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Abstract

Past research indicates that humans can infer hidden causes
from covariational evidence, and readily use temporal informa-
tion to infer relationships among events. Here we explore a set-
ting in which people can attribute events to a common hidden
cause or causal relationships among observed events, including
causal cycles, purely on the basis of timing information. We
present data from three behavioral experiments and extend pre-
viously proposed Bayesian models that makes use of order and
delay information for causal structure learning. Our findings
support the idea that people rely on the delays between events
rather than order information alone. Meanwhile, deviations
from our model predictions suggest that people have an induc-
tive bias against common hidden causes and rely on heuristics
to distinguish between causal structures, such as event over-
laps, at least with the cover story considered in these experi-
ments. Further, our data suggest that people have particularly
flexible representations of cyclic relationships.
Keywords: causal; learning; temporal information; event cog-
nition; Bayesian models; latent variables; particle filtering

Inferring causal relationships from observational data is
a notoriously hard problem in machine learning but human
learners have an impressive ability to do so, often making
systematic judgments from sparse, noisy data despite their
limited computational resources (Waldmann, Hagmayer, &
Blaisdell, 2006). However, a ready ability to infer causal links
between observations is only part of the picture. Frequently
causes of observed phenomena cannot be observed directly,
but rather must be induced to explain observed patterns.

Previous studies have shown that adults and even children
as young as 10 months can use intervention and covariation
information to learn about hidden causes (Kushnir, Gopnik,
Lucas, & Schulz, 2010; Lucas, Holstein, & Kemp, 2014;
Saxe, Tenenbaum, & Carey, 2005). In particular, Lucas et
al. (2014) showed that adults can infer the presence of one or
several hidden causes, as well as their functional forms on the
basis of observed statistical contingencies. These studies fo-
cused on interventions and statistical contingencies, but other
information, notably temporal order and delay, also informs
people’s causal inferences. The role of time in causal cog-
nition has been studied extensively, with perceptual research
going at least as far back as Michotte (1946). Indeed, find-
ings indicate that human causal learning, is strongly driven
by temporal considerations. For instance, people have been
shown to make inferences that align with the temporal order
of events, even if temporal information is at odds with co-
variation cues (Lagnado & Sloman, 2006; Rottman & Keil,

2012). Regarding more nuanced temporal information, it has
been shown that longer delays between two events lead to
weaker judgments of causality (Shanks, Pearson, & Dickin-
son, 1989), potentially because more events may have oc-
curred in the meantime that could explain the effect (Lagnado
& Speekenbrink, 2014). Meanwhile, people are also able to
adapt their expectations to specific domains. For instance,
we expect the delay between pressing the power button on a
computer and seeing the device turn on to be short but be-
tween eating spoiled food and getting sick to be much longer.

Recent research has shown that people use event order to
rule out incompatible causal structures (as effects cannot pre-
cede their causes), and delays as well as variability between
events to shape more fine-grained judgments (Bramley, Ger-
stenberg, Mayrhofer, & Lagnado, 2018). However, little is
known about when and whether people infer hidden causes on
the basis of temporal data. In the present work, we approach
this problem in the tradition of rational analysis (Anderson,
1991), comparing human judgments to the predictions of ra-
tional models with specific assumptions and inductive biases.

Our contributions are as follows. We reframe a previ-
ously proposed order model for causal structure learning to
model common dynamic causal systems as finite state ma-
chines that may contain causal cycles and hidden causes. We
further extend a previous model that incorporates delay in-
formation by using a variant of dynamic Bayesian networks
(DBNs) as our state space representation, using particle filters
for inference. This allows us to consider (hidden) structured
stochastic point-processes as causal generative models, using
a probabilistic state-space representation that permits online
inference. We compare model predictions to human judg-
ments in three experiments. Our experiments contain stimuli
sampled from the generative models as well as matched con-
ditions where we manipulate heuristic features – like event
alternation or simultaneous event onsets – to provide strong
signals about the underlying causal structure.

