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Selective synthesis of either enantiomer of an anti-breast cancer 
agent via a common enantioenriched intermediate

Aaron George Johnson, Marissa M. Tranquilli, Michael R. Harris, and Elizabeth R. Jarvo*

Department of Chemistry, University of California, Irvine, Irvine, CA 92697 (USA)

Abstract

A stereoselective synthesis of a bioactive triarylmethane is described. Key to the synthesis is a 

nickel-catalyzed Suzuki-Miyaura coupling which proceeds with retention at the benzylic center. 

This method is complementary to our previously reported nickel-catalyzed Kumada coupling 

which proceeds with inversion. Together, the two methods allow for efficient access to either 

enantiomer of biologically relevant triarylmethanes from a common enantioenriched intermediate.
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1. Introduction

Triarylmethanes are important targets due to their application in materials 1 and medicinal 

chemistry (Figure 1). 23456 In particular, the triarylmethane motif is found in anti-cancer 

lead compounds.3 One such compound is anti-breast cancer agent 1.3a In 2006, (±)-1 was 

shown by Panda and co-workers to inhibit proliferation of the MCF-7 breast cancer cell line, 

with an in vitro IC50 of 3.88 μM. In vivo, (±)-1 was shown to inhibit tumor growth and 

induce significant regression of mammary tumors in mice. Synthetic access to 

enantioenriched samples of triarylmethanes is critical for their evaluation as medicinal 

agents and in determining three-dimensional structure-activity relationships.
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Traditional syntheses of triarylmethanes, including 1, have relied on Friedel-Crafts reactions 

that lead to racemic products.7,8 To broaden substrate scope beyond electron-rich aromatic 

compounds, access alternative regioisomers, and achieve stereocontrol, new methods have 

been developed.9,10 Recent advances include methods that utilize chiral Brønstead acids and 

C–H bond activation. 11,12,13 Approaches that develop Suzuki and Kumada cross-coupling 

reactions have further increased access to enantioenriched triarylmethanes. Crudden and co-

workers have demonstrated a palladium-catalyzed Suzuki reaction of enantioenriched 

boronic esters and aryl iodides.14 Our group has developed the umpolung approach in which 

benzylic ethers or esters are coupled with arylmetal reagents.15

Our contributions provide a strategy to prepare both enantiomers of a triarylmethane from a 

common enantiomer of an alcohol intermediate. In 2012 we reported a stereospecific nickel-

catalyzed Kumada cross-coupling reaction that allows for the preparation of optically active 

triarylmethanes from enantioenriched benzylic ethers such as 3 (Scheme 1). We employed 

this method in an enantioselective synthesis of 1. 15a This Kumada reaction proceeds with 

inversion at the benzylic center. In 2013 our group reported a nickel-catalyzed stereospecific 

Suzuki-Miyaura reaction of enantioenriched diaryl carbamates, such as 4, with aryl boronic 

esters. 15b In contrast to our Kumada protocol, the Suzuki reaction can proceed with 

retention of configuration at the benzylic center if tricyclohexyl phosphine is used as ligand, 

or inversion if SIMes is employed. Together, the Kumada and Suzuki reactions provide 

complementary methods to synthesize both enantiomers of 1 from the same enantiomer of 

alcohol 2. Herein we report the synthesis of the opposite enantiomer of 1 via the Suzuki 

reaction.

2. Synthesis of 1

The synthesis was carried out as described in Scheme 2. Enantioenriched alcohol 2 was 

prepared from commercially available boronic acid 6 and phenanthrene-9-carboxaldehyde 7 
via an asymmetric arylation using chiral aziridine catalyst 8. 15a, 16 Alcohol 2 is the common 

intermediate for both the Kumada and Suzuki protocols. The Kumada protocol requires that 

the alcohol be converted into a methoxyethyl ether leaving group. The Suzuki reaction is 

more efficient if the alcohol is converted to an electron-withdrawing carbamate. The 

carbamate is installed by treatment of 2 with sodium hydride and 1-pyrrolidinecarbonyl 

chloride resulting in compound 4.

With carbamate 4 in hand, we were poised to test the key step, the stereospecific Suzuki 

cross-coupling reaction. Subjection of 4 to Suzuki conditions with tricyclohexylphosphine as 

ligand led to the efficient formation of triarylmethane 5 in 93% yield and 88% ee (92% 

es).17 Importantly, analysis of the reaction product by chiral SFC chromatography and 

comparison to material obtained by the Kumada route confirmed that the Suzuki reaction 

proceeds with overall retention. To achieve the highest yield, 4 was recrystallized prior to 

the cross-coupling reaction, as residual alcohol 2 diminishes the yield in the Suzuki 

coupling. Interestingly, when PCy3 is replaced with SIMes, compound 4 provides low yields 

of the desired Suzuki product.18
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Completion of the synthesis was achieved by introduction of the requisite side chain. In the 

penultimate step of the synthesis the MOM group was removed under acidic conditions to 

form phenol 9. Finally, alkylation of the phenol by treatment with sodium hydride and 2-

dimethylaminoethylchloride hydrochloride afforded target compound 1.19 This synthesis 

allowed for the preparation of 1 in 34% overall yield and 88% ee.

3. Conclusion

In summary, either enantiomer of anti-cancer triarylmethane 1 can be synthesized using a 

complementary pair of nickel-catalyzed cross-coupling reactions from a common 

enantiomer of a chiral alcohol intermediate. For the synthesis of anti-cancer agent 1, when 

the Kumada protocol is followed, the reaction occurs with inversion at the benzylic 

stereogenic center. When the Suzuki protocol is followed, the reaction occurs with retention 

at the benzylic stereogenic center, providing the opposite enantiomer of 1. These syntheses 

allow for efficient and selective preparation of either enantiomer of triarylmethanes for 

biological testing. With the exception of the alcohol protection and the subsequent nickel-

catalyzed cross-coupling steps, both syntheses are identical and provide optically active 1 in 

five synthetic steps from commercially available starting materials. With both enantiomers 

in hand, our lab is carrying out studies on the potency of optically enriched 1 against a series 

cancer of cell lines.
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Figure 1. 
Bioactive triarylmethanes
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Scheme 1. 
Cross-coupling with inversion and retention
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Scheme 2. 
Synthesis of 1 via Suzuki protocol
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