
UCLA
UCLA Electronic Theses and Dissertations

Title
Using Autonomous Recording Units and Image Processing to Investigate Patterns in Avian 
Singing Activity and Nesting Phenology

Permalink
https://escholarship.org/uc/item/92p9z0gp

Author
Malamut, Evelyn Julia

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/92p9z0gp
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Using Autonomous Recording Units and Image Processing

to Investigate Patterns in Avian Singing Activity

and Nesting Phenology

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Bioinformatics

by

Evelyn Julia Malamut

2022



© Copyright by

Evelyn Julia Malamut

2022



ABSTRACT OF THE THESIS

Using Autonomous Recording Units and Image Processing

to Investigate Patterns in Avian Singing Activity

and Nesting Phenology

by

Evelyn Julia Malamut

Master of Science in Bioinformatics

University of California, Los Angeles, 2022

Professor Van M Savage, Chair

In order to investigate how birds are adapting to a changing environment, it is imper-

ative that we have a better understanding of avian nesting phenology. The research

outlined in this paper is intended to be a first step toward developing procedures

and data processing pipelines that can be adapted to monitor nesting phenology

at a continental scale. Here, we investigate the effectiveness of bioacoustic mon-

itoring approaches to study the relationship between singing activity and nesting

phenology. Using a mix of xeno-canto and field data recordings, we developed and

applied species-specific, image-based song classification models for three bird species:

Hooded Warblers, Grasshopper Sparrows, and Gray Vireos. We compared our pro-

posed classifiers to BirdNET, a multi-species classifier developed by the Cornell Lab

of Ornithology. Our proposed classifiers received an average AUC score for the ROC
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curve of 0.89, 0.89, and 0.81, and an average AUC score for the precision-recall curve

of 0.85, 0.79, and 0.85, respectively. Our proposed Hooded Warbler and Grasshop-

per Sparrow classifier performed better or the same as the BirdNET classifiers on

at least 4/5 accuracy metrics, whereas the BirdNET classifier outperformed our

Gray Vireo classifier on all accuracy metrics. Using our proposed Hooded Warbler

and Grasshopper Sparrow classifiers, along with the BirdNET Gray Vireo classifier,

we explored the relationship between singing activity and nesting phenology using

meta-data collected at each study site. We observed little to no significant difference

in song occurrence and singing rate within the standard nesting cycle for all three

species. For Gray Vireos, there was a significant decrease in song occurrence after

failure, fledgling, and at a nest without eggs compared to the song occurrence and

singing rate during the nesting cycle. This distinct difference was not observed for

Hooded Warblers and Grasshopper Sparrows. Overall, the methods proposed in this

paper can be broadly adapted and applied to any vocal avian species. Given that

this research is the first step in a potentially much larger project, there are many

opportunities to fine-tune the approaches and extend the analysis.
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GLOSSARY

Autonomous Recording Unit (ARU) - Self-contained audio recording device

that researchers deploy to monitor the environmental acoustics of an area (ex. Au-

diomoth)

Data Processing Pipeline - a set of data processing elements connected in series,

where the output of one element is the input of the next one. The elements of a

pipeline are often executed in parallel or in time-sliced fashion

F1 score - a balanced measure of overall classifier performance combining precision

and recall. The F1 score is calculated as 2*[Precision * Recall]/ [Precision + Recall]

Nesting Phenology - the study of periodic events or stages and their timing and

duration in the nesting cycle

Spectrogram - a visual depiction of audio signal frequency as it varies with time

Phenoday - a day of the nesting cycle timeline. Date of first egg laid is day zero

Phenophase - a specific event in the nesting cycle (ex. incubation)

Precision - the proportion of apparent detections that correspond to true focal

species songs

Recall - the proportion of true target species song detect ions out of the total amount

of songs from the focal species

Song Occurrence - the fraction of recordings that contain at least one song out of

the total number of recordings for a certain grouping

Threshold - a confidence value above which a clip would be considered to have a

bird of interest song present
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1

Introduction

Nesting phenology describes the study of periodic events or stages that occur pre-

dictably in the seasonal nesting cycle of oviparous species. Understanding the nesting

phenology of avian species allows us to investigate how birds are adapting to climate

change along with other important avian behaviors. It also provides us with useful

insights on potential threats to species and phenological mismatch. Phenological

mismatch occurs when species change the timing or duration of phases in their life

cycle, which may then lead to disruptions in the life cycles of species they interact

with. Many species have adapted their nesting phenology with the changing cli-

mate, generally by starting the nesting cycle earlier in the season [1–3]. In order to

study these potential changes and create conservation strategies, it is imperative that

we have a better understanding of continent-wide multi-species nesting phenology.

However, there is currently no such program to undertake these studies for birds in

the United States. The research outlined in this paper is based on a pilot study

that is intended to be a first step toward developing procedures and data processing

pipelines that can be adapted to monitor nesting phenology at a continental scale.

Specifically, in this paper, we were interested in the nesting phenology of migra-

tory birds throughout the breeding season. The nesting cycle of most bird species

adhere to a typical pattern of nest building, followed by egg laying, incubation, caring
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for hatchlings, and caring for fledglings. Hatchling care differs from fledgling care in

that hatchlings are not yet able to leave the nest, whereas fledglings have left the nest

and are fed in various locations throughout the area. We use the term “phenophase”

to indicate a specific period in the nesting cycle. At any stage in this process, there

is a chance of failure due to predation, brood parasitism, or other causes of egg

mortality. When these types of failures occur, depending on resource availability

and seasonal timing, birds may start this nesting process again at a new nest. Pre-

vious work supports that vocalization activity changes with breeding cycle and is

a likely signal of change in phenophase [4–8]. Building upon this well-documented

relationship, we investigate, in this paper, the effectiveness of bioacoustic monitoring

approaches to study the relationship between nesting phenology and vocalization

activity.

Passive acoustic monitoring is a data collection technique, in which recording

devices take samples of a soundscape without a human present. It has become an

effective and widely used means to study ecological bioacoustics. Passive acoustic

monitoring utilizes autonomous recording units (ARU) to collect audio recordings.

ARUs are self-contained audio recording devices that researchers deploy to monitor

the environmental acoustics of an area. They can be programmed to record at

times of interest throughout the day, month, or year and generate a permanent,

consistent record of a soundscape that researchers can continually reference and

analyze. Researchers use this capability to take repeated samples of an area with less

human effort and disturbance of the environment. ARUs help reduce inter-researcher

variation in collecting data and allow us to study ecological bioacoustics in novel

ways [9]. ARUs can provide a more accurate representation of a soundscape, sounds

from an environment without a particular focus, than can be achieved with continual
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human disturbance. They are also ideal for use in study sites that researchers cannot

monitor well or where staff have limited bird identification expertise or time. ARUs

can greatly aid research on species distributions, phenology, effects of anthropogenic

noise, and social networks [10]. Researchers have used ARU recordings to detect

minute variations in vocalization patterns that humans may not be able to perceive

and identify birds in landscapes that are rare or endangered [10, 11].

Researchers are generally interested in isolating a particular signal from the data,

such as vocalization by a species of interest. Currently, identification of species

from ARU data is often done by researchers who listen to the recordings in order to

identify a focal species [12]. However, this approach is time-consuming and prone

to inter-researcher bias [13]. Recently, some researchers have developed machine

learning approaches to identify species from audio recordings [14–18]. Many of these

machine learning approaches employ image processing techniques on the collected

data. Image processing involves performing operations on an image to extract useful

information from it using some type of computer program or algorithm. In this

context, this procedure generally involves building a machine learning classification

model which takes spectrograms with annotated vocalizations as input and generates

output that informs us when our focal species is vocalizing within the time period of

the recording. This type of audio processing is commonly used to study animal and

specifically bird acoustics [14, 19, 20].

