-MOR method to the FVMs in order to generate nonlinear reduced-
order models (ROM), and then couples them with quasi-static models of
other components to complete a reduced-order VCC model. This approach is
attractive since a reduced order VCC model could be extracted from the high
fidelity FV models in a systematic manner, and the inherent discontinuities
of the MB method can be naturally avoided.

Henrik and Olsson (2005) discussed feasible applications of linear and
nonlinear MOR methods for heat exchanger modeling. Linear reduced or-
der models were derived using the balanced truncation and Krylov subspace
methods from a linearized heat exchanger model. In addition, a Proper Or-
thogonal Decomposition (POD) method was applied to produce nonlinear
reduced order models. Dynamic responses of those models were compared
under a perturbation of the evaporating pressure. It was reported that dif-
ferent models showed similar accuracy and the POD model had the low-
est dimension. No comparison of simulation speed was provided. Recently,
Xu et al. (2018) developed reduced order heat exchanger models from high-
fidelity FV models for an Organic Rankine Cycle using POD. A reduced
order evaporator model was implemented for a waste heat recovery system,
and its performance was compared with the full order FV model. Simulation
results indicated that the reduced order model required less than half the
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computation time while providing satisfactory accuracy.
Although the overall idea of applying NL-MOR to VCCs is straightfor-

ward, very few studies on this topic can be found in the literature and the
few that exist (e.g. Henrik and Olsson (2005); Xu et al. (2018)), resulted
in reduced order models that are not generally applicable for most vapor
compression and expansion systems because of simplistic assumptions (e.g.,
fixed refrigerant flow rate and pressure across a heat exchanger). To the
knowledge of authors, no previous research has demonstrated the feasibility
of applying NL-MOR to a complete VCC model.

This paper 1) describes the major technical challenges of applying a stan-
dard NL-MOR to VCC heat exchangers, 2) proposes a series of steps and
algorithms to resolve them, 3) demonstrates the feasibility of applying the
NL-MOR approach to a complete VCC system, and 4) compares the re-
sulting reduced order VCC model with both a high-fidelity FV model and
experimental measurements.

2. Description of Technical Challenges

The objective of NL-MOR methods is as follows. Let (x,u,y) be (state,
system input, system output) respectively. Given a set of nonlinear ordinary
differential equations in the form of

ẋ = f(x,u), y = g(x,u), (1)

find x̃, f̃ , g̃ such that

˙̃x = f̃(x̃,u), y = g̃(x̃,u), (2)

where x ∈ RN , x̃ ∈ Rk and k � N .
In other words, NL-MOR seeks to find both dynamic states (x̃) residing

in a reduced dimensional space (k � N) and nonlinear functions (f̃ , g̃) such
that input-output responses are preserved (as much as possible).

Although several NL-MOR methods are available and have been popu-
larly used in other scientific fields, significant technical challenges in applying
them to heat exchanger modeling were found during this study in addition
to the well-known issue of designing input signals, and are summarized as
follows.

1. Popular NL-MOR methods, e.g. the proper orthogonal decomposition,
cannot be directly applied to a standard FV heat exchanger model
structure.
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2. (Local) stability of a resulting reduced order model is not guaranteed.

3. Conventional NL-MOR methods implicitly require evaluating all orig-
inal equations, although the state dimensions are reduced.

Here, the standard FV heat exchanger model means a set of mass and
energy balance equations having refrigerant pressure and enthalpies for all
control volumes of the heat exchanger as internal states, e.g. Bendapudi et al.
(2008). The selection of states eliminates variables of intermediate mass flow
rates for control surfaces, and hence it reduces the number of equations.

Those issues and the corresponding solution strategies will be explained
in the following sections.

3. Model Order Reduction Methodologies

The Proper Orthogonal Decomposition (POD) method is utilized to gen-
erate reduced order heat exchanger models in this paper, which produces
optimal low order basis functions from ensembles of data, or namely snap-
shots in the state space. After that, a stabilization method to preserve the
stability of the full order model is presented. To address the computational is-
sue, we adopt the discrete empirical interpolation method (DEIM) proposed
by Chaturantabut and Sorensen (2010) in this paper which approximates
nonlinear functions in conjunction with the POD method.

