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ABSTRACT OF THE DISSERTATION 
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Professor Amy Catherine Rowat, Chair 

 

Cells are complex, viscoelastic materials that undergo changes in their mechanical phenotype, or 

‘mechanotype’, during diverse physiological and disease processes, such as malignant transformation. As 

cancer cells exhibit altered cell mechanical properties compared to their benign counterparts, cell 

mechanotype is an emerging hallmark of cancer and demonstrates potential to enhance cancer detection 

and classification. However, widespread adoption of cell mechanotype as a clinical biomarker for cancer 

requires standardized metrics for high throughput mechanotyping measurements.  

This dissertation presents a microfluidic platform, quantitative deformability cytometry (q-DC), for rapid, 

calibrated measurements of single-cell mechanical properties. Cells are driven to deform through micron-

scale constrictions at 100 cells/second, while changes in cell strain are tracked by a high-speed camera. The 

applied mechanical stresses induced by the driving pressure are determined using gel calibration particles, 

which enables calibrated measurements of elastic modulus and fluidity from the single-cell stress-strain 

relationships. Additional physical properties, such as cell size, strain, transit time, and creep time, are also 

measured for individual cells by q-DC. This dissertation highlights a comprehensive methodology for 
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designing, analyzing, and reducing variability in q-DC measurements; the calibration method for measuring 

the applied stress in the microfluidic channels; and the influence of stress and strain in q-DC 

mechanotyping.  

This dissertation also demonstrates how multiple physical phenotypes from q-DC can be used to distinguish 

human cancer cell lines and predict the ability of cells to invade through a matrix. A physical phenotyping 

model of invasion is trained and validated using breast and ovarian human cancer cell lines with both 

genetic and pharmacologic perturbations, which correctly predicts the invasion of five cancer cell samples; 

whereas one context is identified where the model does not accurately predict invasion. Taken together, 

this work lays the groundwork for calibration in high throughput mechanotyping methods, demonstrates 

the predictive power of multiple physical phenotypes for cell invasion, and incites deeper investigation into 

additional predictive markers for cancer cell invasion.  
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INTRODUCTION 

 

Changes in cell physical properties are implicated in diverse physiological and disease phenomena, ranging 

from stem cell differentiation to malignant transformation. For example, cell and nuclear morphology is 

broadly used in cytology (1–3), while the stiffness of a mass is assessed for initial cancer detection (4). The 

deformability of single cells, or the ability for a cell to deform under a mechanical load, is also emerging 

as a label-free biomarker to enhance clinical decision-making and diagnosis (5–7). Altered cell 

deformability is especially relevant in cancer, where more invasive cancer cells tend to be more deformable 

than their benign counterparts (8–14). While the origins of altered cell deformability in cancer are not well 

understood, measurements of the mechanical phenotype of cells, or ‘mechanotype’, demonstrate the utility 

of mechanotype in cancer classification and diagnosis (15). The mechanical signature of cancer cells also 

incites deeper biophysical questions, such as whether altered mechanotype solely reflects altered genetic 

and epigenetic regulation or if it provides a selective advantage during metastasis. 

Standardized measurements of cell mechanotype include elastic modulus, E, compliance, J, and viscosity, 

η. Such measurements are achieved by probing cells with well-defined stresses and measuring the resultant 

deformations using atomic force microscopy (AFM) (11, 14, 16), micropipette aspiration (17–19), optical 

stretching (20–23), and microplate compression (24, 25). These standardized measurements provide 

valuable insights into the physical principles that underlie cell mechanical properties, including viscoelastic 

and stress stiffening behaviors (26–28), as well as the passive and active contributions of cytoskeletal and 

nuclear structures in cell mechanotype (14, 29–34). Identifying such physical and molecular origins of cell 

mechanotype deepen our understanding of the role of cell mechanical properties in physiology and disease; 

however, measurements of mechanical moduli, such as those obtained using AFM or micropipette 

aspiration, are acquired at rates of <1 cell/min. Widespread adoption of cell mechanotyping in both clinical 

and research settings requires higher throughput to efficiently asses large cell samples. 
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Fluid-based deformability cytometry (DC) methods enable rapid, single-cell measurements of cell 

deformability at faster rates of 102 – 106 cells per minute. With the transit DC method, cells are driven to 

deform and transit through microfluidic constrictions on millisecond timescales (13, 21, 35–41). The time 

required for cells to transit through microfluidic constrictions can depend on cell size, mechanical 

properties, and surface properties, but the initial deformation into microfluidic constrictions is dominated 

by cell deformability (39, 40, 42); Such transit experiments are widely used to mechanotype various cell 

types from breast cancer cells to neutrophils based on relative deformation timescales (13, 35). In the DC 

method using a cross-slot microfluidic channel, the hydrodynamic forces of inertial flow deform cells at 

faster timescales on the order of microseconds, and provide relative measurements of deformability (43). 

In the real-time DC (rt-DC) method, the shear stresses of fluid flow induce cell deformations on millisecond 

to microsecond timescales (44). These shape changes are well described by a continuum elastic model (45), 

which enable single-cell measurements of elastic modulus (44).  

While such DC methods highlight the promising applications of rapid mechanotype in classifying cells at 

different stages of the cell cycle (44) and identifying pluripotent stem cells from their lineages (46), cells 

are non-linear materials, and fluid-based mechanotyping methods are susceptible to varying applied strains 

and stresses (47). In AFM studies, the influence of length and time scales of deformation on elastic modulus 

measurements are observed in cells (26–28, 48–51) and biopolymer networks (26, 48, 52–54). For example, 

cells exhibit strain-stiffening behavior (16). Cells are also spatially heterogeneous materials, where the 

nucleus is typically 2- to 5-times stiffer than the surrounding cytoplasmic region (14). Therefore, the 

magnitude of deformation depth, or strain, may impact the resultant mechanotype measurements. 

Additionally, stress stiffening behavior of cells is also observed across varying cell types from airway 

smooth muscle cells to fibroblasts (23, 26, 48, 55). Therefore, successful translation of mechanotyping to 

clinical and research applications calls for a deeper understanding of the influence of applied strain and 

stress in high throughput mechanotyping measurements. Moreover, an established calibration standard for 
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fluid-based mechanotyping methods that addresses fluctuations in applied strain and stress will also further 

advance the adoption of high throughput mechanotyping. 

This dissertation highlights a method for rapid, calibrated, single-cell mechanotyping using quantitative 

deformability cytometry (q-DC). An applied pressure gradient is used to drive cells to deform through 

micron-scale constrictions of a transit-based DC microfluidic device at rates of thousands of cells per 

minute (47). To obtain standardized measurements of cell mechanotype, the time-dependent strain of an 

individual cell is tracked and the applied stress is calibrated using gel particles with well-defined elastic 

moduli. As the time-dependent strain of single cells follows power law rheology (PLR), apparent elastic 

modulus, Ea, and power law exponent, β or fluidity, is acquired for individual cells. Using human 

promyelocytic leukemia (HL-60) cells as a model system, Ea is observed to increases with cell strain and 

applied stress on these time and length scales, which further substantiates the importance of calibration 

standards in mechanotyping measurements. q-DC is also shown to be sensitive to changes in HL-60 

mechanotype following treatment with cytoskeletal-perturbing drugs and differences in the mechanotype 

between human breast cancer cell lines, MCF-7 and MDA-MB-231 cells.  

In addition to laying a foundation for calibration in rapid mechanotyping measurements, this dissertation 

also investigates the power of mechanotyping for predicting functional cancer phenotypes. Specifically, in 

vitro invasion provides an experimental model for the ability of cells to metastasize in vivo. Predicting 

disease and treatment outcomes based on single cell phenotypes is critical in medicine from cancer 

diagnosis to stem cell therapies. In clinical oncology and immunology, single cell analysis of protein 

markers and DNA content using flow cytometry is used for diagnosis, prognosis, and monitoring patient 

response to therapy (56). Yet pathological and physiological changes can also manifest as altered cell 

physical phenotypes, including cell and nuclear size, stiffness, and viscosity, which are convenient, label-

free biomarkers. While DC methods have demonstrated the potential for mechanotyping in classification 

of cancer cells, the association between single-cell physical properties and invasion could establish physical 

phenotype biomarkers for cancer prognosis.  
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By performing q-DC mechanotyping across well-established pancreatic cancer cell lines as well as ovarian 

cancer cells that overexpress tumor-suppressor microRNAs, a predictive physical phenotyping model for 

invasion is trained and assessed against both genetic and pharmacologic perturbations of cancer cells. The 

q-DC method for single-cell physical phenotyping coupled with machine learning algorithms establishes a 

framework for predicting invasion based on label-free biomarkers that can be rapidly measured. The ability 

of q-DC to enable calibrated, multiparameter cell physical phenotyping to classify cell types and predict 

cellular behaviors is valuable for biomedical applications, and should offer unprecedented insight into the 

biophysical properties of cells and their link to disease progression. 
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CHAPTER 1 

The Physical Origins of Transit Time Measurements for 

Rapid, Single-cell Mechanotyping 

 

Abstract 

The mechanical phenotype or ‘mechanotype’ of cells is emerging as a potential biomarker for cell types 

ranging from pluripotent stem cells to cancer cells. Using a microfluidic device, cell mechanotype can be 

rapidly analyzed by measuring the time required for cells to deform as they flow through constricted 

channels. While cells typically exhibit deformation timescales, or transit times, on the order of 

milliseconds to tens of seconds, transit times can span several orders of magnitude and vary from day to 

day within a population of single cells; this makes it challenging to characterize different cell samples 

based on transit time data. Here we investigate how variability in transit time measurements depends on 

both experimental factors and heterogeneity in physical properties across a population of single cells. We 

find that simultaneous transit events that occur across neighboring constrictions can alter transit time, but 

only significantly when more than 65% of channels in the parallel array are occluded. Variability in 

transit time measurements is also affected by the age of the device following plasma treatment, which 

could be attributed to changes in channel surface properties. We additionally investigate the role of 

variability in cell physical properties. Transit time depends on cell size; by binning transit time data for 

cells of similar diameters, we reduce measurement variability by 20%. To gain further insight into the 

effects of cell-to-cell differences in physical properties, we fabricate a panel of gel particles and oil 

droplets with tunable mechanical properties. We demonstrate that particles with homogeneous 

composition exhibit a marked reduction in transit time variability, suggesting that the width of transit time 

distributions reflects the degree of heterogeneity in subcellular structure and mechanical properties within 

a cell population. Our results also provide fundamental insight into the physical underpinnings of transit 

measurements: transit time depends strongly on particle elastic modulus, and weakly on viscosity and 
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surface tension. Based on our findings, we present a comprehensive methodology for designing, 

analyzing, and reducing variability in transit time measurements; this should facilitate broader 

implementation of transit experiments for rapid mechanical phenotyping in basic research and clinical 

settings.  

Introduction 

Changes in cell mechanical properties are implicated in diverse physiological and disease phenomena, 

ranging from stem cell differentiation to malignant transformation. Cell mechanical phenotype or 

‘mechanotype’ is thus emerging as a powerful, label-free biomarker to enhance clinical decision-making 

and diagnosis (1). Quantitative measurements of mechanotype also facilitate a deeper understanding of 

the origins of altered cell physical properties. While methods such as micropipette aspiration (2), atomic 

force microscopy (AFM) (3, 4), and optical stretching (5) provide detailed insight into cytoskeletal and 

nuclear contributions to cell mechanotype, measurements are typically limited to 10 to 102 cells per hour. 

Fluid-based deformation cytometry techniques enable mechanotype measurements at faster rates of 10 to 

104 cells per minute by tracking cells as they are deformed during flow through microfluidic constrictions 

or by inertial fluid flows (6–11). Microfluidics also enable integration of complementary methods to 

assay additional physical properties of cells, such as their electrical conductivity and membrane 

capacitance, as well as the ability to sort cells based on these physical features (12–16).  

In microfluidic transit experiments, cells are driven to pass through micron-scale constrictions at rates of 

1 to 103 cells per second by applying a pressure gradient (17) or constant volume flow (6). As cells flow 

through the constrictions, they deform through gaps that are up to ~3× smaller than their initial diameter; 

the timescale for a single cell to transit through a constriction provides a measure of its deformability. 

This mechanotyping method demonstrates that highly metastatic cancer cells have shorter transit times 

compared to less metastatic cells (9) and leukemia cells treated with chemotherapy drugs exhibit longer 

transit times compared to DMSO-treated control cells (6). While transit measurements for cell 

mechanotyping are relatively simple and fast, there is significant variability in transit times that typically 
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spans two to three orders of magnitude within a population of single cells. Such marked spread in transit 

times, in addition to measurement variability between experiments, make it challenging to use this 

method to robustly compare different cell types. 

The broad distributions of transit times could result from phenotypic variability across a population of 

isogenic cells. For example, cell size varies across a population, and larger cells tend to have longer 

transit times (9, 18). However, even for cells with similar size (±5%, ~1 µm), transit times range over an 

order of magnitude (9, 18). In addition to size, cells from the same population exhibit order-of-magnitude 

differences in elastic modulus and viscosity, as measured by atomic force microscopy (4, 6, 19), 

micropipette aspiration (20–23), and optical stretching (5, 24). While stiffer cells have longer transit times 

(25), the degree to which cell-to-cell heterogeneity in mechanical properties contribute to transit time 

variability is not well understood. Moreover, cells are viscoelastic materials and the relative contributions 

of elasticity and viscosity to transit measurements remain unclear. While longer transit times are 

associated with stiffer cells that have higher elastic moduli (25), the time required for cells to enter 

microfluidic constrictions is also well predicted by the shear thinning liquid drop model, which describes 

a cell as a purely viscous material (9); this makes it challenging to obtain a deeper knowledge of cell 

mechanical properties from transit time data.  

Experimental factors may also affect the width of transit time distributions. For example, the entry 

velocity of cells into micron-scale pores depends on channel surface properties (9) as well as the pressure 

drop across a cell (23). The impact of surface properties is especially critical when considering cell transit 

through polydimethylsiloxane (PDMS) channels, which are commonly plasma treated to enable covalent 

bonding to glass; however, this renders channels hydrophilic up to 48 hours post treatment (26), and the 

influence of channel hydrophilicity on transit time variability is not well characterized. Moreover, as 

multiple cells simultaneously transit through the device, channel occlusions can alter flow rates, and thus 

entry velocities of cells into neighboring constrictions (18); transient lane occlusions may thus also 

contribute to variation in transit time both within and across experiments.  



 14 

Here we investigate the role of extrinsic and intrinsic factors in transit time variability with the goal of 

establishing more robust measurements of cell mechanotype. Using HL-60 cells as a model system, we 

provide a framework to reduce transit time variability due to cell size, PDMS surface properties, and 

transient lane occupancies. By fabricating a panel of gel and oil particles with well-defined material 

properties, we investigate the extent to which the broad distribution in transit times results from 

mechanical heterogeneity across a population. Our study also provides valuable insight into the physical 

underpinnings of transit time measurements, revealing that elasticity dominates transit on these 

millisecond timescales.  

Device Design and Concept 

Microfluidic device design. In transit time experiments, cell deformability is determined by flowing cells 

through micron-scale constrictions and measuring the timescale of their transit (6–9, 18). Our 

microfluidic device consists of a branching network of channels that extends into an array of 16 parallel 

lanes, where each lane contains a series of constrictions (27) (Fig. 1A, B). Cells enter the device through 

the inlet and first passage through a downstream filter, which helps to remove extraneous contaminants, 

such as chunks of PDMS that can result from device fabrication, as well as cell aggregates that are larger 

than 20 µm (Fig. 1A). After passing through the bifurcating channels, the cells reach the constrictions, 

which have a height of 5.3 µm and width of 5.2 µm (Fig. 1A, B). To transit through these constrictions, 

the HL-60 cells must deform down to ~40% of their original diameter.  

To drive cell suspensions through the microfluidic channels, we apply air pressure, which ensures a 

constant pressure drop across the microfluidic device. The magnitude of applied pressure dictates the 

velocity of both the fluid and particles as they flow through the device. For a particle to deform through 

the constriction, a minimum threshold pressure, PT, must be applied to induce sufficient strain of the 

particle. When the driving pressure, Pdriving, is less than PT, the particle will occlude the constriction over 

the experimental timescale, which is on the order of minutes. We find that Pdriving = 28 kPa (4 psi) is an 

adequate driving pressure, which exceeds PT for HL-60 cell and ensures sufficient tracking of individual 
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cells and particles. Pdriving also dictates the frequency with which cells reach the constrictions; with Pdriving 

= 28 kPa and a 5.3 × 5.2 µm2 constriction, we can achieve transit events at rates of ~102 cells/min for cell 

suspensions with a density of 2 × 106 cells/mL.  

 

Fig. 1. Overview of microfluidic device for measuring transit time. (A) Schematic of the 

microfluidic device. Suspension of cells/particles enters the device through the inlet. Filters 

reduce the frequency of clusters of cells and larger particulates that are > 20 µm from entering the 

constriction array. Bypass channels help to minimize fluctuations in pressure as particles transit 

through the device. (B) Brightfield image of the constriction array, which consists of 16 channels 

that each have a series of 5 µm constrictions. Transit time is defined as the time required for the 

leading edge of the cell to enter and exit the constriction region, which is denoted by the lighter 

gray region. Scale, 50 µm; (C) Time series of a single cell during transit through a 5 µm 

constriction. The representative cell shown here has a transit time of 80 ms. Scale, 20 µm. (D) 

Histogram and (E) boxplot of transit times for HL-60 cells. In the histogram, light gray boxes 

represent the interquartile range, and dotted line represents the median. In the boxplot, the line 

represents the median, the box represents the interquartile range, and the whiskers represent the 

10th and 90th percentiles.  
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To determine the transit time of an individual cell, we track its projected area and measure the time 

required for its leading edge to enter and subsequently exit the constriction region (Fig. 1C). To ensure 

that each cell has a similar initial state, we measure transit time data only from the first row of 

constrictions; additional analyses of cell deformation and relaxation responses can be obtained from the 

transit through subsequent constrictions within each lane. By tracking hundreds of cells for each sample, 

we generate a histogram of transit times. For a single population of HL-60 cells, we observe median 

transit times that are on the order of tens to hundreds of milliseconds and vary over three orders of 

magnitude when Pdriving = 28 kPa and the constriction is 5.3 × 5.2 µm2 (Fig. 1D). Since transit times 

exhibit non-normal distributions, we evaluate the width of a distribution using the bootstrapped 

interquartile range of the log-transformed data. As shown in Fig. 1D, the bootstrapped interquartile range 

and confidence interval of the log transform for HL-60 cells are σIQR = 1.1 ± 0.1. 

Time and length scales of cell transit. On these tens to hundreds of millisecond timescales, we estimate 

that transit time measurements predominantly reflect the passive deformation response of cells as they 

deform through microfluidic constrictions; this passive deformation response of cells is largely 

determined by the organization and levels of mechanoregulating proteins, such as actin and tubulin; 

pharmacological perturbations of both actin and microtubules significantly alter transit times on both 

millisecond (18) and second (6, 25, 28) timescales. Over longer timescales, cells may additionally invoke 

active responses to mechanical loads: actomyosin contractions and transcriptional regulation can occur on 

the order of minutes, while protein levels are regulated on the order of minutes to hours. 