The BirdCLEF challenge evaluates current bird vocalization identification tech-

niques by providing a large-scale annotated vocalization training set and inviting

participants to develop identification methods. The most recent (2021) dataset con-

sisted of xeno-canto recordings and soundscape recordings. In 2015 and 2016, the

dataset consisted of only xeno-canto recordings. In 2017, the dataset added sound-
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scapes, and in 2019, the dataset was completely comprised of soundscape recordings.

Xeno-canto is a collaborative online database where people can upload audio clips

of known birds and provide information on the recording such as length, date, time,

location, type of vocalization, and other notes (xeno-canto.org) [21]. For the 2015

competition, Joly et al. employed a nearest neighbors approach and Lasseck et al.

utilized decision trees for classification [16, 17]. In 2016, Sprengel et al. relied on

the similarity between human speech and bird vocalization to identify bird vocaliza-

tions, using speech processing techniques [15]. Their method resulted in an average

precision score of 0.69. Lasseck, the winner of the BirdCLEF challenge in 2018 and

2019, developed a deep convolutional neural network in 2019 that achieved a mean

average precision of 0.36 and a retrieval mean average precision of 0.75 [18].

Outside of the BirdCLEF challenge, Kahl et al. developed a deep learning neural

network called BirdNET that can identify 3,000 of the world’s common avian species

[14]. BirdNET, developed by the Cornell Lab of Ornithology, is now the most com-

mon bird ID software used in the scientific community that can process data on

a large scale. While these large-scale identifiers are impressive and useful for pub-

lic education, it remains uncertain whether broad-scale, multi-taxa classifiers (like

BirdNET) are more effective for purpose-driven science focused on just a few focal

species. Consequently, for the purposes of the present investigation, we have chosen

to build our own data processing pipeline with the goal of optimizing performance

on detecting focal species. Developing our own methods gives us more flexibility to

manipulate specific parameters and procedures relative to the species of interest.

Here, we built individual species classifiers, evaluated those classifiers relative

to BirdNET, and conducted preliminary investigations of the relationship between

singing activity and breeding phenology for three migratory species, the Hooded War-
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bler (Setophaga citrina), Grasshopper Sparrow (Ammodramus savannarum), and

Gray Vireo (Vireo vicinior). We then developed a data processing pipeline, which

involves the use of species-specific, image-based acoustic convolutional neural net-

work classifiers trained on a mix of publicly accessible published reference recordings

and new field data to identify each species from ARU data. The classifiers were

built using open-source software (opensoundscape.org) that allows users to generate

custom data processing pipelines to detect the presence of species in field recordings

[22]. Using classified singing activity from field recordings, we asked the following

questions: can we detect changes in singing activity in response to changes in nest

state (e.g., when a nest fledges, or when a nest fails)? Can we detect a difference

between recordings taken at a nest versus recordings from random locations? Do

we see patterns emerge from singing activity in relation to phenophase and can we

determine differences in singing activity between different phenological stages? Are

there factors other than phenophase change that affect singing rate throughout the

nesting cycle or season? Do we see overall trends in the relationship between singing

and phenology among bird species? This research is ongoing and as we collect more

data, we hope to better understand these relationships.

5
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2

Methods

2.1 Data Collection

The data used in this research were collected as part of a pilot program to monitor

bird phenology and vocalization in the summer of 2021. The data came from four

study sites across the United States that vary widely in ecosystem and associated

bird communities. We collected data on Gray Vireos in the pinyon-juniper woodlands

of New Mexico, Grasshopper Sparrows in the prairies of Kansas, Hooded Warblers

in the mixed deciduous forests of Pennsylvania, and Seaside Sparrows (Ammodra-

mus maritimus) in coastal salt marsh of Connecticut. These four study species were

chosen ad hoc as all four were already being studied as part of intensive nest mon-

itoring programs by collaborators who were willing to work with us on this study.

Even though species choice was not random or planned, the species do span a wide

phylogenetic breadth of the oscine radiation, and have differing ecologies and breed

in widely different habitats (which may differ in their soundscape qualities). Due to

time constraints, analyses of Seaside Sparrow data are not included in this paper.

Throughout the season, we collected phenology and vocalization data on the

birds at the monitored nest sites. We summarized the nest data into seven variables

describing monitoring (nest location, nest status, deployment and removal of ARU,
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recording number, and SD memory card number), and four variables describing phe-

nology and productivity (date of first egg, clutch size, number of host bird eggs,

number of cowbird eggs, fledge/fail status, and date of fledge or fail). The vocaliza-

tion data were collected using Audiomoths, a brand of autonomous recording unit.

Each Audiomoth was programmed to record for 15 minutes at the start of every hour

for five hours of the day. The first recordings began at 5:30 AM local time and the

last recordings began at 11:30 AM local time. The Audiomoths were placed in plastic

bags to prevent water damage and animal tampering. They were then attached to

trees or other stationary objects throughout the study site (Figure. 1).

Figure 1: Autonomous Recording Unit at Pennsylvania Study Site. The

ARU is placed in a plastic bag sealed with duct tape to avoid water damage and

animal tampering and attached to a tree.
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In April 2021, each study site was provided with 25 AudioMoths. In May–June,

ten ARUs were placed at quasi-random locations around the study area. The other

15 ARUs were placed within five to ten meters of a nest, often within 1 day of nest

discovery. Most of the nest monitoring ARUs were placed during nest construction,

egg laying, or early incubation. At some sites, the nest monitoring ARUs were

redeployed to new nests after fledging or failure of a nest. AudioMoths were removed

from sites once breeding ceased (by September).

2.2 Species Phenology and Vocalization Description

Each of the species descriptions and parameters used in the phenology analysis were

drawn from relevant literature and reviewed by researchers familiar with the popu-

lations of each species at their specific study site.

2.2.1 Hooded Warbler

Hooded Warblers are a long-distance migratory species that typically nest in mixed

hardwood forests with dense understory. In Pennsylvania, females settle onto pre-

established male territories from May 7th to June 4th. Nest-building typically lasts

five to six days. After the nest is lined, the female will lay eggs on consecutive days

until the full brood is established [23]. Incubation then starts on the day that the

last egg is laid and spans 12 days (Chapman 1907, Bent 1953). After this, the eggs

generally hatch over a period of one to two days. After eight to ten days (the caring

for hatchlings stage), the young typically fledge [23].

A study found that 44% of Hooded Warblers with successful first nests have
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second broods, with the date of the first egg ranging from June 2nd to July 19th

[24]. For a second brood, the female remains with the same male and establishes a

new nest on the same territory, typically ten to fourteen days after fledging of the first

brood [23]. At any stage, nest failure may occur due to brood parasitism, predation,

or other factors. In our study, 60% (25/42) of nests associated with ARUs failed. Of

those nests, 10% (4/42) were affected by brood parasitism, with a 75% (3/4) fail rate

after parasitism (Table. 1). However, most nests failed from predation. In addition,

some lined nests never received eggs or the nests were abandoned for some other

reason. After a nest failure, Hooded Warblers will abandon the nest and attempt to

re-nest with the same mate in the same territory [23].

