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ABSTRACT OF THE THESIS 

 

The Effectiveness of Copulas  

for Modeling Compound Climate Extreme Events 

in Boulder County, Colorado 

 

by 

 

Surabhi Agrawal 

Master of Science in Statistics 

University of California, Los Angeles, 2022 

Professor Karen McKinnon, Chair 

 

This paper investigates the effectiveness of copula models for understanding, estimating, and 

predicting compound climate extreme events. It focuses on the bivariate temperature-humidity, 

temperature-wind speed, and wind speed-humidity distributions within the Boulder County, 

Colorado region. Climate model simulation data is bootstrapped to investigate the variability of 

the choice of copula families and accuracy of extreme event probability predictions given 

different lengths and internal variability of climate data. This showed that longer data records 
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have lower bias and variance than shorter data records in estimating the true probability of a 

compound extreme event. Fitting the ideal copula models to daily summary data from the region 

revealed that although there has been a slight increase in the frequency of the compound extreme 

events, this increase is within the expected range of sampling variability. 
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1. Introduction 

A large number of climate extremes have been observed in recent decades. As anthropogenic 

climate change continues, the frequency of hot climate extremes is expected to increase, posing a 

threat to agriculture, ecosystems, and natural resource availability (Coumou and Rahmstorf 

2012; Rummukainen 2012). Some of the most negative impacts of climate change observed have 

been caused by multiple co-occurring climate extremes, such as combined extreme precipitation-

temperature, hot-dry, hot-humid, and precipitation-wind events. These simultaneous events, 

termed “compound extremes,” have a higher probability of impacting ecosystems than each 

extreme individually (Sedlmeier et al. 2016). Since dependencies often exist between the 

simultaneous extremes (Leonard et al. 2014; Martius et al. 2016), it is not enough to simply 

analyze each extreme individually. Separate analyses of the extremes often lead to 

underestimation or overestimation of the compound extreme probabilities. For example, Singh et 

al (2021) found that a warm-dry compound extreme was estimated to have a 100-year return 

period under independence assumptions but found to be 60 years when the joint dependency 

structures were modeled using copulas.  

 

We are particularly motivated by the recent winter fires in Boulder County, Colorado. In 

December 2021, the Marshall fire swept through Boulder County, Colorado. This was the most 

destructive fire in Colorado’s history. This fire was alarming for two reasons: 1) it occurred in 

the winter, and 2) it moved into densely populated areas. Normally, the ground is too moist from 

the snow for fires to spread. Wildfires in the American West generally occur in the forests and 

wildlands. Temperature, humidity, and wind extremes created the perfect conditions for such a 
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devastating fire to occur. In the months preceding the Marshall fire, Colorado experienced a 

strong drought. The fall was also unusually warm. This combination of low precipitation and 

higher temperatures resulted in drier weather. Additionally, the unusually high wind speeds, up 

to 105 mph, spread the unusually timed wildfire to populated regions (Chuck 2022; “Colorado” 

2021). We will focus on the resulting bivariate compound extremes: hot-dry, hot-windy, and dry-

windy events.  

 

In this study, we will be focusing on understanding how well copula models perform to 

understand, estimate, and predict compound extreme events within the climate context.  

 

Copulas are commonly used to model bivariate compound extremes because they allow the 

marginal distributions to be separated from the dependence structure (Nelsen 2007). Copulas are 

very commonly used in modeling climate extremes. Copulas are functions that couple a joint 

probability distribution to the marginal distributions, allowing us to separate the marginal 

distribution of each variable from the dependence structure between variables. Copulas are a 

special type of multivariate cumulative distribution functions for which the univariate marginal 

distributions are uniformly distributed between 0 and 1 (Hao 2018a). This allows copulas to 

encode strong assumptions about the dependence structure of the multivariate distribution 

through the choice of a copula family. Although copulas have previously been used to model the 

impact of hot, windy, and dry compound extremes (Tavakol et al. 2020), there is little work on 

the influence of sampling on these results, which is the focus of this study. 

