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Abstract. A rectangulation is a decomposition of a rectangle into finitely many rectangles.
Via natural equivalence relations, rectangulations can be seen as combinatorial objects with
a rich structure, with links to lattice congruences, flip graphs, polytopes, lattice paths, Hopf
algebras, etc. In this paper, we first revisit the structure of the respective equivalence classes:
weak rectangulations that preserve rectangle–segment adjacencies, and strong rectangulati-
ons that preserve rectangle–rectangle adjacencies. We thoroughly investigate posets defined
by adjacency in rectangulations of both kinds, and unify and simplify known bijections be-
tween rectangulations and permutation classes. This yields a uniform treatment of mappings
between permutations and rectangulations that unifies the results from earlier contributions,
and emphasizes parallels and differences between the weak and the strong cases. Then,
we consider guillotine rectangulations, and prove that they can be characterized — un-
der all known mappings between permutations and rectangulations — by avoidance of two
mesh patterns that correspond to windmills in rectangulations. This yields new permutation
classes in bijection with weak guillotine rectangulations, and the first known permutation
class in bijection with strong guillotine rectangulations. Finally, we address enumerative
issues and prove asymptotic bounds for several families of strong rectangulations.
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enumeration, posets, permutation patterns
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1. Introduction

A rectangulation is a decomposition of a rectangle into finitely many interior-disjoint rectangles.
Rectangulations constitute a classical topic in mathematical tessellation theory. Among the ear-
liest contributions on this topic one finds two papers by Abe from early 1930s [Abe30, Abe32],
and the papers by Brooks, Stone, Smith, and Tutte (collectively known as Blanche Descartes) on
“squaring the square” [BSST40], and on partitioning a square into equal-area rectangles [Des71].
In the last decades, many results on rectangulations have been published in journals and con-
ferences on computational geometry as well as engineering and electronics, due to their being a
basic model in floorplanning — an essential step in the design of very large scale integrated cir-
cuits (VLSI) [She93, SY95, CC09]. In floorplanning, functional blocks of a circuit, represented
by rectangles, have to be packed on a small rectangular area. The term floorplan is therefore
often used to designate a rectangulation. Rectangulations have also applications in the analy-
sis of geometric algorithms [BBRR02, CLdS03], in visualization of scientific data (for instance
treemaps [BSW02] and cartograms [vKS07, BSV12]), in mathematical foundations of archi-
tectural design [Ste83], and also appear in visual art — notably in the work of the Dutch art
movement De Stijl, see Figure 1.1.

Figure 1.1: Artwork Composition décentralisée (1924) by Theo van Doesburg (Dutch, 1883–
1931). Solomon R. Guggenheim Museum, New York.

We investigate structural properties of rectangulations, which in particular means that we
are not interested in precise measures of rectangles but rather in adjacencies between their el-
ements — rectangles and segments. In order to treat rectangulations as combinatorial objects,
one can introduce an equivalence relation formalizing the idea of two rectangulations being
“structurally identical”. There are two natural equivalence relations of this kind. The weak
equivalence preserves incidence and sidedness between segments and rectangles. The strong
equivalence additionally preserves the adjacencies between rectangles. Precise definitions are
given in Section 2.2.

Many structural investigations of rectangulations are focused on their bijective representation
by classes of permutations determined by pattern avoidance [ABP06a, FT07, FFNO11, LR12,
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Rea12, ABB+13, CSS18, Mee19a, Mee19b, MM23]. For example, Baxter permutations, de-
fined by avoidance of a certain pair of vincular patterns of size 4, have been shown to be in
a (size-preserving) bijection with mosaic or diagonal rectangulations [ABP06a] — that is, rec-
tangulations considered up to the weak equivalence. This bijection can be restricted to a bijection
between separable permutations, defined by avoidance of the patterns 2413 and 3142 [BBL98],
and the so-called guillotine rectangulations (also known as sliceable rectangulations). These re-
sults can be fruitfully compared to a basic result in Catalan combinatorics, namely the bijection
between triangulations of a convex polygon and 231-avoiding permutations [Sta15].

The combinatorics of such families has been analyzed in the framework of congruences of
the weak Bruhat order [Rea04]. The weak Bruhat order is the ordering of the permutations of [n]
by inclusion of their set of inversions. A congruence is an equivalence relation on the elements
of a lattice that is consistent with the meet and join operations. Catalan families and mosaic
rectangulations are both examples of families that define congruences of the weak Bruhat order.
As a consequence, the corresponding families (of pattern-avoiding permutations or tessellations)
are ordered by a lattice, defined as the quotient of the weak Bruhat order by the congruence. It
was shown by Pilaud and Santos [PS19] that the cover graphs of these quotients are all skeletons
of polytopes, that they called quotientopes. In the case of triangulations and other Catalan ob-
jects, the quotient lattice is the well-studied Tamari lattice [MHPS12] and the quotientope is the
ubiquitous associahedron [Sta63, Lod04, CSZ15]. The quotientope of mosaic rectangulations,
on the other hand, is known to be a Minkowski sum of two associahedra [LR12].

In 2012, Reading [Rea12] studied rectangulations considered up to the strong equivalence.
He showed that, similarly to the weak case, they are bijective to equivalence classes of permu-
tations that form congruence classes and thus induce a quotient of the weak Bruhat order, and
also to so-called 2-clumped permutations.

Subsequently, Meehan [Mee19b] analyzed the cover relation in this quotient, yielding a nice
flip graph on generic rectangulations. From Pilaud and Santos [PS19], this flip graph is the
skeleton of the quotientope of generic rectangulations.

The main goals that motivated the study presented in this paper were as follows:

1. To develop a uniform treatment of mappings between permutations and rectan-
gulations that would unify the results from earlier contributions and emphasize
parallels and differences between the weak and the strong cases.

2. To simplify the description of the bijection between generic rectangulations
and 2-clumped permutations, and give a concise characterization of the corre-
sponding congruence classes of the weak Bruhat order.

3. To find a permutation class in bijection with guillotine generic rectangulations.
4. To address the enumeration of guillotine generic rectangulations. Under the

weak equivalence, the generating function of all rectangulations is (non-alge-
braic) D-finite, while the generating function of guillotine rectangulations is
algebraic. Under the strong equivalence, the generating function for all rectan-
gulations is not D-finite, while the status of the generating function for guillo-
tine rectangulations is yet to be determined.
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Our results. The first part of our contribution is on the strong equivalence relation and strong
rectangulations. We define the strong order on rectangles of a strong rectangulation, and prove
that the linear extensions of this strong order form equivalence classes of permutations that are
bijective with strong rectangulations, and are intervals in the weak Bruhat order. We naturally
derive bijections between strong rectangulations and, respectively, 2-clumped and co-2-clumped
permutations — the minimum and the maximum of the equivalence classes.

The material in this part streamlines and simplifies a number of previous works. On the one
hand, Reading [Rea12] (see also Meehan [Mee19b] and Merino and Mütze [MM23]) considers
the combinatorics of strong rectangulations and defines the same permutations-to-rectangulati-
ons mapping as ours. We present simple incremental algorithms for the forward and backward di-
rections of this mapping that allow for simpler and more direct proofs. In particular, our forward
algorithm yields a simple proof for the description of the flip graph studied by Meehan [Mee19b].
Our definition of the strong poset for the strong equivalence relation between rectangulations is
an analogue of the adjacency poset for weak equivalence defined by Meehan [Mee19a]. Inter-
estingly, it appears that the mapping defined by Reading has already been studied in the form of
the “FT-squeeze” algorithm, devised by Fujimaki and Takahashi [FT07, TF08] for VLSI design.
The strong poset that we introduce is equivalent to the “seagull order” proposed by Fujimaki and
Takahashi as a physical intuition for the FT-squeeze [FT07]. It also appears in the guise of the
elimination process devised by Takahashi, Fujimaki, and Inoue [ITF09, TFI09] for giving effi-
cient counting and coding methods on strong rectangulations. Finally, our forward algorithm is
strongly related to a mapping defined by Françon and Viennot [FV79] for the analysis of permu-
tations parameterized by their number of peaks, valleys, double ascents, and double descents,
and can be analyzed within the framework of quadrant walks. The connection between these
numerous lines of work seems to have gone unnoticed so far.

The second part of our paper is dedicated to guillotine rectangulations. We introduce two
mesh patterns on permutations that can be used for encoding windmills — two configurations of
segments, and , whose occurrence in a rectangulation is equivalent to being non-guillotine.
Combining these mesh patterns with the forbidden patterns of Baxter permutations, we obtain
new bijections for weak guillotine rectangulations. More interestingly, combining these two
mesh patterns with the forbidden patterns for 2-clumped permutations, we obtain a bijection
between strong guillotine rectangulations (that is, strong equivalence classes of guillotine rec-
tangulations) and a permutation class. This is the first known representation of this family of
rectangulations by a permutation class.

The plan of the paper is as follows. In Section 2, we give precise definitions of the objects
that we study and review basic results. In particular, the equivalence classes of rectangulations
of the weak and strong equivalence will be called, respectively, weak and strong rectangulations.
In Section 3, we review earlier results on weak rectangulations: a mapping γw from permutations
to weak rectangulations, weak posets as fibers of this mapping, the induced bijections between
weak rectangulations and Baxter, twisted Baxter, and co-twisted Baxter permutations, as well as
the structure of the corresponding weak Bruhat order congruence. Then, Section 4 is devoted to
an extensive study of the structure of strong rectangulations: a mapping γs from permutations
to strong rectangulations, strong posets as fibers of this mapping, and the induced bijections
between strong rectangulations and 2-clumped (resp. co-2-clumped) permutations. Moreover,



combinatorial theory 5 (1) (2025), #14 5

we identify the flip graph on rectangulations, and we show how to encode rectangulations (and
subfamilies) by quadrant walks, allowing efficient counting. Finally, in Section 5, we present two
mesh patterns p1, p2 that encode the windmills, propose novel permutation classes in bijection
with weak and strong guillotine rectangulations, show that the n first terms of the enumerating
sequence of strong guillotine rectangulations can be computed in polynomial time in n, and
provide lower and upper bounds on the number of strong guillotine rectangulations of size n.
The following table shows a summary of bijections between the considered classes of rectan-
gulations and permutation classes, along with the references to the sections where these are
discussed.

Weak equivalence Strong equivalence
Arbitrary Weak rectangulations Strong rectangulations

Baxter permutations
twisted Baxter permutations 2-clumped permutations

co-twisted Baxter permutations co-2-clumped permutations
−→ Section 3.4 −→ Section 4.4

Guillotine Weak guillotine rectangulations Strong guillotine rectangulations
separable permutations

{p1, p2}-avoiding twisted Baxter perm. {p1, p2}-avoiding 2-clumped permutations
{p1, p2}-avoiding co-twisted Baxter perm. {p1, p2}-avoiding co-2-clumped permutations

−→ Sections 2.5 and 5.2 −→ Section 5.2

2. Definitions and basics

In this section we present basic notions and definitions used in the paper, as well as some “clas-
sical” results. In this exposition, we mainly follow the works by Ackerman, Barequet, and
Pinter [ABP06a], Law and Reading [LR12], Reading [Rea12], Cardinal, Sacristán, and Sil-
veira [CSS18], and Merino and Mütze [MM23], with some minor modifications for the sake
of uniformity.

2.1. Rectangulations and their elements

Let R be an axes-aligned rectangle in the plane. A rectangulation of R is a decomposition
(or tiling) of R into finitely many interior-disjoint rectangles. The size of a rectangulation is
the number of rectangles in the decomposition. The rectangulation in Figure 1.1 is of size 13.
Rectangulations will generically be denoted by R, and their size by n.

A segment of a rectangulation is a maximal straight line segment that consists of one or
several sides of some rectangles of R, and is not included in one of the sides of R.1 A rectan-
gulation is generic if there is no point at which four rectangles meet. From now on, we assume
that all rectangulations in this paper are generic. Thus, intersection of two segments of a rec-
tangulation can form a joint of one of the following shapes: , , , , but never . It is easily

1In some papers rectangulations are referred to as floorplans, their rectangles as rooms, and segments as walls.
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seen that a rectangulation of size n has precisely n− 1 segments. The neighbors of a segment s
are the segments (perpendicular to s) with an endpoint that lies on s.

We also label the corners of R, or of any rectangle of R, by the ordinal directions: NE for
top-right, SE for bottom-right, SW for bottom-left, NW for top-left.

2.2. Weak equivalence and strong equivalence

In order to deal with rectangulations as combinatorial objects, one has to consider some equiv-
alence relation, formalizing the idea of rectangulations “having the same structure”. There are
two natural ways to do this: the weak equivalence that preserves segment–rectangle incidences
and sidedness, and the strong equivalence that additionally preserves rectangle–rectangle adja-
cencies.

To give precise definitions, we introduce left–right and above–below order relations between
rectangles of a rectangulation:

• Rectangle r is on the left of rectangle r′ (equivalently, r′ is on the right of r) if there is a
sequence of rectangles, r = r1, r2, . . . , rk = r′ such that the right side of ri and the left
side of ri+1 lie in the same segment for i = 1, 2, . . . , k − 1.

• Rectangle r is below rectangle r′ (equivalently, r′ is above r) if there is a sequence of
rectangles, r = r1, r2, . . . , rk = r′ such that the upper side of ri and the bottom side
of ri+1 lie in the same segment for i = 1, 2, . . . , k − 1.

Given a rectangle r of R, one can specify the regions that contain the rectangles which are
above, below, on the left, or on the right of r, as follows. The NE alternating path associated
with r is the path that starts at the NE (top-right) corner of r, goes first upwards if the NE
corner of r has the shape or rightwards if it has the shape , and then alternatingly traverses
vertical segments upwards and horizontal segments rightwards, to their respective endpoints,
until it reaches the boundary of R. The NE alternating path associated with r is shown by red
in Figure 2.1. One similarly defines SE, SW, and NW alternating paths. The four alternating
paths split R \ {r} into four regions (some of them can be empty). This leads to the following
observation (see for example [ABP06a, Observation 3.2]).

Observation 2.1. Let r be a rectangle in a rectangulation R.

1. The rectangles of R which lie above, below, on the left, or on the right of r are contained
in respective regions of R \ {r} delimited by the alternating paths (refer to Figure 2.1).