3.1. Proper Orthogonal Decomposition

A POD reduced order model can inherit the original system dynamics
from samples of state trajectories of the baseline model which can be ob-
tained from either a numerical simulation of the full-order model or experi-
mental observations. The nature of the POD is similar to the Fourier modes:
functions of interest are projected onto a set of basis functions or modes
thus providing a finite set of scalar coefficients that represent the underlying
functions. The POD method produces a particular set of modes that form
an optimal, orthonormal basis for describing the finite set of samples. More
precisely, consider a standard nonlinear system,

ẋ = f(x,u) (3)

where x ∈ RN denotes the dynamic states, u ∈ Rm denotes the system
inputs. Suppose the system is perturbed with some input profiles, and take
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Figure 2: Projection of states vector onto an orthonormal basis.

p snapshots of state responses. Let X be the ensemble of the snapshots as
follows,

X =
[
x(1) x(2) . . . x(p)

]
(∈ RN×p), (4)

where each column of the snapshots matrix represents states at a time in-
stance.

The POD seeks to find a special basis Vk(=
[
v1 v2 . . .vk

]
∈ RN×k)

which solves the following optimization problem:

min‖X − VkVk
TX‖2F

s.t. Vk
TVk = Ik

(5)

where ‖ · ‖F denotes the Frobenius norm.
The choice of the reduced basis dimension k is certainly of central impor-

tance in applying POD, as a trade-off between approximation accuracy and
computational savings. Observing the magnitude of singular values can be a
natural criterion, since POD approximation error is connected with singular
values which are formed in a descent order, as shown in (??). Practically,
the ratio of amount of energy captured by the POD basis to the total energy
is usually used to determine the dimension (Kunisch and Volkwein, 1999;
Kerschen et al., 2005; Chaturantabut and Sorensen, 2010),

E(k) =

∑k
i=1 σ

2
i∑N

i=1 σ
2
i

. (6)
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where σi is the ith singular value of X.
A threshold for determining dimension k can be set for the value of E(k),

e.g. 99.99%.
Once the reduced order basis Vk is generated, corresponding POD re-

duced order models are constructed by applying Galerkin projection. The
state space is first approximated by a linear combination of the reduced basis,

x(t) ≈
k∑
i=1

x̃i(t)vi = Vkx̃(t) (7)

where the coefficients vector x̃ ∈ Rk will be the reduced states. Then pro-
jecting the governing equations of (3) onto the reduced basis results in a
reduced system,

˙̃x = Vk
Tf(Vkx̃,u) (8)

3.2. Stabilization of POD Reduced Order Models

Preserving the stability of the original high-fidelity model is crucially im-
portant for model order reduction methods. Unfortunately, projection-based
model order reduction methods, such as the POD, often result in an unstable
reduced order model although the baseline system is (locally) stable. There
are exceptional cases where, under a certain property of the original system,
reduced order models preserve the stability regardless of basis choices (Pra-
jna, 2003). See ?? for more detailed discussions. In practice, this sufficient
condition can be used to predict or analyze the stability of a reduced order
model as a prior knowledge. However, when it is not the case, stabilization
methods should follow as a posterior process. We adopt the methodology
proposed by Amsallem and Farhat (2012). The method is motivated by
semidefinite programming (King and Sachs, 2000), and requires primarily
the solution of a convex optimization problem.

To describe the approach, let’s denote the linearized system description
of (8) at an equilibrium point as

Vk
˙̃x = AVkx̃. (9)

For stability analysis and notational simplicity, the term associated with
inputs is omitted. Let’s consider another k-dimensional subspace represented
by Wk (∈ RN×k) where each column vector of Wk indicates a basis vector
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of the new subspace1. The projection of the dynamics of (8) onto it forms
new dynamics described as follows.

W T
kV k

˙̃x = W T
kAV kx̃ (10)

According to the Lyapunov stability theorem for a LTI descriptor system,
the (asymptotic) stability criteria can be written as

V T
kW kPW

T
kAV k + V T

kA
TW kPW

T
kV k ≺ 0. (11)

The main idea of the stabilization method is to find Wk which minimizes
the deviation from the POD subspace, i.e. Vk, while aiming at preserving
the asymptotic stability of the newly projected system (10).