Pressure drop across the constriction region. As multiple cells simultaneously transit through and 

occlude the bifurcated array of channels, the fluidic resistance, and thus flow rates, can fluctuate, which 

can impact the rate at which cells transit through constrictions. We design our microfluidic device to 

minimize inconsistencies in transit time that may arise from having an array of constrictions. For an array 

of parallel channels, the fluidic resistance is described by Kirchhoff’s Law: 
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 .    (Eq. 1) 

Here, Rtotal is the total fluidic resistance along the cross-section of the channels; Rbypass is the fluidic 

resistance of the bypass channel; and RLN is the fluidic resistance of N individual lanes. For a microfluidic 

channel with a rectangular cross-section, the relationship between the fluidic resistance, the channel 

height, h, and width, w, is given by the Hagen-Poiseuille relation, 𝑅𝑅 ∝  1
𝑤𝑤ℎ3

 .  

Eq. 1 illustrates how the fluidic resistance can fluctuate as multiple cells transit through the device and 

transiently obstruct channels. To minimize the effect of simultaneous transit events on transit time, we 

design our microfluidic device to reduce fluctuations in fluidic resistance due to lane occlusions: by 

maximizing the number of lanes that can fit into the camera’s field of view with a 20× objective, we 

reduce the impact of a single occlusion on the total fluidic resistance. To further buffer changes in fluidic 

resistance, we also include a wide bypass channel (5.3 × 300 µm2) that surrounds the constriction region 

(Fig 1A).  

Based on Eq. 1, we estimate that the fluidic resistance will change by <1% when a single cell transits 

through the array of constrictions. However, during a transit experiment, the number of occupied lanes 

ranges between 1 and 16 lanes; when all 16 lanes are occupied, the fluidic resistance can increase up to 

~12%. To determine the effect of fluctuating lane occupancy on transit time variability and enable more 

robust measurements, we perform a detailed analysis of transit time as a function of lane occupancy. 

Results and Discussion 

Transient occlusions affect transit time. With our experimental conditions of Pdriving = 28 kPa and 5.3 × 

5.2 µm2 constrictions, we find that on average 9.2 ± 2.7 out of 16 lanes are occupied during the transit of 

an individual HL-60 cell (Fig. 2A). For 1 to 10 lane occupancies, we observe no statistical difference 

between transit time distributions (Fig. 2B). However, when more than ten channels are occluded (>65% 

of total channels), there is a significant decrease in transit times (Fig. 2B). While our data shows a slight 
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increase in transit times for 15 or 16 occlusions, this near-complete occlusion of all lanes happens 

infrequently (<1% of all transit events), so the resultant effects on cell transit time are inconclusive.  

To reduce the variability in transit time that results from transient occlusion of channels, we exclude cell 

transit events that occur while more than ten channels are occupied. We additionally exclude cells that 

transit while multiple cells occupy the same lane, since this reduces the pressure drop across a single cell. 

Channel obstructions can also occur in regions that are outside of the field of view that we monitor during 

a transit experiment, such as in the filter and bypass regions. However, inspection of these regions after 

measurement acquisition reveals a sparse number of occluding particles or cell aggregates, which are 

small compared to the total cross sectional area of the filter and bypass channel. Nonetheless, to minimize 

any effects of unobserved occlusions, we use a new device for each video. 

 

Fig. 2. Effect of extrinsic sources on transit time variability: transient lane occlusion and 

PDMS surface properties. (A) Brightfield image of the constriction array with 10 occupied 

lanes, which are denoted by the white asterisks. (B) Transit time versus the number of lane 

occlusions. Statistical significance compares the transit time distribution of each lane to the 

preceding lane using Mann-Whitney U. (C) Cell transit time as a function of the hours following 

plasma treatment. Statistical significance shown between the transit time distribution of each 

device age and the preceding time point using Mann-Whitney U. * for p < 0.05, ** for p < 0.01, 

*** for p < 0.001.  

Age of PDMS device after plasma treatment impacts transit time. While PDMS is inherently 

hydrophobic, the device walls become more hydrophilic for up to 48 hours following plasma treatment 

(26), which is commonly used to bond PDMS to the glass substrate. Since transit time can vary depending 

on the surface charge of microfluidic channels (9), we next investigate how the age of the device 
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following plasma treatment affects transit time. We conduct transit measurements using devices at 1, 12, 

36, 48, 72 and 96 hours following plasma treatment. Compared to transit times that are obtained using a 

device that is aged for one hour, our results show a significant increase in transit times when 

measurements are performed 12 or more hours after plasma treatment. While we observe differences in 

the distributions of transit times at time points beyond 12 hours, there is no significant trend towards 

increasing or decreasing transit times. Thus, to reduce variability in transit times due to differences in 

device age, we conduct experiments 24 hours after plasma treatment and bonding. Consistently using 24 

hour-aged devices also minimizes error that may arise from differences in the material properties of 

PDMS as the elastic modulus can increase by 180% following the initial cure (29); this could impact the 

physical stresses on the cell during transit.  

Transit time scales with cell size. To determine how variations in cell physical properties impact transit 

time measurements, we first consider the effects of cell size. The diameter of HL-60 cells ranges from 10 

to 21 µm (Fig. 3A.ii.), with a median of 15 µm. By tracking the projected area of cells as they transit 

through the constrictions, we observe that transit time increases with cell size; these observations are 

consistent with previous studies (9, 18) (Fig 3A.iii). To determine the scaling relation between transit 

time and cell size, we measure the median transit times for twelve size bins of 0.5 µm within the 

interquartile range of projected diameters, ranging from 19 – 25 µm. Performing linear regression on the 

log-transformed data reveals that transit time has a strong dependence on cell size (slope = 5.8 and R2 = 

0.87). By size-filtering our transit time data, we observe a 18% reduction in the variability of transit times 

for cells of the median size ± 5% (1 µm) with a resultant σIQR = 0.9 ± 0.1 (Fig. 3A.vi).  

Reduced variability for particles with uniform composition. Variability in transit time could also 

result from cell-to-cell differences in mechanotype. The viscous and elastic moduli of cells are largely 

determined by subcellular organization and structural proteins, which vary in expression level across a 

population of single cells. To assess particles that have uniform composition and well-defined mechanical 

properties (30), we fabricate gel particles and oil droplets that have a similar size as HL-60 cells (Fig. 
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3B.ii., 3C.ii.). Our panel of agarose gel particles exhibits a range of elastic moduli from 3.1 to 43 kPa (S. 

Fig. 3); this range of elastic moduli is achieved by varying the polymer density within the droplets of a 

water-in-oil emulsion. We also generate oil-in-water emulsions with silicone oils that have a range of 

viscosities from 10-2 to 102 Pa⋅s. In addition, we use a surfactant that enables us to regulate the surface 

tension of oil droplets.  

 

Fig. 3. Size and transit time distributions for cells and particles. (i) Brightfield images of (A) 

HL-60 cells, (B) representative agarose gel particles (E = 8.7 kPa), and (C) representative silicone 
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oil droplets (η = 102 Pa s) on a glass slide. Scale, 15 µm. (ii) Histograms of cell/particle sizes on a 

glass slide. (iii) Density scatter plots of transit time versus cell/particle diameter as determined 

during flow through the microfluidic device. Color represents density of data points. Cells appear 

larger when they are compressed in the 5.2 µm-high channels of the microfluidic device; the gel 

and oil particles appear smaller in the microfluidic device as the larger particles are trapped in the 

filter upstream from the constriction region. (iv) Transit time distributions for (A) HL-60 cells, 

(B) representative agarose gel particles (E = 8.7 kPa), and (C) representative silicone oil droplets 

(η = 102 Pa⋅s). (v) Size-filtered transit time distributions for cells and particles with diameters of 

the median value ± 5%. For cells, the median diameter is 22 µm and for gel and oil particles, the 

median diameter is 7 µm. The black line overlaying the histogram represents the fitted log-normal 

distribution. The gray bars represent the interquartile ranges. (vi) average bootstrapped log-

transformed interquartile ranges, σIQR, for transit time distributions across the panels of E and η 

of the raw data (solid bar) and the size-filtered data (striped bar). Error bars represent the 

bootstrapped confidence intervals. Statistical significance is determined using the t-test. *** for p 

< 0.001. 

Both gel particles and oil droplets deform through the constrictions of the microfluidic device using the 

same experimental conditions that are used for cell transit measurements. As the particles flow through 

the constrictions, we track their size and transit time. While we observe a modest size dependence for the 

oil droplets, we observe no significant size dependence for our gel particles (Fig. 3B.iii, 3C.iii). To reduce 

any scaling bias and consistently compare the width of transit time distributions for cells, oil droplets, and 

gel particles, we filter data for all cells/particles based on the median particle size (7 ± 1 µm). Across our 

panel of particles within our median size filter, gel particles exhibit an average σIQR = 0.5 ± 0.2 (Fig. 

3B.vi); oil droplets have an average σIQR = 0.3 ± 0.0 (Fig. 3C.vi). The reduction of σIQR for oil droplets 

compared to gel particles may be attributed to the uniform molecular composition of the silicone oils; by 

contrast, spatial heterogeneities within the agarose particles could result from variations in the fabrication 

process; variability in the elastic moduli of agarose gel microspheres is observed by atomic force 

microscopy where the standard deviation can vary up to 10% (30). Compared to both gel and oil particles, 

HL-60 cells have a significantly higher σIQR = 0.9 ± 0.1 (Fig. 3A.vi); this is consistent with our hypothesis 
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that heterogeneity in the structure and/or mechanotype of single cells is a major contributor to transit time 

variability.  

 

Fig. 4 Transit time depends on particle mechanical properties. Transit times for (A) agarose 

gel particles with increasing elastic modulus; (B) silicone oil droplets with increasing viscosity; 

and (C) silicone oil droplets with increasing interfacial tension. Size filtered data is shown for 

particles of the median diameter of 7 ± 1 µm. Boxplots show medians denoted by line, 

interquartile ranges represented by box, and 10th and 90th percentiles shown by whiskers. Linear 

regression in red displays scaling relation compared to the bootstrapped median transit times. N > 

200 cells/particles for each sample. 

Transit time scales with elastic modulus. Our investigation of transit times for gel and oil particles with 

well-defined mechanical properties also provides deeper insight into the physical underpinnings of cell 

transit time measurements. We first investigate how elastic modulus affects transit time using our panel of 

agarose gel particles, which have a similar stiffness as cells such as leukocytes and ovarian cancer cells 

with E = 0.1 to 1.0 kPa (4, 6). As shown in Fig 5A, our size-filtered data across our panel of gel particles 

from E = 3.1 to 43 kPa reveals that stiffer particles have longer transit times than softer particles. At a 

fixed driving pressure of 28 kPa, gel particles with 1.0% (w/w) agarose and E = 8.7 kPa have a 

bootstrapped median transit time and confidence interval of 28 ± 2.5 ms. By contrast, stiffer gel particles 

with 2.0% (w/w) agarose and E = 17 kPa, have a bootstrapped median transit time and confidence interval 

of 40 ± 5.0 ms. Across our panel of gel particles, we find that the bootstrapped median transit time scales 

with elastic modulus, as shown by a simple linear fit (slope = 0.29 and R2 = 0.93) (Fig. 4A). These results 

support previous findings that cells with larger elastic moduli, as extracted from optical stretching 

experiments, also exhibit longer transit times (25). 
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Transit time weakly depends on particle viscosity. Cells are complex materials that exhibit both elastic 

and viscous behaviors. We next investigate how the viscosity of droplets regulates transit time by 

generating oil-in-water emulsions using silicone oils with well-defined viscosities from 10-2 to 102 Pa⋅s. 

We hypothesize that droplets with larger viscosities will have longer transit times, as they are comprised 

of larger molecules, which have longer rearrangement timescales. We select the oils to have a range of 

viscosities that are comparable to the viscosities of cells, which range from 10-2 Pa⋅s for adherent HeLa 

and 3T3 cells (31) to 102 Pa⋅s for neutrophil cells (25). To prevent coalescence and ensure that droplets 

remain intact during transit through the microfluidic device, we add 4% (w/w) Tween 20 surfactant. 

While the viscosities of our panel of oil droplets ranges over five orders of magnitude, we observe transit 

times increase by only one order of magnitude (Fig. 4B). For example, droplets with the highest viscosity 

of 102 Pa⋅s have a median transit time of 75 ± 2.5 ms; by contrast, droplets with the lowest viscosity of 10-

2 Pa⋅s have a median transit time of 20 ± 0.0 ms. Performing a linear fit to the bootstrapped median transit 

times of our panel of oil droplets reveals a slope of 0.14 with R2 = 0.92, suggesting transit time scales 

with viscosity as well as elastic modulus. However, transit time scales more significantly with elastic 

modulus on these millisecond timescales (slope = 0.29 and R2 = 0.93).  

Weak dependence of interfacial tension on transit time. We next investigate the effect of interfacial 

tension on the transit time of oil droplets. As out-of-plane bending is required for droplets to enter the 

constriction, we predict that droplets with higher interfacial tensions will have longer transit times. 

Surface tension is analogous to the cortical tension of cells, which is largely regulated by actin and 

hinders out-of-plane bending of the plasma membrane (32, 33). To determine the effects of surface 

tension on transit time, we modify the concentration of Tween 20 surfactant in our silicone oil droplets 

from 0.005 to 0.1% (w/w); this results in interfacial tensions ranging from 0.7 to 2.2 × 10-2 N/m, as 

confirmed by the pendant drop technique (34) (S. Fig. 4). Our experimental range of interfacial tensions is 

set by the critical micelle concentration (CMC) of the surfactant, which is 0.007% (w/w) at room 

temperature (35). We observe that transit time tends to increase with increasing interfacial tension. For oil 
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droplets with the highest surface tension of 2.2 × 10-2 N/m, the median transit time is 25 ± 3.0 ms, 

whereas oil droplets with a surface tension of 0.7 × 10-2 N/m exhibit a median transit time of 20 ± 0.0 ms. 

Yet even with interfacial tensions that are approximately two orders of magnitude larger than cells, our 

statistical analyses reveal that there is a marginal effect of interfacial tension on transit time (slope = 0.25 

and R2 = 0.91) compared to the effects of elastic modulus and viscosity (Fig. 4C).  

Taken together, our micron-scale characterization particles reveal that elastic modulus dominates transit 

time when cells/particles undergo 40% strain over 0.01 to 1 second, whereas viscosity and interfacial 

tension have a weaker effect on these time and length scales. 

Transit time depends on both particle stiffness and driving pressure. To be useful for biological and 

clinical applications, cell mechanotyping should have both dynamic range and sensitivity for detecting 

small and large differences in cell mechanical properties. To further develop a comprehensive framework 

for transit time experiments, we next investigate how Pdriving determines the range of mechanotypes that 

can effectively be measured. As transit time exhibits the strongest dependence on elastic modulus, we 

map transit times across our panel of gel particles and generate a phase diagram that illustrates the 

dynamic range for particles. 

Determining the range of Pdriving that enables transit events for a range of particles with different elastic 

moduli is an optimization problem that involves both measurement throughput and sensitivity. To achieve 

rapid measurements, higher Pdriving, and thus flow rates, are required. However, a single cell must be 

tracked for at least two frames to capture its entry and exit as well as its initial size (S. Fig. 5); this can be 

achieved by acquiring images with high frame rates and fast exposure times. Using our CMOS fast 

camera, a minimum exposure time of 0.2 ms is required to reduce object blurring and delineate the 

location and size of a single cell (S. Fig. 6); this enables us to achieve frame rates of up to 5000 frames 

per second. While higher image acquisition rates could be achieved with a faster camera, increased Pdriving 

could ultimately result in strain of PDMS channels, since EPDMS ~ 10 MPa. The lower pressure bound 

must be exceeded for a transit event to occur and is set by the threshold pressure, PT. To quantify the 
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lower pressure bound for particles of a given elastic modulus and size, we analyze the transit of particles 

with differing elastic moduli over a range of applied pressures.  

 

Fig. 5 Effects of driving pressure and particle elastic modulus on transit time. (A) Boxplots 

show transit time for agarose gel particles with well-defined elastic moduli over a range of 

driving pressures. Median is denoted by line, interquartile range is represented by box, and 10th 

and 90th percentiles are shown by whiskers. The absence of a boxplot at a given pressure reflects 

that no transit events occur, as PT < Pdriving. (B) Density map of transit time values as a function of 

driving pressure and gel particle elastic modulus. Dots represent the experimental conditions 

where transit time data is acquired. Dotted line represents the estimated boundary between transit 

and no transit regions based on measured PT values. N > 200 particles for each sample.  

We observe that stiffer particles require larger pressures to transit through the constrictions (Fig. 5). For 

example, we do not observe any transit events on the experimental timescale for the stiffest particles of E 

= 43 kPa at Pdriving ≤ 28 kPa. By contrast, a significant proportion of softer particles with E = 3.1 kPa 

transit through the constrictions at Pdriving = 28 kPa. These results highlight how Pdriving needs to be tuned 

to optimize the dynamic range for a set of samples with given mechanotypes. For example, to measure 

transit times for the softest and stiffest gel particles (E = 3.1 and 43 kPa), Pdriving should be between 34 to 

55 kPa: below this pressure, stiffer particles do not transit; yet with higher pressures, softer particles 

transit too quickly to resolve their entry into and exit from the constriction region. Taken together, our 

mapping of transit times across driving pressures and particle elastic modulus results in a phase diagram, 

which illustrates regions where transit and no transit occur for particles of varying stiffness as a function 

of Pdriving. 
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Additional sources of transit time variability. In contrast to our gel and oil particles that have relatively 

uniform structure and composition, cells are spatially heterogeneous materials. For example, the nucleus 

can occupy a significant volume within the cell and can be up to five times stiffer than the surrounding 

cytoplasm (36, 37). Our previous study demonstrates how the nucleus can rate-limit the deformation of 

cells through micron-scale gaps (8). The nucleus can also vary in size and morphology across a 

population of single cells (38). Additional geometric differences among cells could contribute to transit 

time variability, such as heterogeneity in the distribution of actin due to polarization and/or the position of 

the nucleus in a transiting cell. Moreover, cells at different stages in the cell cycle have markedly different 

subcellular architecture and mechanotype (39); this likely also contributes to the variability in transit 

times we observe in populations of cells.  

Deformation time and length scales. The deformation response of viscoelastic materials ranging from 

hydrogels to cells is sensitive to the time and length scales of the applied stress. Our results using 

calibration particles demonstrate that transit time measurements on millisecond timescales are dominated 

by elastic modulus. These results are consistent with our rheology data for agarose slabs, which determine 

the relative elastic and viscous contributions to deformations of agarose gels. By measuring the storage 

(G’) and loss (G”) moduli across a frequency range of 0.01 to 1 Hz, we observe that G’ is ~350% greater 

than G” and remains relatively constant over this linear regime (S. Fig. 3).  