2. Every pair of distinct rectangles in a rectangulation is comparable with precisely one of
the order relations: either one of them is on the left of the other, or one of them is above
the other.
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r

above

left

below

right

NE

SE

NW

SW

Figure 2.1: Illustration to Observation 2.1: four regions delimited by alternating paths.

Now the two kinds of equivalence of rectangulations are defined as follows.

• Two rectangulations R1 and R2 are weakly equivalent if there is a (unique) bijection be-
tween their rectangles that preserves the left-right and the above-below orders.

• Two rectangulations R1 and R2 are strongly equivalent if they are weakly equivalent,
and the bijection that realizes the weak equivalence also preserves adjacencies between
rectangles, that is, two rectangles in R1 are adjacent if and only if the corresponding
rectangles in R2 are adjacent.

These equivalence relations can be also described in terms of local modifications of rectan-
gulations. Two rectangulations are weakly equivalent if they can be obtained from each other
by a sequence of moves, where each move is shifting some segment (or one of the sides of R)
horizontally or vertically, and accordingly extending or shortening its neighbors, so that the
adjacencies between segments do not change. To obtain strong equivalence, we restrict the
moves so that the adjacencies between rectangles are also preserved.

A weak rectangulation is an equivalence class of rectangulations with respect to the weak
equivalence, and a strong rectangulation is an equivalence class of rectangulations with respect
to the strong equivalence.2 In Figure 2.2, rectangulations R1, R2, and R3 are weakly equivalent,
but only R1 and R2 are strongly equivalent. In other words, here we have two weak rectangula-
tions (one of them is given by three representatives: R1, R2, and R3), and three strong rectan-
gulations (one of them is given by two representatives: R1 and R2). Rectangulation R1 will
be used throughout the paper as a “running example” for demonstrating various results.

The strong equivalence refines the weak one, and thus every weak rectangulation yields one
or several strong rectangulations by all possible shuffles of the neighbors of its segments. If
a segment s has a neighbors on one side and b neighbors on the other side, then these can be
shuffled in

(
a+b
a

)
ways.

2In some earlier papers, for example [Rea12, MM23], weak rectangulations are called mosaic rectangulations,
and strong rectangulations are referred to just as generic rectangulations. In [FT07, TF08], weak rectangulations
are called room-to-wall floorplans, and strong rectangulations are called room-to-room floorplans.
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R1 R2 R3 R4

Figure 2.2: R1, R2, and R3 are weakly equivalent. R1 and R2 are strongly equivalent. R4 is
guillotine.

2.3. NW–SE and SW–NE labelings

Let R be a rectangulation. By Observation 2.1, the transitive relations “left” and “above” yield
a partition of the edges of the complete graph whose vertices are the rectangles of R. Hence,
their union “left of, or above” is a total order of the rectangles, and we can label the rectangles by
the numbers from 1 to n according to this order. The rectangle with label j (1 ⩽ j ⩽ n) will be
denoted by rj . Since r1 contains the NW (top-left) corner of R and rn contains the SE (bottom-
right) corner of R, we call this labeling the NW–SE labeling. If j is fixed, then ri with i < j are
precisely the rectangles above or to the left of rj , and ri with i > j are precisely the rectangles
below or to the right of rj: see Figure 2.3 for a schematic depiction.

rj

ri: i < j

ri: i > j

Figure 2.3: The rectangles ri with i > j (respectively i < j) are located to the right or below rj
(respectively to the left or above rj).

The NW–SE labeling can also be obtained by Algorithm 1.
Similarly, one can define the SW–NE labeling in which i < j if and only if ri is to the left or

below rj . It can be obtained by an obvious modification of Algorithm 1. Figure 2.4 shows the
rectangulation R1 with the NW–SE (left) and the SW–NE (right) labelings of its rectangles. (In
this and other examples below, we label the rectangles just j instead of rj).



combinatorial theory 5 (1) (2025), #14 9

Algorithm 1 NW–SE labeling.

Input: Rectangulation R

Output: The NW–SE labeling of the rectangles of R

1. Label r1 the rectangle that contains the top-left corner of R.

2. For j = 2 to n:
Consider the joint of segments at the bottom-right corner of rj−1.

• If its shape is , then label rj the leftmost rectangle whose upper side belongs to the
same horizontal segment as the bottom side of rj−1,

• If its shape is , then label rj the topmost rectangle whose left side belongs to the
same vertical segment as the right side of rj−1.

1
2 3

4

5 6

7
8

9

10

11

12

13

14 15 16 1
2 3 4

5

6 7

8

9

10

11

12

13 14

15

16

Figure 2.4: The NW–SE (left) and the SW–NE (right) orderings of the rectangles of R1.

2.4. Diagonal rectangulations

A diagonal rectangulation of size n is a rectangulation D of size n, drawn on an n × n square
grid S, such that all the segments are drawn along grid lines, and every rectangle of D inter-
sects the NW–SE diagonal of S. Diagonal rectangulations have the following properties (see for
example [LR12, Section 5]).
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Proposition 2.2. (a) Every rectangulation R is weakly equivalent to a unique diagonal rec-
tangulation D, which will be referred to as the diagonal representative of R.

(b) In a diagonal rectangulation we have the following. For every horizontal segment s, all the
above neighbors of s occur from the left of all its below neighbors; and for every vertical
segment t, all the left neighbors of t occur above all its right neighbors.

(c) The order in which the NW–SE diagonal of S meets the rectangles of a diagonal rectan-
gulation, is the NW–SE order.

Due to property (a), diagonal rectangulations are frequently considered as canonical rep-
resentatives of weak rectangulations (or sometimes even identified with them). Property (b)
specifies the unique shuffling of the segments of R that its diagonal representative can have.
In other words, it specifies the unique strong rectangulation which is weakly equivalent to the
given R and strongly equivalent to the diagonal representative of R. Due to property (c), the
NW–SE labeling of a diagonal rectangulation is also called the diagonal labeling.

One similarly defines anti-diagonal rectangulations all of whose rectangles meet the SW–NE
diagonal (in the order determined by the SW–NE labeling). In Figure 2.5 we show the diagonal
rectangulationD1 weakly equivalent toR1 along with its NW–SE labeling, and the anti-diagonal
rectangulation D′

1 weakly equivalent to R1 along with its SW–NE labeling.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

D1 D′
1

Figure 2.5: Left: The diagonal rectangulation D1 weakly equivalent to R1. Right: The anti-
diagonal rectangulation D′

1 weakly equivalent to R1.

2.5. Guillotine rectangulations

A cut of a rectangulation R is a vertical segment that extends from the top side to the bottom
side of R, or a horizontal segment that extends from the left side to the right side of R. If R has
several cuts, then they all have the same orientation.
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A rectangulation is guillotine if it is either of size 1, or it has a cut s such that both sub-rec-
tangulations separated by s are guillotine. In Figure 2.2, only rectangulation R4 is guillotine.

A windmill in a rectangulation is a quadruple of segments forming one of the following two
shapes: or .3 Note that segments that form a windmill can have arbitrarily positioned further
neighbors, also in the interior — the rectangular region that they bound. Guillotine rectangula-
tions have the following characterization (given for instance in [ABP06a]).
Proposition 2.3. A rectangulation is guillotine if and only if it avoids the windmills and .

Weak guillotine rectangulations are enumerated by Schröder numbers. This was proven, for
example, in [YCCG03, Theorem 2.2.2] via a bijection to v-h-trees, and in [SC03, Section III.A]
via a bijection to skewed slicing trees. We provide a proof which is based on the same approach
as in [ABP06b, Theorem 2]; we implement it using generating functions instead of recurrence.
Proposition 2.4. The number of weak guillotine rectangulations of size n is the (n − 1)th
Schröder number.
Proof. LetG(x) be the generating function that enumerates weak guillotine rectangulations with
respect to the size. We say that a guillotine rectangulation of size > 1 is horizontal or vertical in
accordance with the orientation of its cut(s). The rectangulation of size 1 is considered neither
horizontal nor vertical. Then the generating function of horizontal guillotine rectangulations,
and that of vertical guillotine rectangulations, is H(x) = V (x) = (G(x)− x)/2. Every vertical
guillotine rectangulation is split by its leftmost cut such that the left part is either horizontal
guillotine or of size 1, and the right part is arbitrary guillotine. This decomposition is unique,
and, hence, the generating functions introduced above satisfy the equation

V (x) =
(
x+H(x)

)
G(x), (2.1)

which yields

H(x) = V (x) =
1− 3x−

√
1− 6x+ x2

4
= x2 + 3x3 + 11x4 + 45x5 + . . . ,

G(x) = x+H(x)+V (x) =
1− x−

√
1− 6x+ x2

2
= x+2x2+6x3+22x4+90x5+. . . . (2.2)

This G(x) is precisely the generating function of Schröder numbers (OEIS A006318).

Multidimensional generalizations of guillotine rectangulations were studied in [ABPR06]
and [AM10].

2.6. Permutation patterns

In this section we briefly review the basic definitions and notation from the field of permuta-
tion patterns (see also the summary by David Bevan [Bev15]). To specify a permutation, we
use the linear notation: that is, π = π1π2 . . . πn is the permutation of [n] that maps i to πi

for i = 1, 2, . . . , n. It is convenient to describe such a permutation by a plot — the point
set {(i, πi) : i ∈ [n]}.

3In some earlier papers guillotine rectangulations are referred to as sliceable (or slicing) floorplans, and wind-
mills as pin-wheels (or just wheels).

https://oeis.org/A006318
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Classical patterns. Let π = π1π2 . . . πn be a permutation of [n], and let τ be a “pattern” —
a fixed permutation of [k]. An occurrence of τ in π is a (not necessarily consecutive) subse-
quence πs1πs2 . . . πsk of π, which is order-isomorphic to τ . If π has an occurrence of τ , we say
that π contains τ . Otherwise, we say that π avoids τ . For example, the permutation π = 32514
contains the pattern 132 (the subsequence 254 of π is an occurrence of 132); and the permuta-
tion ρ = 43512 avoids 132.

Vincular patterns. A vincular pattern is a pair v = (τ, λ), where τ is a permutation of [k],
and λ is a set of one or several pairwise disjoint strings in τ , indicated by underlining (for ex-
ample 361857942). An occurrence of v in π is an occurrence of τ such that the letters that
correspond to the same underlined string occur consecutively in π. For example, the permuta-
tion π = 24513 contains the pattern 2413 (the subsequence 2513 of π is an occurrence of 2413);
and the permutation ρ = 25314 avoids 2413 (but contains the classical pattern 2413).

Mesh patterns. A mesh pattern is a pair m = (τ, µ), where τ is permutation of [k], and µ
is a subset of {0, 1, . . . , k} × {0, 1, . . . , k}. An occurrence of m in π ∈ [n] is an occur-
rence πs1πs2 . . . πsk of τ that satisfies the condition: for every (i, j) ∈ µ, there is no ℓ such
that si < ℓ < si+1 (with the convention s0 = −∞ and sk+1 = +∞) and tj < πℓ < tj+1,
where t1 < t2 < . . . < tk are the (sorted) elements of {πs1πs2 . . . πsk} (with the conven-
tion t0 = −∞ and tk+1 = +∞).

To illustrate this concept graphically, we draw the plot of τ and add the grid lines. They split
the plane into (k + 1)2 regions, which are naturally labeled by {(i, j) : 0 ⩽ i ⩽ k, 0 ⩽ j ⩽ k}.
The regions (i, j) ∈ µ are then indicated by shading. An occurrence of m in the plot of π
is an occurrence of τ such that the interiors of shaded regions do not contain any points of π.
See [BC11] for examples and basic results on mesh patterns. In Section 5, we will work with
two mesh patterns, see Figure 5.1.

If τ1, τ2, . . . , τp are some fixed patterns (of any kind), then we denote by Av(τ1, τ2, . . . , τp)
the family of permutations that avoid all these patterns. A permutation class is any family of
permutations that can be specified by avoidance of one or several patterns.

2.7. Permutation classes

In this section we list some permutation classes which will play a role in our paper.

Separable permutations are defined as permutations that can be recursively constructed from
the size-1 permutation by taking direct and skew sums. Alternatively, they can be defined as
the class Av(2413, 3142). The equivalence of the two definitions was proven by Ehrenfeucht
and Rozenberg [ER93, Theorem 6.12], and the term “separable permutations” was coined by
Bose, Buss, and Lubiw [BBL98]. Separable permutations are enumerated by Schröder num-
bers, as proven by West [Wes95, Theorem 4.3] via generating trees. Slightly earlier, Shapiro
and Stephens [SS91, Theorem 1] showed that Schröder numbers enumerate permutation ma-
trices that fill up under certain process of bootstrap percolation — which are in fact precisely
the matrices of separable permutations. Finally, Albert, Atkinson, and Vatter [AAV11, Proposi-
tion 1.4] showed that the recursive definition of separable permutations leads to the generating
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function of Schröder numbers. Their proof is essentially the same as the proof of Proposition 2.4
presented above: indeed, the definition of weak guillotine rectangulations and that of separable
permutations clearly lead to the same recurrence for their enumerating sequences.

Schröder numbers also enumerate various combinatorial structures, for example Schröder
paths — the lattice walks from (0, 0) to (2n, 0) that use steps (1, 1), (2, 0), (1,−1) and stay
(weakly) above the x-axis. Closely related to them are little Schröder numbers (OEIS A001003):
they were introduced by Ernst Schröder in the context of counting parenthesizations [Sch70].
Remarkably, little Schröder numbers were supposedly mentioned in Plutarch’s Moralia (Table
Talk VIII.9, 732F, ca. 100 AD) in the context of counting compound propositions [Sta97].

The generating function of Schröder numbers is algebraic, it is given above in (2.2). Sin-
gularity analysis readily implies their asymptotics Sn ∼ (1+

√
2)2n+1

23/4
√
πn3

: see [FS09, note VII.19]
and [OEI, A001003 and A006318].

Baxter permutations are defined as the class Av(2413, 3142). They were introduced by Bax-
ter and Joichi [Bax64, BJ63] in the context of commuting real functions.

