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Abstract

Ahmadi-Shparlinski conjectured that every ordinary, geometrically simple Jacobian over a
finite field has maximal angle rank. Using the L-Functions and Modular Forms Database, we
provide two counterexamples to this conjecture in dimension 4.

1 Introduction

The following is a conjecture of Ahmadi—Shparlinski (in slightly reformulated language; see Lemma 2.1):

Conjecture 1.1 ([AS10, §5]). Every ordinary, geometrically simple Jacobian over a finite field has
maximal angle rank.

In this paper we report that this conjecture is false. Our work used the L-Functions and Modular
Forms Database (LMFDB), specifically its database of abelian varieties over finite fields which can
be found here:

https://www.lmfdb.org/Variety/Abelian/Fq/.

Documentation, further conjectures, and interesting statistics are reported in [DKRV20].

Apart from the counterexamples of Section 7, this article briefly recalls the notion of angle
rank in Section 2, presents how geometric simplicity is computed in the LMFDB (Section 3) and
how Jacobians are tested for in the LMFDB (Section 4). Following this, we describe our search
(Section 5), and because angle ranks are computed numerically in the LMFDB, we provide a proof
of the computation of the angle rank for both examples in Section 6. Readers can verify these
counterexamples themselves using the code provided at

https://github.com/LMFDB/abvar-£q/,

which uses Sage [ST20], PARI [PAR19] and Magma [BCP97]. We remark that in addition to
providing counterexamples to the conjecture, we give two new methods for algebraically certifying
angle ranks (as remarked above, as of February 2021, in the LMFDB the angle ranks are computed
numerically using an LLL algorithm).


https://www.lmfdb.org/Variety/Abelian/Fq/
https://github.com/LMFDB/abvar-fq/

Remark 1.2. We began searching for counterexamples to Conjecture 1.1 since it is incompatible
with the Shankar-Tsimerman conjecture [ST18, Conj. 2.5] which states that every simple abelian
fourfold over Fp is isogenous to a Jacobian; since angle rank, ordinarity, and geometric simplicity
are preserved under base change and isogenies, this would imply that every simple abelian fourfold
has maximal angle rank.
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2 Frobenius Angle Rank

This section very briefly presents the definition of the angle rank of an abelian variety defined over
a finite field; for more context and a longer discussion the reader is directed to [DKRV20, §2.6, 3.8]
and [DKZB20).

For A an abelian variety of dimension g with L-polynomial L(T) = H?i 1 (1 —oyT), the angle
rank of A is the quantity

§(A) = dimq(Spang ({arg(a;) : 1 <i <29} U{n})) —1€{0,...,g},
where arg denotes the principal branch of the logarithm.

Lemma 2.1. With notation as above, assume that the «; have been numbered so that a;ayy; = q
fori=1,...,g9. Then the following conditions are equivalent.

(a) We have §(A) = g. We say in this case that A has maximal angle rank.

(b) Every vector (eq,...,ey) € Z9T! such that af' ---ay’ = ¢° is identically zero. In this case,
Ahmadi-Shparlinski [AS10, §5.1] say that the Frobenius angles of A are linearly independent
modulo 1.

(c) Every vector (eq, ..., es5) € Z29T1 with the property that a5 - - oz;;g = q° has the property
that e; = egyi fori=1,...,g. In this case, Zarhin [Zarl5, §2| says that A is neat (or more
precisely, some finite base extension of A has this property).

Proof. We first check that (b) and (c) are equivalent. If (c¢) holds, then for every vector (e, ..., e,) €
Z9%1 such that af' - - agg = ¢, we have e; = --- = ¢4 = 0 and hence also ey = 0. Conversely, if



(b) holds, then for every vector (eo,...,esq) € Z?9"! with the property that af' - agzg = ¢, we

have
a§1_69+1 L a;g_e2g _ qeo—eg+1—~~-—629
and so e; = egq; fori=1,...,¢.
We next check that (a) implies (b). Note that since arg(c;) +arg(og+i) € 2nZ, (a) is equivalent
to the condition that arg(cy),...,arg(ay), ™ are linearly independent over Q. If this holds, then
for every vector (eq,...,e,) € Z9L such that a5 - - - ag’ = ¢, we have

erarg(oy) + -+ +egarg(ay) € 217

and so e; = --- = ¢4 = 0 (and also ey = 0 as above).

