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All photosynthetic green plants and cyanobacteria (blue-green "algae") 

capable of using sunlight to convert carbon dioxide and water to oxygen and 

carbohydrates employ the reductive pentose phosphate cycle (also called the 

C3 cycle or the Calvin cycle).'1-3 Most available evidence indicates that the 

RPP cycle is the principal pathway for initial fixation of carbon dioxide 

in all plants except those which have either the C4 pathway4,S (see L 

Crassulacean Acid Metabolism (CAM)6.orboth. Even in those species in which 

most of the carbon dioxide is initially incorporated by C4 metabolism or by 

CAM, most of the carbon dioxide is released inside chloroplasts where it is 

reincorporated via the RPP cycle.7 T~is is necessary since neither the C4 
cycle rlor CAr~ can bring about a net conversion of carbon dioxide to sugar 

phosphate or carbohydrates. 

The RPP cycle can be considered as consisting of three'phases: The first 

phase is the conversion of a Cs sugar, ribulose S-phosphate with ATP to 

ribulose 1,S-bisphosphate (Reaction M) followed by carboxylation to give two 

molecules of the C3 acid, 3-phosphoglycerate (3-PGA) in Reaction A. The 

second phase is the conversion of 3-PGA to triose phosphate which occurs in 

two steps: formation of the acyl phosphate with ATP (Reaction B), and 

reduction of the acyl phosphate to aldehyde with release of inorganic phosphate 

(Reaction C). The third phase of the RPP cycle consists of all the remaining 

reactions (0 through L) which convert five molecules of C3 sugar phosphate to 

three molecules of pentose phosphate. 

One complete cycle (in which each reaction occurs at least once) requires 

that three ribulose S-phosphate molecules are phosphorylated, carboxylated, 

and split to give a total of six molecules of 3-PGA which are in turn converted 
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to six molecules of the triose phosphate, glyceraldehyde-phosphate. Since 

only five triose phosphate molecules are required to regenerate the three 

pentose phosphates, one triose phosphate ;s left over and represents the 

product of the fixation and reduction of three molecules of carbon dioxide. 

The overall reaction of one complete cycle may therefore be represented as 

3 CO2 + 9 ATp4- + 6 NADPH ~ 9 ADp 3- + OCH-CHOH-CH
2

0P0
3
H 

(glyceraldehyde-3-phosphate) 

+ 8 HPO~- + 2 H+. 

ATP is regenerated from ADP and Pi by photophosphorylation in the chloroplast 

thylakoids, while NADPH ;s regeneratea from NADP+ by reduction with reduced 

ferredoxin which is in turn reduced by electron transport from water by the 

light reactions and eleotron transport in the thylakoids. 

The triose phosphate product of the RPP cycle is to a large extent 

translocated out of the chloroplast {in exchange for inorganic phosphate)8 

to be used for various biosynthetic needs of the plant including synthesis of 

sucrose for export to other parts of the plant in the case of multicellular 

plants. Under conditions where photosynthesis exceeds the needs of the plant, 

some of the triose phosphate is converted to fructose-6-phosphate (via reactions 

0, E, and F), thence to glucose phosphates and finally to the storage product, 

starch,which'accumulates in the chloroplasts. Some biosynthetic reactions 

starting with intermediat~ compounds of the RPP cycle also occur in the 

: chloroplasts. For example, triose phosphate may be reduced to glycerol 

phosphate and used in fat synthesis, and ribose 5-phosphate can be used in 

ribonucleotide and deoxyribonucleotide biosynthesis. 

The most distinctive reaction of the RPP Cycle is the carboxylation of 
9 ' 

ribulose 1,5 bisphosphate to give two molecules of 3-PGA. The enzyme, 
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ribulose 1,5-bisphosphate carboxylase (RuBPCase) constitutes a major fraction 

of the soluble protein in green cells s and may be the most abundant protein 

in the biosphere. It is generally accepted that the enzyme mediates the 

addition of carbon dioxide to the carbon atom 2 of the RuBP molecule,lO 

forming an enzyme-bound 6-carbon intermediate. This undergoes an internal 

oxidation-reduction reaction (the enzyme was once called "Carboxydismutase"ll) 

so that hydrolytic splitting of the molecule results in the formation of two 

identical molecules of 3-PGA. One 3-PGA molecule is composed of carbon atoms 

1 and 2 of the RuBP plus the newly incorporated carbon dioxide which becomes 

the carboxyl group. The other 3-PGA product is made from carbons 3, 4s and 

5 of RuBP, with carbon 3 becoming the carboxyl group. 