Baxter permutations are enumerated by Baxter numbers (OEIS A001181) given by

Bn =
n∑

k=1

(
n+1
k−1

)(
n+1
k

)(
n+1
k+1

)(
n+1
0

)(
n+1
1

)(
n+1
2

) .
This formula was first obtained in 1978 by Chung, Graham, Hoggatt, and Kleiman [CGHK78];
soon after that Mallows [Mal79] showed that the term corresponding to fixed k is the number of
Baxter permutations with precisely k−1 descents. Another proof of this formula, via generating
trees, was given by Bousquet-Mélou [BM03, Theorem 1]. The generating function of Baxter
numbers is D-finite but not algebraic, and their asymptotics is Bn ∼ 23n+5

n4π
√
3

[CGHK78, with the
remark “pointed out by A. M. Odlyzko”]. We refer to Felsner, Fusy, Noy, and Orden [FFNO11]
for a comprehensive survey on combinatorial families enumerated by Baxter numbers and bi-
jections between them.

Twisted Baxter permutations are defined as the class Av(2413, 3412), and co-twisted Bax-
ter permutations as the class Av(2143, 3142). They are, respectively, the minimum and the
maximum of the congruence classes associated to weak rectangulations [LR12].
Remark 2.5. The four patterns 2413, 3412, 2143, 3142 used in the definition of Baxter, twisted
Baxter, and co-twisted Baxter permutations are known as Baxter-like patterns. Bouvel, Guer-
rini, Rechnizter and Rinaldi [BGRR18] and Bouvel, Guerrini and Rinaldi [BGR19] investigated
the enumeration of permutation classes defined by avoidance of all possible combinations of
these patterns, by means of generating trees. Five (out of six possible) pairs of Baxter-like pat-
terns yield permutation classes enumerated by Baxter numbers; the exceptional combination
is {2143, 3412}. Permutations that avoid this pair of patterns were studied by Asinowski, Bare-
quet, Bousquet-Mélou, Mansour, and Pinter [ABB+13]: they constitute the “even part” of the
so-called “complete Baxter permutations”, and they are related to orders between segments in
rectangulations.

https://oeis.org/A001003
https://oeis.org/A001181
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2-clumped permutations are defined byAv(24513, 42513, 35124, 35142), and co-2-clumped
permutations are Av(24153, 42153, 31524, 31542). They are, respectively, the minimum and
the maximum of the congruence classes associated to strong rectangulations [Rea12]. The enu-
merating sequence of these classes is OEIS A342141, and it was proven by Fusy, Narmanli, and
Schaeffer [FNS24, Theorem 4.3] that its generating function is not D-finite (via the enumeration
of transversal structures, which are dual to strong rectangulations).

In Sections 3 and 4, we review and revisit the connection of these classes of permutations
with rectangulations, also providing a visual interpretation of the congruence classes associated
to weak and strong rectangulations. Specifically, in Theorems 3.2 and 3.3, Baxter, twisted Bax-
ter, and co-twisted Baxter permutations will be linked to weak rectangulations, and separable
permutations to weak guillotine rectangulations; and, in Theorems 4.7 and 4.8, 2-clumped and
co-2-clumped permutations will be linked to strong rectangulations.

3. Weak rectangulations

In this section we deal with representation of weak rectangulations by posets and permutations.
It has an expository nature and does not contain any new results, therefore we will present the
material, mainly from [ABP06a, CSS18, LR12, Mee19a], rather briefly and without proofs.
We include it in order to provide a systematic summary of all relevant material from different
contributions, which makes the comparison with the case of strong rectangulations especially
clear and transparent.

As mentioned in Section 2.4, diagonal rectangulations are considered as canonical repre-
sentatives of weak rectangulations. Therefore, posets and permutations associated with weak
rectangulations will be defined via their diagonal representatives.

3.1. The weak poset

We first define the adjacency poset of a rectangulation R. Let the rectangles of R be labeled
with the NW–SE labeling. Then, for two rectangles rj and rk of R, we define j ◁ k if rj and rk
are adjacent, and rj is on the left of or below rk. In this case we also say that rj and rk block
each other: rk blocks rj from the top or from the right, and rj blocks rk from the bottom or from
the left. The adjacency poset Pa(R) is the poset on [n] whose order relation is the transitive
closure of ◁.

Now, given a weak rectangulation R, its weak poset Pw(R) is defined as the adjacency poset
of its diagonal representative D. This poset was introduced by Law and Reading in [LR12] and
thoroughly studied in [Mee19a] as a special case of Baxter posets.

Note that the adjacency posets of distinct rectangulations weakly equivalent to R may be
different. However, all of them are extensions of the adjacency poset of the corresponding
diagonal rectangulation — that is, extensions of Pw(R). Figure 3.1 shows the rectangulati-
on R1 and its adjacency poset Pa(R1), as well as the diagonal representative D1 and the weak
poset Pw(R1) = Pa(D1). We draw Hasse diagrams of the weak poset via the natural embedding
by duality, and, therefore, the parents of every vertex occur in the increasing order from left to
right. This representation also implies that the weak poset Pw(R) is a planar two-dimensional

https://oeis.org/A342141
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lattice (compare with Proposition 4.2). Indeed, the planarity is inherited from the ◁-relation, an
orientation of the adjacency graph of the rectangles, which is clearly planar. The cover relations
of Pw(R) are a subset of the ◁-relations. The bounded faces in the plane drawing of the lattice
correspond to two-sided segments — segments of R with at least one neighbor from each side.
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Figure 3.1: Left: Weak rectangulation R1 and its adjacency poset Pa(R1). Right: The corre-
sponding diagonal rectangulationD1 and its adjacency posetPa(D1), which is also, by definition,
the weak poset Pw(R1).

3.2. Mapping γw from permutations to weak rectangulations

Next we describe the fundamental mapping γw, introduced by Law and Reading [LR12], from
the set Sn of permutations of size n to the set WRn of weak rectangulations of size n.

Let π ∈ Sn. The corresponding weak rectangulation γw(π) ∈ WRn will be given by its
diagonal representative. It is constructed by the forward algorithm (Algorithm 2) that takes
an n × n square grid R and inserts rectangles in the order prescribed by π such that at the end
a diagonal rectangulation is obtained. At each step, a partial rectangulation — the union of
already inserted rectangles — is bounded by a horizontal segment from below, by a vertical
segment from the left, and from the top and the right by a monotonically decreasing staircase
which extends from the top-left to the bottom-right corner. It is also convenient to adjoin two
fictitious rectangles r0 and rn+1 that occupy respectively the column to the left of the grid, and
the row below the grid. Accordingly the staircase is extended horizontally at its top-left end, and
vertically at its bottom-right end. The turning points of the staircase are referred to as peaks
and valleys . Every peak is labeled according to the rectangle incident to it within the partial
rectangulation.

An example of executing this algorithm is shown in Figure 3.2.

3.3. Fibers

The mapping γw is surjective but not injective. Given a weak rectangulation R of size n, one
can recover all permutations π ∈ Sn such that γw(π) = R by applying the backward algorithm
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Algorithm 2 WF (weak forward): Permutations to weak rectangulations.

Input: Permutation π = π1π2 . . . πn ∈ Sn.

Output: Weak rectangulation R = γw(π).

1. Draw an n× n square grid R, and label its diagonal cells by 1, 2, . . . , n from the top-left
to the bottom-right corner. Amend them by an auxiliary rectangle r0 in the column to the
left of the grid, and an auxiliary rectangle rn+1 in the row below the grid.

2. Initialize the staircase to be the union of the left side and the bottom side of R, extended
by a horizontal unit-segment at the beginning, and a vertical unit-segment at the end.
Initialize the set of its peaks to be P := {0, n+ 1}.

3. For i from 1 to n, with j = πi:
Insert rectangle rj according to the following rules.

• The bottom-left corner of rj is the valley delimited by the two consecutive peaks
of P with labels a and b such that a < j < b.

• If all rectangles rk with a < k < j have already been inserted, then the top side of rj
aligns with the top side of ra. In this case, a is deleted from P . Otherwise, the top
side of rj is contained in the horizontal grid line that separates rows j − 1 and j.

• If all rectangles rk with j < k < b have already been inserted, then the right side
of rj aligns with the right side of rb. In this case, b is deleted from P . Otherwise, the
right side of rj is contained in the vertical grid line that separates columns j and j+1.

• Update the staircase by replacing the union of left and bottom sides of rj with the
union of its top and right sides. Add j to P .

Algorithm 3 WB (weak backward): Weak rectangulations to permutations.

Input: Weak rectangulation R ∈ WRn.

Output: A permutation π ∈ Sn such that π ∈ γ−1
w (R).

1. Consider D, the diagonal representative R.

2. Label the rectangles of D by the NW–SE labeling.

3. For i from n to 1:
Remove an available rectangle rj . Set πi = j.
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Figure 3.2: Constructing γw(π) for π = 7 5 14 8 1 6 15 11 4 10 16 2 9 13 3 12. At each
step, the inserted rectangle is blue, and the rectangles incident to the adjacent peaks are grey.
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(Algorithm 3) which in fact reverses Algorithm 2 WF. Here, a rectangle rj of a partial rectan-
gulation R̃ is available if it is not blocked from top or from right by some other rectangle of R̃
— that is, if there is no rectangle rk of R̃ such that j ◁ k.

Given a poset P , denote the set of its linear extensions by L(P ). The following results are
shown in [LR12, Section 6].

Proposition 3.1. Let R be a weak rectangulation.

1. At every step of Algorithm 3 WB there is at least one available rectangle.

2. The set of permutations that can be generated by Algorithm 3 WB is precisely the
fiber γ−1

w (R).

3. It is also the set of linear extensions of the weak poset of R:

γ−1
w (R) = L(Pw(R)).

Figure 3.2, read backwards, demonstrates how π is obtained by Algorithm 3 WB as one of
the preimages of D1. According to Proposition 3.1, the permutations that can be obtained in this
way are precisely the linear extensions of the poset Pw(R) from Figure 3.1.

Finally, we remark that both algorithms can be performed from the opposite corner: in the
forward algorithm one can start inserting rectangles from the top-right corner, and in the back-
ward algorithm one can start removing rectangles from the bottom-left corner, with obvious
adjustments of the rules. In both cases, the modified algorithms lead to the same results.

3.4. Baxter, twisted Baxter, and co-twisted Baxter permutations

By Proposition 3.1, there is a bijection between WRn and a family of posets on [n], such that the
linear extensions of all these posets cover the entire Sn. Then we have Theorem 3.2 concerning
distinguished elements of L(Pw(R)), and Theorem 3.3 concerning bijective restrictions of γw
to some permutation classes mentioned in Section 2.7. These results were proven in several
contributions, including [ABP06a, CSS18, LR12, Mee19a].

Theorem 3.2. Let R be a weak rectangulation, with its rectangles labeled by the NW–SE label-
ing. Then:

1. L(Pw(R)) contains a unique twisted Baxter permutation. It is the minimum element
of L(Pw(R)) with respect to the weak Bruhat order.

2. L(Pw(R)) contains a unique co-twisted Baxter permutation. It is the maximum element
of L(Pw(R)) with respect to the weak Bruhat order.

3. L(Pw(R)) contains a unique Baxter permutation. It is obtained by reading the labels of
the rectangles of R in the SW–NE (anti-diagonal) order.

Theorem 3.3. The mapping γw restricts to three bijections between weak rectangulations and
permutation classes:
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1. A bijection βTB between weak rectangulations and twisted Baxter permutations;

2. A bijection βCTB between weak rectangulations and co-twisted Baxter permutations;

3. A bijection βB between weak rectangulations and Baxter permutations.

Moreover, the bijection βB restricts to a bijection βS between weak guillotine rectangulations
and separable permutations.

Note that, given Proposition 3.1, the three items of Theorem 3.2 imply the corresponding
items of Theorem 3.3. Hence we only have to care of Theorem 3.2. Since Pw(R) forms an
interval in the weak Bruhat order, the minimum (respectively maximum) of this interval can
be obtained by iteratively choosing and deleting the leaf with the smallest (respectively largest)
label. Since the leaves (current minima) have increasing labels from left to right in the “em-
bedded” Hasse diagram of Pw(R), this corresponds to pruning the leftmost (respectively right-
most) leaf at every step. Hence, we also refer to the minimum and the maximum elements
of L(Pw(R)), with respect to the weak Bruhat order, as the leftmost and the rightmost linear
extensions of Pw(R). We will denote them by πL and πR. Then Theorem 3.2(1,2) says that
the twisted Baxter and the co-twisted Baxter representatives of Pw(R) are precisely πL and πR.
These two linear extensions are a realizer of the 2-dimensional poset Pw(R), which (as men-
tioned in Section 3.1) is a planar lattice. Figure 3.3 shows the twisted Baxter, co-twisted Baxter,
and Baxter representatives of Pw(R1).

Baxter:
7 14 15 16 8 5 6 1 4 11 10 9 2 3 13 12

co-twisted Baxter:
7 14 15 16 8 11 13 10 5 6 1 4 9 2 3 12

twisted Baxter:
7 5 1 14 8 6 4 2 11 10 9 3 15 16 13 12

Figure 3.3: The twisted Baxter, co-twisted Baxter, and Baxter representatives of Pw(R1).

4. Strong rectangulations

In this section, we consider strong rectangulations. The set of strong rectangulations of size n
will be denoted by SRn. We first discuss their representation by posets and permutations, sim-
ilarly to the weak case. We define the strong poset of a rectangulation, Ps(R), and a surjective
mapping γs from Sn to SRn. The fibers of this mapping define equivalence classes of permuta-
tions, which are exactly the linear extensions of the strong poset. In these fibers, we identify two
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particular representatives — 2-clumped and co-2-clumped permutations, both in bijection with
strong rectangulations. This part includes an alternative treatment of results from [Rea12]: in
particular, our descriptions of Ps(R) and γs lead to a simple geometric proof of the bijections.
The new proof makes the correspondence between patterns in rectangulations and patterns in
permutations more transparent, additionally, it simplifies the identification of the flip graph of
strong rectangulations, and it is well suited to encode strong rectangulations by quadrant walks.