Hooded Warbler males sing starting at arrival on the breeding grounds and

throughout the breeding season. Hooded Warblers sing to attract mates and for

territorial defense [23]. Singing by females is sparsely documented, and believed to

be very rare [25]. Hooded Warblers have four to nine distinct singing patterns, which

can be grouped into “repeat” songs and “mixed” songs. The repeat songs consist of

about 4-5 notes repeated at a rate of 5-6/min (Figure. 2a). The mixed songs are

sung at irregular intervals at a rate of 10-12/min (Figure. 2b)[26].

Before mating, Hooded Warblers spend much of their time (50-60%) singing [23].

In terms of territorial defense, males will increase their singing rate in response

to a neighbor’s song [26]. However, after mating, the time spent singing drops to

20% during nest building and incubation. At this time, males are also less likely

to respond to a neighbor’s song [23, 26]. The amount of vocalization rises to 30%

during egg-laying, but then decreases during incubation, feeding hatchlings, and

feeding fledglings. The stage of the nesting cycle and the hour of the day influences

the rate of singing more than the day of the season or age of the individual [26].
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Figure 2: Hooded Warbler Singing Patterns from Field Data. (a) depicts a

repeat mode song type (b) represents one example of a mixed mode song type.

Males sing all day, but the highest rates of singing occur in the early morning

(dawn) and decrease throughout the day [23]. Females generally build their nests

in locations on a male’s territory that are farthest away from boundaries with other

neighbors. Males tend to sing on perches and often high in the canopy throughout

the territory. Unmated males spend 80-100% of their time singing, depending on if

a neighbor is singing [26].

2.2.2 Grasshopper Sparrow

Grasshopper Sparrows often inhabit grasslands with mixed vegetation and bare

ground, specifically tallgrass and shortgrass prairie in the East and Midwest United

States [27]. They generally settle on breeding grounds in mid-April. Males arrive

three to five days before females, and pair formation commences soon after females

arrive [28]. Nest building lasts two to three days and eggs are laid on consecutive days

10



after nest completion [29]. In a study conducted in Iowa, incubation typically lasted

for eleven days and the hatchling phase lasted nine days before fledging [30]. How-

ever, at our study site, the Grasshopper Sparrows fledge around five to six days after

incubation [31]. Grasshopper Sparrows commonly produce two broods. Typically,

the first brood occurs in late May and the second occurs in early July [28].

In our study, brood parasitism by Brown-headed Cowbirds (Molothrus ater) af-

fected 53% (9/17) of the nests in the ARU-associated nests, resulting in a failure rate

of 78% (7/9) for those nests. In total, 82% (9/17) of nests associated with ARUs

failed (Table. 1). Mammal predation and trampling by livestock were other common

causes of failure. After nest failure, Grasshopper Sparrows will frequently attempt

to re-nest multiple times throughout the breeding season [28].

Grasshopper Sparrow males sing throughout the mating and nesting season. They

have three distinct songs: a primary song, a sustained song, and a trill. Females trill

and call, but do not sing the primary or sustained song [32]. For the purposes of this

study, we have focused only on the primary and sustained song. The primary song is

mostly territorial, while the sustained song is more related to attracting a mate and

maintaining a pair bond [32]. The primary song is a 1-2 second buzzing preceded

by two to three staccato notes (Figure. 3a). The sustained song is a series of buzzy

notes that vary in pitch, which lasts for 5 to 15 seconds (Figure. 3b) [32]. Often, the

sustained song is preceded by the primary song, which might be used for the dual

purpose of territorial defense and mate attraction [29]. Males commonly sing from

fixed perches or on the ground, usually at the edge of the territory [29].
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Figure 3: Grasshopper Sparrow Singing Patterns from Field Data. (a)

depicts the primary song type (b) represents the sustained song type.

When males first arrive on the breeding grounds, they almost exclusively sing the

primary song in the morning, and do not sing later in the day. As more males arrive,

they sing the primary song more frequently throughout the day [32]. Within approx-

imately two weeks of arriving, the males start singing the sustained song (usually in

the evening) mixed with the primary song [32]. When territories are established, the

males start removing the primary song introduction from the sustained song [32]. In

general, the number of sustained songs increases when birds pair and the number of

primary songs remains mostly unchanged [29]. After mating, time spent singing de-

creases, but does not stop entirely. During egg-laying and incubation, the male sings

both songs frequently throughout the day [32]. This increase in singing during those

phases could suggest that the male is seeking extra-pair copulation [29]. During the

hatchling care phase, when feeding the young, Grasshopper Sparrows tend to sing

less [32].
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2.2.3 Gray Vireo

Gray Vireos are a short-distance migratory species that inhabit pinyon pine-Utah

juniper stands, one-seed juniper savannas, mixed juniper-oak (Quercus spp.) wood-

lands, and desert riparian communities in New Mexico [33]. They have been identi-

fied as a species of conservation concern since 1978 and are one of the least-studied

songbirds in North America [34].

Gray Vireos typically arrive on the breeding grounds in late April through early

May and form pairs within one to two days after females arrive [35, 36]. After

pair formation, nest building begins, which generally lasts five to six days [37]. In

a study collected from 32 nesting records in New Mexico, the median date of nest

construction for Gray Vireos was May 19th [33]. Eggs are laid on consecutive days

after the nest is complete [38]. The incubation period lasts around 11-14 days and

the nestling period is typically 12 days, but ranges from 9-15 days, after which the

young fledge [33, 35, 37, 39]. After fledging, the young chicks are still dependent

on adult care [40]. Gray Vireos may make up to six nesting attempts in the season,

however it is unclear if second brooding occurs at our study site [33–35].

In our study, brood parasitism by Brown-headed Cowbirds affected 24% (5/21)

of the ARU-associated nests, causing failure for each parasitized nest. In total, 71%

(15/21) of nests resulted in failure (Table. 1). Most of these failures can be attributed

to nests never being active (ie. the nest was built, but no eggs were laid). Others

failed due to predation or brood parasitism. After a nest failure, Gray Vireos will

abandon the current nest, and re-nest in a new location [36].

Gray Vireos sing when establishing and maintaining their territory, while at-

tracting a mate, during pair formation, and when informing a female of the male’s
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location [37]. Female Gray Vireos also sing, generally when females and males are

both at the nest. Gray Vireos sing in distinct syllables, which is the smallest unit

of sound produced by a bird [41]. The syllables consist of sounds that modulate up

and down [42]. Gray Vireos have a primary song (Figure. 4a), as well as a complex

song (Figure. 3b). The song length of the Gray Vireo is 0.18-0.35 seconds, and they

sing at a rate of 24-41 songs per minute [43].

Figure 4: Gray Vireo Singing Patterns from Field Data. (a) depicts the

primary song type (b) represents the complex song type.
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Males sing throughout the day at all stages of the nesting cycle [34]. Males sing

to females during nest construction, and the female will sing in response to the male

at the nest. During incubation, both male and female Gray Vireos will sing from the

nest [37]. Males tend to sing early in the morning, and generally stop by mid-day.

They may resume singing in the late afternoon, but at a slower pace. This daily

pattern seems to be consistent throughout the breeding season [37]. Unmated males

will sing throughout the day, and at a faster rate than mated males [37].

Table 1: Study Site Nest Fates and Clutch Size. For each species, researchers

in the area collected daily or weekly meta-data on the nests associated with ARUs.

This table outlines the aggregate fates and clutch sizes of the ARU-associated nests

for each species.