Given a matrix Y k+p ∈ RN×(k+p), Wk can be parameterized as

W k = Y k+pZ, (12)

where Z ∈ R(k+p)×k is the coordinates of Wk with respect to Y k+p. Theoret-
ically Y k+p could be any matrix in RN×(k+p) but it is natural to choose the
first k+p (≤ N) column vectors of V in (??), since it is optimal to represent
the empirical data.

Then, the stability constraint (11) can be written as

V T
kY k+pZPZ

TY T
k+pAV k + V T

kA
TY k+pZPZ

TY T
k+pV k ≺ 0. (13)

Note that constraint (13) is a Quadratic Matrix Inequality in the variable Z
which can not be solved by convex solvers (Boyd et al., 1994). In order to
apply techniques from convex optimization, the change of variable

P̃ = ZPZT (14)

is introduced, which leads to a Linear Matrix Inequality.
With this parameterization, the objective function can be expressed as

f(Z) = ‖Y k+pZ − V k‖ (15)

where ‖·‖ denotes any matrix norm. It was proved in Amsallem and Farhat
(2012) that if there exists a positive definite matrix P̂ ∈ R(k+p)×(k+p) which

1The basis does not need to be orthonormal.
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can be partitioned in blocks as

P̂ =

[
P̂ 11 P̂ 12

P̂
T

12 P̂ 22

]
(16)

where P̂ 11 ∈ Rk×k, then a solution to the minimization problem of (15)
constrained by (13) can be constructed as

P̃ =

[
P̂ 11

P̂
T

12

]
P̂

−1

11

[
P̂ 11 P̂ 12

]
. (17)

Therefore, it follows that

Z =

[
P̂ 11

P̂
T

12

]
. (18)

In practice, the optimization problem of interest can be directly solved using
convex optimization packages, e.g. CVX (Grant and Boyd, 2014).

It is important to mention that it is possible that no feasible solution
exists for all p ∈ {0, · · · , N − k} to this problem. That is, although the
method in general increases the chance of obtaining a stable reduced order
model substantially, it might fail for doing that depending on the dynamics
of the original systemA and the POD basis V k. In that case, the only option
is to attempt modifying V k through trials and errors.

3.3. Discrete Empirical Interpolation Method

The standard POD model reduction technique reduces the dimension of
internal states, and is computationally efficient for LTI systems (Kalash-
nikova et al., 2014). However, when dealing with a system of general nonlin-
ear ordinary differential equations (ODEs), the computational complexity of
evaluating the full order nonlinear equations remains even though the num-
ber of states is reduced, as discussed in Section 2. We adopt the solution
proposed by Chaturantabut and Sorensen (2010), namely the discrete em-
pirical interpolation method (DEIM), which has been successfully applied to
improve computational efficiency of projection-based nonlinear reduced or-
der models. It constructs specially selected interpolation indices to minimize
a certain upper bound of the approximation error. It is applicable to ODEs
arising from finite difference or finite volume discretization of time dependent
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partial differential equations (PDEs). The DEIM approach can be viewed
as a combination of projection and interpolation. The nonlinear functions,
i.e. f in (3), are approximated by projecting them onto a reduced basis of
dimension m � N . Recall that the POD basis is generated from snapshots
of state trajectories. The same procedure is adopted to extract a subspace
from snapshots of nonlinear dynamics:

F =
[
f (1) f (2) . . . f (q)

]
∈ RN×q. (19)

It should be noted that the snapshots of nonlinear functions can be obtained
from the POD procedure, and hence no additional computational cost is
added to the original POD procedure although more computer memory is
required to store values of nonlinear functions during simulation. Nonlinear
functions are approximated by projection onto a reduced basis

f(t) ≈ Tc(t) (20)

where T ∈ RN×m is obtained by applying POD to the nonlinear function
snapshots matrix F in (19), and c ∈ Rm represents the vector of correspond-
ing time coefficients. To calculate the coefficients from the overdetermined
system in (20), m distinguished rows are selected to form a well-posed system.
Consider an interpolation scheme:

P Tf(t) ≈ P TTc(t) (21)

where P is a matrix whose ith column eζi is identified by an interpolation in-

dex ζi, which means eζi =
[
0 . . . 0 1 0 . . . 0

]T
contains the ζthi columns

of the identity matrix I ∈ RN×N ,

P =
[
eζ1 eζ2 . . . eζm

]
. (22)

Suppose P TT is nonsingular, then the coefficients can be uniquely deter-
mined,

c(t) = (P TT )−1P Tf(t). (23)

The final interpolation approximation of the nonlinear functions is expressed
as

f̃(t) = T (P TT )−1P Tf(t). (24)
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Note that P and T are constant matrices, so the matrix multiplication can
be pre-computed before the online simulation. P Tf(t) can be viewed as
the evaluation of a partial set of functions from the original high order sys-
tem at the specified interpolation indices, which will significantly reduce the
computational load. To complete the DEIM, Chaturantabut and Sorensen
(2010) proposed an algorithm for determining interpolation indices (matrix
P ) inductively from the basis T . Interpolation indices are selected to limit
growth of an error bound, and are guaranteed to be hierarchical and non-
repeated. An approximated error bound was derived for the DEIM algorithm
in Chaturantabut and Sorensen (2010):∥∥∥f − f̃∥∥∥

2
≈
∥∥(P TT )−1

∥∥
2
σm+1 (25)

where σm+1 is the (m+1)th leading singular value of the nonlinear snapshots
matrix in (19). In practice, it can be used in determining the number of
interpolation points. As more functions are evaluated, the approximation
error is smaller since singular values are arranged in a descending order by
SVD. When there is a significant gap between the magnitude of two adjacent
singular values, the number of indices m could be selected at that point.

4. Reduced Order Modeling for VCC

This section presents a nonlinear model order reduction framework for
heat exchanger models. A reformulated finite volume (FV) heat exchanger
model is introduced by choosing a different pair of thermodynamic states, and
then discretized with a staggered grid. After that, the POD in conjunction
with the DEIM approach is used to generate reduced order models. Finally
numerical treatments are described to improve model robustness.

4.1. Reformulation of Finite Volume Model

As mentioned in Section 2 to enable the use of nonlinear model order re-
duction techniques, a typical FV model (Bendapudi et al., 2008; Rasmussen,
2012), which applies refrigerant pressure and enthalpies as dynamic states,
needs to be converted to the standard ODE form as shown in (3). This is
because the FV formulation consisting of refrigerant pressure and enthalpies
as states as well as an elimination of interface mass flow rates, has a de-
scriptor form E(x)ẋ = f(x,u) due to the partial derivatives of refrigerant
density with respect to pressure and enthalpy in the mass balance and energy
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balance. This model structure (denoted as the standard FV model in this
paper) can not be used as for the baseline nonlinear model reduction. There-
fore a reformulated FV model selecting refrigerant density, internal energy
and interface mass flow rates as dynamic states was developed. A momen-
tum balance is integrated into the governing equations to evaluate dynamics
of refrigerant mass flow rates.

The system of PDEs can be solved by discretizing spatially and then
integrating in the time domain. The heat exchanger is divided into n equal
control volumes. Integrating the governing equations over the length of each
control volume yields a system of ODEs:

dρj
dt

=
1

Vj
(ṁk − ṁk+1) (26)

dṁk

dt
=

1

L

(
ṁj−1vj−1 − ṁjvj + Ac(Pj−1 − Pj)− Ff

)
(27)

duj
dt

=
1

Vjρj

(
ṁkhj−1 − ṁk+1hj − Q̇r,j + uj(ṁk+1 − ṁk)

)
(28)

dTt,j
dt

=
Q̇r,j − Q̇w,j

Mt,jCpt
(29)

dTw,j
dt

=
ṁwCpw(Tw,j+1 − Tw,j) + Q̇w,j

Mw,jCpw
(30)

A staggered grid scheme was utilized to derive the above equations which has
been commonly used in dynamic modeling of thermo-fluid systems to decou-
ple the momentum balance from the mass and energy balances (Elmqvist
et al., 2003; Laughman and Qiao, 2019). As shown in Fig. 3, equations of
refrigerant mass and energy balances (indices j) are solved in the volume
cells (solid black line), and the momentum balances (indices k) are solved in
the flow cells (dashed blue line), which are staggered by half of one volume
cell. For the reformulated FV heat exchanger model, the dynamic states are

x =
[
ρ1, . . . , ρn, ṁ1, . . . , ṁn, u1, . . . , un, Tt,1 . . . , Tt,n, Tw,1, . . . , Tw,n