Reconstituted actin (40) and intermediate filament (41) networks also exhibit a storage modulus, G’, that 

is typically 10 to 100 times larger than the loss modulus, G”, when probed at strain rates of 0.1 to 10 Hz. 

In addition, the deformation behavior of cells on similar 0.01 to 1 second timescales is largely determined 

by their elastic properties (42–44). However, at higher strain rates above 1000 Hz, G”, dominates the 

deformation behavior, reflecting increased viscous contributions as the deformation timescale approaches 

the timescale for intracellular macromolecules and water molecules to rearrange (45). For higher 

throughput fluid-based deformability measurements, which occur on microsecond timescales (10), cell 

deformation behavior may thus depend more strongly on cell viscous properties.  
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The mechanical response of cells also depends on the length scale of deformation as cells are spatially 

heterogeneous structures. For example, the cortical region of the cell can determine the mechanical 

response to nanometer-scale indentations by AFM and micron-scale, out-of-plane bending induced by 

micropipette aspiration (22, 46). While out-of-plane bending is a requisite for cell entry into the 

constricted channel, cell transit events require much larger deformations of the whole cell, which involve 

shear and compression; these considerations support our findings that transit time exhibits the strongest 

dependence on elastic modulus. An elastic sphere or shell model can also recapitulate the deformations of 

cells and agarose beads that are induced by shear stresses during flow through microfluidic channels on 

millisecond timescales (47). Our results also highlight how viscosity plays a role in transit time 

measurements. Indeed, viscoelastic models, such as power law rheology, can successfully predict the 

transit behavior of cells through microfluidic constrictions (18). Such physical models, together with 

particles that have tunable elastic and viscous moduli, should enable more detailed quantitative 

measurements of cell mechanical properties. Particles with well-defined mechanical properties also 

provide much-needed calibration standards in cell mechanotyping; quantitative comparisons of cell 

deformability across different techniques and laboratories is critical for more advanced clinical 

applications of mechanotyping.  

Conclusion 

In this study, we identify major contributors to the cell-to-cell variability of transit times with the goal of 

enabling precise classification of cell populations. We demonstrate how more robust transit time 

measurements can be achieved by reducing variability with post acquisition analysis and size binning. We 

also determine the extent to which the inherent heterogeneity in cell physical properties contributes to the 

width of transit time distributions. Our results should enable broader application of transit time 

measurements for rapid, single-cell mechanotyping in basic research to clinical settings.  
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Methods 

Device fabrication. Devices are fabricated using standard photolithography methods (48). The 

photoresist, SU-8 3005 (MicroChem, Westborough, MA, USA), is patterned onto a silicon wafer using 

standard photolithography techniques. We confirm SU-8 thickness using a Dektak 150 Surface 

Profilometer (Veeco, Fullerton, CA). Polydimethylsiloxane (Sylgard 184 silicone elastomer, Dow 

Corning, Midland, MI, USA) is mixed with crosslinker at a 1:10 w/w ratio, then poured onto the mold 

and cured at 65oC for 2 hours. The patterned PDMS is subsequently removed from the silicon mold and 

bonded to #1.5-thickness coverslips after exposure to corona discharge plasma for 1 minute and baking at 

80oC for 20 minutes.  

Cell culture. HL-60 cells are cultured in RPMI-1640 media with L-Glutamine (Life Technologies, 

Carlsbad, CA, USA), 10% fetal bovine serum, and 1% Pen/Strep (Gemini BioProducts, West Sacramento, 

CA, USA). Cell viability is determined before and after transit experiments using trypan blue dye and a 

TC20 Automated Cell Counter (Bio-Rad, Hercules, CA, USA).  

Soft particle fabrication. To make silicone oil droplets, we generate oil-in-water emulsions in deionized 

water with Tween 20 surfactant (Sigma-Aldrich, St. Louis, MO, USA). Deionized water with silicone oil 

(1:5 v/v) and varying concentrations of Tween 20 (5 to 100 mg/mL) are vortexed for 1 minute. The 

emulsion is then centrifuged at 157 × g for 3 minutes to remove air bubbles and filtered through a 35 µm 

mesh cap (BD Biosciences, Franklin Lakes, NJ, USA). For oil droplet experiments, we maintain a 

concentration of 4% (w/w) Tween 20, which is significantly greater than the critical micelle concentration 

(CMC) of 0.01% (w/w), so that the droplet surface is saturated and surface tension is effectively 

minimized.  

To fabricate agarose gel particles with defined elastic moduli, we make water-in-oil emulsions with 

agarose dissolved in the aqueous phase. The desired (w/w) percentage of ultra-low gelling temperature 

agarose (Sigma-Aldrich, St. Louis, MO, USA) is added to deionized water and heated in the microwave 

for about 30 seconds until boiling. Mineral oil with 1% w/w Span 80 and agarose solution (1: 5 v/v) are 
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vortexed on high for 1 minute, filtered through a 35 µm filter (BD Biosciences, Franklin Lakes, NJ, 

USA), and immediately placed on ice for 1 hour to promote gelation; thereafter, the suspension is filtered 

a second time through a 35 µm filter. The gel particles are removed from the oil phase by adding 5 mL of 

deionized water and centrifuging at 157 × g for 10 minutes. To isolate the aqueous suspension of gel 

particles, the oil phase is removed from the top of the solution by pipetting. 

Rheology measurements. To confirm the elastic moduli of our agarose gel particles, we measure the 

linear storage (G' ) and loss (G'' ) moduli of agarose slabs using a controlled strain shear rheometer (RFS-

II, 25 mm diameter parallel plate geometry, Rheometric Scientific, Inc., Piscataway, NJ, USA). The 

elastic properties of these agarose slabs are similar to those found for micron-scale agarose particles (30). 

Agarose solutions of varying concentrations at 20°C are loaded into the rheometer's gap set to 1 mm, 

gelled to 10°C for one hour, and then brought back to 20°C over 30 minutes prior to measurement 

acquisition. A vapor trap inhibits water evaporation during gelation and measurement acquisition. To 

reduce slipping between the gel and the rheometer's plates, sandpaper is adhered to these plates prior to 

gel casting. We perform a frequency sweep from 0.1 to 10 rad/s at 1.0% strain, in the linear response limit 

(S. Fig. 3); for each agarose concentration, this measurement is repeated three times (including loading 

and gelling) to obtain average values and to estimate run-to-run uncertainties. To determine Young’s 

moduli from the measured G' values, we use a Poisson ratio of 0.5 (49). Here, we estimate the elastic 

modulus of our agarose gels as the Young’s modulus evaluated at 1.0% strain and 1 rad/s. 

Microfluidic experiments. For cell deformation experiments, 0.1% (w/w) Pluronic F-127 (Sigma-

Aldrich, St. Louis, MO, USA) is added to the cell suspension to minimize cell-surface interactions (S. 

Video 1). We drive suspensions of cells, gels, and droplets through the microfluidic device by applying 

air pressure to the sample. To maintain consistent fluidic resistance, we ensure the same length of tubing 

is used across all experiments. For experiments with cells and gel particles, PDMS devices are used 48 

hours after plasma treatment and bonding. For experiments with oil droplets, PDMS channel 

hydrophilicity is maintained after plasma treatment by filling channels with deionized water; transit time 
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is measured within 1 hour after plasma treatment. Transit videos are captured at 200 frames/s with a high-

speed camera (MiroEx4, Vision Research, Wayne, NJ, USA) mounted on an inverted light microscope 

(Zeiss Observer, Zeiss, Oberkochen, Germany) with a 20×/0.40 objective (LD Achroplan, Zeiss, 

Oberkochen, Germany).  

Transit time analysis. Videos from microfluidic experiments are processed using a custom code in 

MATLAB (Mathworks, Torrance, CA, USA) (S. Fig. 5). In brief, the code detects particles, tracks their 

location, records their size, and determines the time for the leading edge of particles to transit through the 

constriction region (Fig. 1C). Expanding on previously described tracking algorithms (27), we apply here 

a rigorous protocol for cell detection and tracking: to determine the spatial bounds of the device 

constriction region, we perform an automated fit of a mask to remove regions outside of the microfluidic 

constrictions; to locate individual particles, we apply a set of filters, which include thresholding, dilation, 

erosion, median smoothing, and closing; to determine the start and end of transit, we measure the time 

required for the front of a particle to enter and exit the constriction region. Statistical analysis is 

performed using OriginPro software (OriginLab Corporation, Northampton, MA, USA). For all samples, 

we exclude particles with diameters smaller than 5 µm to ensure all measured particles are sufficiently 

deformed as they flow through the constrictions. After these filtering procedures, we obtain 90 ± 30 cell 

transit measurements per minute. To determine how transit time depends on mechanical properties, we 

apply Pearson’s chi squared test on the log transforms of the median data and mechanical properties. To 

distinguish statistically significant differences across cell treatment populations, we employ the Mann-

Whitney U test, which enables us to compare the non-normal distributions of transit times. 
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Supplemental Figures 

 

 

S. Fig. 1. Effect of Pluronic F-127 on HL-60 cell transit time. Devices +F-127 pretreatment: 

microfluidic devices are pretreated with 0.1% (w/w) Pluronic F-127 in RPMI medium for 1 hour prior to 

flowing cells through the device. +F-127: 0.1% (w/w) Pluronic F-127 is added to the cell suspension as 

denoted by the red boxplots. Boxplots show medians denoted by the line, interquartile ranges represented 

by boxes, and 10th and 90th percentiles shown by whiskers. N > 120 cells for each sample. 

 

 

S. Fig. 2. Simultaneous lane occlusions during transit of WT HL-60 cells. Histogram of the number of 

occluded lanes during the transit of each cell. Transit time measurements are performed under standard 

conditions for HL-60 cells with driving pressure 28 kPa, channel width 5.3 × 5.2 µm2. Dotted line 

represents the mean, while the black arrow represents the standard deviation. 
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S. Fig. 3. Mechanical properties of agarose gel slabs. Rheology measurements of the elastic storage 

(G') and viscous loss (G'') moduli (left axis) of low gel-temperature agarose gels as a function of agarose 

density (w/w%). To calculate the Young’s modulus (right axis, triangles), we use a Poisson ratio of 0.5. 

Error bars represent ±1 standard deviation for N = 3 replicates at each agarose density. 

 

S. Fig. 4. Interfacial tension as a function of Tween 20 concentration. Interfacial tension measured by 

the pendant drop technique. Data points represent the average interfacial tension obtained from 

independent experiments (N = 3). Error bars represent the standard deviation.  
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S. Fig. 5. Flowchart illustrating the algorithm used for image analysis. Images show a representative 

HL-60 cell flowing through a constriction with a 5.3 µm height × 5.2 µm width. 

 

 

 

S. Fig. 6. Quantification of object blurring during cell transit. Image blurring is assessed by 

measuring the width of the cell border in directions both tangential and normal to flow. Bar plots 

represent the average border width. Error bars denote the standard deviation (N = 35). 
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Supplemental Video  

S.Video. 1.  Pluronic F-127 can minimize cell-wall adhesion during transit through a PDMS 

microfluidic device. Pancreatic ductal epithelial (HPDE) cells transiting through 9 × 10 

constrictions (A) without Pluronic F-127, and (B) with 0.1% (w/w) Pluronic F-127 in the cell 

media. While we qualitatively observe a difference in the transit behavior of these pancreatic 

ductal epithelial (HPDE) cells, other cell types, such as HL-60 cells, show no significant 

difference in transit times with and without Pluronic F-127 surfactant (S. Fig. 1). Videos are 

acquired at 2000 fps. Videos are slowed down by 10x. 
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CHAPTER 2 

Quantitative Deformability Cytometry (q-DC): rapid, calibrated 

measurements of single cell viscoelastic properties 

 

Abstract  

Advances in methods that determine cell mechanical phenotype, or mechanotype, have demonstrated the 

utility of biophysical markers in clinical and research applications, ranging from cancer diagnosis to stem 

cell enrichment. Here, we introduce quantitative deformability cytometry (q-DC), a method for rapid, 

calibrated, single cell mechanotyping. We track changes in cell shape as cells deform into microfluidic 

constrictions, and calibrate the mechanical stresses using gel beads. We observe the time-dependent strain 

follows power law rheology, enabling single cell measurements of apparent elastic modulus, Ea, and power 

law exponent, β. To validate our method, we mechanotype human promyelocytic leukemia (HL-60) cells, 

and thereby confirm q-DC measurements of Ea = 0.53 ± 0.04 kPa. We also demonstrate q-DC is sensitive 

to pharmacological perturbations of the cytoskeleton, as well as differences in the mechanotype of human 

breast cancer cell lines (Ea = 2.1 ± 0.1 and 0.80 ± 0.19 kPa for MCF-7 and MDA-MB-231 cells). To 

establish an operational framework for q-DC, we investigate the effects of applied stress and cell-to-pore-

size ratio on mechanotype measurements. We show that Ea increases with applied stress, which is consistent 

with stress stiffening behavior of cells. We also find that Ea increases for larger cell-to-pore size ratios, even 

when the same applied stress is maintained; these results indicate strain stiffening and/or the dependence 

of mechanotype on deformation depth. Taken together, the calibrated measurements enabled by q-DC 

should advance applications of cell mechanotype in basic research and clinical settings.   
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Introduction 

Eukaryotic cells are complex, viscoelastic materials that undergo changes in their mechanical phenotype, 

or mechanotype, during many physiological and disease processes. For example, pluripotent stem cells 

become more resistant to deformation as they differentiate (1–4), and the deformability of cancer cells is 

associated with their invasive potential (5–7). Thus, cell mechanotype is emerging as a label-free biomarker 

for altered cell and pathological states. In addition, mechanotyping methods have demonstrated the potential 

for enhancing cancer diagnoses (8) and enriching stem cell populations (9). Rapid, calibrated measurements 

of cell viscoelastic properties could enable robust longitudinal and cross-study comparisons, and thus 

further advance the utility of cell mechanotyping. 

Standardized measurements of cell mechanical properties, such as elastic modulus, E, compliance, J, or 

viscosity, η, are acquired by probing cells with well-defined stresses and measuring the resultant 

deformations. Such measurements can be achieved using atomic force microscopy (AFM) (5, 10, 11), 

micropipette aspiration (12–14), optical stretching (2, 15–17), and microplate compression (18, 19), and 

can reveal physical principles that underlie cell mechanical properties, including viscoelastic and stress 

stiffening behaviors (20–22). Identifying such universal characteristics of cells can deepen our 

understanding of the role of mechanotype in physiology and disease. Moreover, standardized measurements 

enable accurate longitudinal and cross-study comparisons (11). However, measurements of mechanical 

moduli, for example, those obtained using AFM or micropipette aspiration, are typically acquired at rates 

of <1 cell/min. Higher throughputs are critical for measuring large numbers of single cells in clinical 

samples (23, 24) and elucidating the origins of phenotypic variability within a population.  

Fluid-based deformability cytometry (DC) enables rapid single cell mechanotyping at faster rates of 102 – 

106 cells per minute. Such DC methods demonstrate the potential of mechanotype for varying applications 

such as classifying cells at different stages of the cell cycle by their distinct mechanical properties (23) and 

enhancing the accuracy of clinical diagnoses by mechanotyping pleural effusions (8). In one DC method, 
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the hydrodynamic forces of inertial flow deform cells on the microsecond timescale (25). While this method 

facilitates the analysis of large populations, the external stresses on single cells are challenging to model 

and calculate. In the real-time DC (rt-DC) method, the shear stresses of fluid flow induce cell deformations; 

as these shape changes are well described by a continuum elastic model (26), E can be measured for single 

cells on millisecond to microsecond timescales (23). With the transit DC method, cells are driven to deform 

and transit through microfluidic constrictions on millisecond timescales (16, 27–34). The time required for 

cells to transit through microfluidic constrictions can depend on cell size, mechanical properties, and 

surface properties, but the initial deformation into microfluidic constrictions is dominated by cell 

deformability (32, 33, 35); cells and particles that have a higher E exhibit longer deformation timescales 

(16, 35, 36). Such transit experiments are widely used to mechanotype various cell types from breast cancer 

cells to neutrophils based on relative deformation timescales (27, 30). The average E of a population can 

be determined by driving cells through microfluidic constrictions with a range of pressures and fitting a 

viscoelastic model to the resultant strain and transit time data for thousands of cells (31, 34). However, 

single cell analysis is critical for characterizing population heterogeneity (37). 

Here we demonstrate rapid, calibrated, mechanical measurements of single cells using quantitative 

deformability cytometry (q-DC). We drive cells to deform through micron-scale constrictions at rates of 

thousands of cells per minute by applying a pressure gradient across the microfluidic device (29). To obtain 

quantitative measurements of cell mechanotype, we track the time-dependent strain of individual cells and 

calibrate the applied stresses using gel particles with well-defined elastic moduli. Our results show that the 

deformation response of single cells follows power law rheology (PLR), which enables us to determine an 

apparent elastic modulus, Ea, and power law exponent, β or fluidity, for single cells. We validate our q-DC 

method by measuring Ea and β for human promyelocytic leukemia (HL-60) cells. We find that Ea increases 

with cell strain and applied stress on these time and length scales. We also demonstrate that q-DC is 

sensitive to changes in HL-60 mechanotype following treatment with cytoskeletal-perturbing drugs. 

Differences in the mechanotype between human breast cancer cell lines, MCF-7 and MDA-MB-231 cells, 
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can also be detected. Taken together, the q-DC platform enables rapid, calibrated mechanotyping, which 

should deepen our understanding of cells as materials.  

Materials and Methods  

Cell culture. Cells are cultured at 37oC with 5% CO2. Cell media and L-Glutamine are from Life 

Technologies, Carlsbad, CA, USA; fetal bovine serum (FBS) and penicillin-streptomycin are from Gemini 

BioProducts, West Sacramento, CA, USA. Human promyelocytic leukemia (HL-60) cells are cultured in 

RPMI-1640 medium with L-Glutamine, 10% FBS, and 1% penicillin-streptomycin. To perturb the 

cytoskeleton, cells are treated for 1 hr with: 2 µM cytochalasin D (Santa Cruz Biotechnology, Santa Cruz, 

CA, USA), 100 µM blebbistatin (Santa Cruz Biotechnology, Santa Cruz, CA, USA), and 100 nM 

jasplakinolide (Life Technologies, Carlsbad, CA, USA). Cell viability is determined using trypan blue 

staining (S. Table 1). Human breast cancer cell lines, MCF-7 and MDA-MB-231, are cultured in high 

glucose, L-glutamine, sodium pyruvate Dulbecco’s Modified Eagle Medium (DMEM) medium with 10% 

fetal bovine serum and 1% penicillin-streptomycin. The human promyelocytic leukemia (HL-60) cells and 

human breast cancer cell lines (MCF-7 and MDA-MB-231) are from the American Type Culture Collection 

(ATCC). The identity of each cell line is confirmed using multiplex short tandem repeat (STR) profiling 

(Laragen Inc., Culver City, CA, USA).  