Hooded Warbler Grasshopper Sparrow Gray Vireo

ARU-associated Nests 42 17 21

Avg. Clutch Size 2.65± 1.03 2.92± 0.79 2.54± 1.05

Brood Parasitized Nests 4 9 5

Failed Nests 25 14 15

2.3 Identification of Vocalizing Species

In order to study song activity, we needed to first identify when our bird of interest

was vocalizing in a given audio recording. Using Opensoundscape, we developed a

data processing pipeline to identify each species from ARU data. We utilized this

pipeline to build classifiers for our three focal species.
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2.3.1 Training Data

To make our classifiers easier to train, more robust, and useful from year to year or in

different study sites, we chose to train them mostly on xeno-canto recordings. Field

recordings are long, noisy, and may only contain sparse bird vocalizations, which

makes annotation quite difficult and time consuming. Using xeno-canto recordings

(for which the bird of interest has already been identified as present in the record-

ings) greatly accelerates the process of annotating and allows for researchers that do

not have considerable experience with the vocalizations of the birds of interest to

annotate more effectively. For this analysis, we annotated recordings for both calls

and songs, but only trained the classifiers using song vocalization annotations.

We trained our model with data that included a mix of recordings in which the

bird of interest was singing (positives) and recordings in which the bird of interest

was not singing (negatives). For the positives, we used xeno-canto recordings for

which the bird of interest had already been identified as present. We annotated

the first 60 seconds of each xeno-canto recording that included our bird of interest

to reduce the time spent annotating and get a broader diversity of songs. For the

negatives, we used a mix of field data recordings from randomly placed ARUs and

xeno-canto recordings. To approximate the vocalizations from birds that might be

heard on our audio recordings, we chose three to four recordings of four to five birds

that were common in the study site of the bird of interest. For all of the negative

recordings, we excluded sections that contained any songs from our bird of interest.

We generated a training dataset that we used as input for our classifier by annotating

audio clips visualized as spectrograms from the xeno-canto recordings and our field

data.
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2.3.2 Annotation Process

For each spectrogram, we annotated the portions of the recording in which the bird

of interest was vocalizing using RavenLite, a free software for viewing and manipu-

lating spectrograms (ravensoundsoftware.com) [44]. Generally, we categorized bird

vocalizations as a call or song. However, some birds have common variations in their

songs or calls that make these vocalizations distinct from the other calls or songs.

We annotated vocalizations separately, depending on the commonality and distinc-

tiveness of a vocalization pattern. For each bird, we annotated the song as their

alpha code followed by either “song” or “call.” For Grasshopper Sparrows, we in-

cluded a “complex song” category as well. RavenLite has a point and drag interface

that we used to box and label the vocalizations. RavenLite automatically converts

these boxes into table entries with information on the start and end times of the

vocalizations (Figure. 5). We annotated for both song and call, but only included

the songs in our analysis.
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Figure 5: Annotation of Grasshopper Sparrow Song in RavenLite. The

y-axis represents frequency in hertz (pitch) and the x-axis represents time. The blue

boxed region surrounds the Grasshopper Sparrow song (three introductory notes

followed by a series of buzzy notes), which has a duration of ∼2.2 seconds beginning

at second 535.7 (minute 8:55.7) and ending at second 537.9 (minute 8:57.9). The

blue box corresponds to the Table entry under Selection 1.

To analyze the data, we used Python 3 with a virtual environment from the

Opensoundscape repository (opensoundscape.org) in a Python 3 kernel [22]. We

split the recordings into 3 second clips, which we labeled as positive or negative,

depending on the functions and parameters below. We counted a positive 3-second

clip as one song by the bird of interest. We chose a clip length of 3 seconds so that

each clip was large enough to contain a song, but small enough to not contain multiple

songs. To generate sets of clips from audio recordings and the corresponding “one-

hot encoded labels,” we adapted the code from the Opensoundscape documentation
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to work with our data.

We paired the recordings with their corresponding annotation file from Raven-

Lite. We split the audio into 3-second clips using the audio.split and save function.

Then, we generated labels using the one hot labels like function with the parame-

ters: min label overlap and min label fraction set to 3 and 0.5, respectively. For this

analysis, we only used the song labels as the classes for each species, including the

complex song label for Grasshopper Sparrows. We aggregated the one-hot encoded

labels for each class into presence/absence labels that we used for model training.

2.3.3 Model Training Process and Predictions

We created our model training dataset by combining the 3-second clips labeled as

present from the positive training data and the 3-second clips labeled as absent

from the negative training data. Our negatives consisted of the xeno-canto bird

negatives and the field negatives (∼15 min), with an 80:20 split. We then resampled

the positives and negatives to have an equal number of each (300 positives and 300

negatives for a total of 600 clips for each species).

We augmented our model with field data from randomly placed ARUs that ex-

cluded songs from our bird of interest (∼60 min). We refer to this data as the

“overlay data,” because the overlay data and training data form a composite image

that is X% overlay image and Y% training image. Overlay augmentation transforms

the pixel values of the images using a weighted average (Figure. 6). We use this

augmentation to make the training data representative of field data, which may have

songs that are quieter or oriented differently than the training data. This step is es-

pecially important when training with xeno-canto data, since xeno-canto recordings
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come from a variety of microphones and audio equipment and are sourced from a

variety of locations where the soundscape may not be the same as the soundscape

in the field data of interest. Additionally, they are often “targeted” by the record-

ing equipment, which reduces background noise and makes the target species’ songs

louder.

For each species, we first split the (∼600) annotated data samples into train-

ing and validation, with an 80:20 split. We preprocessed the training data with

the Opensoundscape CnnPreprocessor class, which loads audio files, creates spectro-

grams, applies specified augmentations, and returns a pytorch tensor. We set the

overlay weight parameter to 0.7; thus, the resulting training samples had a 70% con-

tribution from the overlay samples and a 30% contribution from the original training

samples. We used these augmented tensors to train our model.
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Figure 6: Spectrogram Before and After Augmentation. (a) 3-second clip

of a Grasshopper Sparrow song tensor (b) 3 second clip of a Grasshopper Sparrow

song tensor after augmentation with 70% contribution from the overlay sample.

For each species-specific model, we used a single-target Pytorch ResNet-18 model

with a softmax activation layer. We used pre-trained weights (image-net.org) and the

default learning rate, learning schedule, and regularization weight decay parameters.

We trained the model with 100 epochs and a batch size of 64. The model assigned

each 3-second clip a classification confidence score, with scores closer to 1 meaning

greater confidence that the clip contains a song from the bird of interest. The best

model was chosen based on the F1 score calculated at each epoch from the training

validation data. The training took approximately 20 minutes per species.

The final step of this process was to use our best trained model to identify if

the bird of interest was vocalizing in recordings from our field data. For Hooded
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Warblers, we predicted on ∼3,276 hours of field recordings. For Gray Vireos, we pre-

dicted on ∼2,556 hours of field recordings. For Grasshopper Sparrows, we predicted

on ∼1,600 hours of field recordings. For each species, we split these recordings into

3-second clips to predict the presence or absence of the bird of interest in these clips.

Prediction took approximately 4 hours per species.

2.4 Application to Phenology Parameters

For each species, we derived estimates of the time spent in each phenological nesting

stage from the literature and the researchers familiar with the species at each site

(Table. 2). We combined these estimates with the meta-data collected at each study

site to generate a nesting phenology timeline for each of the ARU-associated nests at

the site. The date of first egg, the fledge/fail date, and the clutch size were identified

from the meta-data, while the first day of nest building, the start of incubation, and

the hatch date were approximated.