4.1. The strong poset

LetR be a strong rectangulation of size n. Label the rectangles ofRwith their NW–SE labeling.
We set a ◀ b if one of the following four conditions hold:

1. adjacency relations (earlier denoted by ◁ and also called blocking):

(a) ra and rb are adjacent, and ra is on the left of rb,
(b) ra and rb are adjacent, and ra is below rb;

2. special relations (see Figure 4.1):

(a) the right side of rb lies on the same vertical segment as the left side of ra, and the
bottom-right corner of rb lies above the top-left corner of ra on this segment,

(b) the top side of rb lies on the same horizontal segment as the bottom side of ra, and the
top-left corner of rb lies on the right of the bottom-right corner of ra on this segment.

a

ab

b
x

y x

y

Figure 4.1: The special relations in the definition of the strong poset. In both cases, we
have a ◀ b.

As above, the adjacency poset Pa(R) is the transitive closure of the adjacency relation ◁.
Now, let ≺s be the transitive closure of ◀. Note that the special relations 2a and 2b yield an
extension of Pa(R).

Proposition 4.1. The relation ≺s is a partial order on [n].

Proof. To prove that ≺s is acyclic, we show that there is a linear order λ on the rectangles
of R which respects the relations of ≺s, and such that the union of rectangles in any prefix
of λ is a downset in the weak poset of the rectangulation, i.e., its boundary is a staircase. The
order λ is constructed element by element. Consider the staircase formed by the taken elements,
and let b1, . . . , bk be the labels of the rectangles of R whose bottom-left corners correspond to
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a valley of the staircase, listed in the left-to-right order. Note that the left side of b1 is contained
in the staircase. If rb1 is a minimal non-taken element with respect to ≺s — that is, there is no
other non-taken element a such that a ≺s b1 — then we select rb1 as the next element for λ: after
that, the taken elements still form a staircase. Otherwise, there is an a such that a ◁ b1 or a ◀ b1
due to a special relation. If we have a ◁ b1, then the bottom side of rb1 extends beyond the peak
that separates the valleys for rb1 and rb2 in the staircase. If a ◀ b1 due to a special relation, then
the peak that separates the valleys for rb1 and rb2 in the staircase is the bottom-right corner of rb1 .
In both cases we see that b2 ≺s b1, and the left side of rb2 is contained in the staircase. Iterating,
we obtain a maximum length chain bℓ ≺s bℓ−1 ≺s . . . ≺s b2 ≺s b1, and the left sides of all rbj
for 1 ⩽ j ⩽ ℓ are contained in the staircase. The bottom side of rbℓ is contained in the staircase,
since otherwise we have bℓ+1 ≺s bℓ. Hence, rbℓ is a minimal element which can be added to λ,
such that the remaining elements again have a staircase boundary, i.e., they form a downset in
the weak poset of the rectangulation.

We refer to ≺s as the strong order, and refer to the set [n] partially ordered with respect to ≺s

as the strong poset Ps(R) = ([n],≺s) of R. In Figure 4.2 we show how the strong poset Ps(R1)
is obtained in two steps from the weak poset Pw(R1): first, new adjacencies obtained by shuf-
fling yield Pa(R1), the adjacency poset of R1, and then the special relations yield the strong
poset Ps(R1).
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Figure 4.2: Hasse diagrams of three posets associated with R1. Left: Solid black edges
form Pw(R1), the weak poset of R1 (or: Pa(D1) the adjacency poset of D1); dashed grey
edges are new adjacencies contributed by shuffling D1 into R1. Middle: Solid black edges
form Pa(R1), the adjacency poset of R1; dashed grey edges are contributed by special relations.
Right: Ps(R1), the strong poset of R1.

Proposition 4.2. The strong poset Ps(R) is a planar two-dimensional lattice.
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Proof. It is known that planar bounded posets are two-dimensional lattices (see for instance
Baker, Fishburn, and Roberts [BFR72]). It therefore suffices to prove that Ps(R) is planar. For
this, we consider the planar drawing of the adjacency graph of the rectangles of R obtained by
choosing a point in each rectangle and connecting points in adjacent rectangles by an arc that
intersect corresponding edges of the rectangulation. When oriented from left to right and from
bottom to top, these edges give all arcs that correspond to adjacency conditions 1a and 1b. Next,
we remove all the edges implied by transitivity and obtain the diagram of the adjacency poset.
It remains to show that the arcs corresponding to the special relations 2a and 2b can be added
without creating crossings. For this, we need two observations:

• Every covering special relation is associated with an edge of the rectangulation: a vertical
edge that connects the top-left corner of ra and the bottom-right corner of rb or a horizontal
edge that connects the bottom-right corner of ra and the top-left corner of rb (refer to
Figure 4.1). Hence, if we need to draw an arc between two such rectangles ra and rb, then
these two rectangles are separated by a single edge s.

• The two rectangles rx and ry that share edge s are not in the covering relation of the ad-
jacency poset: their adjacency order x ≺ y is implied by transitivity. Indeed, referring
again to Figure 4.1, we have either that rx is below rb which is left of ry (special rela-
tion 2a), or rx is above rb which is right of ry (special relation 2b). Hence, we can draw
the corresponding arc from ra to rb without crossing another arc.

These two observations allow us to draw the arcs corresponding to the special relations without
creating crossing arcs. Together with the arcs corresponding to the adjacency conditions 1a
and 1b, they yield a planar drawing of the Hasse diagram of the strong poset. See Figure 4.3 for
an example.

4.2. Mapping γs from permutations to strong rectangulations

In [Rea12], Reading defined a mapping γ from Sn to SRn, whose restriction yields a bijection
between 2-clumped permutations and strong rectangulations. His construction of γ(π) consists
of two steps: first, one constructs the weak rectangulation corresponding to π — what we denote
by γw(π). Then, one shuffles the neighbors of every segment s according to the order in which
the labels of rectangles adjacent to s occur in π.

In this section we offer an alternative description of γ (which we denote by γs), which consists
of just one step and uses a modification of Algorithm 2 WF. Our description emphasizes both the
parallels and the difference between the weak and the strong cases, thus contributing to better
understanding of both kinds of equivalence. It also leads to very transparent and descriptive
proofs concerning the structure of the strong posets and their linear extensions.

We define the mapping γs : Sn → SRn via a forward algorithm (Algorithm 4) that constructs
the rectangulation incrementally: we read the permutation π = π1π2 . . . πn from left to right, and
insert the rectangle with label j = πi successively, for i = 1, 2, . . . , n. The following invariants
hold at every step.
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Figure 4.3: Illustration to the proof of Proposition 4.2. (a) The Hasse diagram of Pa(R1), the
adjacency poset of R1. (b) Solid arcs form the Hasse diagram of Ps(R1) (the blue arcs are
contributed by special relations). The dashed grey arcs belong to Pa(R1), but in Ps(R1) they
are implied by transitivity. Compare with Figure 4.2.

1. Similarly to the weak case, we consider the partial rectangulation which is bounded by a
horizontal segment from below, by a vertical segment from the left, and by a monotoni-
cally decreasing staircase from the top and from the right. We also imagine fictitious thin
rectangles r0 and rn+1 respectively to the left of the left boundary, and below the bottom
boundary, and accordingly we extend the staircase horizontally at its top-left end and ver-
tically at its bottom-right end. We refer to the turning points of the staircase as peaks
and valleys .

2. The labels of the rectangles corresponding to the peaks are in increasing order from top-
left to bottom-right, with labels of consecutive peaks differing by at least 2.

It is straightforward to verify that the algorithm maintains the invariants above, that it pro-
duces a rectangulation, and that the labeling of the rectangles is the NW–SE labeling. Algo-
rithm 4 SF is schematically illustrated in Figure 4.4, and an example of its execution for a per-
mutation of size n = 16 is given in Figure 4.5. The four cases of placement in the algorithm
correspond to the four cases considered by Takahashi, Fujimaki, and Inoue [TFI09] in their en-
coding procedure, and by Françon and Viennot [FV79] in the proof of their Theorem 2.2 (the
current valleys of the partial rectangulation correspond to the current gaps in their iterative en-
coding of π−1).

4.3. Fibers

Given a strong rectangulation R of size n, we now describe a method to recover any permuta-
tion π ∈ Sn such that γs(π) = R (Algorithm 5). This method iteratively removes rectangles,
starting from the top right rectangle, and ending with the bottom left rectangle, and constructs
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Algorithm 4 SF (strong forward): Permutations to strong rectangulations.

Input: Permutation π = π1π2 . . . πn ∈ Sn.

Output: Strong rectangulation R = γs(π).

1. Initialize the staircase to be made of two peaks, of labels 0 and n+1, and one valley. The
set P of peaks is thus {0, n+ 1} initially.

2. For i from 1 to n, with j = πi:
Insert rectangle rj according to the following rules.

• The bottom-left corner of rj is the valley delimited by the two consecutive peaks
of P with labels a and b such that a < j < b.

• If all rectangles rk with a < k < j have already been inserted, then the top side of rj
aligns with the top side of ra, and a is removed from P . Otherwise, the top side of rj
forms a with the right side of ra.

• If all rectangles rk with j < k < b have already been inserted, then the right side
of rj aligns with the right side of rb, and b is removed from P . Otherwise, the right
side of rj forms a with the top side of rb.

• Update the staircase by replacing the union of left and bottom sides of rj with the
union of its top and right sides. Add j to P .

Algorithm 5 SB (strong backward): Strong rectangulations to permutations.

Input: Strong rectangulation R ∈ SRn.

Output: A permutation π ∈ Sn such that π ∈ γ−1
s (R).

1. Label the rectangles of R by the NW–SE labeling.

2. For i from n to 1:
Remove any available rectangle rj , and set πi = j.
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Figure 4.4: Illustration of the four cases in Algorithm 4 SF. The rectangle with label j is inserted
between the peaks of labels a and b such that a < j < b. The top (right) sides of rj are extended,
respectively, upwards (to the right) to align with ra (with rb) if all rectangles with intermediate
labels have already been inserted.

a permutation π “from right to left”. As in Algorithm 3 WB, we first label the rectangles of R
by the NW–SE labeling. However, in this case the definition of available rectangles is slightly
more involved. Let R̃ be the partial rectangulation of the not yet taken rectangles, the choice of
rectangles deleted at each step maintaining the property that its top-right boundary is a staircase.
Precisely, a rectangle rℓ in R̃ is called available if it satisfies the following conditions, where we
assume by convention that the top-left corner of R has a shape, and the bottom-right corner
has a shape:

• The top side and the right side of rℓ are entirely contained in the staircase.

• The top-left corner of rℓ has the shape ; or it has the shape , and the rectangle adjacent
to this point from left contains the previous peak.

• The bottom-right corner of rℓ has the shape ; or it has the shape , and the rectangle
adjacent to this point from bottom contains the next peak.

The next results show the validity of Algorithm 5 SB.

Lemma 4.3. The set of permutations that can be constructed by Algorithm 5 SB is
exactly γ−1

s (R).

Proof. At every step of the execution of the forward algorithm, the last rectangle that has been
inserted is by definition available among the rectangles that have already been inserted. Con-
versely, an available rectangle removed by the backward algorithm is one that could have been
inserted by the forward algorithm in the same situation. Hence any execution of the forward al-
gorithm can be mirrored to yield a sequence of rectangles removed by the backward algorithm,
and vice versa.

Then, the following determines precisely how the structure of Algorithms 4 SF and 5 SB is
connected with the strong poset. Recall that a subset S of the poset Ps(R) is a downset if it is
closed for the relation ≺s, hence if x ∈ S and y ≺s x, then y ∈ S.
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Figure 4.5: Constructing γs(7 5 14 8 1 6 15 11 4 10 16 2 9 13 3 12). At each step, the
inserted rectangle is blue, and the rectangles incident to the adjacent peaks are grey.
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Lemma 4.4. At every step of Algorithm 5 SB, the set of labels of the remaining rectangles is a
downset of Ps(R), and a rectangle rj is available if and only if j is maximal with respect to ≺s

in that set.

Proof. We first observe that rj is available if and only if none of the remaining rectangles rk
satisfies k ≻s j. Indeed, if rj is available, then the remaining rectangles rk can touch neither the
top nor the right side of rj , and from the definition of availability, cannot be located as a in the
special relations shown in Figure 4.1. Conversely, if there is no rectangle rk such that k ≻s j,
then rj is available. Since the backward algorithm removes an available rectangle at each step,
the set of remaining rectangles is always a downset of Ps(R).

Lemma 4.4 implies the following analogue of Proposition 3.1.

Proposition 4.5. Let R be a strong rectangulation of size n. Then the fiber γ−1
s (R) is exactly

the set of linear extensions of Ps(R):

γ−1
s (R) = L(Ps(R)).

Recall that the skeleton graph Gn of the permutahedron is the graph on Sn with edges cor-
responding to adjacent transpositions. This graph can also be viewed as the cover graph of the
weak Bruhat order onSn. From Proposition 4.2, we know thatPs(R) is a planar two-dimensional
lattice. A realizer of size two of Ps(R) is given by the pair {πL, πR} where πL is the leftmost
and πR is the rightmost linear extension (the definition of the leftmost and the rightmost linear
extensions was given in Section 3.4). This implies that the set L(Ps(R)) of linear extensions is
the convex set spanned by πL and πR in Gn, i.e., the set of permutations that belong to short-
est πL, πR paths in Gn (see for instance Theorem 6.8 in Björner and Wachs [BW91], or Felsner
and Wernisch [FW97]). Due to the NW–SE labeling of R we know that if a, b is an incompara-
ble pair then a is left of b in Ps(R) if and only if a < b in the labeling. Hence πL is the element
of L(Ps(R)) with minimal set of inversions and πR is the one with maximal set of inversions.
This implies the following:

Proposition 4.6. Given a strong rectangulation R, the set L(Ps(R)) of linear extensions of its
strong poset induces an interval in the weak Bruhat order on Sn.

In the next section, we describe the maximum and the minimum of these intervals.

4.4. 2-clumped and co-2-clumped permutations

Recall that the class of 2-clumped permutations is defined as Av(24513, 42513, 35124, 35142),
and the class of co-2-clumped permutations is defined as Av(24153, 42153, 31524, 31542). The
following two theorems were proven by Reading in [Rea12].
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Theorem 4.7. Let R be a weak rectangulation, with its rectangles labeled by the NW–SE label-
ing. Then:

1. L(Ps(R)) contains a unique 2-clumped permutation. It is πL — the minimum (the “left-
most”) element of L(Ps(R)) with respect to the weak Bruhat order.