Fabrication of calibration particles. Silicone oil droplets and gel particles are fabricated using methods 

previously described (35). In brief, silicone oil droplets are formed by generating oil-in-water emulsions 

where the dynamic viscosity of the silicone oil varies from 10-2 to 101 Pa·s (Sigma-Aldrich, St. Louis, MO, 

USA). Deionized (DI) water with silicone oil (1:5 v/v) and 4% (w/v) Tween 20 surfactant (Sigma-Aldrich, 

St. Louis, MO, USA) are vortexed for 1 minute. The concentration of Tween 20 is significantly larger than 

the critical micelle concentration of 0.01% (w/v), such that the droplet surface is saturated with surfactant 

and the droplets are effectively stabilized while transiting through the microfluidic device. Prior to transit 

experiments, the emulsion is centrifuged at 157 x g for 3 minutes to remove air bubbles and filtered through 
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a 35 µm mesh filter (BD Biosciences, Franklin Lakes, NJ, USA) to create a size distribution of droplets that 

is similar to cells (35). To further ensure droplet stability during transit through the microfluidic devices, 

experiments are conducted within one hour after plasma treatment to maintain hydrophilic surface 

properties. Channels are also filled with DI water 5 min after plasma treatment to reduce hydrophobic 

recovery. 

To fabricate agarose microgels, water-in-oil emulsions are generated, such that the aqueous phase contains 

the desired w/w percentage of low gelling temperature agarose (#A4018-5G, Sigma-Aldrich, St. Louis, 

MO, USA). The agarose/DI water mixture is heated to 90oC on a heating block for 10 minutes until the 

agarose is fully dissolved. The liquid agarose solution is then vortexed with mineral oil (1:5 v/v) together 

with 1% w/w Span 80 for 30 seconds. After filtering the resultant emulsion through a 35 µm mesh filter 

(BD Biosciences, Franklin Lakes, NJ, USA), the sample is immediately placed on ice for 1 hour to promote 

gelation and then stored in 4oC overnight. Thereafter, the microgels are removed from the oil phase by 

adding 5 mL of DI water and centrifuging at 157 x g for 10 minutes. To increase the yield, the samples are 

shaken vigorously after being removed from the centrifuge and spun down three more times removing the 

oil from the top of the solution by pipetting. Washing steps are repeated three times to ensure sufficient 

separation of the water and oil phases. The suspension is filtered one last time through a 35 µm mesh filter. 

Young’s modulus characterization of agarose calibration particles. To determine the elastic modulus 

of microgels with varying compositions of agarose from 1 to 3% (w/w), particles are indented using an 

AFM (MFP 3D-BIO system, Asylum Research, Goleta, CA, USA) that is mounted on an inverted 

microscope (Nikon Ti-E, Tokyo, Japan). To anchor the particles during AFM measurements, we incubate 

agarose microgels for 30 minutes on a glass substrate pretreated with 0.01% (w/v) poly-L-lysine overnight 

prior to AFM (Sigma-Aldrich, St. Louis, MO, USA). AFM is performed using a silicon nitride cantilever 

with an attached 12 µm-diameter borosilicate glass sphere as an indenter (Product #HYDRA6R-200NG-

BSG-B-5, AppNano, Mountain View, CA, US). The particles are probed using a 1 µm/s approach velocity. 

Thereafter, the AFM force curves are fit to the Hertz model with a spherical indenter to determine the 
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Young’s moduli of the agarose microgels (Fig. 2A). We use a Poisson ratio of 0.5. By brightfield imaging 

of each particle prior to AFM indentation, we measure particle size and confirm that there is no observable 

dependence of elastic modulus on particle size (S. Fig. 1A). 

Microfluidic device fabrication. Microfluidic devices are fabricated using standard soft lithography 

methods (38). To fabricate the master wafer, SU-8 3005 or 3010 (MicroChem, Westborough, MA, USA) 

is spin-coated on a silicon wafer to a final thickness of 5 µm or 10 µm. A negative photomask is placed on 

the SU-8-coated wafer and the photoresist is crosslinked upon exposure to UV light with 100 mJ/cm2 of 

exposure energy (35). The height of the resulting relief of the microfluidic channels is measured using a 

Dektak 150 Surface Profilometer (Veeco, Fullerton, CA). A 10:1 w/w mixture of base and curing agent for 

polydimethylsiloxane (PDMS) (Sylgard Dow Corning, Midland, MI, USA) is poured onto the master wafer. 

The mixture is degassed for 1 hour under vacuum and cured in a 65oC oven for 2 hours. Prior to bonding, 

inlets and outlets are excised using a biopsy punch with a 0.75 mm bore size. To bond the PDMS to a 

coverglass (#1.5 thickness), the complementary surfaces are exposed to plasma for 30 seconds and press 

together with light pressure. After bonding, the microfluidic devices are baked at 80oC for 20 minutes to 

further promote covalent attachment between PDMS and glass. To reduce possible measurement artifacts 

due to temporal changes in surface properties, devices are consistently used 24 hours after plasma bonding 

(35). 

q-DC device design. The q-DC microfluidic device consists of a bifurcating network of channels that 

extends into a parallel array of 16 channels that contain micron-scale constrictions (27, 28). To reduce the 

effect of transient channel occlusions as multiple cells transit simultaneously through the constriction 

region, a bypass channel is included in the device design and post-acquisition filtering is performed to 

exclude data when more than 10 channels, or 65% of the channels, are occupied (35). Below this cutoff, 

there are fluctuations in flow rate below 7% variability (35). 
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q-DC microfluidic experiment. To perform q-DC experiments, microfluidic devices are mounted onto an 

inverted microscope (Zeiss Observer, Zeiss, Oberkochen, Germany) that is equipped with a 20×/0.40 NA 

objective. To drive the suspension of cells through the channels, constant air pressure is applied to the 

device inlet, which is regulated using a pneumatic valve (OMEGA Engineering, Inc., Norwalk, CT, USA). 

As cells flow into the device, a downstream filter traps foreign particles and cell aggregates that are larger 

than 20 µm. As cells deform through the constrictions (29), brightfield images are acquired at rates of 200 

to 2000 frames per second using a CMOS camera (MircoEx4, Vision Research, Wayne, NJ, USA) in order 

to track cell shape and displacement (Fig. 1A, B). This enables measurements of cell size Dcell, time-

dependent strain ϵ(t), critical strain ϵcritical, creep time Tc, and transit time TT. When a driving pressure of 28 

kPa (4 psi) is applied to a cell suspension with a density of 2 x 106 cells/mL, single-cell measurements can 

be acquired at rates of ~103 cells/min. For applied pressures of 69 kPa (10 psi), measurements can be 

acquired at ~104 cells/min.  

To minimize cell-surface interactions, measurements are conducted in the presence of 0.01% (w/v) Pluronic 

F-127 surfactant (Sigma-Aldrich, St. Louis, MO, USA). For some cell types such as human pancreatic 

ductal epithelial (HPDE) cells, we qualitatively observe a decrease in cell-PDMS adhesion when Pluronic 

F-127 surfactant is added to the cell suspension (35); therefore we consistently use this treatment across all 

cell types. There is no significant quantitative or qualitative effect of F-127 treatment on the Ea values of 

HL-60 cells (S. Fig. 2). While cell-surface interactions can contribute to cell transit through long, narrow 

microfluidic channels, the timescale required by cells to enter microfluidic constrictions is largely 

determined by cell deformability (32, 33, 35). 
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Fig. 1. Cell shape changes during transit through microfluidic constrictions. (A) Schematic of 

a single cell transiting through a micron-scale constriction by pressure-driven flow where ∆P is the 

pressure drop across the cell. Cell shape is evaluated by measuring circularity, C(t) = 4πA(t)/P(t)2, 

during transit, and the time-dependent strain, ϵ(t), is defined as 1 – C(t). (B) Time sequence of a 

representative HL-60 cell transiting through a microfluidic constriction that exhibits the median 

transit time and cell size of the cell population. The white border illustrates the cell boundary, as 

detected by our imaging algorithm. Color overlay illustrates the change in circularity, C, during 

deformation. Scale, 15 µm. (C-D) Timescale and shape change during transit through a microfluidic 

constriction. The x-axis represents the position of the centroid of the cell. We extract: (C) transit 

time, which is the time required for the leading edge of the cell to enter and exit the constriction 

region; and (D) time-dependent strain or creep, which is determined by the changes in shape 

(circularity) of the cell as it deforms into the pore. The creep time begins when the leading edge of 

the cell enters the constriction; it ends when the centroid exits the constriction, as illustrated by the 

dashed lines. (E) Creep trajectories for the population of HL-60 cells (N = 550). The gray dotted 

lines represent data from individual cells. The solid gray line represents the creep trajectory of the 

representative HL-60 cell.  
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Tracking of cell strain during deformation through microfluidic constrictions. To extract cell 

mechanical properties from transit experiments, cell position and shape are tracked by applying 

thresholding and morphological filters to the high frame rate images in a MATLAB code (Mathworks, 

Natick, MA; code available online on GitHub). The creep function, J(t), is determined as the ratio between 

the observed strain and applied stress: 

 

     𝐽𝐽(𝑡𝑡) =  𝜖𝜖(𝑡𝑡)
𝜎𝜎�

 ,     Eq. 1 

where ϵ(t) is the strain and 𝜎𝜎� is the time-averaged stress. Here, the strain is measured as the change in 

circularity, C:  

     𝜖𝜖(𝑡𝑡) =  𝐶𝐶𝑜𝑜– 𝐶𝐶(𝑡𝑡)
𝐶𝐶𝑜𝑜

,     Eq. 2 

where C(t) = 4πA(t)/P(t)2. We find that circularity compared to length extension and width compression 

more robustly captures the deformation of cells through the curved microfluidic constrictions. Prior to 

entering the constriction, circularity values are close to 1, the value of a perfect circle. Therefore, the initial 

circularity is set to Co = 1. As a cell deforms through a constriction, the strain reaches a maximum as the 

cell extends and deforms through the narrow gap (Fig. 1B-D). The quantification of creep begins one frame 

after the leading edge of the particle reaches the constriction, which corresponds to the initial projection of 

the cell into the constriction, and ends when the centroid of the cell leaves the constriction (Fig. 1). We use 

a minimum of four frames to achieve sufficient fits for the creep trajectories of individual cells. While 

fitting to a larger number of >15 frames can improve fitting accuracy, as indicated by the residuals (S. Fig. 

3), this would exclude all cells that transit within less than 15 frames, or 7.5 ms. Increasing the frame rate 

captures cell deformations with higher temporal resolution, but the duration of the video is reduced to 3.7 

seconds due to hardware limitations at the maximum frame rate of 3500 frames/sec. Therefore, using a 4 

frame cutoff for acquiring q-DC measurements enables us to resolve the power law behavior of individual 



 

 50 

cells that are representative of the population by acquiring data across a range of cell deformation timescales 

from milliseconds to seconds.  

Calibration of time-averaged stress using gel particles. Since the device has a finite fluidic resistance, 

the stress applied to a cell as it deforms in the microfluidic constriction does not equate to the applied 

driving pressure, or Papplied, but rather scales with Papplied as 

     𝜎𝜎� = 𝐴𝐴𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,     Eq. 3 

where 𝜎𝜎� is the time-averaged stress at the constriction region and A is the calibration factor. To determine 

A, we calibrate the system using agarose particles with elastic moduli (E) ranging from 660 ± 86 Pa to 2.4 

± 0.44 kPa (average ± standard error), as confirmed by AFM (Fig 2A); similar values are observed for 

agarose particles generated using droplet microfluidics (39).  

 

To achieve particle transit through a fixed pore size, the applied stress must induce a minimum, critical 

strain,  𝜖𝜖critical, Assuming linear elastic behavior, the scaling factor, A, can be determined by the stress-

strain relation at the threshold conditions where Papplied = Pthreshold: 

 

     𝐴𝐴 =  𝐸𝐸𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑃𝑃𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

 .     Eq. 4 

We define the threshold pressure as the minimum applied pressure needed to drive the transit of over ~80% 

of the particles through the constrictions. For example, when calibration particles with E = 1.5 ± 0.1 kPa 

are driven through a 5 µm x 5 µm device using an applied pressure below Pthreshold = 41 kPa, the majority of 

particles occlude the microfluidic constrictions on the experimental timescale of 1 minute. By contrast, with 

applied pressures above Pthreshold, over 80% of particles transit within this timescale. As we use a 

heterogeneous size distribution of particles, we determine Pthreshold and 𝜖𝜖critical for the largest (top 50th to 

100th size percentile) gels that transit through the constriction for a given bead stiffness at Pthreshold (S. Fig. 
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1B). Here, we calculate the critical strain as 𝜖𝜖critical  = (𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)/𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. Across the 

range of particle stiffnesses (0.6 – 2.4 kPa) and strains (40 - 60%) that we investigated, we find a linear 

relation between stress and strain (Fig 2B), which validates our assumption of linear elasticity.  

 

Fig. 2. Stress calibration using agarose gel particles. (A) Elastic moduli of gel particles made with 

varying concentrations of agarose from 1.0 – 3.0% (w/w) as measured by AFM. Data represent 

average ± standard deviation for N = 12 – 53 particles over two independent experiments. (B) 

Agarose calibration particles are used to determine the applied stresses in the q-DC device by 

measuring the minimum threshold pressure Pthreshold required to induce a critical strain ϵcritical for a 

particle to deform through a constricted channel. Shown here is representative data for N > 140 

particles transiting through a 5 µm x 5 µm channel. X-error bars represent the standard deviation of 

the elastic modulus as in Fig. 2A. Y-error bars represent the standard deviation of the threshold 

pressure-to-particle strain ratio. The red line is the linear fit determined by the Deming method. The 

red shaded region illustrates the 95% confidence interval of the fit. The inverse of the slope 

characterizes the calibration factor, A.  

By performing linear regression using the Deming method on Pthreshold/𝜖𝜖critical versus E for our panel of 

calibration particles, we determine A for each device geometry (Fig. 2B, S. Fig. 4) (40). We find that A is 

0.021 ± 0.002, which yields 𝜎𝜎� ≈ 568 ± 53 Pa for Papplied = 28 kPa in the 5 µm x 5 µm device geometry. 

Combining Eqs. 3 and 4, the resultant creep J(t) for the 5 µm x 5 µm device is defined as  

     𝐽𝐽(𝑡𝑡) =  𝜖𝜖(𝑡𝑡)
0.021 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

   .    Eq. 5 
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The Deming method also enables us to determine the error in A as it considers the error in both 

Pthreshold/𝜖𝜖critical and E. In addition to the variability in elastic moduli of the calibration particles, error in A 

may arise due to fluctuations in applied stress as particles transit and occlude neighboring channels. In our 

previous analysis of cell transit times, we found transit times significantly decrease when more than 10 

neighboring lanes are occupied (35); therefore we analyze data from particles and cells that transit when 10 

or less neighboring lanes are occupied. Kirchoff’s Law reveals that the flow rate can change by 7% within 

our experimental range of occluded neighboring lanes of 0 – 10 lanes; this is reflected in the error of applied 

stress of 10% (35). 

Viscoelastic Cell Adhesion Model (VECAM) simulations. To provide insight into the stresses on cells as 

they deform through microfluidic pores, we use VECAM, a three-dimensional multiphase flow algorithm 

in which each of the phases is modeled as a viscoelastic or Newtonian fluid. The viscoelasticity of the cells 

and walls of the microchannel are described by the Oldroyd-B constitutive model (41, 42). Similar to our 

experiments, cells flow through the microchannel of a PDMS device in response to an applied pressure (S. 

Fig. 6A). The simulations determine the total stresses acting on cells, including fluid shear stresses and 

normal stresses that result from the pressure drop across the cell as it transiently occludes the pore. To 

reduce the computational expense of the simulations, cells are modeled to have E = 10 Pa and an apparent 

viscosity of 1.0 Pa·s. To maintain the same ratio between cell and PDMS stiffness as in our experiments 

(EPDMS/Ecell ~ 103), the stiffness of the microchannel is modeled as E ~ 104 Pa. The carrier fluid of the cells 

during transit in the device is modeled as a Newtonian fluid.  

Results and Discussion 

Time-dependent cell strain follows power law rheology. Determining the material properties of cells 

from transit experiments requires a physical model to describe the relationship between stress and strain. 

To simplify analysis, we consider the cell as a homogeneous, isotropic, and incompressible material. This 

enables us to fit mechanical models to the creep trajectories for individual cells, such as the liquid drop and 
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Kelvin-Voigt models. The deformation of cells entering microfluidic constrictions can be assessed using 

models that describe cells as liquid droplets (32), elastic solids (26), as well as viscoelastic (43) and soft 

glassy (31) materials. However, it is not a priori known which model best describes the deformations of 

cells into the microfluidic constriction and provides the most accurate measurement of cell mechanical 

properties. Here, we evaluate how effectively four viscoelastic models – the Maxwell solid, Kelvin-Voigt, 

standard linear solid (SLS), and power law rheology (PLR) – describe cell creep through microfluidic 

constrictions. These models are described in greater detail in the supplemental materials (SI Material). 

Our analysis reveals that PLR provides the best fit to our data: the least squares residuals are the lowest for 

PLR (3.9 ± 0.2 x 10-9 Pa-2) compared to other standard viscoelastic models (4.8 ± 0.3 x 10-9 Pa-2 to 8.0 ± 0.2 

x 10-9 Pa-2) (Fig. 3A,B). While an increasing number of fitting parameters can naturally result in reduced 

residuals, PLR has only two fitting parameters. By contrast, the SLS model has three fitting parameters, but 

the least squares residuals are higher than for PLR (6.0 ± 0.1 x 10-9 Pa-2, p << 0.001). Our results are 

consistent with observations of PLR behavior in cells that are subjected to stresses by micropipette 

aspiration (44), optical stretching (2), transit DC (31, 34), AFM (20), and magnetic twisting cytometry (45).  

Using PLR, we extract the mechanical properties of single cells as they deform through microfluidic 

constrictions by analysis of the time-dependent creep function, 

 𝐽𝐽(𝑡𝑡) = 1
𝐸𝐸
�𝑡𝑡
𝜏𝜏
�
𝛽𝛽

,         Eq. 6 

where τ is the characteristic timescale, which is commonly set to 1 s; E is the elastic modulus when t = τ; 

and β is the power law exponent that reflects the rate of stress dissipation and thus provides a measure of 

cell fluidity. When β = 0, the creep function describes a purely elastic material and Eq. 6 reduces to Hooke’s 

law; when β = 1, Eq. 6 reduces to the Newtonian liquid drop model, reflecting a purely viscous material. 

While our data is consistent with PLR, we refer to the elastic modulus that we measure using q-DC as the 
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apparent elastic modulus Ea because of the potential nonlinear effects that may contribute to our 

measurements with the large 30 to 60 % strains in q-DC.  

  

Fig. 3. Power law rheology for cell mechanotyping by q-DC. (A) Creep trajectory for a single, 

representative HL-60 cell (gray dots). Lines represent the least-squares fits of viscoelastic models to 

the creep data: Maxwell (red dotted line); Kelvin-Voigt (KV, purple long-dashed line); standard 

linear solid (SLS, blue dot-dashed line); and power law rheology (PLR, green short-dashed line). (B) 

Residuals for the least-squares fits of the viscoelastic models to the creep trajectories of a population 

of HL-60 cells (N = 550), as shown in Fig. 1E. Shown here are the bootstrapped median residuals; 

error bars represent the bootstrapped confidence interval. *p < 0.05, ***p ≪ 0.001. (C-D) Heat maps 

show the (C) apparent elastic modulus, Ea, and (D) fluidity, β, of HL-60 cells as a function of transit 

time, TT, and cell diameter, Dcell, which is measured in the microfluidic channel before the cell enters 

the constriction. Each bin represents the median Ea or β of N = 3 – 47 single cells. 