We estimated the nest construction start date by subtracting the estimated nest

construction time from the date of the first egg. We estimated the incubation date

by adding the number of egg laying days (eggs laid per day * clutch size) to the

date of the first egg. We estimated the start of the hatchling care phase by adding

the incubation time to the calculated incubation date. We determined the location,

phenophase, phenoday, and day of the season for each field data recording by parsing

the time, day, and SD memory card number from the filename and aligning those

values to the nesting phenology timeline for each nest.
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Table 2: Duration of Phenological Stage Parameters for Each Species.

These nesting phenology phase durations were estimated from the literature or from

researchers familiar with the focal species at their study site. All values are in days,

unless otherwise noted.

Hooded Warbler Grasshopper Sparrow Gray Vireo

Nest Building 5 3 5

Hatching 1 1 1

Laying 1 egg per day 1 egg per day 1 egg per day

Incubation 12 11 14

Hatchling Care 9 6 12

To explore the relationship between the singing activity and nesting phenology,

we first needed to assign a threshold confidence value, above which a clip would

be considered to have a song from the bird of interest present. We annotated field

data and randomly selected 500 clips, with different ratios of positive and negative

clips. We generated ten datasets from 1 hour of recordings, with two of each ratio

type. The ratios were 400:100, 300:200, 250:250, 200:300, and 100:400. We chose

these different ratios to explore how the classifiers performed with different levels of

positive and negative clips and approximate potential splits in the full datasets. An

optimal threshold was calculated based on the highest average F1 score across the

reviewed subset of the field data with different splits of positive and negative clips.

The average precision and average recall associated with the optimal threshold are

shown in (Table. 3).
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Figure 7: Data Processing Pipeline. Meta-data on phenology and ARU record-

ings are collected in the field (Section. 2.1). A few field data recordings, along with

xeno-canto reocrdings of focal species and a few common birds in the area are anno-

tated, pre-processed, and combined to constitute the training data (Section. 2.3.2).

The classificaiton model is trained on the training data, and the best model is se-

lected to predict focal species identification on the field data recordings. An optimal

threshold is calculated using a reviewed subset of the field data with different splits

of positive and negative clips. The classified data is then thresholded and aggre-

gated from 3-second clips into full recordings (Section. 2.3.3). For each recording,

the singing rate and song occurrence is calculated. Next, each recording is aligned to

a nest location and phenophase or to a randomly placed ARU. Then, phenological

analysis begins (Section. 2.4). The inputs to the data processing pipeline are in blue

and purple, the intermediate results are in orange, and the output is in green.
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After selecting a threshold, we employed a hierarchical process to investigate the

relationship between singing activity and nesting phenology. First, we binarized

our singing rate data to consider the relationship between any singing activity and

phenological stage by looking at the fraction of recordings with at least one song. We

refer to this fraction of recordings as the song occurrence. This measure provides us

with some insight into the territoriality of the birds and whether they are singing near

the nest. Then, we removed the zero frequencies to examine the relationship between

singing rate, given that the birds are singing, and phenological stage. We compared

the singing activity between phenophases by running analysis of variance (ANOVA)

on the binarized data and singing rates grouped by phenophase and performed Tukey

HSD on the output of the ANOVA. We explored the effect of daily time differences

on these relationships. Lastly, we compared the across-nesting cycle fluctuations in

singing activity for data collected at nests to the across-season fluctuations in singing

activity for data collected from randomly placed ARUs.
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3

Results

3.1 Classifier Performance

For the Hooded Warbler and Grasshopper Sparrow, the recall from the proposed

classifiers was consistently high across thresholds (0.0-0.99). The recall for the Bird-

NET classifier dropped significantly as the threshold values increased. The recall

did not seem to vary with positive and negative splits. In contrast, for Gray Vireos,

the recall of the proposed classifier was higher than the BirdNET classifier, but not

significantly (Figure. 8).

For the Hooded Warbler and Grasshopper Sparrow, the BirdNET classifier had

a much higher precision at splits with more negative clips, but as the number of

positive clips increased, the difference between the BirdNet classifier and proposed

classifier became minimal. Both the BirdNET and proposed classifiers for Hooded

Warberls and Grasshopper Sparrows had better precision as the number of positive

clips increased. For Gray Vireos, the BirdNET classifier had a significantly higher

precision at all threshold levels than the proposed classifier. The Hooded War-

bler and Grasshopper Sparrows performed similarly across thresholds for all splits,

whereas the proposed Gray Vireo classifier increased precision dramatically at higher

thresholds for all splits (Figure. 9).
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Figure 8: Recall vs Threshold. Recall or true positive rate is calculated as [True

Positives]/[True Positives + False Negatives], considering only clips with confidence

≥ threshold. Recall represents the proportion of songs from the bird of interest in

the dataset that were detected by the classifiers out of the total amount of songs from

the bird of interest in the dataset. Each plot corresponds to a species. The solid line

represents the proposed classifier and the dotted line represents the BirdNET classi-

fier. The color of the line corresponds to the ratio of negative and positive clips for

that dataset. Red=400:100, dark blue=300:200, light blue=250:250, green=200:300,

yellow=400:100.
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Figure 9: Precision vs Threshold. Precision or True Positive Rate is calculated

as [True Positives]/[True Positives + False Positives], considering only clips with

Confidence ≥ Threshold. Precision represents the proportion of apparent detections

that correspond to true target species calls. Each plot corresponds to a species.

The solid line represents the proposed classifier and the dotted line represents the

BirdNET classifier. The color of the line corresponds to the ratio of negative and

positive clips for that dataset. Red=400:100, dark blue=300:200, light blue=250:250,

green=200:300, yellow=400:100.
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The area under the precision-recall curve (AUC) serves as a general measure of

model performance; a classifier with perfect precision and perfect recall would have

an AUC = 1. The precision recall curves and AUC values were calculated using the

PRROC package in R, which interpolates values across the full range of threshold

values (Figure. 10). The average precision-recall AUC values by proposed classifier

ranged from 0.64 to 0.96 for Hooded Warbler, from 0.59 to 0.93 for Grasshopper

Sparrow, and from from 0.71 to 0.94 for Gray Vireo (Table. 3).

The F1 scores were consistently high for the proposed Hooded Warbler and

Grasshopper Sparrow classifier at all thresholds, while the F1 scores for the BirdNET

classifiers decreased at higher thresholds, due to the poor recall. At lower thresh-

olds, the proposed Gray Vireo classifier had much lower F1 scores than the BirdNET

classifier, but at high thresholds they had similar values (Figure. 11).

The receiver operating characteristic (ROC) curve demonstrated that the Bird-

NET classifiers and proposed classifiers had generally good performance on distin-

guishing true positives (songs from the species of interest) from false positives (noise).

The ROC curve balances the true positive rate against the false positive rate. The

true positive rate is calculated as [True Positives]/[True Positives + False Nega-

tives]. The false positive rate is calculated as [False Positives]/[False Positives +

True Negatives]. The area under the (ROC) curve corresponds to the probability

that the classifier will assign a higher score to a randomly chosen true positive than

to a randomly chosen true negative. The proposed Hooded Warbler and Grasshopper

Sparrow classifiers mean ROC AUC values greater than 0.88, whereas the mean ROC

AUC for Gray Vireos was 0.81 (Figure. 12). The average ROC AUC, precision-recall

AUC, average maximum F1 scores, optimal threshold values, and average precision

and recall scores associated with the optimal threshold are listed in Table 3.
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Figure 10: Precision Recall Curve. The precision-recall curve illustrates the

tradeoff between sensitivity (recall) and specificity (precision). For each species, the

top plot corresponds to the precision recall curve for the proposed classifiers and the

bottom plot corresponds to the precision recall curve for the BirdNET classifiers.