 

The meta-Gaussian model is a specific type of copula model that can represent a full range of 
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association and allows for flexible marginal distributions (Kelly and Krzysztofowicz 1997), 

which is essential to accurately modeling compound extremes. Under the meta-Gaussian model, 

the variables are independently transformed to the normal variate using the normal quantile 

transformation (Kelly and Krzysztofowicz 1997). The resulting multivariate normal distribution 

is used to conduct joint and conditional analyses of the variables in consideration. A benefit of 

the meta-Gaussian model is that it has an explicit form, even in high dimensions (Hao 2018b). A 

drawback is that the meta-Gaussian model might not accurately classify dependence in the 

extreme tails of the distribution (Wang et al. 2014).   

 

It is essential that the statistical methods we use to model compound climate events are flexible 

enough to accurately estimate the extreme tails values of the joint distributions (AghaKouchak et 

al. 2014; Zscheischler et al. 2018). Copulas often are not flexible enough to accurately model 

higher dimensional compound extremes (Aas et al. 2009). A copula family must be chosen in 

order to use a copula modeling approach. This choice of family creates strong assumptions about 

the tail dependence structure of the distribution. Consequently, some models will choose 

different families for different regions to account for spatial variation in the dependence structure 

(Ribeiro et al. 2019), although these results can challenge interpretability because we expect 

there to be spatial structure in dependence structures. This can make copula models difficult to 

interpret while nonparametric models can allow for greater flexibility (Cooley et al. 2019). 

 

Quantile regression and Markov chain models are also commonly used to model compound 

climate extremes, as we now review. 
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Quantile regression is commonly used because it is flexible and semi-parametric (Koenker and 

Bassett 1978). This method gives a nonparametric framework to model the way extreme 

percentiles of a conditional distribution change compared to the center. Unlike copulas, quantile 

regression doesn’t require a set of assumptions to be made about the entire distribution. Although 

quantile regression is successful in detecting the interactions between variables but still has 

challenges performing accurately at high quantiles under limited sample sizes (Friederichs and 

Hense 2007).  

 

Under anthropogenic climate change, the frequency, intensity, spatial extent, duration, and 

timing of extreme weather is changing, both individually and in combination with each other. 

However, there is very limited knowledge about the dynamical behavior of climate extremes. 

Markov chain analyses have been used to understand the dynamical nature of climate time 

series, both estimating past events and predicting future events. Markov chain analyses can also 

be a useful model validation tool for other analyses of compound extremes (Sedlmeier et al. 

2016).  

 

Our understanding of climate trends is strongly influenced by internal variability. Internal 

variability is the naturally occurring climate variability that results from the climate system 

processes. These can include the interactions between the land, oceans, and atmosphere.  

Different realizations of internal climate variability would result in different sets of observed 

data. (Deser et al. 2012). Additionally, within climate research, we often only have access to 40-

50 years of climate data records. So, it is also important to consider the impact of limited data 

availability on the accuracy of copula models of climate extremes. 
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The aim of this study is to examine the implications of the assumptions made when choosing 

copula families for modeling compound climate extremes in terms of accuracy and 

interpretability. We intercompare the performance of the various copula models on temperature, 

humidity, and wind speed for climate model simulations and daily observations from Boulder 

County, Colorado to answer three questions. First, how well, in terms of bias and variance, can 

copula models estimate the true probability of a compound extreme even given 50-100 year long 

data records? Second, how much does the choice of copula family vary given different lengths 

and observations of data? Third, how, if at all, have the bivariate temperature-wind speed, 

temperature-humidity, and wind speed-humidity changed over recent decades, alongside global 

climate change? We address the first two questions by generating many potential data records of 

varying lengths by bootstrapping climate model simulation data from the gridbox closest to 

Boulder, Colorado. We address the third question by fitting the copula models to two different 

time periods (January 1983-December 2002 and January 2003-July 2022) of daily summary 

observational data from Broomfield, Colorado. 