We finally check that (b) implies (a). If (a) fails, then we must have a nonzero vector (e, ..., eq)
such that ej arg(aq) + - + ey arg(ay) = eom. In particular, af' - - - g’ is real and hence equal to
its complex conjugate ¢t +esa -+ oy ;5 we thus have af! - - - azeg =g 1Tl O

The angle rank detects multiplicative relations among the roots of L; these are closely related
to exceptional Hodge classes on powers of A. For example, by a theorem of Zarhin [Zar94, Theo-
rem 3.4.3], §(A) = g if and only if there are no exceptional Hodge classes on any power of A. At
the other extreme, §(A) = 0 if and only if A is supersingular.

3 Geometric Simplicity

To check that an ordinary isogeny class defined over F, is geometrically simple, we compute the
tensor square of the L-polynomial, note that it has no nontrivial cyclotomic factors, and apply
[CMSV19, Lemma 7.2.7 (b)] to deduce that all of the geometric endomorphisms are defined over
F,; in particular, each simple isogeny factor is geometrically simple. In the counterexamples pre-
sented in this article, simplicity over F, follows from the irreducibility of the L-polynomial and
ordinarity from the Newton polygon. For a discussion of the geometric endomorphism algebra in
more generality, see [DKRV20, §3.5].

4 Searching for Jacobians

The current version of the LMFDB contains substantial data about whether isogeny classes contain
Jacobians up to dimension 3 (see [DKRV20, §3.7]). However, for this paper we need data in
dimension 4, for which the LMFDB currently contains only negative results (e.g., a given isogeny
class may fail to contain a Jacobian because it contains no principally polarizable variety, or because
it corresponds to an impossible sequence of point counts on a curve). We thus cannot use the
LMFDB alone to certify that a given isogeny class contains a Jacobian.

We instead take the approach of constructing curves, computing their zeta functions, and match-
ing their numerators to the Weil polynomials contained in the LMFDB. To construct the curves,
we note that in genus 4, every nonhyperelliptic curve is isomorphic (via its canonical embedding)
to the intersection of a quadric and a cubic in P3. (See [Har77, Example IV.5.2.2] for the cor-
responding statement over an algebraically closed field.) In practice, over Fg, this allows us to
make an exhaustive search over both hyperelliptic and nonhyperelliptic curves, using Magma to
compute zeta functions. (In the nonhyperelliptic case, we limit the options for the quadric as in



[Sav03, Proposition 2.3].) Over F3 and F5, we enumerate only over hyperelliptic curves, using Sage
to compute zeta functions. This was enough to find the two counterexamples presented here.

5 Results of the Search

The Ahmadi-Shparlinski conjecture is a theorem in dimension 2, even without the ordinary condi-
tion [AS10, Theorem 2]. It is also a theorem in dimension 3, but this time it requires the ordinary
condition [Zarl5, Theorem 1.1]. (That result implies that if an abelian threefold over a finite field is
ordinary and absolutely simple, then it is neat; the latter condition is equivalent to having maximal
angle rank by Lemma 2.1.) We verified the consistency of these results with the LMFDB database.

In dimension 4 over Fy there are 52 isogeny classes of ordinary, geometrically simple abelian
varieties with angle rank at most 3 (in fact they are all equal to 3). Searching through curves, we
found 620 distinct zeta functions, none of which occur among the previous list of 52 isogeny classes.
Therefore there are no such 4-dimensional Jacobians over Fy, and the conjecture holds in this case.