The color of the line corresponds to the ratio of negative and positive clips for that

dataset. Red=400:100, dark blue=300:200, light blue=250:250, green=200:300, yel-

low=400:100. The precision-recall curves were generated using the PRROC package

in R, which interpolates values across the full range of threshold values.
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Figure 11: F1 Scores Curve. F1 score is interpreted as a balanced measure

of overall classifier performance combining precision and recall. The F1 score is

calculated as 2*[Precision * Recall]/ [Precision + Recall], considering only clips with

Confidence ≥ Threshold. The highest point on each curve represents the threshold

at which the model gives the best overall performance for each species if we consider

precision and recall to be equally important. Each plot corresponds to a species.

The solid line represents the proposed classifier and the dotted line represents the

BirdNET classifier. The color of the line corresponds to the ratio of negative and

positive clips for that dataset. Red=400:100, dark blue=300:200, light blue=250:250,

green=200:300, yellow=400:100.
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Figure 12: Receiver Operating Curve. The ROC curve plots the true pos-

itive rate against the false positive rate. The diagonal line represents a classifier

with no prediction value. The top plot corresponds to the proposed classifier for

a species and the bottom plot corresponds to BirdNET classifier for each species.

The color of the line corresponds to the ratio of negative and positive clips for that

dataset. Red=400:100, dark blue=300:200, light blue=250:250, green=200:300, yel-

low=400:100. The ROC curves were generated using the PRROC package in R,

which interpolates values across the full range of threshold values.

32



Table 3: Optimal Threshold Values and Classifier Accuracy Metrics. All

values were calculated with the reviewed subset of the field data for each species

with all positive:negative splits. The average AUC for the ROC and Precision Re-

call (PR) curve were generated using the PRROC package in R, which interpolates

values across the full range of threshold values. The average maximum F1 score was

calculated across all splits. The optimal threshold value was selected based on the

highest associated average F1 score across splits. The average precision and average

recall are associated with the optimal threshold, and were calculated across splits.

Hooded Warbler Grasshopper Sparrow Gray Vireo

Proposed BirdNET Proposed BirdNET Proposed BirdNET

Max F1 Score 0.83± 0.09 0.83± 0.08 0.84± 0.08 0.83± 0.08 0.79± 0.05 0.87± 0.01

ROC AUC 0.89± 0.02 0.88± 0.02 0.89± 0.02 0.89± 0.02 0.81± 0.01 0.94± 0.01

PR AUC 0.85± 0.11 0.83± 0.12 0.79± 0.11 0.80± 0.11 0.85± 0.07 0.94± 0.04

Threshold 0.48 0.14 0.60 0.15 0.71 0.02

Precision 0.74± 0.17 0.81± 0.14 0.78± 0.14 0.77± 0.14 0.90± 0.08 0.96± 0.04

Recall 0.93± 0.01 0.82± 0.02 0.90± 0.01 0.90± 0.03 0.67± 0.02 0.81± 0.02

3.2 Results of Singing Activity and Phenology Review

To investigate singing activity and phenology, we chose to use the proposed Hooded

Warbler and Grasshopper Sparrow classifiers, because they performed better than

or equal to the BirdNET classifier on 4/5 accuracy metrics. Additionally, for both

the Hooded Warbler and Grasshopper Sparrow recall curves, the BirdNET classifier

recall for all positive:negative splits rapidly declined as threshold values increased,
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which caused us to question the effectiveness of the BirdNET classifier’s recall abil-

ities, even at lower thresholds. We chose to use the BirdNET classifier for Gray

Vireos, since it outperformed our classifier on every accuracy metric.

For all three species, there was a significant decrease in song occurrence after

fledging compared to most stages during the nesting cycle. The singing rate also

decreased after fledging for Hooded Warblers and Gray Vireos. However, the rate did

not decrease for Grasshopper Sparrows. For all three species there was no significant

variation in song occurrence or singing rate between phases in the nesting cycle before

fledging, except for a significant increase in singing rate during the nest construction

phase for the Gray Vireos and a significant decrease in singing rate for Hooded

Warblers while caring for hatchlings (Figure. 13, 14).

For Gray Vireos, after nest failure, song occurrence and singing rate was signifi-

cantly lower than song occurrence and singing rate during most phases of the nesting

cycle before fledging. For Grasshopper Sparrows, song occurrence after nest failure

was significantly lower, but singing activity was not. For Hooded Warblers, we did

not observe a significant decrease in song occurrence or singing rate after nest failure

or at randomly placed ARUs. For Grasshopper Sparrows, the song occurrence at

randomly placed ARUs was significantly lower than song occurrence during most

stages of the nesting cycle before fledging, but the singing rate was not. For Gray

Vireos, the song occurrence and singing rate at randomly placed ARUs was signifi-

cantly lower than the song occurrence during most stages of the nesting cycle before

fledging. Overall, the singing rate for Grasshopper Sparrows was much higher than

the singing rate of Hooded Warblers and Gray Vireos (Figure. 13, 14).
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Figure 13: Pairwise Comparisons of the Song Occurrence Between

Phenophases. The height of each bar represents the proportion of recordings that

contain songs occurring in a certain phenophase (x-axis). The label at the top of

each bar is a pair-wise classification of significance. If two phases are associated with

the same label letter, there is not a significant difference in song occurence between

those phases. The stages are: N = Nest Building, L = Egg Laying, I = Incubation,

H = Caring for Hatchlings, AFl = After Fledge, AFa = After Fail, R = Randomly

placed ARU recordings, NWE = Nest without Eggs (Never active build). The sig-

nificance values and labels were generated using ANOVA and Tukey HSD.
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Figure 14: Pairwise Comparisons of the Average Singing Rate Between

Phenophases. Each boxplot represents the distribution of singing rates (per

minute) from recordings taken during a certain phase (outliers were removed for

clarity). The label at the top of each boxplot is a pair-wise classification of sig-

nificance. If two phases are associated with the same label letter, there is not a

significant difference in singing rate between those phases. The stages are: N =

Nest Building, L = Egg Laying, I = Incubation, H = Caring for Hatchlings, AFl

= After Fledge, AFa = After Fail, R = Randomly placed ARU recordings, NWE

= Nest without Eggs (Never active build). The significance values and labels were

generated using ANOVA and Tukey HSD.
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In terms of daily variation in singing, we observed that Hooded Warblers had a

significantly higher song occurrence between 6:30 - 9:30 AM and a lower song occur-

rence at 5:30 AM, and after 10:30 AM. Although the birds had a lower song occur-

rence at 5:30 AM, the singing rate was higher at 5:30 AM and decreased throughout

the day. We observed that Grasshopper Sparrows had a higher song occurrence at

5:30 AM and 10:30 AM, but from 6:30 AM-9:30 AM the song occurrence was lower

and not significantly distinct within those hours. However at 11:30 AM, there was

significantly lower song occurrence. The singing rate was much lower at 6:30 and

7:30 AM compared to 5:30 and 8:30 - 11:30 AM. We observed that Gray Vireos sang

the most from the hours of 6:30 AM to 9:30 AM. The song occurrence was lower at

5:30 AM and after 10:30 AM. Their singing rate was lowest at 5:30 AM, and mostly

consistent throughout the day when they were singing.