 

The rest of the study is organized as follows. The datasets are described in Section 2 and 

methodology are described in Section 3. The results are presented in Section 4, and summarized 

and discussed in Section 5. 
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2. Data 

2.1 Community Earth System Model Version 2 

In order to gain a preliminary understanding of the properties of the various copula families and 

the impact of data record length on copula fit, we use simulated climate model data from the 

Community Earth System Model Version 2 (CESM2), a fully coupled, open-source, 

comprehensive global climate model which provides simulations of past, present, and future 

climates on Earth. CESM2 includes coupled simulations of ocean, atmosphere, land, sea-ice, 

land-ice, river, and waves (Danabasoglu et al. 2020). The stationary climate state data comes 

from the pre-industrial control simulation, which provides a full stationary record assuming pre-

1850 climate conditions. The data includes 2,000 simulated years. We restrict the model 

simulations to data points from the extended winter (November - March). We removed January, 

February, and March of the first year and November and December of the last year from the data 

to only consider fully simulated seasons.  

 

We focus on wind, humidity, and temperature model outputs from a gridbox close to Boulder, 

Colorado. We use the temperature at a reference height of 2m above ground (TREFT), humidity 

measurements from the same reference height (QREFT), and wind speed (U10). The bivariate 

distributions from the 1999 simulated extended winters are shown in the top row of Figure 2.1. 

 

2.2 Global Summary of the Day 

We further use data from the Global Summary of the Day (GSOD) obtained through the National 

Oceanic and Atmospheric Administration’s (NOAA) National Centers for Environmental 
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Information (NCEI) website to investigate whether there has been a change in the temperature, 

humidity, and wind speed bivariate distributions over time. The GSOD data summarizes the 

hourly measurements from the Integrated Surface Database (ISD). The ISD is a global database 

containing hourly surface observations from the 1950s to present, which integrates wind, 

temperature, dew point, cloud, sea level pressure, and other climate variables from over a 100 

data sources.  

 

We pulled daily-average temperature, wind speed, and dew point observations from the 

Broomfield Jefferson Airport weather station in Boulder County, Colorado. These were the 

weather stations that had the longest continuous data record in the Boulder County region, 

containing continuous daily observations from January 1983 to July 2022. We filtered the data to 

only consider the extended winters (November - March). The GSOD data does not contain 

measurements of specific humidity. Instead, we use dew point, which is the temperature to which 

the air must be cooled to achieve a 100% relative humidity. We also converted the temperature 

and dew point observations from Fahrenheit to Kelvins and wind speed observations from knots 

to meters per second to align with our analysis of the CESM data. The bivariate distributions 

from the data are shown in the bottom row of Figure 2.1. 

 

We split the data into two time periods, January 1983 to December 2002 and January 2003 to 

July 2022, to understand how these patterns may have changed over time, particularly in terms of 

climate change.  
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Figure 2.1. The bivariate density plots of temperature-humidity, temperature-wind speed, and wind 

speed-humidity from daily observations in the 1999 simulated extended winters in the CESM2 dataset are 

shown in the top row.  The bivariate density plots of temperature-dew point, temperature-wind speed, and 

wind speed-dew point from the 1983-2022 GSOD dataset are shown in the bottom row. The color bar 

shows the number of occurrences of the bivariate observation within the dataset. Yellow regions are more 

frequently observed than blue regions. 
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3. Methodology 

3.1 Copulas 

Copulas are multivariate cumulative distribution functions that allow us to separate the univariate 

marginal distributions from the dependence structure (Nelsen 2007). Consider two variables X1 

and X2 with continuous marginal cumulative distribution functions F1 and F2. Then, the 

transformations Ui = F(Xi) are uniformly distributed between 0 and 1. Define the inverse of F1 

and F2 as Fi
-1(u) = min{Fi(x) = u}. The copula of X1 and X2 is the cumulative distribution 

function of U1 and U2: C(u1,u2) = Pr(U1 <= u1, U2 <= u2). By the construction of the Ui variables, 

C(u1,u2) = Pr(X1 <= F1
-1(u1), X2 <= F2

-1(u2)). 