By contrast, the conjecture fails in dimension 4 over F3 and Fs5, as shown by the examples
presented in Section 7. While we chose specific examples for definiteness, these are not particularly
exceptional: over F3 there are 210 isogeny classes of ordinary, geometrically simple abelian varieties
of dimension 4, and by comparing to a random sample of half a million hyperelliptic curves we
found that at least 66 isogeny classes contain a Jacobian. (Over F5, there are 1304 isogeny classes
of ordinary, geometrically simple abelian varieties of dimension 4; we did not attempt to determine
how many of these contain Jacobians.)

6 Algebraic Certification of Angle Ranks

We now describe the procedure we used to compute a rigorous upper bound on d(A). See [DKRV20,
§3.8] for an alternate approach that also gives a rigorous lower bound, which we do not need
here; instead we use an estimate on the size of relations based on linear forms in logarithms (see
Lemma 6.3).

Let L(T) = H?ﬁ 1(1—a;T) be the L-polynomial of an abelian variety A over F,. Fix a precision
p = o2 (we default to p = 625).

1. Compute the inverse roots {a;} of L(T') that have positive imaginary part, in a complex field
C of precision p. Set t; = arg(w;)/m, where arg is the principal branch of the logarithm.
Throw away duplicates, obtaining (after possibly reordering) 0 < t; < -+ < t,, < 1.

2. Use LLL to find independent integer relations Ry,..., Rs among {t1,...,tn,1}. A relation
is considered spurious if all coefficients are larger than 27, with o = ,/p as above, and we
interrupt the computation if some value is larger than 27 but others are not (this did not
happen for any isogeny class in the database). The numerical angle rank is m — s.

3. Find a number field K in which L(T') splits completely. Choose an embedding ¢: K — C
and let B1,..., By be the roots of P(T) in K with 0 < arg(c(f1)) < -+ < arg(¢«(Bm)) < .
(In other words, the root (; has argument approximated by 7t; above.)

4. The roots Bi,..., By together with the relations Rji,..., Rs provide a certificate that the
angle rank of A is at most m — s. One can check using exact arithmetic in K that a relation



R; = (c1,...,¢m+1) holds by confirming that
m
(ay T 6r =1
i=1

Remark 6.1. The upper bound m — s can only fail to be sharp if at some point we discarded a
relation as spurious when it was real. Such a relation would have all coeflicients larger than 2.

Remark 6.2. Let P(T) = H?ﬁl(ai—T) be a Weil polynomial, with roots ordered so that o yg = ¢
(where the indices are taken modulo 2g). This remark explains an alternative method, using
resultants and “taking cyclotomic parts,” to verify the existence of a relation of the form

€; 1/2
afia ol = (gl (1)
where ey, ..., e; are specified positive integers and ¢ is an unspecified root of unity. Such a relation
is guaranteed to be nontrivial (i.e., not a consequence of the known relations a;otq = ¢) provided
that i1,...,%; are pairwise distinct mod g; when this occurs, the existence of the relation implies

that the angle rank is not maximal. Note however that as presented, this method cannot always
certify a sharp upper bound on the angle rank.

Before presenting this method, we present three preliminary facts which we will need and take
for granted:

1. If F(T) and G(T') are any two polynomials, the polynomial
H(T) = Resg(F(S), G(T/S)8%s %)
is a polynomial whose roots are products of the roots of F' and G.
Proof. 1t is well known that if F'(S) = a[];(S — o) and G(S) = b][;(S — ;) then
Ress(F(S), G(S)) = a®® s [ (i - 5)).
0,

Without loss of generality we can suppose F' and G are monic. In the above we have
S¥e@G(T/8) = (=1)% DL, B; 1;(S — T/B;). This means

deg(G)

Ress(F(S), G(T/S)S4%8) = (—1)dea(@dea(F) | TT g, [T(ei—1/8;) = [[(T - iB3)),
J

Y] 0]
as claimed. 0

2. If A is an abelian variety over F, of dimension g with characteristic polynomial P(T) =
Pag (T) = [17%,(T — a;), then for any positive integer n, Pa, (T) = [[}2,(T — o). One
q
can show that there is a formula for this polynomial in terms of resultants given by P4, (1) =
q

Resg(P(5),S™ —1T).