We also recognize that these mechanical measurements assume constant stress during cell transit. As shown 

by Viscoelastic Cell Adhesion Model (VECAM) simulations, the total stress on a cell varies as it deforms 

through a pore (S. Fig. 6). As the cell transits through the pore, there is a drop in the hydrodynamic forces 

on the cell, which are proportional to the cell velocity according to Stokes’ law (S. Fig. 6B). In addition, 

there is a pressure drop across the cell, where the applied pressure Papp at the trailing edge is higher than 

the pressure at the cell’s leading edge, which is approximated by atmospheric pressure, Patm (S. Fig. 6C). 
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Thus, when the cell is transiently occluding the pore, there are positive normal forces that deform the cell, 

and which vary during cell translocation due to the curved geometry of the pore. 

Validation of PLR using oil droplets. To validate the use of PLR in q-DC, we first quantify β, or fluidity, 

for droplets of silicone oil. We predict β = 1 for droplets of silicone oils, which are Newtonian fluids. We 

generate oil droplets that have a range of molecular weights and thus dynamic viscosities, η, from 10-2 to 

101 Pa·s, and flow them through the constrictions at a constant driving pressure of 28 kPa. From 1000 

random samplings of the β distributions, we obtain median bootstrapped values and confidence intervals of 

β. We observe β = 0.78 ± 0.08 for the lowest viscosity silicone oil (η = 10-2 Pa·s) (S. Fig. 4), which is close 

to purely viscous behavior. With increasing viscosity, we observe decreasing β, where the highest viscosity 

oil droplets (η = 101 Pa·s) exhibit β = 0.54 ± 0.02. This decrease in β with increasing viscosity suggests a 

progressively increasing elastic response, which occurs due to the fast millisecond timescales of our 

measurements compared to the timescale of molecular rearrangements in the silicone oils that have 

increased molecular weight.  

Single cell measurements of elastic modulus and fluidity. To demonstrate the utility of q-DC for cell 

mechanotyping, we measure HL-60 cells, whose mechanical properties are well characterized using 

methods such as micropipette aspiration (46), AFM (47, 48), and optical stretching (16) (S. Table 3). Our 

results show that HL-60 cells have a median Ea and confidence interval of 0.53 ± 0.04 kPa (β = 0.29 ± 

0.02), as measured by 1000 iterations of bootstrapped resampling (Fig. 3, S. Table 2); this is on the same 

order of magnitude as values obtained using AFM, where E = 0.9 ± 0.7 kPa (47) and E = 0.9 ± 0.2 kPa (48) 

(S. Table 3).  

Since q-DC quantifies the mechanotype of single cells, the variability in mechanical properties across a cell 

population can be determined. To describe cell-to-cell variability, we use the interquartile range (IQR) as a 

quantitative metric. For HL-60 cells, the IQR spans half an order of magnitude from 0.30 to 0.71 kPa, as 
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measured by σIQR_Ea = log10(75th/25th percentile) = 0.35 ± 0.06. We also find significant variability in β with 

σIQR_β = 0.25 ± 0.03.  

By plotting Ea and β vs. Dcell, we observe that larger cells tend to have higher Ea (Fig. 2C, Fig. 3A) and 

reduced β (Fig. 2D, Fig. 3A). For example, we find that for cells with Dcell = 18 ± 1 µm, Ea = 0.37 ± 0.06 

kPa and β = 0.37 ± 0.04, whereas larger cells with Dcell = 22 ± 1 µm have Ea = 0.59 ± 0.04 kPa and β = 0.26 

± 0.02 (Fig. 2C,D). Size-dependence of cell mechanotype is also observed in other DC methods, where 

larger cells have longer transit times (31–33, 35) and exhibit more significant changes in shape due to forces 

exerted by fluid flow (23, 25). While larger cells could be inherently stiffer than smaller cells, larger cells 

undergo larger strains as the constriction width is fixed (S. Fig. 7). Since cells are non-linear materials, the 

length and time scales of deformation may influence their Ea as observed in cells (20–22, 49–52) and 

biopolymer networks (20, 49, 53–55).  

Cell-to-pore size ratio affects mechanotype. To further investigate the cell-to-pore size dependence of 

Ea, we vary the constriction width from 5 µm to 9 µm, while maintaining a constant constriction height of 

10 µm; thus, we achieve median cell-to-pore size ratios of ~3 and 1.5. To ensure cells are subjected to the 

same applied stress while undergoing different critical strains, we utilize the agarose calibration beads to 

determine the required applied pressures for each constriction geometry: Papplied = 14 kPa for 5 µm x 10 µm 

geometry and Papplied = 34 kPa for the 9 µm x 10 µm device (S. Table. 4). For cells of Dcell = 16 ± 1 µm, we 

observe a significant 70% decrease in Ea when measured using a 9 µm width constriction (Ea = 230 ± 90 

Pa), as compared to the 5 µm-wide geometry (Ea = 860 ± 230 Pa, p << 0.001). These results suggest that 

the magnitude of cell strain affects Ea and are consistent with observations of strain stiffening in mechanical 

measurements of cells and biopolymer networks  (10, 54). Our findings of how mechanotype depends on 

cell-to-pore size ratio also substantiates the comparison of cells of similar sizes across samples.  

Cells are also spatially heterogeneous materials. Therefore, the magnitude of deformation depth, or strain, 

may impact the resultant mechanotype measurements. The nucleus is a major contributor to subcellular 
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deformations: this organelle is typically 2- to 5-times stiffer than the surrounding cytoplasmic region (11), 

and rate-limits the deformation of cells through microfluidic channels that are smaller than the diameter of 

the nucleus (28). HL-60 cell nuclei range in diameter from 5 to 14 µm and have an average size of 9.2 ± 

2.0 µm (S. Fig. 9); thus for most cells, the nucleus must deform when cells transit through a 5 µm- or 9 µm-

wide constriction. By quantitative image analysis, we find that larger HL-60 cells tend to have larger nuclei, 

as indicated by the positive correlation (R = 0.8) between nuclear and cellular diameter (S. Fig. 9A). Thus, 

the increased Ea observed for larger cells could also result from the increased deformation of the nucleus 

that is required for transit. A similar increase in Young’s modulus is observed with increasing AFM 

indentation depth into the nucleus (11). The dependence of cell and nuclear size on the deformation 

response of cells as they deform through pores further underscores the importance of comparing q-DC data 

from cells that undergo a similar magnitude of strain (S. Fig. 7). These findings also provide a guide for 

establishing parameters in q-DC experiments: a cell-to-pore size ratio of ~2 ensures cell deformation is 

required for transit through the pore, and typically results in a strain of 35 - 40%, which is on the lower 

range of cell strains that can be achieved with q-DC, and therefore minimizes strain-stiffening effects.  
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Fig 4. Mechanotype of HL-60 cells depends on applied pressure and cell-to-pore size ratio. 

(A) Density scatter plots show apparent elastic modulus Ea as a function of cell size. The cell 

diameter Dcell is measured in the microfluidic channel before the cell enters the constriction. Data 

represents the deformation response for HL-60 cells that are driven to deform through 5 µm x 10 

µm constrictions with increasing applied pressure. The calibrated applied stress is marked on the 

bottom right corner of each panel. Dots represent single cell data. Color represents the density of 

data points. Cell size measured by q-DC increases with applied pressure, as there is a higher 

probability that larger cells will transit at higher pressures; at lower pressures, larger cells have a 

higher probability of occluding constrictions. To compare data sets, we bin cells by the median cell 

diameter, as indicated by the gray dashed line; the resultant size-binned data is shown in the 

boxplots. (B) Density scatter plot illustrates elastic modulus Ea as a function of cell size for HL-60 

cells deforming through 9 µm x 10 µm constrictions.  (C) Boxplots show the size-gated 

distributions of Ea for HL-60 cells with Dcell = 16 ± 1 µm. Cells are subject to varying applied 

stresses, 𝜎𝜎�, and constriction geometries: white lines represent the median, boxes represent the 

interquartile ranges, whiskers represent the 10th and 90th percentiles, and white squares represent 

the bootstrapped median. N > 200 for each cell type. Statistical significance is determined using 

the Mann-Whitney U test: *p < 0.05, **p < 0.01, ***p < 0.001.  

Stress-stiffening behavior of cells using q-DC. To determine the effects of applied stress on cell 

deformation behavior in q-DC, we drive HL-60 cells through 5 µm x 10 µm constrictions with increasing 

applied pressures from 14 – 69 kPa. From our calibration, we determine the corresponding range of applied 

stress to be 𝜎𝜎� = 1.0 to 4.8 kPa. With an increase in 𝜎𝜎� from 1.0 to 2.4 kPa, we find a small 10%, albeit not 

significant, increase in elastic modulus (p = 0.34). Further increasing 𝜎𝜎� to 4.8 kPa, we observe a statistically 

significant stiffening reflected by the 60% increase in Ea (p < 0.001). From 𝜎𝜎� = 1.0 to 4.8 kPa we observe 

a significant 70% increase in Ea from 860 ± 230 Pa to 1.5 ± 0.5 kPa (p = 0.003) (Fig. 4A, S. Table. 4). 

Taken together, these results indicate stress stiffening response of HL-60 cells on these deformation 

timescales of milliseconds to seconds. The stress stiffening behavior of cells is observed across varying cell 

types from airway smooth muscle cells to fibroblasts (2, 20, 49, 56). Therefore, we consider cells of similar 

sizes when comparing between populations of single cells to minimize possible bias from strain and stress 

on q-DC measurements. 
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Validation of mechanical measurements using HL-60 cells. To demonstrate the sensitivity of q-DC to 

changes in cytoskeletal structure, we treat HL-60 cells with cytoskeletal perturbing drugs, which are known 

to alter cell mechanical properties (10, 46, 57, 58). For example, treatment with cytochalasin D inhibits F-

actin polymerization (27), while treatment with jasplakinolide inhibits F-actin depolymerization, thus 

stabilizing actin filaments. To compare cells of similar size, we size bin our data to investigate cells of the 

median diameter, Dcell = 21 ± 1 µm, of HL-60 cells across all drug treatments (Fig. 5A). We find that 

treatment with cytochalasin D results in a small but significant decrease in Ea from 0.53 ± 0.04 to 0.39 ± 

0.05 kPa with an increase in cell-to-cell variability, from σIQR_Ea = 0.35 ± 0.06 to 0.46 ± 0.08 (p << 0.001) 

(Fig. 5). In addition, we observe cytochalasin D treatment results in a marginal increase in cell fluidity from 

β = 0.29 ± 0.02, to β = 0.34 ± 0.03 (p = 0.006), as well as an increased variability in fluidity from σIQR_β = 

0.25 ± 0.03 to σIQR_β = 0.33 ± 0.04 (Fig. 5B). By contrast, stabilizing F-actin with jasplakinolide treatment 

insignificantly increases Ea to 0.54 ± 0.06 kPa and σIQR_Ea = 0.30 ± 0.06; we also observe a concomitant, 

significant decrease in β to 0.27 ± 0.03 with σIQR_β = 0.27 ± 0.06 v (Fig. 5B). Our observations of the effects 

of cytochalasin D and jasplakinolide are consistent with previous studies investigating the contributions of 

F-actin to cell transit through micron-scale channels (27, 32, 59, 60). These results demonstrate the proof-

of-concept and utility of q-DC to achieve mechanical measurements of single cells with increased 

throughput.  
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Fig. 5. Mechanotyping of HL-60 cells treated with cytoskeletal-perturbing drugs using q-DC. 

HL-60 cells are treated with blebbistatin (Bleb), cytochalasin D (CytoD), and jasplakinolide (Jasp). 

(A) Density scatter plots show apparent elastic modulus Ea and fluidity β as functions of cell size, 

which is measured in the microfluidic channel before the cell enters the constriction. The cell 

diameter shown here is larger than the actual cell diameter (S. Fig. 8A) as cells are confined when 

flowing through the microfluidic device with 5 µm height. Each dot represents a single cell. Color 

represents the density of data points. To compare data sets, we bin cells by size, as depicted by the 

gray dotted lines. Cell size distributions are shown in S. Fig. 8. Cell size measured by q-DC in these 

5 µm-height devices is larger than cell size in the 10 µm-height devices (Fig 4), due to the axial 

compression that occurs when the device height is smaller than the cell diameter. (B) Boxplots 

represent the size-binned distributions of Ea and β for cells with Dcell = 21 ± 1 µm, white lines 

represent the median, boxes represent the interquartile ranges, whiskers represent the 10th and 90th 

percentiles, and white squares represent the bootstrapped median. N > 500 for each cell type. 

Statistical significance is determined using the Mann-Whitney U test: *p < 0.05, **p < 0.01, ***p 

< 0.001.  

We also investigate the effects of blebbistatin, which inhibits myosin II activity, and thus reduces 

crosslinking and actomyosin contractions. We observe no significant change in Ea following blebbistatin 

treatment as Ea = 0.52 ± 0.06 kPa and σIQR_Ea = 0.40 ± 0.09. We observe a slight increase in cell fluidity to 

β = 0.29 ± 0.02 and σIQR_β = 0.28 ± 0.05; however this difference is not significant (Fig. 5A,B). Previous 

observations show that blebbistatin treatment decreases the stiffness in adhered cells, as indicated by their 

reduced E (61), and suspended cells, as indicated by their reduced transit time (59). However, other 

measurements of suspended cells show increased stiffness with inhibition of myosin II (36). As minor 

differences in blebbistatin concentrations and treatment times across studies do not seem to explain the 

observed differences in the mechanotype of cells in suspension, we speculate that the varied results may be 

explained by considering deformation depth. In methods that deform cells by ~5 to 6 µm (59), the nucleus 

may contribute more prominently to the deformation response; myosin II inhibition could cause softening 

of the ‘prestressed’ nucleus as intracellular tension diminishes. By contrast, when cells are subjected to 

smaller, 1 to 3 µm deformations (36), the cortical region may dominate the response; a less deformable 

cortex may result from decreased turnover of actin due to blebbistatin treatment. We also acknowledge that 
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differences in cell genotype, culture conditions, and passage number of cell lines may also contribute to the 

varied results observed between studies. 

Mechanotyping cancer cell lines. To further benchmark our q-DC method, we next investigate the human 

breast cancer cell lines, MCF-7 and MDA-MB-231, whose mechanical properties are well characterized 

using methods including AFM and transit DC (S. Table 3). Since these breast cancer cells tend to be larger 

and stiffer than HL-60 cells(11), we use a 9 µm x 10 µm pore size with an applied stress of 2.2 ± 0.1 kPa, 

which ensures >95% of cells transit through the pores on the experimental timescale (S. Fig. 3B); this 

enables us to acquire single cell measurements with a throughput of 103 cells/min. For MCF-7 cells with 

Dcell = 21 ± 1 µm, we observe Ea = 2.4 ± 0.2 kPa (Fig. 6). We also measure MDA-MB-231 cells within the 

same size range, and find that Ea = 0.97 ± 0.50 kPa, which is 40% lower than MCF-7 cells (p << 0.001). 

Our findings that MDA-MB-231 cells are more compliant than MCF-7 cells are in agreement with previous 

reports (62, 63) (S. Table 2). Using AFM and magnetic twisting cytometry, E for MCF-7 cells typically 

range from 0.2 to 1 kPa (62, 64–67), while for MDA-MB-231 cells E varies from 0.2 to 0.69 kPa (11, 31, 

62, 64, 65, 67). Considering the relatively higher 30 to 60% strains that are applied in q-DC compared to 

the local, < µm indentations of AFM, the higher Ea values for MCF-7 cells that we observe are consistent 

with the dependence of E on deformation depth: MDA-MB-231 that are indented with 0.1 µm deformation 

depths that penetrate into the nuclear region exhibit a 5-fold increase in Young’s moduli compared to 0.8-

µm deformation depths (11, 62). Our measurements also reveal that Ea and β are inversely correlated for 

the breast cancer cells, where β = 0.28 ± 0.01 for MCF-7 cells and β = 0.40 ± 0.03 for MDA-MB-231 cells 

(p << 0.001) (Fig. 4, S. Fig. 6B); the inverse correlation is consistent soft glassy rheology (2, 20, 31).  
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Fig. 6. Mechanotyping of human breast cancer cell lines using q-DC. (A) Density scatter plots 

show Ea and β as functions of cell size for MCF-7 and MDA-231 cell lines. Color represents the 

density of data points. To compare cell populations, we bin data by cell size, as depicted by the 

grey dotted lines. Cell diameter is measured in the microfluidic channel before the cell enters the 

constriction. (B) Boxplots represent the size-binned distributions of Ea and β for cells with Dcell = 

21 ± 1 µm. White lines represent the median. Boxes denote the interquartile ranges and whiskers 

denote the 10th – 90th percentiles. White squares represent the bootstrapped medians. N > 100 for 

each cell type. The Mann-Whitney U test is used to determine statistical significance: *p < 

0.05, **p < 0.01, ***p < 0.001. 

The differences in the mechanotype of MCF-7 and MDA-MB-231 cells that we observe may reflect 

underlying molecular differences between these cell lines. These cell types also exhibit distinct invasive 

behaviors: MDA-MB-231 cells are more invasive than the MCF-7 cells (68). While correlations between 

cancer cell invasive potential and mechanical properties are observed in other contexts (5, 7, 11, 69), the 

causal role of cell mechanotype in behaviors such as invasion is still unclear. The mechanotype of cancer 

cells could also have implications in how disseminated tumor cells resist shear forces during circulation 

and occlude narrow gaps, which is required for seeding metastatic sites. The ability of cells to transit versus 

occlude narrow capillaries is also critical for the deformability of blood cells, ranging from sickle cells (70, 

71) to immunology (16, 72); in these contexts, changes in cell mechanotype have distinct biological 

implications. Furthermore, the evidence of stress and strain stiffening that we observe as cells undergo large 

40-60% strains through micron-scale gaps may be advantageous for cells to resist significant deformations 

in vivo.  
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While the biological relevance of mechanotype – which is most often measured in vitro – still remains an 

open question, it is notable that biological relevance is not a requisite to establish a valuable biomarker. For 

example, nuclear shape has been a diagnostic biomarker in breast and cervical cancers for decades (73), 

while the biological significance of the aberrant nuclear morphology of cancer cells remains unclear. Thus, 

robust differences in mechanotypes across cell types, which can be achieved using calibrated 

measurements, should have clinical value.  