 

There are many options for copula families. This study focuses on Gaussian, t, Frank, Clayton, 

and Gumbel copulas. 

 

The Gaussian copula is defined as: 

C(u1,u2) = Φ[Φ-1(u1), Φ
-1(u2)] 

where Φ-1 is the inverse cumulative distribution function of the standard Gaussian distribution, 

and Φ is the bivariate joint cumulative distribution function of a Gaussian with zero means and 

the covariance matrix ∑ of U1 and U2. 

 

The t copula is defined as: 

C(u1,u2) = t[t-1(u1), t
-1(u2)] 
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where t-1 is the inverse student t function, and t is the cumulative distribution function of 

bivariate student t distribution with dependence structure defined by the 2x2 matrix ∑ of the 

linear correlation parameters of u1 and u2. 

 

The Frank copula is defined as: 

C(u1,u2) = -(1/θ) log[1 + ((exp(-θu1) - 1)(exp(-θu2) - 1))/(exp(-θ) - 1)] 

 

The Gumbel copula is defined as:  

C(u1,u2) = exp[-((-log(u1))
θ + (-log(u2))

θ)1/θ] 

 

The Clayton copula is defined as:  

C(u1,u2) = [max{u1
-θ + u2

-θ -1, 0}]-1/θ 

 

3.2 Metrics 

3.2.1 Bivariate Exceedance Probability of 99.9% Thresholds 

In order to understand the accuracy and interpretability of various copula families on compound 

climate extremes, we are interested in the tail behavior of the copula fits. We particularly focus 

on 99.9% extreme tails. We are interested in high temperature, low humidity, and high wind 

conditions due to their high fire risk, so we consider a 99.9% threshold for temperature, 0.1% 

threshold for humidity, and 99.9% threshold for wind speed. These thresholds are defined as the 

99.9% (or 0.1%) quantile value in the datasets and are shown in Table 3.2.1.1. We are interested 

in the predicted probability of bivariate exceedance of the threshold values. For example, if we 

were interested in the temperature-humidity distribution for the CESM2 data, we look at the 
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probability a copula model predicts of observing temperature value of 284.6027 K or higher and 

humidity value of 0.0004 kg/kg or lower. 

  

Table 3.2.1.1. The 99.9% (or 0.1%) threshold values from the simulated extended winters from the 

CESM2 and GSOD data. Note that we observe specific humidity in kg/kg for the CESM2 data and dew 

point in Kelvins for the GSOD data. 

 Temperature (99.9%) Humidity (0.1%) Wind Speed (99.9%) 

CESM2 284.6027 K 0.0004 kg/kg 11.3078 m/s 

GSOD 292.2580 K 246.5485 K 13.8879 m/s 

 

3.2.2 Bayesian Information Criterion  

We use the Bayesian Information Criterion (BIC) to cross-compare the fits of various copula 

families. We calculate the BIC values of the estimated copula probability values for each of the 

bivariate climate event observations. A lower BIC value indicates a better model fit. This 

approach has been used in the Multivariate Copula Analysis Toolbox (Sadegh et al. 2017).  

 

The BIC is defined as BIC = k*ln(n) - 2ln(L_hat) where k is the number of parameters, n is the 

sample size, and L_hat is the maximized likelihood of the model on the data. 

 

We use a modified version of the BIC rewritten in terms of the residual sum of squares (RSS) 

under the assumption that the model errors are independently, identically, and normally 

distributed. The model errors are defined as follows: 

 

Let X and Y be two climate variables. Consider the bivariate climate event (X = x, Y = y). We 

estimate the “empirical” probability of bivariate exceedance of the event as the proportion of the 
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observations within our data record for which X ≥ x and Y ≥ y. Then, we define the model errors 

as the absolute difference between the predicted copula probability of bivariate exceedance of 

the event and the “empirical” probability.  