With regard to daily variation in singing across the nesting cycle, we observed a

high song occurrence for every species throughout the nesting cycle. After fledging,

the song occurrence started to decrease for Hooded Warblers. For Grasshopper

Sparrows and Gray Vireos, there was not enough data from nests to conclusively

state results. During the nesting cycle, we observed a singing rate around three

songs per minute for Hooded Warblers. For Grasshopper Sparrows, we observed a

singing rate of about four to seven songs per minute. Lastly, for Gray Vireos, we

observed a singing rate around one to three songs per minute (Figure. 15, 16).

At randomly placed ARUs, recording the soundscape of the study site throughout

the season, there was a general decline in song occurrence throughout the season for

Hooded Warblers and Gray Vireos (especially at the end of the season). We did not

observe this for Grasshopper Sparrows, which had consistently high song occurrence

at randomly placed ARUs throughout the season and then a dramatic termination
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of song occurrence in late July. However, in terms of singing rate, both Hooded

Warblers and Gray Vireos had mostly consistent rates at randomly placed ARUs,

which decreased at the end of the season. The Grasshopper Sparrow singing rate at

the randomly placed ARUs showed an increase around late June through mid-July,

and decreased in late July (Figure 17, 18).
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Figure 15: Song Occurrence Across the Nesting Cycle. The top graph of

a, b, c represents the average fraction of recordings with songs (song occurrence)

plotted against the nesting phenology day (phenoDay) from ARU-associated nests.

Day zero is associated with the date when the first egg is laid. The yellow rectangle

corresponds to the nest construction and egg laying phase duration, the orange rect-

angle corresponds to the incubation phase duration, and the darker orange rectangle

corresponds to the caring for hatchling phase duration (Table. 2). The bottom graph

of a, b, c represents the number of nests for which there are recordings for that day

of the nesting cycle. Fewer nests means that the average song occurrence is a less

reliable site-wide estimate.
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Figure 16: Average Singing Rate Across the Nesting Cycle. The top graph

of a, b, c represents the average singing rate plotted against the nesting phenology day

(phenoDay) from ARU-associated nests. Day zero is associated with the date when

the first egg is laid. The yellow rectangle corresponds to the nest construction and

egg laying phase duration, the orange rectangle corresponds to the incubation phase

duration, and the darker orange rectangle corresponds to the caring for hatchling

care phase duration (Table. 2). The bottom graph of a, b, c represents the number

of nests for which there are recordings for that day of the nesting cycle with nonzero

singing rates removed. Fewer nests means that the singing rate is a less reliable

site-wide estimate.
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Figure 17: Song Occurrence Across the Season. The top graph of a, b, c

represents the average fraction of recordings with songs (song occurrence) plotted

against the day of the season from randomly placed ARUs. May 1st = 121, June

1st = 152, July 1st = 182, and August 1st = 213. The bottom graph of a, b, c

represents the number of ARUs with recordings containing songs for that day of the

season. Fewer ARUs mean that the average song occurrence is a less reliable site-

wide estimate.
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Figure 18: Average Singing Rate Across the Season. The top graph of a,

b, c represents the average singing rate plotted against the day of the season from

randomly placed ARUs. May 1st = 121, June 1st = 152, July 1st = 182, and

August 1st = 213. The bottom graph of a, b, c represents the number of ARUs with

recordings for that day of the season with nonzero singing rates removed. Fewer

ARUs mean that the average singing rate is a less reliable site-wide estimate.
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4

Discussion

4.1 Classifier Considerations

While the BirdNET Hooded Warbler classifier had the same average F1 score and a

higher average precision, our proposed Hooded Warbler classifier had a far greater

recall and greater ROC AUC and precision-recall AUC. The proposed Grasshopper

Sparrow classifier had a higher average F1 score and average precision than the

BirdNET classifier, but the same ROC AUC, the same average recall, and a lower

precision-recall AUC. Overall, there was no large significant differences between the

accuracy metrics of the Grasshopper Sparrow classifier and BirdNET classifier. For

Hooded Warblers, the only large difference between the proposed and BirdNET

classifier was average precision and recall (Table. 3).

For the Hooded Warbler and Grasshopper Sparrow, the BirdNet classifier recall

quickly declined, falling far below the proposed classifiers almost immediately (Fig-

ure. 8). This result may be related to the BirdNET classifiers having a harder time

identifying vocalizations from the bird of interest in noisy soundscapes. Unfortu-

nately, this type of detection is imperative to answer our research questions. The

BirdNET classifiers may be trained on a much larger dataset which is why their

precision was so high. This high precision and low recall is reflected in the very low
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optimal threshold values for the BirdNET classifiers (Table. 3).

For Gray Vireos, we noticed in the validation recordings and in the general field

data that the recordings had very little background noise and the Gray Vireo vo-

calizations were very clear. There did not seem to be an abundance of sounds from

other birds or sources in the area, unlike in the Grasshopper Sparrow recordings in

which there were a lot of wind, insects, and other birds, and the Hooded Warbler

recordings in which there were a lot of other birds. We think the BirdNET classifier

performed better than our classifier on the Gray Vireo data because the lack of back-

ground noise may have increased the recall of BirdNET classifier substantially. In

general, for the Gray Vireos, both classifiers did not have high recall. We think this

is due to the variation in types and lengths of song syllables. Therefore, in regions

where there is not much background noise and/or the birds sing in or near the nest,

using a BirdNET classifier might be sufficient.

Interestingly, we would have suspected that the BirdNET classifier would have a

high false positive rate, because they should also be identifying calls from the focal

species as presences. These presences would be classified as false positives, because

we only annotated for songs in our reviewed subset of the field data. However, this

was not demonstrated in the ROC curves (Figure. 12b, d, f). We hypothesized that

the BirdNET classifier does not perform very well at detecting calls of species. If

we had trained our classifier on calls, they may have substantially outperformed the

BirdNET classifier.

We noticed that all classifiers had difficulty registering quieter sounds. We expect

that this difference in confidence was due to the training data since, as was mentioned

earlier (Section. 2.3.3), xeno-canto recordings are often targeted at the species of
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interest, reducing background noise and making the target species songs louder. The

reason this poses an interesting problem is that for a species such as the Gray Vireo

that sings from the nest, the classifier will accurately identify those songs and may

not register songs from other Gray Vireos in the area. If we are only interested in

songs from the birds using the nest, this difference in confidence may be beneficial,

since presumably the classifier would not identify Gray Vireo calls from far away.

However, for a species such as the Grasshopper Sparrow or Hooded Warbler that

sing from perches, the classifier might not be able to register songs from the birds

associated with a certain nest because they are singing far away from the nest.

4.1.1 Potential Modifications and Future Considerations

Our classification procedure could potentially be improved by considering and ex-

perimenting with a few possible adaptation strategies. Firstly, our singing rate was

based on the number of 3-second clips that contain a song within a recording. How-

ever, some songs are shorter than 3 seconds and some are longer. This discrepancy in

song length and clip length could result in situations where songs are double counted

or missed. This limitation could potentially be addressed by varying the clip size

depending on the species and its song length.