]T
(31)

=
[
ρ,m,u,T

]T
(∈ R5×n), (32)

and inputs or boundary conditions to the heat exchanger model consist of
refrigerant inlet mass flow rate and enthalpy (ṁi, hi), outlet pressure (Po),
and the inlet mass flow rate and temperature of the secondary fluid,[

ṁi, hi, Po, ṁwi, Twi
]T

(33)
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Figure 3: Staggered grid for heat exchanger discretization.

Refrigerant pressure and enthalpy are evaluated as functions of density
and internal energy of each control volume Pj(ρj, uj), hj(ρj, uj). For those
evaluations, tabular or regression approaches may be utilized based on a pres-
sure and enthalpy database obtained from REFPROP or CoolProp (Lemmon
et al., 2010; Bell et al., 2014).

4.2. POD-DEIM Heat Exchanger Model

Each dynamic state of the reformulated heat exchanger model consists
of refrigerant density, mass flow rate, internal energy, tube temperature and
secondary fluid temperature for each control volume as shown in (31). Snap-
shots of the state trajectories as well as nonlinear functions are taken from
the numerical simulation of the full-order model under a perturbation of in-
puts. Reduced order heat exchanger models are constructed using the POD
and stabilization methods introduced in Section 3. However no solution to
the stabilization problem was found (see the last paragraph of Section 3.2),
and therefore we attempted to modify the POD basis to resolve this issue as
described below.

Instead of directly applying the POD method to the entire state trajec-
tory matrix, it was split into four matrices according to the thermodynamic
and fluid properties of ρ,m,u and T (see (31)), and then the POD was
applied to each sub-matrix. This results in four sets of reduced order basis
corresponding to the different physical properties as follows.

ρ ≈ V ρρ̃ ṁ ≈ V mm̃ u ≈ V uũ T ≈ V T T̃ (34)
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where T =
[
T T
t T T

w

]T
, and the resulting reduced states are

x̃ =
[
ρ̃T m̃T ũT T̃

T
]T
. (35)

A linearized model at an equilibrium point2 is
V ρ 0

V u

V m

0 V T




˙̃ρ
˙̃m
˙̃u
˙̃T

 = A


V ρ 0

V u

V m

0 V T



ρ̃
m̃
ũ

T̃

 . (36)

For the system of (36), it becomes possible to obtain a stabilizing basisWk

(see (10)) by applying the stabilization method directly on (36). However,
for numerical reasoning, we narrowed down Wk (see (10)) as

Wk =


I 0
I
I

0 W T

 , (37)

and searched the unknown W T in the range of POD basis generated from
VT to stabilize (36).

The final stabilized reduced system has the following form.
I 0
I
I

0 W T
TV T




˙̃ρ
˙̃m
˙̃u
˙̃T

 =


V T

ρ 0

V T
u

V T
m

0 W T
T

f(

V ρ 0

V u

V m

0 V T



ρ̃
m̃
ũ

T̃

),
(38)

or more compactly

Wk
TVk

˙̃x = Wk
Tf(Vkx̃,B). (39)

Finally, the DEIM approximation is applied to the reformulated heat ex-
changer model to reduce the computational cost that depends on the full

2The term associated with inputs is not shown since it is not used for stability analysis.
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order nonlinear functions in the reduced order model (39). Similar to split-
ting the state trajectories snapshots, the nonlinear function snapshots are
grouped based on reduced states shown in (35). Then interpolation indices
are constructed for each group of equations. Note that refrigerant mass bal-
ances are linear in refrigerant mass flow rates, thus there is no need to apply
the DEIM approximation, and the number of reduced mass balances to be
evaluated completely depends on the dimension of refrigerant density basis
V ρ. As shown in (25), the DEIM approximation error bound is indicted by
singular values of the snapshots matrix. Therefore, the ratio of energy cap-
tured by the POD basis can also be adopted here to determine the number
of interpolation points.