2. L(Ps(R)) contains a unique co-2-clumped permutation. It is πR — the maximum (the
“rightmost”) element of L(Ps(R)) with respect to the weak Bruhat order.

Theorem 4.8. The mapping γs restricts to two bijections between strong rectangulations and
permutation classes:

1. Bijection β2C between strong rectangulations and 2-clumped permutations;

2. Bijection βC2C between strong rectangulations and co-2-clumped permutations;

As in the weak case, given Proposition 4.5, the two items of Theorem 4.7 imply the cor-
responding items of Theorem 4.8. Also similarly to the weak case, one can easily obtain πL

and πR by repeated pruning the leftmost (respectively, the rightmost) leaf of the Hasse diagram
of Ps(R). Figure 4.6 shows πL — the 2-clumped representative, and πR — the co-2-clumped
representative of Ps(R1).

2-clumped:
7 5 1 14 8 6 15 11 4 2 10 9 16 13 3 12

co-2-clumped:
7 14 5 8 15 1 6 11 16 4 10 2 9 13 3 12

Figure 4.6: The 2-clumped and the co-2-clumped representatives of Ps(R1).

Below, we provide an alternative proof of Theorems 4.7 and 4.8. Our proof consists of a
sequence of lemmas (4.9, 4.11, 4.12), and emphasizes the correspondence between patterns in
rectangulations and patterns in permutations. In both cases we prove the part about 2-clumpled
permutations; the part about co-2-clumpled permutations then follows by symmetry (Observa-
tion 4.13) — which can also be seen from the characterization of the congruence classes asso-
ciated to strong rectangulations in [Rea12, Prop 2.2(2)].

Lemma 4.9. Let πL be the leftmost linear extension of Ps(R). Then the pattern 2413 occurs
in πL if and only if the pattern occurs in R.
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Proof. (⇒) Suppose that the pattern appears in πL in the form bdac, where a < b < c < d,
such that d and a appear consecutively. Since πL is the leftmost linear extension, we necessarily
have d ≺s a, otherwise a would occur in πL earlier than d. Just after taking ra, the rectangle rd
is available: hence, there is a segment s which contains either the bottom side of ra and the top
side of rd (a possible configuration is shown in Figure 4.7(a)), or the right side of ra and the left
side of rd, in which case the bottom-right corner of ra is higher then the top-left corner of rd, as
shown in Figure 4.7(b).

a

d

(a)

a

d

(b)

c

Figure 4.7: The two possibilities for a covering pair d ≺s a with a < d in πL.

If s is horizontal (case (a)), then, by Observation 2.1(1) (refer also to Figure 2.3), all the
rectangles rx with a < x < d lie in the union of two regions (shown by green and blue in
Figure 4.7(a)) delimited by the NE and SW alternating paths of ra and rd. Since πL contains
the pattern bdac, the rectangle rb lies in the green region, and the rectangle rc in the blue region.
However, considering the SW alternating path of such rc, we see that the entire green region is
below rc, and, hence, c < b, which is a contradiction. Therefore, we necessarily have case (b),
and this configuration contains the pattern .

(⇐) Suppose that R contains the pattern . Denote by s the vertical segment, and by ra
and rd two rectangles contributing to the pattern as in Figure 4.7 (b). Let b be the lowest rectangle
touching s from the left, and c the highest rectangle touching s from the right, see Figure 4.8(a).
We have a < b < c < d, and also c = b+ 1. Then, in any linear extension π of Ps(R), we have
the pattern 2413 realized as bdac with c = b + 1. It is well known that such a pattern implies
an occurrence of 2413: to see that, note that π has two consecutive letters d′a′, with d′ weakly
on the right of d, and a′ weakly on the left of a, such that d′ > c and a′ < b, see Figure 4.8(b).
Then bd′a′c is an occurrence of 2413.

Remark 4.10. In the proof of (⇐) we did not use the assumption that πL is the leftmost linear
extension. Therefore, in fact, a stronger result holds: If R contains , then any preimage of R
contains 2413.

Lemma 4.11. The leftmost linear extension πL of Ps(R) is 2-clumped.

Proof. Assume for the sake of contradiction that πL contains one of the four patterns 24513,
42513, 35124, 35142 forbidden in 2-clumped permutations. Then, clearly, πL contains 2413.
Then, similarly to the proof of (⇒) in Lemma 4.9, the pattern appears in R, realized by four
rectangles ra, rb, rc, rd with labels a < b < c < d. Using the argument symmetric to that shown
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a

d

b

a

b
c = b+ 1

dc = b+ 1

(a) (b)

Figure 4.8: (a) The relative position of the rectangles ra, rb, rb+1, rd in the proofs of Lemmas 4.9
and 4.11. (b) An occurrence bdac of 2413, where c = b+ 1, implies an occurrence of 2413.

in Figure 4.8(b), we can assume that c = b+1, and the four rectangles are in the relative position
as shown in Figure 4.8(a).

Consider the possible completions of this occurrence of 2413 to one of the two patterns 24513
or 42513. It follows that there is a rectangle rx that yields an occurrence of bxdac or xbdac in πL,
with a, b, c, d fixed as above and c < x < d. Then, the condition c < x < d implies that rx
lies in the region (shown by blue) delimited by the rectangles rc, rd, the segment s, and the NE
alternating paths of rc and rd (note that the SW alternating path of rd is included in that of rc).
However, rx is inserted earlier than rd, and must lie below the staircase obtained just before
inserting rd. Since the blue region is above such a staircase, it is not possible to place rx so that
an occurrence of 42513 or 24513 will be created. One can show with a symmetric argument
that the occurrence of the pattern 2413 can neither be completed to an occurrence of 35142
nor 35124. Therefore, πL must be a 2-clumped permutation.

In order to show that the fibers of γs, hence the strong rectangulations, are in bijection with
2-clumped permutations, we need to prove that the leftmost linear extension is the unique 2-
clumped one.

a

e

b

d

c

a

e

c

b

d

Figure 4.9: The two cases in the proof of Lemma 4.12.

Lemma 4.12. If a linear extension π of Ps(R) is not the leftmost linear extension, then it is not
2-clumped.

Proof. Since π ̸= πL, there are two indices i and j with i < j such that πi and πj are both
minima of the poset induced by πi, . . . , πn and πj < πi. By looking at the elements between πi
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and πj we find an index ℓ with i ⩽ ℓ < j such that πℓ+1 < πℓ and such that πℓ and πℓ+1 are both
minima of the poset induced by πℓ, . . . , πn.

Let a = πℓ+1 and e = πℓ. Note that a and e are incomparable in Ps(R). Consider the
rectangles of R with labels in the prefix π1 . . . πℓ−1 of π: They form a staircase such that the
rectangles ra and re are in two valleys, the one for ra before the one for re along the staircase.
We consider this staircase and distinguish two cases, see Figure 4.9.

First, if there is a valley between the valleys occupied by ra and re, then the bottom side of ra
and the left side of re belong to two segments forming two peaks belonging to two different
rectangles rb and rd with a < b < d < e. Consider the next rectangle rc to be inserted in a
valley between those occupied by ra and re. Due to the NW–SE labeling, we have b < c < d,
and in π we first have b and d in any order, then consecutively ea, and finally c. This yields an
occurrence of one of the two forbidden patterns 24513 and 42513.

Now suppose that the rectangles ra and re are inserted in consecutive valleys. Let rc be the
rectangle forming the peak between the valleys of ra and re. We claim that neither ra nor re
extend to the top-right corner of rc. Indeed, if re extends to the top-right corner of c, then we
have a ≺s e due to the special relations; and similarly, if ra extends to the top-right corner of rc,
then e ≺s a. Both are impossible since a and e are incomparable in Ps(R). Hence, adding ra
and re to the staircase makes two valleys, one on each side of rc. Let rb and rd be the rectangles
filling these valleys. From the order along the staircase we obtain a < b < c < d < e, while
in π we first have c then consecutively ea, and finally b and d in any order. This yields one of
the other forbidden patterns 35124 and 35142.

Lemmas 4.9, 4.11 and 4.12 together imply Theorems 4.7(1) and 4.8(1).
Given a permutation π in Sn, its complement π̄ is the permutation whose ith component

is π̄i = n + 1 − πi. Note that the forbidden patterns of co-2-clumped permutations are the
complements of the forbidden patterns of 2-clumped permutations.

The following fact is a direct consequence of the symmetry of the forward algorithm.

Observation 4.13. The rectangulation R̄ = γs(π̄) is symmetric to R = γs(π) with respect to
the SW–NE diagonal.

Since the rightmost linear extension of Ps(R) is the complement of the leftmost linear ex-
tension of Ps(R̄), it must forbid the complements of the forbidden patterns for the 2-clumped
permutations. Therefore, the rightmost linear extension πR of Ps(R) is co-2-clumped, and if a
linear extension π of Ps(R) is not the rightmost linear extension, then it is not co-2-clumped.
Hence co-2-clumped permutations are exactly the maxima, in the weak Bruhat order, of the in-
tervals γ−1

s (R), and they are bijective to strong rectangulations as well. This completes the proof
of Theorem 4.7 and 4.8.
Remark 4.14. Combining Theorem 4.8 with Lemma 4.9, we observe that γs specializes into a
bijection from permutations that avoid 2413 — the semi-Baxter permutations — to rectangu-
lations that avoid . By duality [FNS24, Sec.2.4], rectangulations of size n avoiding are in
bijection with plane bipolar posets with n+ 2 vertices, which are in a simple bijection [FNS24,
Sec.5] with permutations of size n that avoid 2143 (plane permutations). Plane permutations
are shown in [BGRR18] to be in bijection with semi-Baxter permutations, but the bijection is
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recursive (it proceeds via generating trees). Via rectangulations avoiding we have a more
geometric bijection between these two permutation classes.

Moreover, by symmetry, γs specializes into a bijection from permutations avoiding 3142 to
rectangulations avoiding . So γs specializes into a bijection from Baxter permutations to rec-
tangulations avoiding and , which identify with weak rectangulations (and are realized by
the anti-diagonal representation), and we recover the bijection from [ABP06a] between Baxter
permutations and weak rectangulations.

4.5. The flip graph on strong rectangulations

We briefly recall the notion of lattice congruence, and refer to Reading [Rea04] for a specific
treatment of congruences of the weak Bruhat order. An equivalence relation ≡ on the set of
elements of a lattice (L,∧,∨) is said to be a lattice congruence if it behaves consistently with
respects to joins and meets, hence if x ≡ x′ and y ≡ y′, then x∧y ≡ x′∧y′, and x∨y ≡ x′∨y′.
In that case, one can define the quotient of the lattice on the congruence classes, such that the
order as well as the meet and the join of two classes is defined respectively by the order, the
meet, and the join in L of any two representatives of the classes. The lattice quotient can also be
shown to be isomorphic to the lattice induced in L by the minimal element of each congruence
class. It is known that the equivalence classes of permutations defined by the fibers of γs form a
lattice congruence.

Theorem 4.15 (Reading [Rea12]). Consider the equivalence relation ≡ on Sn defined by

π ≡ σ ⇔ γs(π) = γs(σ).

Then ≡ is a lattice congruence of the weak Bruhat order ≺ on Sn.

In particular, the partial order induced by the weak Bruhat order on these equivalence classes
is a lattice. The cover graph of this lattice is a graph with vertex set SRn. Meehan [Mee19a]
described the edges of this graph as local operations on the rectangulations, so that two rectan-
gulations are adjacent if and only if they differ by such an operation. These operations are called
flips, and the cover graph of the lattice on SRn is called the flip graph on SRn. This is in perfect
analogy with the well-known flip graph on triangulations of a convex polygon defined by the
Sylvester congruence [Tam51], and the flip graph on diagonal rectangulations defined by the
Baxter congruence [LR12]. These flip graphs happen to be skeletons of polytopes: Flip graphs
on triangulations, for instance, are skeletons of associahedra [STT88, Pou14]. A remarkable
result by Pilaud and Santos allow us to make the same statement for the flip graph on strong
rectangulations.

Theorem 4.16 (Pilaud and Santos [PS19]). For any lattice congruence ≡ of the weak Bruhat
order on Sn, the cover graph of the quotient of the weak Bruhat order by ≡ is the skeleton of a
polytope.

Our algorithm describing the mapping γs allows us to identify the flip operations defining
the graph of this strong rectangulation polytope.
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Figure 4.10: Flips in strong rectangulations that correspond to cover relation in the lattice of
strong rectangulations. These are obtained by considering the changes that occur in the rectan-
gulations when the forward algorithm is applied on two permutations that differ by the adjacent
transposition of i and j. In all five situations, the shaded regions cannot intersect any edge of
the rectangulation, by the definition of the mapping γs.

Theorem 4.17. The flip graph on the set of strong rectangulations SRn is described by the flip
operations of Figure 4.10.

Proof. Observe that if we consider two permutations π and π′ differing by one adjacent trans-
position, then either π ≡ π′ or, by definition of a lattice congruence, γ(π) and γ(π′) are in a
cover relation in the lattice quotient, hence γ(π) and γ(π′) differ by a flip. It therefore suffices
to inspect all changes in the rectangulation γ(π) that can occur when two adjacent entries of π
are transposed.

Recall that the forward algorithm reads the input permutation π = π1π2 . . . πn from left to
right, and at each step t, inserts the rectangle rπt , with label πt. Consider two successive steps
of the algorithm, involving πt = i and πt+1 = j. Suppose, without loss of generality, that i < j.
There are five possible ways that the rectangles change placement after the transposition of i
and j, which are illustrated in Figure 4.10. Note that in this figure, the grey regions cannot
intersect any edge of the rectangulation. This follows from the way that the rectangles ri and rj ,
as well as any rectangle processed later, are inserted by the forward algorithm. In all five cases,
the transformation in R is of one of three types of flips: pivoting flips, simple flips, and wall
slides.