With regard to the training data, the accuracy of the model would likely be im-

proved if the person annotating the xeno-canto training data had greater experience

with the vocalizations of the bird of interest. One could also explore manipulating

the overlay parameter weighting, the positive and negative split, or including the

negative xeno-canto birds in the overlay dataset to see if recall and confidence values

improve. Given that the BirdNET approach has excellent precision, but struggles
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with recall, we could possibly experiment with using our proposed classifiers and

BirdNET in tandem to accurately detect and identify focal species.

In terms of the validation data, we also did not explicitly annotate the reviewed

data with a loud or soft label, but this may be helpful in the future to determine

how well the classifier is registering softer sounds. With this data, one could also

attempt to measure distance from an ARU using the intensity or pixel value of the

spectrogram as a proxy. If we are only interested in vocalizations within a certain

radius of an ARU, we could devise a threshold value to remove vocalizations that

are too quiet.

4.2 Phenology Considerations

While we uncovered some interesting preliminary results, this research is ongoing

and the analysis and conclusions are subject to change as we learn more. It is also

worth noting that this data was collected from one year and from as few as 17 nests

(Table. 1).

Our hierarchical approach for investigating singing activity and nesting phenol-

ogy provided us with insight into different behavioral cues for each species. Song

occurrence informs us of how often birds are singing throughout the day, which re-

lates generally to territoriality and proximity to the nest while singing. An increase

in song occurrence could signify a bird warning others to stay away or raising an

alarm. It could also mean that the bird is spending more time near the nest. Singing

rate measures the number of songs per minute given that a bird is already vocalizing.

Singing rate could inform us about aggression signaling or the level of danger that a

threat poses [45]. Song occurrence and singing rate could also be measures of mate
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attraction or male quality. However, at our nest sites, it is unlikely that the ARUs

are registering these signals since mating has already commenced [46].

4.2.1 Hooded Warbler

For Hooded Warblers, we think that the noted significant decrease in singing rate and

song occurrence after fledge happens because a successful fledging will most likely

occur at some point later in the season. At this time, other Hooded Warbler males

may have already settled into their own nests and territories. The probability that

a female will attempt a second brood or renest rapidly declines in July [23, 47]. It

seems likely that after a successful fledge, late in the season, there is less of a need

to defend the territory from other males, thus the reduction in song.

We observed that there was not a significant difference in song occurrence and

singing rate at a nest after failure, at a nest without eggs, and from ARUs at randomly

placed locations compared to the other phenophases. We hypothesized that this may

have occurred for a few different reasons. Our first theory was that because failures

can occur anytime throughout the season, after a failure, there are still other Hooded

Warblers in the area that the male at the nest is defending his territory against. Our

second theory was that failure caused by cowbirds could potentially result in delayed

abandonment of the nest. Interestingly, the singing rate at randomly placed ARUs

was higher than during the hatchling phase, after fledge, after failure, and at a nest

without eggs. This result could be due to the randomly placed ARUs registering

more unmated males that do not have a set territory [23].

Another factor to consider is that females frequently nest near territory bound-

aries and Hooded Warblers do not always sing near the nest. An ARU placed at a
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nest might be registering songs of multiple males regardless of the nest stage. This

possibility may also explain why we did not observe any significant difference in song

occurrence or singing rate throughout the standard nesting cycle (nest building, lay-

ing, incubating, and caring for hatchlings), since changes in singing activity between

these phases are documented in the literature [26].

4.2.2 Grasshopper Sparrow

The higher song occurrence during the nesting cycle compared to after fledging or

after failure are what we would expect to see given that after fledging or a nest failure,

Grasshopper Sparrows generally abandon the nest. With regard to the randomly

placed ARUs, we observed increased song occurrence in or near the nest rather than

in random locations throughout the site. Grasshopper Sparrows generally perch 10-

20 meters from the nest, so randomly placed ARUs that are not within a male’s

territory might not register songs.

We observed that the mean singing rate during egg laying and incubation was

higher than during nest construction and hatchling care, which was consistent with

the literature [32]. However, the difference was not significant. In general, the singing

rate was not significantly different for any nest state or at randomly placed ARUs;

thus, Grasshopper Sparrows seemed to change when they sang, but did not seem to

markedly change the rate at which they sang.

We observed that the singing rate was low in the beginning of June (152-165),

increased in late June through mid July (165-190), and then decreased again from

late July through August (190+). This pattern could possibly be explained by the

timing of second broods, which tend to occur in early July and may correspond to
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an increase in singing rate due to mate attraction, mate protection, or increased

aggression [28]. The decline is consistent with Grasshopper Sparrow behavior at the

study site, since they have been observed to sing less frequently toward the end of

the breeding season (mid- to late-July and after).

4.2.3 Gray Vireo

The decrease in singing rates and song occurrence during the nesting cycle compared

to after fledging, after a nest failure, and at randomly placed ARUs are what we

would expect to see given that Gray Vireos sing at the nest throughout the nesting

cycle, and abandon the nest after failure and fledging. Within the nesting cycle,

we did not observe a significant difference in song occurrence. However, the singing

rate during incubation and caring for hatchlings was significantly lower than during

nest construction. During nest construction, females respond to the male song,

which might explain this difference. The increase in singing rate might be the ARU

registering the female and male call and response.

The decrease in song occurrence and singing rate throughout the nesting cycle

and season are consistent with the literature [37]. After phenoday 20 in the nesting

cycle, there is not enough data to state a conclusion from the results. At randomly

placed ARUs, the amount of singing seems to stay constant from mid- to late June

and then starts to decrease throughout August, which is consistent with the literature

[37].

While at first glance, the Gray Vireo singing rate throughout the nesting season

did not seem consistent with the literature estimate of 24-41 songs per minute. How-

ever, we noted in the field data that Gray Vireos did not often sing for the entire 15
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minutes [43]. They tended to sing in two-to-3-minute bouts and then stop, which

might explain why the singing rate is deflated in our results.

4.2.4 Future Research and Use Consideration

Given that this research is the first step in a potentially much larger project, there

are many opportunities to extend the analysis and fine-tune the approaches. One

potential extension could be to investigate the relationship between different types of

vocalizations and phenology. This extension of the research could be undertaken by

including annotations for calls, trills, or other types of vocalizations and training sep-

arate classifiers on each type of vocalization or training one multi-target model. This

idea could be further extended to look at differences in vocalization and vocalization

rates between different sexes or ages.

With regard to the phenology measures, a further adaptation of this approach

could involve the integration of more information from the observations taken by

researchers at the study site or more realistic sampling distributions of phenological

phase durations. This adaptation would make the analysis more biologically relevant

and include more realistic nest-specific variation.

In terms of exploring the relationship between vocalization rate and phenological

day of day of the year, we could attempt to fit a curve to the data using a generalized

additive model (GAM) or another non-linear approach. As we acquire more data

over the years, we will be able to construct more robust and accurate models to

interpret these relationships. At this stage, there were not enough data to generate

a reliable model. With an accurate model, we could potentially predict the pheno-

logical timeline or even phenological stage of a bird from a series of time-stamped
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recordings. We might also be able to determine when a nest has fledged or failed

from changes in vocalization or vocalization rate.

Most importantly, for the continuation of the project, the method outlined in

this paper can be broadly applied to any vocal avian species. With some minor

modifications, it could also be adapted to study the phenology of any species that

has modular singing rates throughout its breeding cycle. The classifier can be trained

on any annotated audio recordings and the phenology analysis can be adapted to

include any number of stages for any time duration.
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