The overall sequence of the POD-DEIM scheme is summarized in Fig. 4.

5. Feasibility Demonstration, Performance and Further Investiga-
tion

The proposed methodology was applied to a R134a centrifugal chiller
system which consists of shell-and-tube condenser and evaporator, single
stage centrifugal compressor, thermostatic expansion valve (TXV), and local
controller adjusting the compressor’s inlet guide vane for capacity control.
The system description, a system model based on the standard FV heat
exchanger formulation and validation with experimental data for the system
are presented in (Bendapudi et al., 2008).

To show the feasibility, accuracy and computational benefit of the pro-
posed methodology, it was applied to the chiller system and the resulting
reduced order model was compared with 1) the standard FV-based model,
2) full-order reformulated model, and 3) experimental data over a wide range
of operating conditions. The timeseries dataset consists of a series of step
tests performed on the chiller system over 26 operating conditions where the
step inputs are water inlet temperatures for condenser and evaporator, and
the chilled water temperature set point. See Fig. 5 for the step test input
signals.

Comparisons between two reduced order models obtained from different
snapshots were also investigated in this section. For this, two data sets were
extracted from the timeseries data. One, namely ROM(4), is associated
with the first four operating conditions out of the 26 operating conditions,
while the other, namely ROM(9), corresponds to the first nine operating
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conditions (see Fig. 5). Each data set includes profiles of refrigerant inlet
mass flow rate, inlet enthalpy, outlet pressure, and the inlet mass flow rate
and temperature of the secondary fluid for condenser and evaporator, which
are the inputs to the reformulated heat exchanger models as shown in (33).
The profiles for each scenario were fed to the reformulated full-order heat
exchanger models (15 control volumes) to generate snapshots of state and
function trajectories for the POD and DEIM processes. The simulations
were carried out in the Dymola environment with the Radau IIa solver and
default relative error tolerance of 10−4.

5.1. Generation of Reduced Order Vapor Compression Cycle Model

The approach described in Section 4.2 was applied to the snapshot ma-
trices for each scenario of ROM(4) and ROM(9). Remember that we apply
the POD method to the dynamics of ρ,m,u and T individually resulting in
four sets of reduced order bases, i.e., V ρ,V m,V u,V T in (34). The reduced
order dimension of each subspace was chosen by looking at the energy ratio
defined by (6). The threshold of 99.99% was uniformly applied. Values of the
energy captured by each mode of the reduced space (σ2

k/
∑N

i=1 σ
2
i , k = 1 : n)

for the condenser of ROM(9) are shown in Fig. 6.
Fig. 7 shows energy of modes of the nonlinear function snapshot matrices.

The number of refrigerant momentum balances, energy balances, and tube
and water energy balances for the reduced order model were selected based on
the criteria that the reduced bases of nonlinear functions capture 99.9% of the
total energy. The final POD-DEIM reduced order condenser and evaporator
models are summarized in Table. 1. It can be seen that for the ROM(4) more
than half of the states are reduced and roughly one third of the nonlinear
ODEs are eliminated by the DEIM scheme. On the other hand, the ROM(9)
leads to less reduction in states and ODEs. This is because the ROM(9)
covers a wider range of operating conditions which would require additional
dimensions to explain them.

The reduced order condenser and evaporator models were coupled with
quasi-static models of the compressor and TXV, and the controller model to
form a reduced cycle model. The inputs to the complete cycle model consist
of water inlet temperatures and flow rates for condenser and evaporator, and
the chilled water set point temperature.
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Table 1: Reduced order condenser and evaporator models

HX Cond States Cond ODEs Evap States Evap ODEs
Full order 75 75 75 75

POD-DEIM ROM(4) 34 53 32 53
POD-DEIM ROM(9) 43 61 38 66

5.2. Result Comparisons

The reduced order cycle models for ROM(4) and ROM(9) respectively,
were simulated to predict cycle transient responses over the 26 operating
conditions. The two baseline models for comparisons are 1) the standard FV-
based model utilizing refrigerant pressure and enthalpy as states, namely FV
Ph, and 2) the full-order reformulated FV model, namely FOM. Remember
that ROM(4) and ROM(9) were generated from a part of the 26 operating
conditions. Therefore inputs and trajectories for the rest of the conditions
were unexplored in generating the reduced order models.