Conversely, if such an operation is possible in a rectangulation R, then there is an execution
of the forward algorithm such that the two rectangles involved are inserted consecutively. One
can, for instance, consider the downsetSi,j ⊂ [n] of labels ℓ such that either ℓ ≺s i, or ℓ ≺s j, and
consider any linear extension of (Si,j,≺s). By Proposition 4.5, running the forward algorithm
on this prefix of a permutation leads to a situation in which we can insert either ri or rj , and the
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flip can be implemented.

4.6. Quadrant walk encoding and enumeration

From the definition of the forward algorithm, we can now establish bijections between families
of strong rectangulations and families of quadrant walks (we also discuss how the method adapts
in the weak case).

For a point p = (x, y) in the quadrant N2, the level of p is h(p) := x + y. We define
a history quadrant walk as a sequence of points (x, y) in the quadrant N2, each point having a
color in {black, red, green, white}, such that for any two consecutive points p, p′ of the sequence:

• if p is black, then h(p′) = h(p) + 1,

• if p is red or green, then h(p′) = h(p),

• if p is white, then h(p′) = h(p)− 1.

Such a walk is called closed if the final point is at the origin and is white; it is called an excursion
if it is closed and starts at the origin.

add rectangle

x = 3

y = 2

add point at (x, y)
of color. . .

if the type of added
rectangle is. . .

Figure 4.11: Rule for inserting a colored point in the quadrant, corresponding to inserting a
rectangle by the forward algorithm.

For π a permutation of size n, with R = γs(π) the rectangulation produced from π by the
forward algorithm, the corresponding quadrant history is the history quadrant excursion (with n
points) where each rectangle addition yields a point as shown in Figure 4.11. See also Figure 4.12
for a complete example.
Remark 4.18. A bicolored Motzkin excursion is a Motzkin excursion (a lattice path with steps
in {(1, 1), (1, 0), (1,−1)}, starting at the origin, staying in {y ⩾ 0}, and ending on the
line {y = 0}), where each horizontal step is colored either red or green, it is decorated if each
point of the excursion is assigned an integer x between 0 and its height. For π a permutation
of size n, the quadrant history σ of (π,R = γ(π)) can be encoded by a decorated bicolored
Motzkin excursion (of length n− 1), where the successive heights in the Motzkin excursion are
given by the sequence of levels of points in σ, the horizontal steps are colored as the initial point
of the corresponding step in σ, and the assigned integers are given by the abscissas of points
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π = 3 2 6 4 1 7 5

(0,0) (0,1) (1,0) (1,1) (0,2) (1,0) (0,0)

Figure 4.12: A permutation π, and the associated quadrant history σ, which is built jointly with
the rectangulation R produced by the forward algorithm (note that π is not needed to build R
from σ).

in σ. One can verify that this decorated bicolored Motzkin excursion is the one associated to the
permutation π−1 by the Françon–Viennot bijection [FV79].

A history quadrant walk is called leftmost if, for any two consecutive points p, p′:

• if the color of p is in {black,red} and the color of p′ is in {black,green}, then x(p′) ⩾ x(p),

• otherwise, x(p′) ⩾ x(p)− 1.

r

if next is or

r

if next is or

r r

Figure 4.13: If the last inserted rectangle r is the current rightmost available rectangle, the figure
indicates for each valley whether the insertion of a rectangle r′ at that valley makes r′ the new
rightmost available rectangle (purple) or not (orange). As shown, when r is of black or red type,
there is a mixed valley to the left of r, where r′ is allowed to be inserted only if it is red or white
(indeed, in that case, r is not available anymore after inserting r′).

As shown in [ITF09] (in different but equivalent terms) and illustrated in Figure 4.13, the
quadrant history of a pair (π,R = γ(π)) is leftmost if and only if π is the leftmost linear exten-
sion of Ps(R), that is, at any step, the last added rectangle is the rightmost available rectangle.
We therefore obtain the following.

Proposition 4.19. Leftmost history quadrant excursions of length n−1 (hence having n points)
are in bijection with rectangulations of size n, and with 2-clumped permutations of size n.
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The above characterization can be turned into a recurrence for counting these walks, and
gives an efficient procedure for counting rectangulations [ITF09] (other polynomial-time count-
ing methods have been given respectively in [CM14] via inclusion-exclusion, and in [FNS24]
by a different quadrant walk encoding, via some decorated plane bipolar orientations). The se-
quence starts with 1, 2, 6, 24, 116, 642, 3938, 26194, 186042, 1395008, . . . (OEIS A342141). As
shown in [FNS24] (and in [FIT09, TFI09] for the upper bound), its exponential growth rate
is 27/2.

Symmetrically, a history quadrant walk is called rightmost if, for any two consecutive
points p, p′:

• if the color of p is in {black,green} and the color of p′ is in {black,red}, then y(p′) ⩾ y(p),

• otherwise, y(p′) ⩾ y(p)− 1.

These correspond to pairs (π,R = γ(π)) such that π is the rightmost linear extension of Ps(R)
(at any step, the last added rectangle is the leftmost available one), which occurs if and only if π
is co-2-clumped.

allowed steps after. . .

if ends at

if ends at if ends at if ends at

Figure 4.14: The allowed steps in leftright history walks (special steps are shown dashed).

A history quadrant walk is called leftright if it is both leftmost and rightmost. Equivalently,
it is a history walk (here better formulated in terms of allowed steps) such that, for any two
consecutive points p, p′ (see Figure 4.14):

• If p is black, then from p to p′ the steps (0, 1) and (1, 0) are allowed. Furthermore, if
the color of p′ is in {red,white} then the step (−1, 2) is allowed, and if the color of p′ is
in {green,white} then the step (2,−1) is allowed, such steps being called special.

• If p is red, then from p to p′ the steps (0, 0) and (1,−1) are allowed, and furthermore the
step (−1, 1), called a special step, is allowed if the color of p′ is in {red,white}.

• If p is green, then from p to p′ the steps (0, 0) and (−1, 1) are allowed, and furthermore
the step (1,−1), called a special step, is allowed if the color of p′ is in {green,white}.

• If p is white, then from p to p′ the allowed steps are (−1, 0) and (0,−1).

Leftright history quadrant excursions thus correspond to rectangulations R such that Ps(R)
is a total order, i.e., the fiber has size 1 (indeed, at any step, the last added rectangle is both

https://oeis.org/A342141
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the leftmost and rightmost available rectangle, hence is the unique available rectangle), a super-
family of rectangulations avoiding and (those represented by anti-diagonal rectangulations).
These also correspond to permutations that are 2-clumped and co-2-clumped (and to equivalence
classes of size 1 for the congruence in Theorem 4.15), a superfamily of Baxter permutations.

The above characterization of leftright walks can be turned into a recurrence as follows. ForG
a set of history quadrant walks, and for n ⩾ 1, i, j ⩾ 0, we let Gn,i,j be the number of closed
walks of length n in G and starting at (i, j). Then, with A the set of leftright history quadrant
walks, and with B (resp. R, G, W) the subset of those starting at a black (resp. red, green, white)
point, a classical decomposition by first-step removal yields, for n ⩾ 1 and i, j ⩾ 0,

Bn,i,j = An−1;i+1,j + An−1,i,j+1 +Rn−1,i−1,j+2 +Wn−1,i−1,j+2

+ Gn−1,i+2,j−1 +Wn−1,i+2,j−1

Rn,i,j = An−1,i+1,j−1 + An−1,i,j +Rn−1,i−1,j+1 +Wn−1,i−1,j+1,
Gn,i,j = An−1,i−1,j+1 + An−1,i,j +Gn−1,i+1,j−1 +Wn−1,i+1,j−1,
Wn,i,j = An−1,i−1,j + An−1,i,j−1,
An,i,j = Bn,i,j +Rn,i,j +Gn,i,j +Wn,i,j,

(4.1)

with boundary conditions Ln;i,j = 0 for n ⩽ 0 or i < 0 or j < 0 (for L ∈ {A,B,R,G,W}),
except for W0,0,0 = A0,0,0 = 1.

Note that, by {x, y}-symmetry of the walk specification, we have Rn,i,j = Gn,j,i (and the
coefficients An,i,j, Bn,i,j,Wn,i,j are symmetric in i and j). The sequence Un = An−1,0,0 gives the
number of permutations of size n that are 2-clumped and co-2-clumped4, it starts
with 1, 2, 6, 24, 112, 582, 3272, 19550, 122628, 800392, . . .. This sequence had no OEIS entry
at the time of writing, we added it as OEIS A375923.

Proposition 4.20. The exponential growth rate of Un is bounded from above
by Γ := 1

2
(9 +

√
113) ≈ 9.815.

Proof. Let

A =


2 3 3 4
2 3 2 3
2 2 3 3
2 2 2 2


and let I = (1, 1, 1, 1). Then obviously the number of leftright walks of length n (starting at the
origin) with no constraint on domain nor on endpoint is equal to I ·An · IT ; and Γ is the spectral
radius of A.

Remark 4.21. From the table of initial coefficients, the ratio Un/Un−1 seems to converge to Γ
(this is even more visible when applying acceleration of convergence techniques,
see e.g. [GKN99, Sec.6]). By similar calculations as [FNS23, Conjecture 25] (we omit the de-
tails), letting ξ = (−93+9

√
113)/4, one can conjecture (up to a plausible extension of [DW15])

the asymptotic estimate Un ∼ cΓnn−α, with c > 0 and α = 1 + π/ arccos(ξ) ≈ 4.742. By a
4With the strong poset characterization it is not difficult to show that it also counts weak rectangulations of size

n where every two-sided segment (a segment with at least one neighbor from each side) is given weight 2.

https://oeis.org/A375923
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criterion in [BRS14] (ensuring that α /∈ Q), this would imply that the generating function of Un

is not D-finite.
We now discuss the specialization to anti-diagonal rectangulations and Baxter permutations.

We refer here to an anti-diagonal rectangulation as a rectangulation avoiding the patterns
and . Each weak class of rectangulations has a unique such representative, we see them here
as a subclass of strong rectangulations and do not insist on considering the specific anti-diagonal
representation on the n × n grid. Any anti-diagonal rectangulation has fiber of size 1, so that
the corresponding history quadrant excursion is leftright. We also recall from the remark at the
end of Section 4.4 that the mapping γs specializes into a bijection between Baxter permutations
and anti-diagonal rectangulations.

Proposition 4.22. The history quadrant excursions of length n − 1 that encode Baxter per-
mutations and anti-diagonal rectangulations of size n are in bijection with the set NITn of non-
intersecting triples of lattice walks (with steps up or right), starting respectively at (−1, 1), (0, 0),
(1,−1), and ending at (n− k − 1, k), (n− k, k − 1), (n− k + 1, k − 2) for some 1 ⩽ k ⩽ n.

Proof. Let σ be a history quadrant excursion, with R the rectangulation built from σ. The
following properties are easy to verify:

• If σ is leftmost, then each occurrence of in R corresponds to a transition from a black
or red point p = (x, y) to a red or white point p′ = (x′, y′) such that x′ = x − 1 (this
corresponds to an insertion in a mixed valley in Figure 4.13).

• Symmetrically, if σ is rightmost, then each occurrence of in R corresponds to a tran-
sition from a black or green point p = (x, y) to a green or white point p′ = (x′, y′) such
that y′ = y − 1.

Hence, if σ is leftright, each occurrence of in R corresponds to an occurrence of a special
step (−1, 2) or (−1, 1), while each occurrence of in R corresponds to an occurrence of a
special step (2,−1) or (1,−1), so that R is anti-diagonal if and only if σ has no special step.

Note that a leftright quadrant excursion σ with no special step identifies to a quadrant walk
of same length and with no colors on points, starting and ending at the origin, whose step-set
is {2×(0, 0), (0, 1), (0,−1), (1, 0), (−1, 0), (−1, 1), (1,−1)}, with two kinds of stay-steps to ac-
count for the color of the initial point of each stay-step in σ. There is a simple bijection [BCF+16,
Prop.20] between such walks of length n− 1 and NITn.

Thus, we recover — via rectangulations — the fact that the Françon–Viennot encoding
specialized to Baxter permutations yields a bijection with non-intersecting triples of lattice
walks [Vie81]. By the Gessel–Viennot Lemma, these are counted by the Baxter numbers Bn

(whose exponential growth rate is 8).
To conclude the section, we briefly explain that a very similar study can be performed in the

context of weak rectangulations. A weak rectangulationR endowed with a linear extension of its
weak poset Pw(R) can again be bijectively encoded by a history quadrant excursion, where the
addition of a rectangle is now done in the “innermost” way in a valley for the situations without
alignment of sides, see Figure 4.15 compared to Figure 4.11. Using the innermost convention
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add rectangle

x = 3

y = 2

add point at (x, y)
of color. . .

if the type of added
rectangle is. . .

Figure 4.15: Correspondence between the insertion of a colored point in the quadrant and the
insertion of a rectangle for weak rectangulations.

yields the weak rectangulation in the form of its strong representative with no nor , the one
for which the diagonal representation exists.

For the backward direction, in the current staircase shape, a rectangle is available if and only
if all its adjacent rectangles are to its left or below. It is then easy to characterize the leftmost
(resp. rightmost) history quadrant excursions in this context, i.e., those corresponding to weak
rectangulations endowed with the leftmost (resp. rightmost) linear extension of their weak poset,
equivalently at each step the last added rectangle is the rightmost (resp. leftmost) available one.
Quite nicely, these have the same specification as the leftmost (resp. rightmost) walks in the
strong case, upon replacing “and” by “or” in the first item. These quadrant walks of length n−1
also encode twisted (resp. co-twisted) Baxter permutations of size n. They are thus counted
by Bn, even if a direct bijection to NITn does not seem easy to find.

As in the strong case, we can then consider the history quadrant walks that are leftmost
and rightmost, called leftright. Leftright history quadrant excursions encode weak rectangulati-
ons whose weak poset is totally ordered. These are known as the one-sided rectangulations, i.e.,
weak rectangulations without two-sided segments. Equivalently, these are the weak rectangulati-
ons with a unique strong representative. Via γw, they correspond to Av(2413, 2143, 3412, 3142),
that is, to the class of permutations which are both twisted Baxter and co-twisted Baxter. By
intersecting the step-sets for leftmost and rightmost walks, the specification of the step-set for
leftright walks is as shown in Figure 4.16.