Approaches to modeling causation over time
Causal graphical models (CGMs, also known as causal
Bayesian networks; Pearl, 1995) have become a dominant
tool for causal inference both in data science and as a frame-
work for modeling causal cognition. However, one of their
major limitations is a lack of built-in semantics to represent
temporal dynamics explicitly.
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Bramley et al. (2018) proposed a simple Bayesian model
that uses order information to distinguish between possible
causal structures, by assigning equal probabilities to all event
sequences that are consistent with a given causal structure
(e.g., such that effects never precede their actual causes). This
simple likelihood function naturally penalizes more flexible
structures, since they are compatible with a wider range of
data patterns. Bramley et al. (2018) also proposed a delay-
based model, using exponential distributions to model base
rates for (randomly occurring) independent variables and
gamma distributions to model (more reliable) cause-effect de-
lays. Three experiments and modeling suggested people use
order information to rule out incompatible causal structure
and among the compatible ones, prefer those that have more
similar and reliable causal delays.

A Dynamic Bayesian Network (DBN; Dean & Kanazawa,
1989) provides another approach to encoding temporally dy-
namic causal relationships. A DBN is a CGM that can be
“unrolled” over time to model the influence of variables going
from one time point t to the next t +1. An important charac-
teristic of DBNs is that they can be used to express and reason
about systems containing cycles (since edges always travel
forward in time, the unrolled graph remains acyclic which is
a necessary property of a CGM). However, standard DBNs
represent time using discrete steps, rather than as a continu-
ous quantity, which is associated with conceptual and com-
putational issues (Nodelman, Shelton, & Koller, 2002).

Continuous Time Bayesian Networks (CTBNs; Nodelman
et al., 2002) extend DBNs to represent structured stochastic
processes in continuous time, solving the problem of choos-
ing a time scale. However, both standard DBNs and CTBNs
implicitly assume that delays between events are memory-
less, following exponential (or geometric) distributions (Mur-
phy, 2012). This assumption means that the probability of an
event does not depend on how much time has already elapsed.
However, this does not hold with many real-world phenom-
ena, such as the delay between pressing the power button on
a computer and the device turning on, or on a longer time
scale, incubation periods expressing the delay between expo-
sure to a harmful agent and the first sign of symptoms. This
assumption can be relaxed by positing additional states (Mur-
phy, 2012), but the family of expressible distributions is still
limited and the procedure is computationally costly. An-
other option is to introduce a “dwell-time” counter into each
state (Murphy, 2012), but this approach does not readily ex-
tend to multivariate state spaces, which are considered here.
Normative framework for structure inference We now
outline the rational analysis framework we assume. Prior be-
liefs about a set of causal structures S and their parameters
θ are represented in the prior distributions p(s) and p(θ | s),
respectively. Given data D , we update our belief by applying
Bayes’ theorem. That is, we obtain

p(s |D) ∝ p(s)
∫

p(D | θ,s)p(θ | s)dθ. (1)

The integral in this expression, as well as the normalizing
constant, are often intractable, necessitating the use of ap-
proximations. For all modeling considerations that follow,
we distinguish X and Y from their (noisy) observations oX
and oY , which may occur after a delay. Common to all repre-
sentations is the assumption that causes always produce their
effects, though the delays can vary.

Order model
Our order model extends the order model proposed in Bram-
ley et al. (2018). We formalize our observed events at time t
as a tuple (o(t)X ,o(t)Y ), where o(t)X and o(t)Y are binary observed
variables with 1 denoting an active state (light on) and 0 and
inactive state (light off).

As videos require discretization into time frames, simul-
taneous event-onsets may occur. For modeling, we treat
these events as point events, i.e. only the first frame is
seen as active and the duration over multiple frames is not
taken into account. Hence, we can have three legal states:
(o(t)X = 1,o(t)Y = 0), (o(t)X = 0,o(t)Y = 1) and due to discretiza-
tion (o(t)X = 1,o(t)Y = 1)1. We can think of the order model
as looking at the onset-skeleton of a given event sequence,
where the observed variables correspond to direct observa-
tions of the underlying system.

We construct generative models for each causal struc-
ture, compactly represented as probabilistic finite state ma-
chines (PFSMs; Vidal, Thollard, de la Higuera, Casacuberta,
& Carrasco, 2005) (Figure 1). Depending on the causal struc-
ture, different state transitions are legal.

Figure 1: Order model formulated as finite state machines.
Transition probabilities omitted for the PFSM representation
for readability.