Fig. 8 to 11 show result comparisons of refrigerant condensing and evapo-
rating pressures, water exit temperatures, motor power, and heat exchanger
loads for all models over the 26 operating conditions. The results show that
the FV-Ph and FOM are nearly identical and that they agree well with
the measurements. Discrepancies between the ROMs and measurements are
typically observed for the operating conditions that were not included in the
generation of the ROMs, that is after 4 hours. This makes sense because
the limited input perturbations are likely not sufficient to simulate dynamics
that cover the entire controllable subspace. Nonetheless, the ROMs are still
capable of capturing the essential features of the chiller system. It can be
clearly seen that the ROM(9) yields a higher accuracy than ROM(4) in pre-
dicting the condensing pressure, motor power, and condenser load. Fig. 12
shows the normalized error residuals (NER) (Pangborn et al., 2015) for the
ROMs which were computed by

NER =

∑t
k=1(ypredicted(k)− ymeasured(k))2∑t

k=1(ymeasured(k))2
. (40)

It was observed that predictions of the motor power using the reduced
order models had significant discrepancies compared to measurements. This
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is because the compressor model, specifically the refrigerant flow rate map,
is sensitive to the refrigerant pressures. Errors in the compressor inlet guide
vane controller model amplified prediction errors of the refrigerant mass flow
rate. Large value of NER in the condenser load was due to prediction errors
of refrigerant properties, e.g. condensing pressure (Fig. 8). However, clearly
a significant reduction in NER can be observed from ROM(4) to ROM(9).

Simulation speed is measured by the real time factor (RTF) (Pangborn
et al., 2015):

RTF =
length of CPU time taken to run simulation

length of time that is simulated
. (41)

For real-time simulation applications, a model having RTF less than 1 is
generally required. Simulation speed of the ROMs, FOM, and FV-Ph are
shown in Table. 2. The total number of dynamic states and ODEs to be
solved for each model are also displayed, since they play an important role
in determining the model execution speed. It can be seen that all these
models run faster than the real time. Compared with the FOM, the ROM(4)
and ROM(9) require less than half the computation times. ROM(9) requires
about 28% more simulation time than ROM(4). This confirms the trade-off
between the computational efficiency and accuracy.

Table 2: Simulation speed comparison

Simulation No. States No. ODEs RTF
Standard FV (P,h) 92 92 0.03
Reformulated FOM 150 150 0.0137

ROM (4) 66 106 0.005
ROM (9) 81 127 0.0064

It is interesting to see that the FV-Ph has the lowest number of ODEs but
resulted in the highest computation time. This is attributed to the model
structure. Although the FOM consists of more states and ODEs because
of the inclusion of the momentum balance, it has a standard ODE form as
shown in Section 4.1. The FV-Ph model has the descriptor form as mentioned
in Section 2 and matrix inversion is carried out at each time step of the
numerical integration, which is computationally expensive.
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6. Conclusions

This paper described unique challenges for modeling a complete vapor
compression and expansion system when applying nonlinear model order
reduction methods, and presented a series of methodologies to overcome
those issues. The feasibility of applying the nonlinear model order reduc-
tion method to refrigeration cycle systems for a centrifugal chiller was pre-
sented. Using the POD-DEIM model reduction scheme, dynamic states as
well as differential equations to be solved were reduced, leading to an 80%
computation time reduction compared to a standard finite volume modeling
approach.
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Figure 4: Nonlinear model order reduction framework.
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Figure 5: Variations of cycle inputs: water inlet temperatures and the chilled temperature
set point
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Figure 6: Energy of modes of dynamic states

Figure 7: Energy of modes of nonlinear functions
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Figure 8: Validations of refrigerant pressures
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Figure 9: Validations of water exit temperatures
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Figure 10: Validations of motor power

Figure 11: Validations of heat exchanger loads
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Figure 12: Normalized error residual of ROMs: condensing pressure, evaporating pressure,
condenser water exit temperature, evaporator water exit temperature, condenser load,
evaporator load, motor power.
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