An interesting and important property of the RuBPCas,e is its ability 

. to function as an oxygenase.12sl3 At low levels of CO2 and atmospheric levels 

of O2 (20%), 02 can bind competitively at the active site of the enzyme and 

react with the RuBP at the carbon 2 positions oxidatively splitting it to 

one molecule of 3-PGA (from carbon atoms 3, 4, and 5) and one molecule of 

2-phosphoglycolate. The latter compound is converted to glycolate in the 

chloroplast14 from which it is mainly exported. Glycolate is widely believed 

to be the principal if not the exclusive substrate for photorespiration. 15 

This alternate oxygenase activity of RuBPCase thus competes with carbon 

assimilation and at the same time leads to conversion of some of the reduced' 

carbon back to carbon dioxide, via photorespiration. This limits the maximum 

rate of photosynthetic carbon assimilation under conditions of high light 

intensity. high temperature, low CO2 and atmospheric 02 level in plants lacking 

C4 metabolism. 

Ii 
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REACTIONS 

Ribulose 1,5-bisphosphate adds CO2 at C-2 and splits hydrolytically to 

give 2 molecules of 3-phosphoglycerate. 

B. The carboxyl group of 3-phosphoglycerate is converted to an acyl 

phosphate in a reaction utilizing the terminal phosphate of ATP .. 

C. The acyl phosphate group is reduced in the presence of NADPH to give Pi 

and an aldehyde group, thus converting the 3-C-atom compound to 

glyceraldehyde 3-phosphate. 

D. The aldo-sugar is converted into a keto-sugar by the transfer of 2 H 

atoms from C-2 to C-l 

E. The aldol condensation between aldotriose and ketotriose gives fructose 1, 

6-bisphosphate. 

F. The phosphate group on C-l is removed by hydrolysis. 

G. 2 H atoms plus the glycolyl group (C-l and C-2) of fructose 6-phosphate 

are transferred to glyceraldehyde 3-phosphate to form xylulose 5-phosphate, 

leaving erythrose 4-phosphate. 

H. An aldol condensation between erythrose 4-phosphate gives sedoheptulose 1, 

7-bisphosphate. 

I.· Hydrolysis of the phosphate on C-l gives sedoheptulose 7-phosphate. 

J. Transfer of the glycolyl group (C-l and C-2) plus 2 H atoms from sedo­

heptulose 7-phosphate to C-l of glyceraldehyde 3-phosphate gives xylulose 

5-phosphate and ribose 5-phosphate. 

K. Isomerization of ribose 5-phosphate gives ribulose 5-phosphate. 

L. Epimerization of C-3 of xylulose 5-phosphate gives ribulose 5-phosphate. 

M. Phosphorylation of C-lof ribulose 5-phosphate in the presence of ATP 

gives ribulose 1,5-bisphosphate, thus completing the reductive pentose 

phosphate cycle. 



ENZYME (SYNONYM) KEY 

Reductive Pentose Phosphate Cycle (Photosynthesis) 

2.7.1.19 = phosphoribu1okinase 

3.1.3.11 = hexosebisphosphatase (heptosebisphosphatase) 

4.1.1.39 = ribulosebisphosphate carboxylase 

4.1.2.13 = fructosebisphosphate aldolase 

2.2.1.1 = transketo1ase 

2.7.2.3 ~ phosphoglycerate kinase 

5.1.3.1 = ribu1osephosphate 3-epimerase 

5.3.1,1. = triosephosphate isomerase 

5.3.1.6 = ribosephosphate isomerase 
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Figure: The Reductive Pentose Phosphate Cycle of Photosynthesis 
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