 

The modified version of the BIC is BIC = n*ln(RSS/n) + k*ln(n). It is important to note that we 

removed a constant of n + n*ln(2π) from this version of the BIC. Since this constant only 

depends on the sample size, which remains consistent across the different models we 

intercompare, this does not impact the model selection. Consequently, this version of the BIC is 

negative when RSS/n is less than 1. Due to the seasonality of climate data, we have violated the 

normality and independence assumptions. This is an important topic to further explore in future 

research. 

 

3.3 Uncertainty Estimates and Limited Data 

Since we often only have access to 40-50 years of climate data records, we want to understand 

the accuracy of copula models when applied to limited data records. We use block bootstrapping 

to investigate whether we can reproduce a parameter spread if a different realization had been 

observed, with block size of one winter to maintain the seasonality of the data. 

 

We use the case resampling bootstrap scheme described below: 

1. The dataset contains daily weather observations for j years. Randomly sample i years from 

the j years with replacement. 

2. Acquire the daily temperature, humidity, and wind speed values from the summers 

corresponding to those years. 
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3. Fit the copulas and find the BIC and probability of bivariate exceedance of 99.9% 

threshold events. 

4. Repeat Steps 1-3 N=1000 times.  

 

We perform this scheme across two scenarios: 

1. We estimate the copula probabilities using multiple, shorter, quasi-independent 

datasets derived from the full 1999 year simulation (i < j; i = 30, 50, or 100; j = 1999). 

These are mentioned as 30 from 30, 50 from 50, and 100 from 100 throughout this 

paper. 

2. We estimate the copula probabilities using a single shorter data record (i = j = 30, 50, 

or 100). These are mentioned as 30 from 1999, 50 from 1999, and 100 from 1999 

throughout this paper. 

 

3.4 Coding Packages 

The copula estimates were generated using the copulafit and copulacdf functions in the stats 

package in Matlab. The data processing and analysis was performed in R. 
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4. Results 

Before applying our methodology to the GSOD data, we develop an understanding of the 

implications of copula family choice with regards to accuracy and interpretability  

by analyzing the CESM2 climate model simulation data. The CESM2 dataset provides us with a 

long record and does not have any climate change signal which means that the full record is 

stationary. 

 

4.1 Full CESM2 Copula Fits 

We begin by fitting all five copula families (Gaussian, t, Frank, Clayton, Gumbel) to the full 

1999 extended winters available in the CESM2 dataset in all three bivariate variable 

combinations (temperature-humidity, wind speed-humidity, and wind-temperature) to gain a 

basic understanding of how the copulas fit on a long dataset. 

 

In Figures 4.1.1, we compare the distribution of the predicted copula probabilities for the 

different variable combinations and copula families. These are contour plots of the predicted 

copula probability of bivariate exceedance of the realization of the two climate variables. Within 

each variable combination, there are broad similarities across the probability distributions for the 

five copula families. 

 

In Table 4.1.1, we compare the probability of bivariate exceedance of the 99.9% threshold values 

for the fifteen copulas models. As expected, when provided with nearly 2,000 years of data, all 

the models predict a nearly 0.002% probability of observing a bivariate weather observation that 
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Figure 4.1.1. Contour plots of the predicted copula probability of the weather occurrences of the CESM2 

data with scatter plot of a random subsample of the observations overlaid. The legend displays the 

predicted copula probabilities of bivariate exceedance of the climate events. For temperature and wind 

speed, this means the probability of observing the event or a higher value and for humidity this means 

observing the event or a lower value. Yellow regions have higher copula probabilities than purple regions. 
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of the 99.9% threshold or more extreme. This demonstrates that there is a positive correlation 

between the variables and that dependence structure of the variable combinations are important. 

This validates our choice to look at compound extremes rather than the extreme events 

individually. 