Conclusions 

Here we present a framework that uses calibration particles to quantify the external stresses in q-DC, a 

fluidic-based method that enables rapid measurements of cell mechanical properties. The use of calibration 

particles should ultimately enable standardized mechanotyping and longitudinal studies in clinical and 

research settings. To extract quantitative measurements of cell elasticity and fluidity, we use power law 

rheology (PLR), which is an effective analytical model for describing cell creep through microfluidic 

constrictions on timescales of milliseconds to seconds. Future studies will clarify the extent to which q-DC 

mechanotyping results add value as a biomarker, as well as the extent to which cell mechanotype impacts 

biological processes in physiology and disease. 
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SUPPLEMENTAL INFORMATION 

 

Viscoelastic Models. To measure the mechanical properties of cells from individual creep trajectories, we 

evaluate the quality of fit of standard viscoelastic models. The Maxwell, Kelvin-Voigt, and Standard Linear 

Solid models are represented by combinations of springs and dashpots. Similar to the springs and dashpot 

models, Power Law Rheology (PLR) provides a measure of elastic and viscous components of cells, 

whereby the power law exponent, or fluidity, reflects the viscous behavior (1). While we show in this study 

that PLR minimizes the residuals for HL-60 cells, certain cell types may be better described using other 

viscoelastic models (2).  

 

 

 

Data analysis. Analysis of q-DC data is performed using MATLAB (MathWorks, Natick, MA, USA). The 

video processing code is available on Github. Median residuals and corresponding confidence intervals are 

determined by bootstrapping 5000 iterations of theoretical fits to single cell data. Residual fits are 

determined using the least squares method. A value reported in the text as ‘X ± Y’ is the bootstrapped 

median, ‘X’, using bootstrapped resampling with the confidence interval, ‘2*Y’. This bootstrapping method 

is also employed for determining β values, as well as the interquartile ranges. To compare the distributions 

of q-DC outputs between cell lines and drug treatments, we apply the pairwise, nonparametric Mann-

Whitney U statistical test as most q-DC parameters are not normally distributed. Density scatter plots are 

created using the dscatter function (R. Henson, Mathworks File Exchange). We assess the strength of 
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correlations between q-DC outputs by determining Pearson’s correlation coefficients for pairs of 

parameters. 

 

 

 

  



 

 75 

SUPPLEMENTAL TABLES 

 

S. Table 1. Viability of HL-60 cells after pharmacological perturbations. Cell viability is determined 

using a Trypan blue assay. 

Treatment Viability 

DMSO (Control) 97.6 ± 0.8% 

Cytochalasin D 86.4 ± 2.7% 

Blebbistatin 84.5 ± 1.1% 

Jasplakinolide 90.3 ± 2.3% 

 

S. Table 2. Ea and β values from q-DC measurements. The median Ea and β are determined by 1000 

bootstrapped samples from the density-gated q-DC data. Error represents the corresponding confidence 

intervals. 

Geometry  
w x h 
(µm2) 

Papplied 
(kPa) 

Cell Line Treatment Ea (kPa) σIQR_Ea β σIQR_β 

5 x 5 28 HL-60 DMSO (Control) 0.53 ± 0.04 0.35 ± 0.06 0.29 ± 0.02 0.25 ± 0.03 

5 x 5 28 HL-60 Cytochalasin D 0.52 ± 0.06 0.40 ± 0.08 0.29 ± 0.02 0.28 ± 0.05 

5 x 5 28 HL-60 Blebbistatin 0.39 ± 0.05 0.46 ± 0.08 0.34 ± 0.03 0.33 ± 0.04 

5 x 5 28 HL-60 Jasplakinolide 0.55 ± 0.07 0.30 ± 0.06 0.27 ± 0.03 0.27 ± 0.06 

5 x 10 14 HL-60 - 0.52 ± 0.10 0.66 ± 0.09 0.49 ± 0.04 0.22 ± 0.04 

5 x 10 34 HL-60 - 0.99 ± 0.08 0.49 ± 0.06 0.46 ± 0.02 0.19 ± 0.03 

5 x 10 69 HL-60 - 1.4 ± 0.21 0.70 ± 0.16 0.39 ± 0.03 0.27 ± 0.05 

9 x 10 28 HL-60 - 0.15 ± 0.03 0.86 ± 0.18 0.50 ± 0.04 0.28 ± 0.05 

9 x 10 69 MCF-7 - 2.1 ± 0.14 0.41 ± 0.09 0.28 ± 0.01 0.19 ± 0.03 

9 x 10 69 MDA-MB-231 - 0.80 ± 0.19 0.84 ± 0.10 0.40 ± 0.03 0.33 ± 0.04 

 

S. Table 3. E and β values from literature. 
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S. Table 4. Calibration for applied stress in varying device geometries. The calibration factors are 

determined by the threshold pressure method. Utilizing agarose calibration particles, we are able to 

determine the applied stress at the constriction region. 

 

Geometry  

w x h (µm2) 
A Papplied (kPa) σ (Pa) 

Cell Line Method Elastic Modulus E Fluidity β Ref. 

     

HL-60 AFM 855 ± 670 Pa - (3) 

 OS 34.5 ± 36.5 Pa 0.65 ± 0.5 (2) 

  23.8 ± 7.4 Pa 0.82 ± 0.2 (4) 

     

MCF-7 AFM 0.285 ± 0.127 kPa - (5) 

  1.04 ± 0.27 kPa - (6) 

  50.2 ± 38.5 kPa to 87.3 ± 47.8 kPa - (7) 

  0.5 ± 0.1 to 28 ± 12 kPa - (8) 

  0.420 - 1.210 kPa  - (9) 

  0.25 ± 0.02 kPa 0.25 ± 0.02  (10) 

     

MDA-MB-

231 

AFM 0.277 ± 0.063 kPa - (5) 

  0.63 ± 0.21 kPa - (6) 

  28.7 ± 26.1 kPa to 55.6 ± 20.1 kPa - (7) 

  0.3 ± 0.1 kPa to 25 ± 13 kPa - (8) 

  0.69 ± 0.06 kPa 0.22 ± 0.01 (10) 

  0.20 - 0.30 kPa to 0.19-0.23 kPa - (11) 

 DC 0.58 kPa 0.27 (12) 
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5x5 0.021 ± 0.002 28 570 ± 50 

5x10 0.070 ± 0.018 14 960 ± 250 

  34 2400 ± 630 

  69 4800 ± 1300 

9x10 0.032 ± 0.002 34 1100 ± 60 

    

 

SUPPLEMENTAL FIGURES 

 

 

 
 

S. Fig. 1. Agarose calibration particles exhibit size-independent elastic moduli. (A) Elastic modulus of 

particles composed of 1.5% (w/w) agarose as a function of particle diameter as measured by AFM. Data 

represents the mean ± standard deviation for each particle probed 2-5 times. The red dotted line illustrates 

the average elastic modulus. Data collected over two independent experiments (N = 15). (B) Distribution 

of diameters for particles composed of 1.5% (w/w) agarose as they transit through 5 µm x 5 µm 

constrictions. The 50th – 100th percentile of sizes are considered to determine the median maximum strain 

at the threshold pressure conditions as depicted by the red bars (N = 220).  
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S. Fig. 2. Effects of surfactant on cell mechanotyping. Apparent elastic modulus Ea and fluidity β values 

of HL-60 cells treated with pluronic F-127 during transit through microfluidic constrictions. White lines 

represent the median Ea and β. Boxes represent the interquartile ranges and whiskers represent the 10th – 

90th percentiles (N > 500). The Mann-Whitney U test is used to evaluate statistical significance. n.s. denotes 

p ≥ 0.05. 

 

 
 

S. Fig. 3. Residuals of PLR creep fit depends on frame number. Scatter plot of the residuals per frame 

for HL-60 cells. The gray dots represent the residuals for individual cells. The orange triangles illustrate 

the median residual for each number of frames. The error bars represent the interquartile range. N = 550. 

There exists a trade-off between the quality of PLR fitting and the dynamic range of q-DC. By minimizing 

the required number of frames for creep trajectories, the dynamic range extends to sample longer 

deformation timescales within a population of cells. 
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S. Fig. 4. Threshold transit conditions for characterizing applied stress in microfluidic constrictions. 

Threshold applied pressures in the (A) 5 µm x 10 µm and (B) 9 µm x 10 µm microfluidic device geometries 

for calibration particles with a range of elastic moduli, 0.6 – 2.4 kPa. X-error bars represent the standard 

deviation of the elastic modulus as determined by AFM. Y-error bars represent the standard deviation of 

the pressure-to-particle strain ratio. The red line is the linear fit; the red shaded region illustrates the 95% 

confidence interval of the linear fit. The inverse of the slope characterizes the applied pressure-to-stress 

scaling factor. N > 650 for strain measurements at each threshold condition. 

 

 

 
 

S. Fig. 5. Power law exponent for oil particles. (A) Validation of power law rheology using oil-in-water 

emulsion droplets made with silicone oils of varying viscosities. Power law exponents, β, for oil droplets 

calculated by the least-squares fit of deformation trajectories with power law rheology model. Density 

scatter plots represent β as a function of droplet size. Each dot represents a single cell. Color represents the 

density of points. White diamonds show the highest density of points. N > 500 oil droplets. (B) Bootstrapped 

median values of β for droplets of silicone oils. Error bars denote the bootstrapped confidence intervals.  
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S. Fig. 6. Numerical simulations of single cells deforming through a constriction. (A) Simulation of a 

cell deforming through a micron-scale constriction. Shown here is a representative cell with a diameter of 

16.3 µm transiting through a constriction with a width of 8.1 µm; the cell-to-pore size ratio is 2. The red 

arrows represent the flow vector field. (B-C) The total hydrodynamic stress (B) and normal stress (C) acting 

on a cell as it transits through a constriction; cell-to-pore size ratio is 1. When the cell is transiently 

occluding the pore, there are positive normal forces that deform the cell. As the transiting cell continually 

deforms through the constriction, there is also a drop in hydrodynamic force: according to Stokes’ law, the 

hydrodynamic force is proportional to the cell velocity and thus a decrease in the cell velocity leads to a 

decrease in the hydrodynamic force. The black dotted line represents the baseline hydrodynamic stress 

acting on the cell before it reaches the constriction.  
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S. Fig. 7. Shape library. Graphic representation of shape changes in cells with a range of sizes during 

transit through a microfluidic constriction. Cell-to-pore size ratio is determined by the ratio between the 

unconstrained cell diameter and the width of the constriction, where the unconstrained cell diameter is 

calculated as the diameter of a perfect circle with an area of the cell’s projected area.  

 

 

 

 
 

S. Fig. 8. Size distributions of HL-60 cells treated with cytoskeletal-perturbing drugs and breast 

cancer cell lines. Box plots represent the cell diameters as determined by brightfield imaging during q-DC 

measurements. White lines represent the median, boxes represent the interquartile ranges, whiskers 

represent the 10th and 90th percentiles, and white squares represent the bootstrapped median. 
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S. Fig. 9. Cell and nuclear size in HL-60 cells. Scatter plots of (A) nuclear diameter versus cell diameter 

and (B) nuclear-to-cell area ratio versus cell diameter for HL-60 cells. Cells are stained with Hoechst and 

Calcein AM; thereafter, samples are imaged via confocal microscopy. Each point represents data for a 

single cell. Black dotted line shows linear fit to the data. 
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CHAPTER 3 

Label-Free Prediction of Cancer Cell Invasion by 

Single-Cell Physical Phenotyping 

 

Abstract  

The physical properties of cells, such as cell deformability, are promising label-free biomarkers for cancer 

diagnosis and prognosis. Here we determine the physical phenotypes that best distinguish human cancer 

cell lines, and their relationship to cell invasion. We use the high throughput, single-cell microfluidic 

method, quantitative deformability cytometry (q-DC), to measure six physical phenotypes including 

elastic modulus, cell fluidity, transit time, creep time, cell size, and maximum strain at rates of 102 cells/s. 

By training a simple k-nearest neighbor machine learning algorithm, we demonstrate that multiparameter 

analysis of physical phenotypes enhances the accuracy of classifying pancreatic cancer cell lines 

compared to single parameters alone. We also discover a set of four physical phenotypes that predict 

invasion; using these four parameters, we generate the physical phenotype model of invasion by training a 

machine learning algorithm with experimental data from a set of human ovarian cancer (HEYA8) cells 

that overexpress a panel of tumor suppressor microRNAs. We validate the model using breast and ovarian 

human cancer cell lines with both genetic and pharmacologic perturbations. Our results reveal that the 

physical phenotype model correctly predicts the invasion of five cancer cell samples. We also identify a 

context where our model does not accurately predict invasion, which incites deeper investigation into the 

role of additional physical phenotypes in cancer cell invasion. Taken together, our results highlight how 

physical phenotyping of single cells coupled with machine learning provide a complementary biomarker 

to predict the invasion of cancer cells. 
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Introduction  

Predicting disease and treatment outcomes based on single cell phenotypes is critical in medicine from 

cancer diagnosis to stem cell therapies. In clinical oncology and immunology, single cell analysis of 

protein markers and DNA content using flow cytometry is used for diagnosis, prognosis, and monitoring 

patient response to therapy (1). Yet pathological and physiological changes can also manifest as altered 

cell physical phenotypes, including cell and nuclear size, stiffness, and viscosity, which are convenient, 

label-free biomarkers. For example, grading of tumor biopsies based on nuclear morphology is widely 

used for cancer prognosis (2–4). The mechanical phenotype, or ‘mechanotype’, of cancer cells also shows 

promise as a prognostic biomarker, since more invasive cancer cells have altered mechanotype compared 

to less invasive cells (5–16). While cell mechanotype impacts the ability of cells to deform through 

narrow gaps and can thus have consequences for functional behaviors, such as invasion, the relationship 

between invasion and cell stiffness remains unclear: many studies show that more invasive cancer cells 

tend to be more compliant than less invasive or benign cells (5–11); however, there are also contexts 

where more invasive cells are found to be stiffer (12–16). These contrasting results motivate deeper 

investigation into additional physical phenotypes that may collectively be stronger predictors of invasion. 

Microfluidic methods are especially valuable for physical phenotyping, as they enable rapid 

measurements of single cells. One such method is transit-based deformability cytometry, which probes 

physiologically-relevant deformations of cells through narrow gaps across varying deformation time and 

length scales (10, 17–20). While transit time TT is a relative measurement, this parameter can distinguish 

sets of two to three cancer cell lines (10, 19). However, a population of cells typically exhibits TT that 

span several orders of magnitude (21); together with the inherent variability of TT measurements, it is thus 

challenging to robustly compare cell samples, scale up measurements to larger panels of cells, and 

achieve successful translation to clinical applications. We recently presented the quantitative 

deformability cytometry (q-DC) method, which uses calibration particles and power law rheology to 

obtain calibrated single-cell measurements of elastic modulus E and fluidity β (22). Measuring additional 
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physical phenotypes, such as E and β, could achieve more robust classification of cells using transit-based 

deformability cytometry. 

Studies of cell physical phenotypes using atomic force microscopy (AFM)(23–27), cross-slot 

deformability cytometry (28), and optofluidic time-stretch microscopy (29) demonstrate that multiple 

physical phenotypes, such as cell morphology, stiffness, and relaxation time, can enhance the accuracy of 

cell classification. Multiparameter analysis of physical phenotypes can also result in clinical benefits; 

biophysical signatures of mesenchymal stromal cells are predictive of their regenerative capability as 

indicated by in vivo ectopic bone formation in mouse models (30). However, it is unclear which 

additional parameters can enhance the use of transit-based deformability cytometry to classify cancer 

cells. More broadly, identifying the physical phenotypes of cancer cells that are predictors of invasion 

would provide a set of valuable complementary biomarkers for metastatic potential. 

Here we investigate the relationship between physical phenotypes and invasion of human cancer cell 

lines. We perform multiparameter analyses of six physical phenotypes across nineteen cancer cell 

samples. To measure the physical phenotypes of single cells, we use quantitative deformability cytometry 

(q-DC) to obtain calibrated measurements of elastic modulus E and cell fluidity β, as well as transit time 

TT, creep time TC, cell size Dcell, and maximum strain ϵmax, at rates of 102 cells/s (22). We show that 

multiparameter analysis of these physical phenotypes can enhance classification of cancer cell lines. From 

our analysis across well-established pancreatic cancer cell lines as well as ovarian cancer cells that 

overexpress tumor-suppressor microRNAs, we build the predictive physical phenotyping model for 

invasion, which we validate using both genetic and pharmacologic perturbations of cancer cells. Our 

results demonstrate the predictive power of physical phenotypes and machine learning to generate 

complementary biomarkers for invasion.  

 

 



 88 

Materials and Methods  

Cell culture. HPDE cells are obtained from Dr. Ming-Sound Tsao (University Health Network-Princess 

Margaret Hospital, Canada and University of Toronto, Canada). HPDE cells are cultured in Keratinocyte-

SFM medium supplemented with prequalified human recombinant Epidermal Growth Factor 1-53, 

Bovine Pituitary Extract, and 1% penicillin-streptomycin. The human pancreatic ductal adenocarcinoma 

(PDAC) cell lines (AsPC-1, Hs766T, MIA PaCa-2, and PANC-1) are from the American Type Culture 

Collection (ATCC). AsPC-1, Hs766T, MIA PaCa-2 and PANC-1 cells are grown in high glucose, L-

glutamine without sodium pyruvate DMEM medium with 10% heat-inactivated fetal bovine serum and 

1% penicillin-streptomycin. Fetal bovine serum and penicillin-streptomycin are from Gemini 

BioProducts, West Sacramento, CA. All cell media and additional media supplements are from Thermo 

Fisher Scientific Inc., Canoga Park, CA. Human ovarian cancer (HEYA8) cells, microRNA mimics, 

mock, and scrambled (SCR) negative controls are from Dr. Preethi Gunaratne (University of Houston, 

USA)(31, 32). HEYA8 cells are cultured in RPMI 1640 medium supplemented with 10% fetal bovine 

serum and 1% of penicillin-streptomycin. Cells are transiently transfected at 24 nM using Lipofectamine 

2000 in serum-free OptiMEM medium, followed by the addition of 10% fetal bovine serum after 4 hours 

in serum-free conditions. All assays are performed 72 hours post transfection. Human ovarian cancer 

(OVCA433-GFP, OVCA433-Snail) cells are from Dr. Ruprecht Wiedemeyer (Cedars-Sinai Medical 

Center, USA) (33). OVCA433 cells are cultured in DMEM medium with L-Glutamine, Glucose, and 

Sodium Pyruvate. Medium is supplemented with 10% fetal bovine serum, 1% Anti-anti, and 2.5 µg/ml 

Plasmocin Prophylactic with 5 µg/ml blasticidin S HCl. 

A highly metastatic variant of the MDA-MB-231 cells (MDA-MB-231-HM, gift from Dr. Zhou Ou, 

Fudan University Shanghai Cancer Center, China)(34) is cultivated in DMEM medium with L-

Glutamine, Glucose, and Sodium Pyruvate, supplemented with 10% fetal bovine serum and 1% 

penicillin-streptomycin. The agonist (isoproterenol) for the β-adrenergic receptor is from Sigma-Aldrich 

(St. Louis, MO). Cells are treated for 24 hours prior to measurements.  
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All cells are cultured at 37oC with 5% CO2. Cell line authentication is performed using short tandem 

repeat (STR) profiling (Laragen Inc., Culver City, CA, USA and CellBank Australia, Westmead, NSW, 

Australia). Prior to deformability measurements, 0.01% (v/v) Pluronic F-127 surfactant (Sigma-Aldrich, 

St. Louis, MO, USA) is added to the cell suspension to reduce cell adhesion to the PDMS walls. While F-

127 treatment does not significantly affect E values of suspended cells (22), we observe a significant 

decrease in cell-to-PDMS adhesion in some cell types such as HPDE cells (21).  