Letting On be the number of one-sided rectangulations of size n, and number of leftright
history quadrant excursions of length n−1, a recurrence for On analogue to the recurrence (4.1)
for Un can then be obtained, by first-step removal in closed leftright history quadrant walks.
Another counting method for On, also in polynomial time, has been given in [BGR19]
(pages 162-175) by describing a generating tree for the permutation class. The sequence starts
with 1, 2, 6, 20, 72, 274, 1088, 4470, 18884, 81652, . . ., and it is OEIS A348351.

Proposition 4.23. The exponential growth rate of On is bounded from above
by Γ′ := 1

2
(7 +

√
17) ≈ 5.562.

https://oeis.org/A348351


40 Andrei Asinowski et al.

allowed steps after. . .

if ends at

if ends atif ends at if ends at

Figure 4.16: The allowed steps in leftright history quadrant walks, in the context of weak rec-
tangulations.

Proof. Let

A′ =


2 2 2 2
1 1 2 2
1 2 1 2
0 1 1 2


and let I = (1, 1, 1, 1). The number of leftright walks of length n (starting at the origin) with
no constraint on domain nor on endpoint is equal to I · A′ n · IT ; and Γ′ is the spectral radius
of A′.

Again, by similar calculations as [FNS23, Conjecture 25], letting ξ′ = (−29 + 7
√
17)/4,

one can conjecture the asymptotic estimate On ∼ c′ Γ′ nn−α′ , with c′ > 0
and α′ = 1 + π/ arccos(ξ′) ≈ 2.957, which would imply that the generating function of On

is not D-finite.
An interesting consequence of Proposition 4.23 is that the growth rate of one-sided rec-

tangulations, which are also the rectangulations that are area-universal [EMSV12], is smaller
than the known [Tut62, Fus09] growth rate 27/4 = 6.75 of triangulations of the 4-gon that are
irreducible (no separating triangle). Thus the irreducible triangulations of the 4-gon admitting a
dual representation as an area-universal rectangulation are exponentially rare, their growth rate
being at most Γ′.

5. Guillotine rectangulations

In this section we deal with guillotine rectangulations, introduced in Section 2.5. While weak
guillotine rectangulations are well understood (see Propositions 2.3 and 2.4), we are not aware
of any results concerning strong guillotine rectangulations. In this section we provide a uniform
treatment of guillotine rectangulations by characterizing those permutations that correspond to
guillotine partitions under both permutation-to-rectangulation mappings γw and γs, by means
of pattern avoidance. As a result, we can restrict all the bijections between (both weak and
strong) rectangulations that were mentioned above, to the guillotine case. In particular, we find
a permutation class bijective to strong guillotine rectangulations.
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5.1. Characterization by mesh patterns

Consider the following mesh patterns5 (depicted in Figure 5.1):

p1 = (25314, {(0, 3), (0, 4), (1, 3), (4, 2), (5, 1), (5, 2)}),
p2 = (41352, {(0, 1), (0, 2), (1, 2), (4, 3), (5, 3), (5, 4)}).

p1 = p2 =

0 1 2 3 4 5 0 1 2 3 4 5
0

1

2

3

4

5

0

1

2

3

4

5

Figure 5.1: Two mesh patterns whose avoidance characterizes guillotine permutations.

Theorem 5.1. Let π ∈ Sn. Then the following conditions are equivalent:

(1) The weak rectangulation γw(π) is guillotine,

(2) The strong rectangulation γs(π) is guillotine,

(3) π avoids both mesh patterns p1 and p2.

The equivalence of (1) and (2) is clear, since being guillotine is invariant under shuffling.
Hence, it suffices to prove the equivalence of (1) and (3). Recall from Proposition 2.3 that a rec-
tangulation is guillotine if and only if it avoids two windmills and . Theorem 5.1 follows
directly from the following lemma, which also precisely points out the correspondence between
both mesh patterns and both kinds of windmills.

Lemma 5.2. Let π ∈ Sn.

(a) γw(π) contains if and only if π contains p1,

(b) γw(π) contains if and only if π contains p2.

Proof. We provide the proof for (a) (then (b) follows from (a) by reflection via Observation 4.13).
At the first step we modify the pattern p1 in a way that simplifies some technical details.

Consider the mesh pattern

q1 = (25314, {0, 1} × {2, 3, 4} ∪ {4, 5} × {1, 2, 3}).

We show that a permutation π contains p1 if and only if it contains q1. Assume that π contains p1,
and the pattern 25314 of p1 is realized as becad where a < b < c < d < e. Then, in the plot,
we can replace the point e by a left-minimum point in the cell (1, 4), then b by the top-most
point in (0, 2) ∪ (1, 2), then a by a right-maximum point in (4, 1), and finally d by the bottom-
most point in (4, 3) ∪ (5, 3) (refer to Figure 5.2; note that the grid and the labeling are modified
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Figure 5.2: An occurrence of p1 implies an occurrence of q1.

after each step). This shows that if a permutation contains p1 then it contains q1. The converse
implication is trivial.

We now prove that γw(π) contains if and only if π contains q1.
(⇐) Let π be a permutation that contains q1, and consider the diagonal representative

of γw(π). Assume, as above, that the pattern 25314 of p1 is realized as becad. The shaded
regions of q1 imply that no rectangle rx with label x such that b < x < e is inserted earlier
than e, and that no rectangle rx with a < x < d is inserted later than a. It follows that just after
inserting the rectangle re, the staircase contains a horizontal segment se just above re and a ver-
tical segment sb just to the right from rb, and these segments (shown by red in Figure 5.3) meet
in a joint. Similarly, just before inserting the rectangle ra, the staircase contains a horizontal
segment sa just under ra and a vertical segment sd just to the left from rd, and these segments
(shown by green in Figure 5.3) meet in a joint. Due to the presence of rc, we know that sd
does not coincide with sb.

Now we show that γw(π) contains a windmill . Traverse the segment sb from below to
above. Due to sa, the segment sb cannot reach the upper side ofR, as it is blocked by a horizontal
segment sa′ (which is possibly sa). Now we traverse sa′ to the right. Due to the existence of sd,
the segment sa′ cannot reach the right side of R, as it is be blocked by a vertical segment sd′
(which is possibly sd). We continue traversing segments in this way and due to sa, sd, se, sb
we never reach the boundary of R. Since the process is finite, a windmill will eventually be
obtained.

(⇒) Let R be a rectangulation containing . Label by ra, rb, rd, re the rectangles as shown
in Figure 5.4: ra is the rectangle whose bottom-right corner is the top-right corner of the wind-
mill, rd is the upmost rectangle whose left side is included in the right vertical segment of the
windmill, and similarly for re and rb. Finally, let rc be any rectangle in the region bounded
by the windmill. Then we have a < b < c < d < e in the diagonal ordering. On the other
hand, in Pw(R) we have b ≺w e ≺w c ≺w a ≺w d, which gives the pattern 25314 in any lin-
ear extension π of this poset. It remains to show that there are no points in the shaded regions
from the plot of q1. Suppose there is a point in the region {0, 1} × {2, 3, 4}. Then there exists
a rectangle rx such that b < x < e, which is inserted earlier than e. By Observation 2.1(1),
all rectangles rx such that b < x < e are contained in the region shown in grey in Figure 5.4.
However, all rectangles rx included in this region satisfy e ≺w x, hence rx cannot be inserted
earlier than re.

5 These mesh patterns were proposed by Merino and Mütze [MM21], see remark after Proposition 5.7.
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Figure 5.3: Illustration for (⇐) in the proof of Theorem 5.1: q1 implies .
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Figure 5.4: Illustration for (⇒) in the proof of Theorem 5.1: implies q1.

5.2. New bijections and permutation classes for guillotine rectangulations

In this section we discuss specializations of the bijections βTB, βCTB, βB, β2C, βC2C from Theo-
rems 3.3 and 4.8 to the case of guillotine rectangulations.

Weak guillotine rectangulations. Basically, the respective permutation classes are obtained
by adding p1 and p2 to the forbidden patterns. The next lemma makes it possible to describe
some of them by fewer patterns.
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Lemma 5.3. The following identities between permutation classes hold:

(a) Av(2413, 3412, p1) = Av(2413, 3412),

(b) Av(2143, 3142, p2) = Av(2143, 3142),

(c) Av(2413, 3142, p1) = Av(2413, 3142),

(d) Av(2413, 3142, p2) = Av(2413, 3142).

Proof. We provide a detailed proof of the identity (a). The proof of the identity (c) is similar;
and the identities (b) and (d) are obtained, respectively, from (a) and (c) by taking complements.

In (a), the inclusion ⊇ is obvious. To prove ⊆, we need to show that if π contains 2413, then
it contains 2413, 3412, or p1.

Let bead, where a < b < d < e, be a (vertically) shortest occurrence of 2413, that is, an
occurrence with the smallest possible e− a. If it is not a part of 25314, then we can replace the
point e by the rightmost point in the region (2, 3)∪ (2, 4), and the point a by the point just to the
right of (the modified) e. Then the modified bead is an occurrence of 2413 (refer to the left part
of Figure 5.5).

Now assume that our occurrence of 2413 is a part of 25314 (refer to the right part of Fig-
ure 5.5). The regions (1, 4), (2, 4), (3, 4), (0, 3), (1, 3), (4, 2), (5, 2), (2, 1), (3, 1), (4, 1) are
empty because otherwise we have a shorter occurrence of the pattern 2413. If the region (0, 4)
is not empty, then — applying the same argument as above and using the fact that the region (2, 4)
is empty — we obtain an occurrence of 3412. Similarly, we obtain 3412 if (5, 1) is not empty.
Finally, if both regions (0, 4) and (5, 1) are empty, then our assumed 25314 is an occurrence
of p1.

0 1 2 3 4 5
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5

0 1 2 3 4 5
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4

5

Figure 5.5: Illustration to the proof of Lemma 5.3.

Remark 5.4. Note that it is not possible to “cancel” the patterns that occur on both sides of these
identities. For example, Av(2413, p1) = Av(2413) is false: 526314 is a counterexample.

Combining Lemma 5.3 with Lemma 5.2 we obtain:
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Proposition 5.5. The following permutations classes are in bijection (respectively via βTB, βCTB,
and βB) with weak rectangulations that avoid :

1. Av(2413, 3412),

2. Av(2143, 3142, p1),

3. Av(2413, 3142).

Similarly, via βTB, βCTB, and βB, weak rectangulations that avoid correspond respectively
to the permutation classes Av(2413, 3412, p2), Av(2143, 3142), and Av(2413, 3142).

Proposition 5.5 sheds new light on some previously known results. Weak rectangulations
of size n are in a simple bijection with 2-orientations [dFdMR95] on rooted simple quadran-
gulations (embedded on the sphere) with n + 1 faces, i.e., orientations of the edges not inci-
dent to the root-face such that vertices not incident (resp. incident) to the root-face have outde-
gree 2 (resp. 0). Moreover, a weak rectangulation has a if and only if the 2-orientation has
a clockwise cycle (more precisely, the occurrence of a corresponds to the occurrence of a
clockwise 4-cycle, and the presence of a clockwise cycle implies the presence of a clockwise
4-cycle). Since any rooted simple quadrangulation has a unique 2-orientation with no clockwise
cycle [Pro93, Fel04], weak rectangulations of size n with no are thus in bijection with rooted
simple quadrangulations with n + 1 faces, which are themselves in bijection with rooted non-
separable maps with n + 1 edges, whose counting coefficients are an = 2 (3n)!

(n+1)! (2n+1)!
as shown

in [Tut63, Sch98].
The fact that Av(2413, 3142) is in bijection with rooted non-separable maps was already

proved in [DGW96] (via isomorphic generating trees) and in [BBMF10], by specializing a bijec-
tion between Baxter permutations and plane bipolar orientations: this bijection has the property
that Baxter permutations with no 2413 correspond to plane bipolar orientations with no ROP
(right-oriented piece), and moreover any rooted non-separable map has a unique plane bipolar
orientation with no ROP. Our bijection between Av(2413, 3142) and weak rectangulations with
no is very analogous, since plane bipolar orientations are in a simple bijection [dFdMR95]
with 2-orientations, such that the occurrence of a ROP corresponds to the occurrence of a coun-
terclockwise 4-cycle (or the occurrence of a clockwise 4-cycle, upon reflection).

Let us also mention that the coefficients an are well-known to count 2-stack sortable permu-
tations [Zei92]. In [DGG98], a correspondence with Av(2413, 3142) has been obtained via a
chain of several bijections relating permutation classes (and relying on isomorphic generating
trees). Along that chain after Av(2413, 3142) is the class Av(2413, 3412) (see [DGG98, Fig.3]);
this corresponds to the link between the first and second item in Proposition 5.5. Recently a more
direct bijective link between 2-stack sortable permutations and rooted non-separable maps has
been established via fighting fish [Fan18, DH22].

We now further specialize the bijections for weak classes to the guillotine case. In the follow-
ing proposition, claims 1 and 2 are new results, and claim 3 recovers the classical bijection βS

(see Theorem 3.3).
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Proposition 5.6. The following permutations classes are in bijection (respectively via βTB, βCTB,
and βB) with weak guillotine rectangulations:

1. Av(2413, 3412, p2),

2. Av(2143, 3142, p1),

3. Av(2413, 3142).

Proof. From Lemma 5.3 we have

(a) Av(2413, 3412, p1, p2) = Av(2413, 3412, p2),

(b) Av(2143, 3142, p1, p2) = Av(2143, 3142, p1),

(c) Av(2413, 3142, p1, p2) = Av(2413, 3142, p2),

(d) Av(2413, 3142, p1, p2) = Av(2413, 3142, p1).

It follows from Theorems 3.3 and 5.1 that weak guillotine rectangulations are in bijection (re-
spectively via βTB, βCTB, and βB) with Av(2413, 3412, p1, p2), Av(2143, 3142, p1, p2),
andAv(2413, 3142, p1, p2). Hence, claims 1 and 2 follow directly from the identities (a) and (b);
and for claim 3 note that the combination of the identities (c) and (d) implies that the
class Av(2413, 3142, p1, p2) is equal to Av(2413, 3142).