For independent causes, no restrictions on transitions be-
tween legal events apply. For X causes Y or Y causes X there
is only one legal transition for each state, such that activations
of X and Y always alternate. Whether X causes Y or Y causes

1Note that the state (o(t)X = 0,o(t)Y = 0) is ignored under an order-
only representation. A delay between two events can be thought of
as observing “null-events” for that period of time. Taking this infor-
mation into account would go beyond an order-only approach, since
one could observe a varying number of such null-events, thereby
introducing a notion of delay.
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X is thus only determined by whichever variable activates first
in an order-only scenario. A common hidden cause can pro-
duce a simultaneous onset of both observed variables or they
activate in succession. As opposed to independent causes,
however, we cannot have the same variable activate twice in
succession. For causal cycles, either variable can start the ob-
servation sequence, after which the variables activate in turn.

In line with the order model in Bramley et al. (2018),
we set the transition probability for a state k to 1

outdegree(k) ,
where the outdegree is defined as the number of outgoing
edges from a state. This has the effect that when two or
more structures are compatible with a sequence of observa-
tions, the simplest one receives the highest posterior proba-
bility (given a uniform prior). The likelihood is here sim-
ply computed as the probability of a particular trace under
the model. Identifiability experiments (see online supplement
at http://causalityandtime.com) reveal that, X causes Y
(and Y causes X) could always be identified, while indepen-
dent causes and common hidden causes were recovered less
often. Causal cycles cannot be recovered based on order in-
formation alone, with X causes Y (or Y causes X) being in-
ferred instead, as they provide more parsimonious explana-
tions of the data.

Delay model

We next describe our delay-sensitive model. Follow-
ing Bramley et al. (2018), we assume gamma distributions
represent beliefs about expected delays and their variabil-
ity, while preventing backward-causation, as only forward-
causation has support.

We represent causal structures as DBNs, where nodes de-
note the absolute time at which a particular event occurred.
We look at the transition models for each structure from t−1
to t, with each step t tracking the occurrence of both vari-
ables, as presented in Figure 2. Edges represent parame-
terized gamma delays between occurrences of events, such
that θ = [µ,σ]> specifies a gamma distribution Gamma(µ,σ),
reparameterized in terms of mean and standard deviation and
expressed in seconds. For instance, if X (t−1) is connected to
Xt by an edge, X (t−1) last occurred at some time X (t−1) = 11s
and we sample a delay of 1.4s, then the value of X (t) is
X (t) = X (t−1)+1.4s = 12.4s.

For the independent structure, there are no assumptions on
dependencies between occurrences of X and Y. For X causes
Y the occurrence of X (t) depends only on the previous occur-
rence of X (i.e. X (t−1)), but is (conditionally) independent of
the previous occurrence of Y . For the common hidden cause
structure, the occurrences of X and Y depend on the last oc-
currence of H. For simplicity and comparability with other
structures, we tie the parameters that describe the distribution
of when X and Y occur after an occurrence of H. Lastly,
the causal cycle resembles X causes Y (or Y causes X) but
distinguishes itself by two characteristics: Expected delays
between X and Y are symmetric, hence the parameters are
tied, and both X or Y can start a sequence of observations.

Figure 2: Delay model states as DBN models. θ denotes pa-
rameters [µ,σ2]>; OR* indicates that the cycle can either start
with X or Y , depending on how the initial state was sampled.

We approach inference for this model as a tracking prob-
lem of the state of our system over time using a particle fil-
ter (also referred to as sequential Monte Carlo; Doucet & Jo-
hansen, 2011). Particle filters provide an approximate infer-
ence method that is well matched to this setting. Here, the
posterior distribution is approximated via a set of particles
(corresponding to a hidden state for a particular structure with
a set parameterization) which are weighted by the probability
of the observed data and occasionally resampled.

Our quantity of interest is p(s | o(1:t)), i.e. the marginal
over parameters and trajectories of hidden states. Particles
are initialized by sampling a structure s ∈ S from a uniform
multinomial distribution. The gamma distribution’s mean
has an Exp(0.5) maximum-entropy prior, and the variance
has a Half-Cauchy(0.5) prior, following recommendations
from Gelman (2006). Initial states are sampled from indepen-
dent zero-mean Gaussians with Half-Cauchy(0.5) variances.