Microfluidic chip fabrication. Negative photomasks are designed in AutoCAD (Autodesk, Inc., San 

Rafael, CA) and printed on chrome by the Nanolab at UCLA. The design of the q-DC devices is 

described previously (21). Silicone masters are fabricated using soft photolithography techniques (35). 

Polydimethylsiloxane (PDMS) (Sylgard Dow Corning, Midland, MI, USA) with a 10:1 w/w ratio of base 

and curing agent is poured onto the master wafer and placed under vacuum to degas for 1 hour. To cure 

the PDMS, the wafer and PDMS mixture is placed in a 65oC oven for 2 hours. Inlets and outlets are 

created using a biopsy punch with a 0.75 mm bore size (Sigma-Aldrich, St. Louis, MO, USA). The 

devices are then bonded to coverglass (#1.5 thickness) by plasma and baked at 80oC for 5 minutes to 

facilitate bonding. To ensure consistent device surface properties, q-DC experiments are performed 24 h 

after plasma treatment (21). 

q-DC microfluidic experiment. To measure the physical properties of single cells, we use the q-DC 

method as previously reported (22). In brief, q-DC microfluidic devices are mounted onto an inverted 

microscope (Zeiss Observer, Zeiss, Oberkochen, Germany) that is equipped with a 20×/0.40 NA 

objective. A constant air pressure (69 kPa) drives cell suspensions to flow through the channels. As cells 

deform through microfluidic constrictions with 10 µm height and 9 µm width, a CMOS camera 

(MicroRNAcoEx4, Vision Research, Wayne, NJ, USA) is used to capture brightfield images at rates of 

600 to 2000 frames per second. For cell suspensions with a density of 2 x 106 cells/mL that are driven by 

an applied pressure of 69 kPa (10 psi), single cell measurements can be acquired at rates of 102 cells/s. 

While the timescale of the initial cell deformation into microfluidic constrictions is largely determined by 
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cell deformability (32–34), 0.01% (w/v) pluronic F-127 surfactant (Sigma-Aldrich, St. Louis, MO, USA) 

is added to the cell media to minimize cell-surface interactions. 

Physical property measurements using q-DC. To conduct multiparameter analysis of cell physical 

properties, the displacement and shape of single cells are tracked using a MATLAB code (Mathworks, 

Natick, MA, USA; code available online on GitHub) (22). This enables us to acquire cell size Dcell, 

maximum strain ϵmax, creep time TC, and transit time TT. To extract elastic modulus E and cell fluidity β, 

the applied stress during cell deformation is measured using agarose calibration particles with well-

characterized Young’s moduli for the 9 x 10 µm2 and 7 x 10 µm2 device geometries (22). By tracking the 

change in cell strain during deformation and fitting power law rheology to the creep function, we can 

extract elastic modulus and cell fluidity. The creep function, J(t), is defined as the ratio between the strain 

and applied stress:  

      𝐽𝐽(𝑡𝑡) =  𝜖𝜖(𝑡𝑡)
𝜎𝜎�

 ,     Eq. 1 

where ϵ(t) is the strain and 𝜎𝜎� is the time-averaged stress. Here, strain is measured as 𝜖𝜖(𝑡𝑡) =  𝐶𝐶𝑜𝑜– 𝐶𝐶(𝑡𝑡)
𝐶𝐶𝑜𝑜

, 

where C is the circularity, 𝐶𝐶(𝑡𝑡) = 4𝜋𝜋𝜋𝜋(𝑡𝑡)
𝑃𝑃(𝑡𝑡)2 . We set the initial circularity value as 𝐶𝐶𝑜𝑜 =  1, which is the value 

of a perfect circle, since the cells exhibit a circularity close to 1 prior to deformation through the 

constrictions. Using least squares residual fitting, we fit the power law model to the creep trajectories of 

individual cells: 

 𝐽𝐽(𝑡𝑡) =  𝜖𝜖(𝑡𝑡)
0.032 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 ,     Eq. 2 

where E is the elastic modulus when t = τ; τ is the characteristic timescale, set to 1 s; and β is the power 

law exponent, which represents cell fluidity. For purely elastic materials, β = 0; for purely viscous 

materials, β = 1. As elastic modulus E, cell fluidity β, creep time TC, and transit time TT depend on cell 

size, we analyze only cells that have Dcell that is the population median ± 1 µm. 
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Classification using q-DC. To evaluate the power of q-DC parameters to classify cells, we perform 

supervised machine learning using the k-nearest neighbor (k-NN) algorithm. The k-NN classification 

algorithm assigns the output class as the most common class of an integer, k, closest neighbors; in this 

study we use k = 10. The distance is defined as the Euclidian distance between input feature vectors—in 

our case the sets of qDC predictors. We supply a known set of input data by generating 500 randomly-

sampled subsets with replacement, containing 100 single cells, for each cancer cell line and measuring the 

medians of the corresponding q-DC parameters for each sample set, such as median cell size and 

maximum strain. Using the summary statistics dataset in custom Python code, we train classification 

models based on the k-NN algorithm for sets of q-DC predictors. We execute the training with 5-fold 

cross validation, which enables us to determine the classification accuracy. Here, the classification 

accuracy is defined as the percentage of correct predictions on each observation in the validation sets.  

Physical phenotype model of invasion using q-DC. The physical phenotype model of invasion is 

determined by multiple linear regression in MATLAB (Mathworks, Natick, MA, USA). To evaluate 

linear regression error, we utilize the single-cell q-DC data to train linear regression models using 1000 

bootstrapped samples of single-cell physical phenotypes. Each bootstrapped sample generates a linear 

combination of physical phenotypes to predict invasion and their associated coefficients that minimize 

residuals. The physical phenotype model is determined by the median coefficient for each parameter. The 

correlation coefficient between predicted invasion and measured invasion is determined as the average 

correlation coefficient. Similar to the training analysis, we predict invasion using the physical phenotype 

model with 1000 bootstrapped samples of the q-DC data of single-cells; this enables us to determine the 

average predicted invasion. 

Results 

Multiparameter physical phenotyping by q-DC. To rapidly measure the physical phenotypes of single 

cells, we use transit-based deformability cytometry; this microfluidic device consists of an array of 
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branching channels (18, 20, 21, 36, 37), which lead to micron-scale constrictions. The timescale for cells 

to transit through the micron-scale constrictions of these channels provides a simple measure of cell 

deformability (Fig. 1A,B): stiffer cells tend to have longer transit times (TT) compared to more compliant 

cells (38). We recently developed quantitative deformability cytometry (q-DC), which enables calibrated 

single-cell measurements of physical phenotypes including elastic modulus E and fluidity β that are 

extracted using power law rheology. Using q-DC, we also obtain cell size Dcell, from the diameter of the 

unconstrained cell prior to deformation; maximum strain ϵmax, based on the minimum circularity that 

occurs as the cell deforms through the constriction; and creep time TC, which is the time required for a 

cell to reach maximum strain (Fig 1A). While q-DC enables measurements of physical phenotypes in 

addition to TT, it is not clear how this added information benefits cell classification and prediction of 

invasion.  

   

Fig 1. Overview of cell physical phenotyping by quantitative deformability cytometry (q-

DC). (A) Overview of physical phenotypes measured by q-DC: elastic modulus E, cell fluidity β, 

transit time TT, creep time TC, cell size Dcell, and maximum strain ϵmax. (B) A representative cell 

deforming through a microfluidic channel of the q-DC device. Creep time TC is the time required 

for a cell to reach maximum strain ϵmax; transit time TT is the time required for the cell to transit 

through the constriction. Scale bar, 20 µm. (C) Black dots represent the strain of the single cell 

shown in panel B as a function of time. Red solid line represents power law fit to single-cell strain 

trajectory over the creep timescale, TC. Using power law rheology, we extract elastic modulus, E, 

and fluidity exponent, β. (D) Representative scatter plot of E and Dcell for human pancreatic ductal 
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epithelial (HPDE) cells. Each dot represents a single cell and color denotes number density. 

Shown here are a total of N = 3231 cells. 

Pairwise correlation analysis of q-DC parameters. To assess the value of multiple biophysical 

parameters for classification of different cell types, we use q-DC to measure physical phenotypes of 

human pancreatic ductal adenocarcinoma (PDAC) cell lines that are derived from primary tumors 

(PANC-1 and MIA PaCa-2), and secondary sites (AsPC-1 and Hs766T), as well as a nontransformed 

human ductal pancreatic epithelial (HPDE) control cell line. These cell lines exhibit distinct differences in 

invasion (12), and therefore provide a model system for testing q-DC classification of cells. 

To identify which physical phenotypes provide unique information and which ones are statistically 

redundant for classifying populations of single cells, we first evaluate the correlation strength between 

pairs of the six q-DC outputs, E, β, TT, TC, Dcell, and ϵmax (Fig. 2A, S. Table. 1). Spearman’s rank 

correlation coefficients of -1 and +1 reflect pairs of parameters that are highly correlated and statistically 

dependent on each other. By contrast, correlation coefficients with a low absolute value indicate pairs of 

parameters that are weakly correlated with each other; each parameter from a weakly correlated pair will 

more likely provide unique information, as they are more statistically independent from each other. 

Analysis of the Spearman’s correlation coefficients reveals that TT and Tc are highly correlated (r = 0.94; 

p ≪ 0.001) (Fig. 2A, S. Table. 1); this is expected as the first stage of cell transit through a pore requires 

cell creep. We also find that β and E are strongly correlated (r = -0.88; p ≪ 0.001); this scaling of E and β 

is consistent with the behavior of soft glassy materials (17, 39). All other pairwise comparisons between 

parameters, such as Dcell to ϵmax, TT, E, are weakly correlated with -0.14 < r < 0.41 (S. Table 1), suggesting 

that combinations of these parameters could provide unique information for characterizing cell lines. 

Multiparameter analysis for classification of pancreatic cells. To assess the value of q-DC data sets in 

classifying PDAC cell lines, we use the simple yet powerful k-nearest neighbors (k-NN) algorithm to 
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classify cell lines based on physical phenotypes. In the k-NN method, training data establishes a 

multidimensional feature space, where q-DC parameters define each dimension; cells are then classified 

based on the identity of their k nearest neighbors in the pre-established feature space. To evaluate how the 

number of predictors and combinations thereof affect classification accuracy, we first assess single 

physical phenotypes. We find that single parameters alone offer low classification accuracy of cell lines: 

TT yields 65% accuracy in predicting the correct cell line from our panel of PDAC cell lines, E yields 

59% accuracy, and Dcell gives 52% (Fig. 2B).  

The inclusion of additional physical phenotypes can significantly enhance classification accuracy: {E, TT} 

provide a model accuracy of 87% and with {TT, Dcell}, the model accuracy increases to 91% (Fig. 2B, S. 

Fig. 1). Other combinations of two parameters yield accuracies ranging from 69% to 89% (S. Fig. 1). 

Including an additional third parameter further improves accuracy, but with smaller gains: both {E, TT, 

Dcell} and {E, ϵmax, Dcell} result in 94% accuracy. The highest accuracy of 96% can be obtained using four 

parameters {E, TT, Dcell, ϵmax} (Fig. 2B). Surprisingly, we find that using additional q-DC parameters does 

not improve classification accuracy, which ranges from 92% to 96% when using five and six physical 

phenotypes; this highlights how highly correlated parameters, such as TT and TC, do not add unique value 

to cell classification accuracy. Therefore, {E, TT, Dcell, ϵmax} constitute the ‘reduced set’ of parameters as 

they provide the highest classification accuracy with the least amount of parameters.  

Since transit time TT is a common metric for mechanotype that is obtained by transit-based deformability 

cytometry (20), we next evaluate the benefit of q-DC parameters by comparing the performance of the k-

NN algorithm using the reduced set of parameters to TT alone (Fig. 2C,D). For the k-NN algorithm using 

TT as a single predictor, we find the algorithm performs poorly: the true positive rate for each cell line 

ranges from 0.33 to 0.86 (Fig. 2C). For example, the true positive rate for PANC-1 cells is 0.33, 

indicating that only 33% of PANC-1 samples are correctly identified as PANC-1 cells, 41% are 

incorrectly identified as HPDE cells, and 26% as AsPC-1 cells (Fig. 2C). When {TT} is used, the true 

positive rate averaged across all cell lines is 0.65 and the false positive rate is 0.35. By contrast, the 
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reduced set of q-DC parameters {E, TT, Dcell, ϵmax} significantly improves the average true positive rate to 

0.96. For example, the true positive rate for PANC-1 cells is 1.0, where 100% of PANC-1 samples are 

correctly identified. Additionally, the true positive rate for Hs766T is 0.94, where 94% of Hs766T 

samples are correctly identified, while 6% are identified as MIA PaCa-2 (Fig. 2D). We also observe the 

reduced set {E, TT, Dcell, ϵmax} decreases the false positive rate, which ranges from 0 to 0.06 (average = 

0.04) (Fig. 2D). Taken together, these findings indicate that q-DC predictors increase the accuracy for 

classifying PDAC cell lines compared to TT alone.  

  

Fig. 2. Predictive power of q-DC outputs for cell classification. (A) Spearman’s rank 

correlation coefficients for pairs of q-DC outputs: elastic modulus E, cell fluidity β, transit time 

TT, creep time TC, cell size Dcell, and maximum strain ϵmax. Color represents the magnitude of the 

correlation coefficient, r, as detailed in S. Table. 1. Gray ‘X’ denotes not statistically significant 

(n.s.). (B) Accuracy of k-nearest neighbor machine learning algorithm for classifying human 

pancreatic cell lines. Each bar represents the accuracy of models built with varying combinations 

of q-DC predictors as indicated by the colored dots; grey dots represent excluded predictors. 

Orange bars and dots represent the highest accuracy that can be achieved with a set of one, two, 

three, and four physical phenotypes. Turquoise bars and dots show accuracy obtained by all other 
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combinations of physical phenotypes. Asterisk shows the reduced set of predictors that provides 

the greatest accuracy with the least number of parameters. White numbers show the accuracy, 

which is calculated as the percentage of data subsets that are correctly identified as one of the five 

pancreatic cell lines. S. Fig. 1 illustrates the accuracy of models using additional combinations of 

q-DC predictors. (C-D) Confusion matrices show the performance of the k-NN algorithm for (C) 

transit time TT, and (D) reduced set of q-DC predictors: elastic modulus E, transit time TT, cell 

size Dcell, and maximum strain ϵmax. Rows represent the true cell line; columns represent the 

predicted cell line. Color scale denotes the proportion of cells predicted as each cell type.  

Relationship of physical phenotypes to cancer cell invasion. Defining how cancer cell physical 

phenotypes relate to functional behaviors, such as invasion, could provide valuable biomarkers that have 

physiologically relevant predictive power. Invasion is fundamentally a physical process, whereby cells 

deform and move through narrow gaps of the extracellular matrix. The invasion of cancer cells is 

associated with physical phenotypes such as cell stiffness or elastic modulus: while in some contexts 

more invasive cells are more compliant (5–11), there are other cases where more invasive cells are stiffer 

(12–16). Other physical phenotypes, such as cell size and deformation timescale can also determine the 

ability of cells to deform through narrow gaps (21). While correlations between individual physical 

phenotypes and invasion have been investigated (12, 32, 40), it is not known how these phenotypes could 

collectively provide an improved biomarker for invasion.  

To determine the relationship between the reduced set of physical phenotypes {E, TT, Dcell, ϵmax} and 

cancer cell invasion (Fig. 3A), we first evaluate the correlation between invasion and single physical 

phenotypes. Across the panel of PDAC cell lines, we find that individual parameters from the reduced set 

have poor to moderate correlations with invasion as measured using a 3D scratch wound invasion assay 

(12, 32): Pearson’s correlation yields R2 that range from RD-Inv
2 = 0.05 ± 0.001 to RE-Inv

2 = 0.45 ± 0.006 

(Fig. 3B). We find the strongest correlation of a single parameter with invasion for E (RE-Inv
2 = 0.45 ± 

0.006), whereby cells that are more invasive tend to have lower E (Fig. 3B). This trend of more invasive 

cells being more compliant is consistent with previous reports in breast and ovarian cancer cells (5–11). 

However, the inverse relationship between invasion and E does not hold across all PDAC cell lines as 
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MIA PaCa-2 cells exhibit the lowest elastic modulus yet reduced invasion compared to Hs766T and 

PANC-1 cells (Fig. 3B).  

 

Fig. 3. Relationship of q-DC parameters and invasion across cancer cell types. (A) Schematic 

illustration the reduced set of physical phenotypes, which we use to predict cell invasion, elastic 

modulus E, transit time TT, cell size Dcell, and maximum strain ϵmax, as measured using 3D 

invasion assay. (B) Plots showing invasion versus single physical phenotypes for pancreatic 

adenocarcinoma (PDAC) cell lines (blue circles) and ovarian cancer (HEYA8) cells that 

overexpress a panel of tumor suppressor microRNAs (red triangles). Each data point represents 

the median value for a cell sample. Error bars represent standard deviation. Dashed lines show 

best linear fits. (C) Correlation between measured and predicted invasion using the physical 

phenotype model for invasion. Dashed lines show best linear fit for the microRNA-

overexpressing cells. Data points represent the average value for a cell sample. Error bars 

represent standard deviation. (D) The strength of correlations between measured and predicted 

invasion from linear regression models built with combinations of physical phenotypes for 

microRNA-overexpressing ovarian cancer cells. Colored circles illustrate the set of predictors 

used in the model. Bars represent adjusted-R2 (Radj
2) values, which reflect the average strength of 

the correlation, while accounting for the number of fitting parameters to data points. Error bars 

represent standard deviation. 

We also physical phenotype seven ovarian cancer cell samples that overexpress distinct tumor-suppressor 

microRNAs; higher levels of expression of these microRNAs are associated with improved patient 

survival, as identified through Cancer Genome Atlas (TCGA) data (31). We previously found that these 
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tumor suppressor microRNAs decrease cell invasion (31, 32) and tend to increase cell transit time (32). 

Physical phenotyping by q-DC reveals that individual phenotypes of microRNA-overexpressing cells also 

exhibit only moderate correlations to invasion (Fig. 3B). While we find that higher E and TT are 

associated with decreased invasion across both established pancreatic cancer cell lines and ovarian cancer 

cells with manipulated microRNA levels, we find opposite trends for Dcell and ϵmax (Fig. 3B); these 

discrepancies further substantiate the low predictive power of individual physical phenotypes. As single 

physical phenotypes are not sufficient to predict invasion, we next investigate if multiparameter analysis 

using the reduced set of four physical phenotypes can collectively predict cancer invasion. 