3. If F(T) is a polynomial with integer coefficients, then it factors as F'(T') = C(T)G(T) where
C(T) is a cyclotomic polynomial and G(T') has no cyclotomic factors. The computation of
the cyclotomic part C'(T") can be done efficiently using an algorithm described in [BS02]; this
is implemented in Sage by the function cyclotomic_part() called on F(T'), which returns
C(T).

With these facts granted, note first that, for purposes of verifying the nontrivial relation as in
(1), we are free to make the test after performing a base change as in the second point above; we
may thus assume without loss of generality that ¢ is a perfect square, so that P(T) = P(q'/?T) is
a root-unitary polynomial with rational coefficients. Set a; = ¢ Y2a;, so that the roots of P(T)
are o, . .., iag. For our counter-examples in section 7, we will not renormalize as in this remark.

Using the first and second points, we compute the polynomial

om = ] @-agaz.-ap),

11,82,

where the product is taken over all tuples (i1,42,...,4;) in which 1 < 4, < 2g. When j is even,
whenever there is a way to divide the set of e; into equal pairs, then the relations ;a4 = ¢ will
yield a cyclotomic factor of Q(T") that does not correspond to a nontrivial relation. However, we
can compute the degree of this expected factor and compare with the degree of the cyclotomic
part determined as in (3). A nontrivial factor with the given e;s will arise exactly when these two
degrees don’t match.

In practice, we predict j and ej,...,e; in the relation (1) using LLL, and then verify the
existence of a relation as we have just described.

The following gives an upper bound on size of relations (e, ..., e,). This can be used to derive
a lower bound on the angle rank.

Lemma 6.3. Let o, ..., ay be roots of charactistic polynomials of Frobenius of an abelian variety
over Fy. If there exist integers e1, ..., ey, not all zero, such that af* - -- o = 1, then these integers

n
may be chosen to satisfy

max e} < (n— 1)l(elogy ¢/2)" .
(A

Proof. In [LvdP83] they give a general bound for relations among root unitary polynomials. We
apply [LvdP83, Theorem 1, part (a), equation (5)] to our situation by letting

d(a;) = log ¢'/?
E = max{e,d(3;)log2/log ¢*/*} = ¢
V; = max{d(8)), (¢/ log 2) log ¢'/*}/ log(E/ log E) = (¢/ log2) log ¢'/*. -

7 Counterexamples
In the examples that follow we re-index the roots as in the previous section. That is,

0<arg(fi) <---<arg(fBy) <m

and B;Bi+4 = q.



7.1 A Counterexample when g =4 and ¢ =3
Let C' be the hyperelliptic curve over F3 given by

y2:x9+x8+x7+2x5+x.

Then
L(C/F3,T) =1—T +2T? — 4T3 — 2T* — 127° + 187% — 2777 + 81T%,

so the Jacobian A of C belongs to isogeny class 4.3.ab_c_ae_ac, which is ordinary and geometrically
simple. We compute the minimal splitting field of this polynomial, which has degree 48 over Q.
Using the method of Section 6, we show that these roots satisfy the nontrivial relation

B183B84 = —32.

The angle rank of A is thus at most 3, and is equal to 3 unless there is a relation with exponents
all larger than 22°. However, Lemma 6.3 implies that if the angle rank is less than 3, then there is
a relation among (1, B2, B3 with exponents of absolute value at most 9.

7.2 A Counterexample when g =4 and ¢ =5
Similarly, let C' be the hyperelliptic curve over F5 given by

y2 =29+ 25 +22° + 2.
Then
L(C/F5,T) =1—T +2T? — 4T3 + 16T* — 20T° + 507° — 12577 + 625T°%,

so the Jacobian A of C belongs to isogeny class 4.5.ab_c_ae_q. Again, A is ordinary, geometrically
simple, and has angle rank bounded above by 3. There is now a nontrivial relation of the form

B1Bs = B233.

In this case, Lemma 6.3 implies that if the angle rank is less than 3, then there is a relation among
081, B2, B3 with exponents of absolute value at most 19.
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