We assume that observations (o(t)X ,o(t)Y ), with o(t)X ,o(t)Y ∈
R>0, are stochastic (noisy and/or delayed) reflections of un-
derlying events X (t) and Y (t), respectively. Reflecting that
stochastic relationship, p(o(t)X | X (t)) is distributed according
Gamma(0.2,0.01)+X (t), likewise for p(o(t)Y | Y (t)), loosely
based on results from (Amano et al., 2006). This serves to
provide a fairer comparison to how people perform the task
and prevents single particles with large weights to dominate
the particle filtering estimate. Particles were resampled us-
ing systematic resampling. In order to ensure the robustness
of the approximations to the posterior, we assessed consis-
tency across multiple runs with 105 particles in all experi-
ments. Identifiability experiments (see online supplement at
http://causalityandtime.com) showed that the genera-
tive model can most often be recovered successfully in all
structures, while the independent structure appears most dif-
ficult to identify, due to its flexibility and consequent com-
plexity penalization in the model comparison.
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Model evaluation and comparison
We assess the extent to which people’s individual judgments
can be predicted using our order and delay models based on
stimuli presented to participants. To this end, we compare the
posterior distribution given by a participant on a particular
video to a mixture of our order or delay model prediction. We
use the root mean squared error (RMSE) between people’s
and model’s judgements, following Bramley et al. (2018).

As our baseline, we use people’s mean empirical judg-
ments per structure, as a loose approximation to their priors
and reflecting the performance of the best possible model (in
terms of RMSE under a Gaussian error model) that can be
achieved without predicting differences across conditions or
participants. That is, our predictions are ŷbl(s, j) = µs, where
µs, s ∈ S is the mean judgment per structure s computed over
all j ∈ J judgments contained in the training fold. Our alter-
native models are given by mixtures of the baseline and the
order or delay model predictions. The prediction for a partic-
ular rating is ŷε(s, j) = εµs +(1− ε)M (s, j), where M refers
to either the order model Mo or the delay model Md . The free
parameter ε ∈ [0,1] determines the weight given to stimulus-
specific order- or delay-model predictions. For fitting and
assessing model generalizability to new conditions, we op-
timize the parameters on the judgments and predictions from
K−1 of K = 12 conditions and evaluate the performance on
on the left-out condition. This provides a rigorous test of gen-
eralizability, as predictions are made on an unseen condition.

Experiments
We study the problem of inferring which causal structure gen-
erated a series of observations using a task where participants
watched 35 second videos of two lights representing bacteria.
The cover story involves that participants observe biolumi-
nescent bacteria from different environments. All the bacte-
ria glow dimly most of the time, but sometimes they briefly
illuminate. The task was to learn whether there are relation-
ships between the illumination of different bacteria, and what
forms those relationships take.

Participants were first trained on how to interpret causal
graphical models and their understanding checked with a pre-
test. It was instructed that additional hidden causes may also
be present, and these might influence the behavior of the bac-
teria. After each video, participants gave posterior probability
judgments for the causal structures (presented in Figure 3),
ranging from 0 “impossible” to 100 “certain”, which were
normalized during pre-processing.

All data were collected from online experiments with Ama-
zon’s MTurk service for Experiments 1 and 2 and volunteer
participants from Reddit for Experiment 3. Each participant
was shown one video per condition in random order and con-
ditions were counterbalanced for color and left-right differ-
ences.

Experiment 1
The data comprise judgments from N = 38 participants. It
was hypothesized that forcing events to alternate would lead

Figure 3: The causal structure hypotheses presented to par-
ticipants.

people to infer a causal cycle instead of independent events
whenever delays between events were symmetric and a causal
chain X–Y when X–Y delays were shorter than Y –X delays
instead of a common hidden cause.

Methods and materials The conditions were as follows:
[IO] Independent, original order: Bacteria illuminated in-

dependently and were presented in original order. Inter-
illumination intervals were sampled from Gamma(µ =
2s,σ = 0.63s).

[IA] Independent, alternating: Events were generated as in
the [IO] condition, but if the original sampled sequence con-
tained two successive illuminations of the same bacterium,
the identity of the second occurrence was switched, e.g., “X
X Y ” was changed to “X Y X”.

[CO] Clustered, original order: A hidden cause was sam-
pled as in the independent condition. X and Y illuminated
after the onset of the hidden cause with delays sampled from
Gamma(0.5,0.32).

[CA] Clustered, alternating: Events were generated as in
the [CO] condition, but forced to alternate.

Results Figure 4 displays aggregate human, order and de-
lay model judgments. Taken together, the [CO] condition
was most surprising, as people gave similar probability judg-
ments for multiple structures, descriptively slightly preferring
causal cycles over a common hidden cause. We further inves-
tigate this in Experiment 3.

Experiment 2
The second experiment comprises a modified independent
condition and three new generative processes. The data con-
sist of judgments from N = 21 participants.