To develop a model that can predict cell invasion on the basis of physical phenotypes, we train a multiple 

linear regression model using {E, TT, Dcell, ϵmax} and invasion data. While we use data from numerous cell 

samples, linear regression can be susceptible to overfitting when the number of fitting parameters 

approaches the number of data points. Therefore, we account for the number of predictors in the strength 

of correlation between the measured and predicted invasion using the adjusted-R2
 (R2

adj), 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 = 1 − [�1−𝑅𝑅
2�(𝑛𝑛−1)

𝑛𝑛−𝑚𝑚−1
],     Eq. 3 

where n is the number of observations and m is the number of predictors. For the PDAC cell lines, an R2
adj 

value does not exist, as there are four fitting parameters in the reduced set and only five cell lines. 

Reducing the number of predictors only yields R2
adj that are similar to correlations between single 

parameters and invasion (S. Fig. 2). However, building the linear regression model using invasion and 

physical phenotype data {E, TT, Dcell, ϵmax} from seven ovarian cancer cell samples that overexpress 

distinct microRNAs results in invasion values that are highly correlated with experimental observations, 

as indicated by the high R2
adj = 1.00 ± 0.002 (Fig. 3D); we call this multiple linear regression model built 

with the reduced set the ‘physical phenotype model for invasion’, as it demonstrates robustness to predict 

invasion. We also train models with smaller sets of predictors; however, we find that reduced set of 
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physical phenotypes (E, TT, Dcell, ϵmax) yields the highest Radj
2 value, and thus generates the strongest 

predictive model with the smallest number of parameters (Fig. 3D). 

Predicting invasion using label-free physical phenotypes. To validate the physical phenotyping model 

for invasion, we measure physical phenotypes of seven additional cancer cell samples, and determine how 

accurately we can predict their invasion. We first use q-DC to physical phenotype three breast cancer cell 

lines, MDA-MB-231, MDA-MB-468, and MCF-7 (Fig 4A). These cell lines are well characterized to 

have varying invasive potentials, from highest to lowest: MDA-MB-231 > MDA-MB-468 > MCF-7 (41–

45). Other key characteristics of progression are also described for these cell lines, including the 

propensity to form cell colonies (MDA-MB-231 > MDA-MB-468 > MCF-7) (45). By physical 

phenotyping using q-DC, we find that MDA-MB-231 cells have decreased E compared to both MDA-

MB-468 and MCF-7 cells (EMDA-MB-231 = 1.2 ± 0.3 kPa < EMCF-7 = 2.0 ± 0.2 kPa < EMDA-MB-468 = 2.7 ± 0.3 

kPa). Compared to the ranking of invasion of these cells types, we find a weak correlation between E and 

invasion, which is further quantified by Spearman’s correlation coefficient (r = 0.5); these findings 

support that E alone is not sufficient to predict invasion. We find that transit times follow the same 

ranking as E, whereby TT - MDA-MB-231 = 15 ± 3 ms < TT - MCF-7 = 25 ± 5 ms < TT – MDA-MB-468 = 57 ± 27 ms 

(Fig. 4A). Thus, neither E nor TT is sufficient to predict invasion. However, we discover that the physical 

phenotyping model for invasion correctly ranks the invasion of these breast cancer cell lines, MDA-MB-

231 > MDA-MB-468 > MCF-7 (Fig. 4D). These results further substantiate the power of multiparameter 

analysis to predict invasion based on label-free physical phenotyping of single cancer cells. 

To further validate the physical phenotyping model for invasion, we predict the invasion of ovarian 

cancer (OVCA433) cells that have been genetically manipulated to generate a pair of epithelial- and 

mesenchymal-like cell lines. Cancer cells with overexpression of Snail (33) (OVCA433-Snail), a key 

transcription factor in epithelial-to-mesenchymal transition (EMT) (46), are mesenchymal-like and 

exhibit increased invasion (46). By contrast, the control cells (OVCA433-GFP) are epithelial-type. Using 

q-DC to physical phenotype this pair of cell lines, we find that OVCA433-Snail cells have a reduced E 
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compared to the OVCA433-GFP control cells (EOVCA-GFP = 1.8 ± 0.1 kPa; EOVCA-Snail = 1.0 ± 0.7 kPa; p << 

0.001) (Fig 4B). We also observe that OVCA433-Snail cells exhibit shorter transit times than OVCA433-

GFP (TT - OVCA-GFP = 22 ± 2.8 ms; TT – OVCA-Snail = 16 ± 1.2 ms, p << 0.001), consistent with the decreased 

stiffness of the mesenchymal-type OVCA433-Snail cells (Fig. 4B). Using q-DC outputs, we demonstrate 

that the physical phenotype model for invasion has the power to predict the increased invasion of the 

OVCA433-Snail cells compared to the control OVCA433-GFP cells (Fig. 4B); these results also 

demonstrate that physical phenotypes measured by q-DC are consistent with other hallmark 

characteristics of EMT, such as the increased vimentin to E-cadherin ratio (47) and ability to form cell 

colonies (48), which are commonly used to define mesenchymal-type cells. 

 

Fig. 4. Predicting invasion by multiparameter physical phenotyping. (A-C) The four key 

physical phenotypes that comprise the reduced set for: (A) breast cancer cells, MCF-7, MDA-MB-

468, and MDA-MB-231; (B) ovarian cancer cells, OVCA433-GFP control, and OVCA433 that 

overexpresses Snail (OVCA433-Snail), a key transcription factor in epithelial-to-mesenchymal 

transition (EMT); (C) Highly metastatic human breast cancer (MDA-MB-231-HM) cells with 

activation of β-adrenergic signaling by treatment with 100 nM isoproterenol (+ISO) or vehicle 

(Control) for 24 h. N > 400. (D-F) Average predicted invasion as determined by the physical 
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phenotyping model for invasion. Error bars represent the standard deviation. Colors represent 

previously determined invasive potentials, as described in literature (13, 42–45). 

 

We next assess how increased cell invasion that is caused by pharmacologic manipulation can be 

predicted by the physical phenotype model of invasion. We previously showed that cancer cells treated 

with the β-adrenergic agonist, isoproterenol, have increased invasion in vitro (13). Activation of β-

adrenergic signaling also promotes metastasis in clinically-relevant orthotopic mouse models of breast 

cancer (34, 49). Following treatment of highly metastatic human breast cancer (MDA-MB-231-HM) cells 

with isoproterenol, we find that E increases from EControl = 0.9 ± 0.4 kPa to EISO = 4.0 ± 0.6 kPa (p = 

0.001) (Fig. 4C). Similarly, TT increases from TT - Control = 18 ± 4.2 ms to TT - ISO = 81 ± 31 ms (p << 0.001) 

(13) (Fig. 4C). While we measure statistically significant differences in cell physical phenotypes with this 

pharmacologic perturbation, the physical phenotyping model for invasion does not accurately predict the 

effects of isoproterenol on cancer cell invasion (Fig 4F). The inability of the physical phenotyping model 

to predict the increased invasion caused by this pharmacologic manipulation suggests that there is a 

fundamentally different relationship between the physical phenotypes of cells with activation of β-

adrenergic signaling and invasion compared to the other sets of cancer cells that we investigate here. 

Discussion 

Our results across 18 distinct samples of ovarian, breast, and pancreatic cancer cells show that cell 

stiffness alone, as indicated by E or TT, is not sufficient to predict invasion. Using label-free, 

multiparameter physical phenotyping of single cells, we develop the physical phenotyping model that can 

predict invasion using four parameters—elastic modulus E, transit time TT, maximum strain ϵmax, and cell 

size Dcell—which can be rapidly measured using q-DC. We demonstrate the model’s predictive power 

across cell lines, which have inherent differences in invasive potential, as well as for cells that have 

increased invasive potential caused by genetic manipulations.  
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Physical phenotypes as indicators of invasion. While cell classification is the basis for malignant 

diagnosis, the ability to rapidly physical phenotype populations of single cells, and predict their invasive 

ability, would greatly reduce the time required to measure cell invasion, which is typically hours to days. 

Using q-DC and machine learning, we find that the strongest indicators of invasion for microRNA-

overexpressing ovarian cancer cells are E, TT, ϵmax, and Dcell.  

Elastic modulus. E is an essential indicator of invasion in the physical phenotype model. Our 

investigation of physical phenotypes across 18 cell samples, including established cell lines and a range of 

genetic and pharmacologic perturbations, provide the opportunity to examine how broadly the 

relationship between cell stiffness and invasion can be generalized. Interestingly, while we find that E 

tends to decrease for cells that are more invasive, we also identify contexts where more invasive cells are 

stiffer. For example, across pancreatic cancer cell lines, we find that more invasive cells are more 

compliant. Yet, we also find that PANC-1 and Hs766T cells, which are more invasive, are stiffer 

compared to MIA PaCa-2 cells. We also observe that while many of the microRNAs cause ovarian cancer 

(HEYA8) cells to become stiffer and less invasive, overexpression of microRNA 509-5p causes cells to 

be stiffer and more invasive. There are additional examples of more invasive cells being stiffer in the 

breast cancer panel, where MDA-MB-468 are stiffer, yet more invasive than MCF-7 cells. Treatment of 

MDA-MB-231 cells with isoproterenol also causes cells to be stiffer and more invasive. These and other 

cases of more invasive cells that are stiffer (12–16), highlight how the concept that elastic modulus is 

inversely correlated with invasion is oversimplified. 

Transit time. While transit time TT is commonly used to distinguish cancer cell types (20), this parameter 

alone is not a strong indicator of invasion. We find moderate to poor correlations between TT and invasion 

across well-characterized cell lines and microRNA-overexpressing cells. The emergence of TT as an 

indicator of invasion in the physical phenotyping model suggests that the ability of cells to continuously 

deform may be important in invasion. While E reflects the ability of a cell to resist initial deformation, 

and thus dominates viscoelastic response on short ~ms timescales (21), transit time captures the ability of 
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a cell to deform through the entire constriction. We showed previously that TT depends on both elastic and 

viscous properties (21); indeed, invasion occurs over hours to days (38), where viscous contributions may 

be more relevant.  

Size. We also find that cell size Dcell strengthens the accuracy of the physical phenotype model to predict 

invasion. We and others previously determined that cell size is inversely correlated with invasion 

potential (9, 32), which may reflect how smaller cells can more readily invade through a matrix. Cell size 

also determines the probability of cells to occlude narrow capillaries or pores (50, 51), and thus may be 

implicated in lodging of cells in metastatic target sites, such as the narrow capillaries of the pulmonary 

beds of the lung (52). The effects of cell size may also reflect contributions of the cell nucleus to q-DC 

measurements: nuclear size scales with cell size (12), and the nucleus tends to be stiffer than the 

surrounding cytoplasm (11). Moreover, increased nuclear-to-cytoplasmic volume is a hallmark of 

malignant cells with diagnostic value (2, 53, 54). Morphological parameters, such as eccentricity and 

circularity, are also identified as strong predictors of cancer cell types (25).  

Effects of measurement techniques on multiparameter physical phenotyping. Since different 

methods for physical phenotyping probe cells over different time and length scales, it is not clear how 

broadly the predictors of invasion that we have identified using q-DC may be extended to other methods. 

Despite differences in the deformation depth and timescale between q-DC and a conventional 

mechanotyping method, such as AFM, we observe a similar range of elastic modulus values obtained 

using q-DC and AFM of cells that are cultured under the same conditions (12). However, we find the 

ranking of elastic moduli determined by q-DC and AFM is not consistent: by q-DC from stiffest to most 

compliant, AsPC-1 > HPDE > PANC-1 > Hs766T > MIA PaCa-2, and by AFM, Hs766T ~ HPDE > 

PANC-1 > MIA PaCa-2. One notable difference is the Hs766T cells: they are the stiffest PDAC cell line 

measured by AFM and second most compliant cell line by q-DC, despite having an elastic modulus of a 

similar order of magnitude (3.0 ± 2.0 kPa by AFM and 1.6 ± 0.2 kPa by q-DC). This difference between 

cell mechanotype measured by these two methods may be attributed to the difference in cell measurement 
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state: microfluidic methods such as q-DC probe cells in a suspended state, whereas AFM measures 

adhered cells. When cells lift off from the substrate into a suspended state, they undergo dramatic 

cytoskeletal rearrangements and exhibit altered distributions of F-actin (55). By contrast, cells that are 

attached to a substrate also generate intracellular tension, or ‘prestress’ (56), which can contribute to cell 

stiffness measurements (57, 58). Therefore, the stiffness of the Hs766T cells measured by AFM may 

reflect their increased contractility and/or stress fiber formation compared to when they are in suspension. 

Since the stiffness of adhered cells depends on myosin II activity (59–62) and traction stresses scale with 

cell metastatic potential (63), mechanotyping of adhered cells may thus provide an additional, 

complementary physical indicator of cell invasion. This example of cell mechanotype differences in 

adhered and suspended states highlights why measuring the mechanical properties of cells using 

complementary methods could provide valuable information about the passive and active contributions to 

cell deformability. Measurements of adhered and suspended cells may also provide deeper insight into the 

possible functional significance of cell mechanotype. While cell deformations are required for adhered 

cells during invasion, extravasation, and intravasation (52, 64), cells in a suspended state deform during 

circulation through the blood and lymphatic vasculature (52, 64).  

Benefits of multiparameter analysis for predicting cell invasion. Cell physical phenotypes are 

emerging as valuable, complementary biomarkers for cell classification and clinical benefit (8,22,23,24). 

While enhanced predictive power can be achieved with additional parameters obtained by q-DC, extra 

computation is required to extract parameters such as elastic modulus E, cell fluidity β, creep time TC, and 

maximum strain ϵmax (22). The tradeoff between classification accuracy and computational expense will 

ultimately depend on the specific application. For example, certain cancer cell populations can be 

distinguished using measurements of TT and Dcell, which rely on simple image analysis (10, 19–21, 36, 

38). With greater computational investment, including tracking the time-dependent changes in cell shape 

during deformation and fitting single-cell creep trajectories to power law rheology models, additional 

parameters such as ϵmax and E can be determined (22). However, such enhanced resolution may not be 
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essential for specific applications. For example, the invasion of the epithelial-type OVCA433-GFP cells 

versus the mesenchymal-type OVCA433-Snail cells is accurately ranked by E alone (Fig 4E). In future 

applications, more advanced machine learning algorithms could bypass the additional image analysis 

required for q-DC; for example, neural network algorithms can be trained using images with minimal 

processing, and thus do not require the additional computational steps to extract physical phenotypes.  

Additional biophysical markers may also broaden the application of the physical phenotype model to 

contexts where the model does not accurately predict invasion, such as in the case of pharmacologic 

perturbations. Specifically, activation of β-adrenergic signaling alters single-cell physical phenotypes and 

invasion, but in a way that is not consistent with the other cell samples, including both cell lines and 

genetically-modified cells, that we investigate here. Further studies of how β-adrenergic signaling alters 

cell physical phenotypes should deepen our understanding of the relationship between invasion and 

physical phenotypes and facilitate the discovery of additional biomarkers, such as contractility, for 

invasion. Invasion is a complex and highly dynamic process requiring deformation through micron-scale 

pores (52, 65), actin protrusion formation (66), generation of traction forces (63), and secretion of 

proteases (67–69). For example, the increased stiffness of cells with activation of β-adrenergic signaling 

requires myosin II activity (13); myosin II is also required for actomyosin contractility, which increases 

cell stiffness in adhered states (59–62) and generates forces required for cells to invade through 3D 

matrices (70, 71).  

Navigating the physical fitness landscape of invasion. While the physical phenotype model for 

invasion relies on the reduced set of parameters—elastic modulus E, transit time TT, maximum strain ϵmax, 

and cell size Dcell—it is intriguing to speculate if these physical phenotypes reflect a particular strategy for 

optimizing cell invasion. We observe that more invasive cells tend to have lower elastic modulus and 

smaller cell size (Fig 3B). However, the predictive power of the physical phenotype model for is based on 

the multiparameter physical signature of invasive cells. Future studies to better elucidate the interplay 
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between physical phenotypes in the invasion fitness landscape will deepen our understanding of selective 

advantages that may be acquired by cancer cells to enhance their invasion.  

Our findings that the physical phenotype model for invasion cannot predict the increased invasion of 

cancer cells with β-adrenergic activation may imply that different physical signatures reflect different 

strategies for cancer cell invasion. Deeper investigation of contexts where invasion cannot be predicted by 

the physical phenotype model for invasion may reveal another regime that is described by a different set 

of phenotypes that can predict invasion. Identifying additional complementary biomarkers could generate 

a more inclusive—even universal—model to predict invasion across varied contexts. 

While we focus here on using physical phenotypes as indicators of invasion, the rapid, calibrated 

measurements of q-DC have exciting potential to also provide mechanistic insights into the invasive 

behavior of cancer cells. Since proteins of the mechanome and contractome, which regulate cancer cell 

physical phenotypes, are also essential in invasion (32), determining the molecular origins of cell physical 

phenotypes should reveal novel mediators and pathways that can be targeted to stop cancer cell invasion.  

Conclusion 

The q-DC method for single-cell physical phenotyping coupled with machine learning algorithms 

provides a crucial step towards enhanced classification of cancer cell types. Our findings also link cancer 

cell physical phenotypes with functional behaviors such as invasion, establishing a framework for 

predicting invasion based on label-free biomarkers that can be rapidly measured. The ability of q-DC to 

enable calibrated, multiparameter cell physical phenotyping to classify cell types and predict cellular 

behaviors is valuable for biomedical applications, and should offer unprecedented insight into 

heterogeneous populations of cells that include subpopulations of drug-resistant cancer cells to 

undifferentiated stem cells.  
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S. Fig. 1 Sets of q-DC predictors alter the accuracy of cell classification algorithms. Bars show the 

accuracy of classification algorithms that are built using varying sets of q-DC predictors; white text 

denotes the numeric values of accuracy.  
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S. Fig. 2 Correlation between experimental and predicted invasion of PDAC cells using physical 

phenotyping. R2 and adjusted R2 (Radj
2) values of physical phenotyping models of invasion, which use 

varying sets of parameters. Blue bars represent R2 values; navy blue bars represent Radj
2 values, which 

reflect goodness of fit, while accounting for the number of parameters to data points. Colored circles 

illustrate the set of predictors.  

 

 Dcell ϵmax TT TC Ea ß 

Dcell 1.00 0.41 -0.02 0.07 -0.02 -0.14 

ϵmax 0.41 1.00 0.06 0.17 -0.15 -0.10 

TT -0.02 0.06 1.00 0.94 0.69 -0.52 

TC 0.07 0.17 0.94 1.00 0.72 -0.57 

Ea -0.02 -0.15 0.69 0.72 1.00 -0.88 

ß -0.14 -0.10 -0.52 -0.57 -0.88 1.00 

 

S. Table 1. Pair-wise Spearman’s rank correlation coefficients. Matrix of correlation coefficients for 

pairs of q-DC variables: cell diameter Dcell, maximum strain ϵmax, transit time TT, creep time TC, apparent 

elastic modulus E, and fluidity β. Correlation analysis is performed on the q-DC data for human breast 

and pancreatic cancer cell lines.   
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