Strong guillotine rectangulations. Here we just add p1 and p2 to the patterns that define 2-
clumped permutations and co-2-clumped permutations. The following proposition is — to the
best of our knowledge — the first representation of strong guillotine rectangulations by
permutation classes.

Proposition 5.7. The following permutation classes are in bijection (respectively via β2C

and βC2C) with strong guillotine rectangulations:

1. the {p1, p2}-avoiding 2-clumped permutations,

2. the {p1, p2}-avoiding co-2-clumped permutations.

In view of the definition of (co-)2-clumped permutations, each of these classes is defined by
avoidance of six patterns. Describing them by fewer patterns remains open.

Summary. Proposition 5.7(1) was conjectured and communicated to us by Merino and
Mütze [MM21]. They found the mesh patterns p1 and p2 experimentally, as a part of their study
of patterns in rectangulations. This conjecture was our starting point for the study presented in
this section. As our results — mainly Theorem 5.1 and Lemma 5.2 — show, the two patterns p1
and p2 not just define a permutation class in bijection with with strong guillotine rectangulations,
but they generally “encode the windmills in the language of permutations”. As such, these re-
sults belong to the study of representing patterns in rectangulations by patterns in permutations,
which was suggested in [MM23, Section 11] as an open question. Our Lemma 4.9 is another
instance of correspondence between these kinds of patterns, see also [AB24] for more results of
this kind.
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5.3. Enumeration of strong guillotine rectangulations

Generating the enumerating sequence. A straightforward way to generate the enumerating
sequence for strong guillotine rectangulations is counting multiplicities. A multiplicity of a weak
rectangulation R is the number of strong rectangulations whose union constitutes R. Every
segment s contributes

(
a+b
a

)
to the multiplicity of R, where a and b are the numbers of neighbors

of s from both sides. The total multiplicity of a rectangulation R is the product of such binomial
coefficients taken over all its segments.

For strong guillotine rectangulations, we can use the same argument as in our proof of Propo-
sition 2.4, but taking into account the multiplicities. Let R be a vertical guillotine rectangulation
of size > 1, and let s be its leftmost cut. Denote by RL and RR the left and the right subrec-
tangulations separated by s. If the multiplicity of RL is m1, and that of RR is m2, then the
multiplicity of R is m1m2

(
a+b
a

)
, where a and b are the numbers of left and right neighbors of s.

Therefore, we have to keep track of the numbers of segments that have an endpoint on the
sides of R. This leads to a recurrence in five variables. Denote by S(n, ℓ, t, r, b) the number of
strong guillotine rectangulations of size n with ℓ, t, r, b endpoints of segments on the left, top,
right, bottom side. Further, denote by SV (n, ℓ, t, r, b) and SH(n, ℓ, t, r, b) the numbers of vertical
and, respectively, horizontal strong guillotine rectangulations with these parameters. (To keep
the expressions more compact, here we regard the rectangulation of size 1 as both vertical and
horizontal.) Then we have the following recurrence.

For n = 1:

S(1, ℓ, t, r, b) = SV (1, 0, 0, 0, 0) = SH(1, 0, 0, 0, 0) =

{
1, (ℓ, t, r, b) = (0, 0, 0, 0),
0, (ℓ, t, r, b) ̸= (0, 0, 0, 0).

For n > 1:

SV (n, ℓ, t, r, b) =
∑

SH(n
′, ℓ, t′, r′, b′) · S(n− n′, ℓ′, t− 1− t′, r, b− 1− b′) ·

(
r′ + ℓ′

r′

)
,

where the sum is taken over 1 ⩽ n′ ⩽ n− 1 and 0 ⩽ t′, r′, b′, ℓ′ ⩽ n.
This rule is illustrated in Figure 5.6.

s

Figure 5.6: Illustration of the recurrence for counting strong guillotine rectangulations. The
multiplicity of this rectangulation is the product of the multiplicity of the left part, the multiplic-
ity of the right part, and the binomial coefficient

(
7
4

)
.
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For SH(n, ℓ, t, r, b) we have a similar expression, but for computations we can use

SV (n, ℓ, t, r, b) = SV (n, r, t, ℓ, b) = SV (n, ℓ, b, r, t) = SV (n, r, b, ℓ, t) =
= SH(n, t, ℓ, b, r) = SH(n, b, ℓ, t, r) = SH(n, t, r, b, ℓ) = SH(n, b, r, t, ℓ).

Finally, for n > 1 we have

S(n, ℓ, t, r, b) = SH(n, ℓ, t, r, b) + SV (n, ℓ, t, r, b)

We implemented this recurrence in Maple, and obtained the first numbers in the enumerating
sequence of strong guillotine rectangulations of size n:

n = 1 . . . 8 n = 9 . . . 16 n = 17 . . . 24 n = 25 . . . 32
1 138100 1143606856808 23673987861077379184
2 926008 9072734766636 201493429381831155064
6 6418576 72827462660824 1725380127954612191928

24 45755516 590852491725920 14858311852609658166276
114 334117246 4840436813758832 128634723318443875261706
606 2491317430 40009072880216344 1119203662581349129800254

3494 18919957430 333419662183186932 9783477314800654941937182
21434 146034939362 2799687668599080296 85899976772035554402923170

The first twelve entries in this sequence were also provided by Merino and Mütze in their
study of algorithmic generation of (pattern-avoiding) rectangulations [MM23, Table 3, entry 12].
This sequence had no OEIS entry at the time of writing, we added it as OEIS A375913.

Asymptotic bounds. We now show that guillotine rectangulations are rare among strong rec-
tangulations of size n, as n gets large. Precisely, we show that the exponential growth rate
of strong guillotine rectangulations is bounded from above by a constant ≈ 13.081, hence is
strictly smaller than the exponential growth rate of all strong rectangulations, which, as men-
tioned above, is known to be 27/2 [FNS24].

We make use of asymptotic results in [FNS24] (to be slightly extended below in Lemma 5.8)
on so-called arbitrary rectangulations, which are rectangulations allowing for points where 4
rectangles meet, called special points. These are considered in the strong equivalence sense.
Let an,k be the number of arbitrary rectangulations of size n with k special points,
let an(v) =

∑
k an,kv

k, and let A(z, v) =
∑

n an(v)z
n be the associated counting series. For

fixed v, let ρ(v) be the radius of convergence of z → A(z, v), i.e., 1/ρ(v) is the exponential
growth rate of an(v). It has been shown in [FNS24, Thm. 4.3] that, for v ⩾ 0,

ρ(v) =
2(2 + v)

2v2 + 18v + 27 + (9 + 4v)3/2
. (5.1)

Lemma 5.8. There exist non-negative coefficients ãn,k such that, with ãn(v) :=
∑

k ãn,kv
k, we

have an(v) = ãn(v + 2), so that an(v) ⩾ 0 for v ⩾ −2. Moreover, for v ∈ (−2, 0), ρ(v) is still
given by (5.1).

https://oeis.org/A375913
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Proof. An arbitrary rectangulation is called reduced if it avoids both and . If we let ãn,k be
the number of reduced arbitrary rectangulations of size n with k special points, and
let ãn(v) =

∑
k ãn,kv

k, then we have

an(v) = ãn(v + 2).

Indeed, an arbitrary rectangulation yields a reduced one by contracting the inner segment of
each or , turning it into a . Conversely, a reduced arbitrary rectangulation lifts to a set of
arbitrary rectangulations by choosing, for each special point , whether it stays unchanged, is
expanded into , or is expanded into .

The encoding of arbitrary rectangulations by weighted quadrant walks obtained in [FNS24,
Sec.2.4] (relying on a bijection in [KMSW19]) can be specialized to reduced arbitrary rectan-
gulations: with the terminology of [FNS24] (where the study is done in the dual setting of
transversal structures), forbidding amounts to forbidding consecutive face-steps, and forbid-
ding can easily be encoded in the weight affected to face-steps. All calculations done as
in [FNS24, Sec.4] (we omit the details) one finds that, if ρ̃(v) denotes the radius of convergence
of z →

∑
n ãn(v)z

n for v > 0 (which equals ρ(v−2) since ãn(v) = an(v−2)), then the obtained
expression of ρ̃(v) matches the right-hand side of (5.1) where v is substituted by v − 2.

In a strong rectangulation the enclosing 4-gon of a windmill is the 4-gon extracted from the
union of the 4 constituting segments. The windmill is called simple if there is no segment leaving
a point on a side of the enclosing 4-gon towards the exterior of the 4-gon. A small windmill is
a simple windmill with a single rectangular region inside the enclosing 4-gon. Let bn be the
number of rectangulations of size n with no small windmill. Obviously, bn is an upper bound
on the number of guillotine rectangulations of size n.

Proposition 5.9. The exponential growth rate of bn is bounded from above by the unique positive
root x0 ≈ 13.155 of the polynomial 2x5 − 29x4 + 36x3 − 8x2 − 8.

Proof. Let ân,k be the number of rectangulations of size n with k small windmills;
and let Â(z, v) =

∑
n,k ân,kz

nvk be the associated counting series. Then we
have A(z, 2vz) = Â(z, 1 + v). Indeed, starting from an arbitrary rectangulation, each spe-
cial point can be expanded into either or (here these symbols are to be understood as
small windmills); then these form an arbitrary subset of all small windmills in the obtained
rectangulation. Hence, letting B(z) =

∑
n bnz

n, we have

B(z) = Â(z, 0) = A(z,−2z).

For 0 ⩽ z ⩽ 1 such that z < ρ(−2z), the function A(., .) is analytic at (z,−2z) (this
follows from the fact that, by continuity of ρ(.), there exist ϵ, η > 0 such
that

∑
n,k ãn,k(z + ϵ)n(2− 2z + η)k < +∞). Hence B(.) is analytic at z. Thus, letting z0

be the smallest positive root of the equation z = ρ(−2z), the function B(.) is analytic at z
for 0 ⩽ z < z0. By Pringsheim’s theorem, the radius of convergence of B(z) is at least z0, hence
the exponential growth rate of bn is at most 1/z0. From the above expression of ρ(v), we find
that 1/z0 ≈ 13.155 is the unique positive root of the polynomial 2x5−29x4+36x3−8x2−8.
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Now let bn be the number of rectangulations of size n with no simple windmill, which again
is an upper bound on the number of guillotine rectangulations of size n.
Proposition 5.10. The exponential growth rate of bn is bounded from above by 13.081.
Proof. For any fixed k ⩾ 1, a simple windmill is called k-small if the rectangulation inside
the enclosing 4-gon is a guillotine rectangulation of size at most k. Let b(k)n be the number of
rectangulations of size n with no k-small windmill (in particular bn = b

(1)
n , and bn ⩽ b

(k)
n for

all k ⩾ 1); let B(k)(z) =
∑

n b
(k)
n zn. With gn := S(n) the number of guillotine rectangulations

of size n, the argument in Proposition 5.9 extends to give the equation

B(k)(z) = A
(
z,−2

k∑
i=1

giz
i
)
.

Letting z
(k)
0 be the smallest positive solution of the equation z = ρ(−2

∑k
i=1 giz

i), by the same
argument as in Proposition 5.9, the radius of convergence of B(k)(z) is at least z(k)0 , hence 1/z(k)0

is an upper bound on the exponential growth rate of b(k)n , and also of bn ⩽ b
(k)
n . We find that as k

increases, 1/z(k)0 (which decreases) rapidly approaches a constant ≈ 13.081 (upper approxima-
tion).

Remark 5.11. For fixed n, b(k)n weakly decreases with k and stabilizes to bn. We expect that (for
any fixed k ⩾ 1) 1/z(k)0 is the exponential growth rate of b(k)n , and that, as k → ∞, it converges
to the exponential growth rate of bn, which thus should be ≈ 13.081. However, forbidding
only simple windmills does not seem to give a close upper bound on the exponential growth
rate of guillotine rectangulations. Indeed, from the table of the initial counting coefficients gn,
and applying acceleration of convergence (see, e.g., [GKN99, Sec.6]) to the ratio gn+1/gn, the
exponential growth rate of gn seems to be ≈ 10.24.

Finally, we discuss lower bounds. By Proposition 2.4, the number of weak guillotine rectan-
gulations of size n is the (n − 1)th Schröder number. Therefore, the exponential growth rate
of Schröder numbers, 3 + 2

√
2 ≈ 5.828, is a “trivial” lower bound on the exponential growth

rate of strong guillotine rectangulations. In order to give a better bound, we consider weak
guillotine rectangulations where every two-sided segment has weight 2. This will give a lower
bound, since the neighbors of every two-sided segment can be shuffled in at least two ways. We
adapt the decomposition from our proof of Proposition 2.4 as follows. Let G = G(x, y) be the
generating function for weak guillotine rectangulations, where the variable x is for the size, and y
for the number of two-sided segments. Further, let G0 = G0(x, y) be the generating function for
weak guillotine rectangulations that have no segment with an endpoint on the left side of R, and
letG1 = G1(x, y) be the generating function for weak guillotine rectangulations that have at least
one segment with an endpoint on the left side of R. Finally, let H = H(x, y) and V = V (x, y)
be the generating functions for horizontal and, respectively, vertical weak guillotine rectangula-
tions. Then we have H = V , G = x+H + V , G0 = xG+ x, and G1 = (1− x)G− x, and the
decomposition of a vertical guillotine rectangulation by its leftmost cut leads to the following
weighted version of equation (2.1):

V = xG+H
(
G0 + yG1

)
.
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The solution of this system yields

G(x, 2) =
1 + x− x2 −

√
1− 6x− 5x2 + 2x3 + x4

2(2− x)
,

and its dominant singularity gives us the following lower bound.

Proposition 5.12. The exponential growth rate of the number of strong guillotine rectangulati-
ons is bounded from below by 1

2

(
1 +

√
13− 8

√
2
)(

3 + 2
√
2
)
≈ 6.699.

This strategy can be pushed further: for a fixed threshold value t ⩾ 1, every segment
with i neighbors on one side and j neighbors on the other side is weighted by

(
i′+j′

i′

)
,

where i′ = min(i, t) and j′ = min(j, t). The exponential growth rate for any fixed t should
be computable (by the approach of [FS09, VII.6.3]), and grow with t, giving better and better
lower bounds. The complexity of the decomposition and of computations, however, will rapidly
explode as t grows.
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