Methods and materials The conditions were as follows:
[I] Independent: Events for both bacteria were sampled in-

dependently. Delays between events had a larger expected
duration and higher variance than the [IO] condition from Ex-
periment 1 (Gamma(2.67,1.5)).

[DL] Dependent, long CE delay: A cause event was sam-
pled in as in the [I] condition. The delay between the end of
the illumination of the cause bacterium and the onset of the
effect bacterium was then sampled from Gamma(1.1,0.6).

[DS] Dependent, short CE delay: Same as the [DL] condi-
tion, but with a shorter cause-effect delay, distributed accord-
ing to Gamma(0.55,0.3).
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Figure 4: Experiment 1: Average people’s, order model’s and
delay model’s posterior probabilities for each structure. Error
bars denote standard errors.

[DX] Dependent, short-delay, switching: Events were gen-
erated as in the [DS] condition, but the identity of the cause
was swapped for each pair of observations with probability
.50. This provides instances of [DS] event pairs for both X
causes Y and Y causes X .

Results As presented in Figure 5, this experiment, with the
[DX] condition, indicates that people may also infer cycles
when delays are symmetric as well as when there are in-
stances of causal chains in either direction, contrary to the
assumptions included in our models. As in Experiment 1, we
find that, descriptively, the order and delay models are more
confident in their judgments than our participants.

Experiment 3

Building on Experiment 1, we ran a further experiment to as-
sess the conditions under which people infer a common hid-
den cause. Experiment 3 includes additional manipulations
of the stimuli that are ignored by the normative models, but
provide information that people may use in a heuristic fashion
to distinguish between structures. Here, we test for the effects
of variance, event duration and onset-overlap. Total overlap
(in terms of video frames) and variance are associated, as
lowering the variance also means having more overlapping
frames. In order to tease these factors apart, we manipulate
event length between 4 and 8 frames, which changes the over-
lap but not the variance. For our normative models, this ma-
nipulation of frame length does not matter, since events are
modeled as point events. An additional possible influence
is given by whether events overlap at onset, which provides
a different signal from overall frame-wise overlap. To assess

Figure 5: Experiment 2: Average people’s, order model’s and
delay model’s posterior probabilities for each structure. Error
bars denote standard errors.

the effect of onset-overlap on causal judgments, we determin-
istically set the number of onset overlaps to either zero or one.
The data consist of judgments from N = 21 participants.

Methods and materials All conditions use common hid-
den cause structures, replicating and extending the [CO] con-
dition from Experiment 1. Condition [CO] corresponds to the
high-variance, short duration [HS] condition, with a standard
deviation σ = 0.32s for the delay from H to X and Y . For
the low-variance short duration condition [LS], we halved the
standard deviation to σ = 0.16s. The [HL] and [LL] condi-
tions are given the same delay parameterizations as the short
duration conditions, but events last for 8 instead of 4 frames.
We present each participant with one video from each of the
four conditions related to variance and event length in ran-
dom order. Counterbalanced across participants, the first two
videos then have no onset overlap, while video three and four
have exactly one (or vice versa).

Results As shown in Figure 6, we replicate the findings
from the [CO] condition in Experiment 1 and find that peo-
ple still assign similar probabilities to multiple structures.
In particular, people frequently report a causal cycle or in-
dependent cause rather than the generative common hidden
cause structure. To tease apart the effects of variance, event
duration and onset-overlap, we ran linear mixed models on
people’s judgments on the common hidden cause and the
cyclic structure (for detailed results, see online supplement at
http://causalityandtime.com). As the observations are
nested within individuals, we included a random intercept for
each participant.
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Figure 6: Experiment 3: Average people’s, order model’s and
delay model’s posterior probabilities for each structure. Error
bars denote standard errors.

Regarding judgments for the common hidden cause struc-
ture, an effect of variance was found to be statistically signif-
icant. On average, participants gave ∆M = 7.15% (p = .031,
controlling for the effects of variance and duration) higher
probability judgments for a common hidden cause when vari-
ance was low as compared to high. This indicates that people
are sensitive to variance as an indicator for a common hid-
den cause. No statistically significant effects (at a level of
α = .05) were found for onset-overlaps or event duration.

For causal cycles, neither variance nor duration received
weights that were significantly different from zero. However,
there was a significant effect of onset overlaps, as people gave
lower probability judgments for causal cycles when there was
one onset-overlap versus zero, ∆M = −11.44% (p = .012,
controlling for the effects of variance and duration). This in-
dicates that people are sensitive to onset-overlaps, and use
this information to partially rule out cyclic relationships.

Global evaluation

As a more global assessment of our models on all three ex-
periments, we evaluate the usefulness of the order and de-
lay model inferences in predicting participants judgments on
videos from an unseen condition. Table 1 presents aggregate
RMSE values for the different models.

Fitted ε values indicate that only small weights are given to
order or delay model predictions, though both outperform the
baseline, with the delay mixture performing best. However,
it should be kept in mind that the differences in RMSEs are
comparably small.

bl bl + order bl + delay
RMSE 22.07 21.95 21.62
SE 0.98 1.02 0.90
ε 0.91 0.90

Table 1: Aggregated results per model over all cross valida-
tion folds. bl denotes the baseline model; SE describes the
standard error of the mean computed over conditions; Lowest
RMSE in bold face; ε describes mixture weights.

Discussion

Our findings indicate that, overall, an order-only approach is
useful but insufficient to account for how people infer hidden
causal structure from temporal data. The delay model showed
good identifiability results and helped most in predicting peo-
ple’s judgments. Overall, we find that people spread their
probability judgments more broadly across structures and
are more variable than our model predictions would suggest.
One explanation for this finding is that people are conserva-
tive in their probability judgments (e.g. Bramley, Lagnado,
& Speekenbrink, 2015; Edwards, 1968), thereby effectively
“hedging their bets”. That is, people may retain uncertainty in
their judgments by assigning some probability even to struc-
tures that seem implausible based on the data.

What explains the differences between model predictions
and people’s judgments in particular conditions? We have
seen in the [DX] condition from Experiment 2 that people
may infer a causal cycle when seeing both instances of X
causes Y and Y causes X (with short delays between the two
variables). This is different from our assumption of symmet-
ric delays, which was predicted in condition [CA] in Exper-
iment 1. Hence, judgments for the [DX] condition point to
considering more flexible state spaces than those provided
by the DBNs considered in the present study. This could
be achieved by introducing a probability into our model-
dynamics that describes whether X or Y occurs first in the
next time step, by sampling the connections of the corre-
sponding edges. Sampling from this process would yield in-
stances of X causes Y as well as Y causes X , as required.

The effects in Experiment 3 were surprising in that in in
all conditions participants gave, on average, similar probabil-
ity judgments to causal cycles and to common hidden causes,
with a trend toward favoring the former. However, people ap-
pear to be sensitive to variance and do infer a common hidden
cause in some cases. Further, our data suggest that people use
the presence of onset-overlaps to distinguish between causal
structures in a heuristic fashion.

In the present study, we only considered the cover story of
the interaction between two bioluminescent bacteria. As peo-
ple may have different a priori beliefs about hidden causes in
other scenarios, we are currently running experiments where
we investigate the influence of different cover stories on peo-
ple’s inductive biases towards hidden causal structure.
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Publications Universitaire.

Murphy, K. P. (2012). Machine learning: a probabilistic
perspective (adaptive computation and machine learn-
ing series). MIT press.

Nodelman, U., Shelton, C. R., & Koller, D. (2002). Contin-
uous Time Bayesian Networks. In Proceedings of the
eighteenth conference on uncertainty in artificial intel-
ligence. Morgan Kaufmann Publishers Inc.

Pearl, J. (1995). Causal Diagrams for Empirical Research.
Biometrika, 82(4), 669.

Rottman, B. M., & Keil, F. C. (2012). Causal structure learn-
ing over time: Observations and interventions. Cogni-
tive Psychology, 64(1-2), 93–125.

Saxe, R., Tenenbaum, J. B., & Carey, S. (2005). Secret

Agents: Inferences About Hidden Causes by 10- and
12-Month-Old Infants. Psychological Science, 16(12),
995–1001.

Shanks, D. R., Pearson, S. M., & Dickinson, A. (1989).
Temporal Contiguity and the Judgement of Causality
by Human Subjects. The Quarterly Journal of Experi-
mental Psychology Section B(2), 139–159.

Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F.,
& Carrasco, R. C. (2005). Probabilistic Finite-State
Machines–Part I. IEEE transactions on pattern analy-
sis and machine intelligence, 27(7), 1013–1025.

Waldmann, M. R., Hagmayer, Y., & Blaisdell, A. P. (2006).
Beyond the Information Given: Causal Models in
Learning and Reasoning. Current Directions in Psy-
chological Science, 15(6), 307.

1912