 

In Table 4.1.2, we compare the BIC values for the fifteen copulas models. We use the BIC for 

model selection. The copula family with the lowest BIC value is considered the best model for 

each variable combination. When provided with nearly 2,000 years of data, the Gumbel copula is 

chosen as the best model for temperature-humidity. Either the Gumbel or Clayton copula would 

be good choices since the BICs are the most negative and very similar to each other. We will 

select the Gumbel copula since it is slightly more negative. For the wind speed-humidity case, all 

five of the copula families are reasonable choices since they are similar in value. We will select 

the Clayton copula since it is the most negative. Unlike the previous two variable combinations, 

for the wind speed-temperature case, the Gaussian copula is clearly the best choice. The BIC of 

the Gaussian copula is significantly more negative than those of the other four copula families. 

 

Table 4.1.1. The predicted copula probabilities of bivariate exceedance of 99.9% threshold events on the 

full 1999 extended simulated winters. Regardless of copula family or variable choice, all fifteen models 

yield approximately 0.002% probability of bivariate exceedance of the 99.9% threshold events. 

 Gaussian t Frank Clayton Gumbel 

Temperature 

Humidity 

0.002003 0.002003 

 

0.002003 

 

0.002002 

 

0.002002 

 

Wind Speed 

Humidity 

0.001995 

 

0.001995 

 

0.002002 

 

0.002002 

 

0.001852 

 

Wind Speed 

Temperature 

0.002003 

 

0.002003 

 

0.002003 

 

0.002002 0.002002 
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Table 4.1.2. The BIC values for the copula fits on the full 1999 extended simulated winters. The smallest 

BIC value for each variable combination is bolded. In this specific climate model simulation, the Gumbel 

copula is chosen as the best model for temperature-humidity, the Clayton model is chosen as the best 

model for wind speed-humidity, and the Gaussian model is chosen as the best model for wind speed-

temperature. 

 Gaussian t Frank Clayton Gumbel 

Temperature 

Humidity 

-526,205 -534,575 -545,163 -624,180 -627,661 

Wind Speed 

Humidity 

-670,521 -686,794 -681,842 -688,280 -678,553 

Wind Speed 

Temperature 

-2,968,461 -1,045,135 -935,532 -896,348 -876,021 

 

4.2 Uncertainty Estimates 

The analysis of the 1999 years of data from the climate model simulation data in Section 4.1 

provides insight into the performance of the copula models on one instance of potential data. 

However, our understanding of climate trends is strongly influenced by the specific realizations 

of internal climate variability we observe. Additionally, we often only have access to limited data 

records. As discussed in Section 3.3, we use a case resampling block bootstrap scheme on the 

climate model simulation data to investigate whether we can reproduce a parameter spread if a 

different realization of the data had been observed and how accurately the copula models predict 

extreme tail behavior with limited data availability. 

 

We compare the performance of the Gaussian, t, Frank, Clayton, and Gumbel copulas on the BIC 

and probability of bivariate exceedance of the 99.9% threshold events using the full 1999-year 

dataset, shorter quasi-independent datasets derived from the full 1999 year simulation, and single 

shorter records.  
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In this analysis, the probability of bivariate exceedance of the 99.9% threshold events from the 

full 1999-year dataset are used as the “true” probabilities of the compound extreme events. These 

can be referred to in Table 4.1.1. 

 

Figure 4.2.1. A visualization of the number of times the copula family was chosen by having the 

minimum BIC value for each of the bootstrap schemes and variable combinations.  

 

The BIC is used as a criterion for selecting the best copula family for each sampling scheme and 

variable combinations. Figure 4.2.1 shows the number of times (out of 1000 repetitions) each 

copula family had the lowest BIC, for each of the sampling schemes and variable combinations. 

The Gumbel distribution was almost always chosen as the best copula family for the 

temperature-humidity variable combination. The Gaussian copula was always chosen as the best 

copula family for the wind speed-temperature variable combination. The wind speed-humidity 

variable combination had more variety in copula family choice. The t copula was most 

frequently chosen as the best for shorter data records (30 years sampled from 30 years with 

replacement, 50 years sampled from 50 years with replacement, 100 years sampled from 100 

years with replacement). However, the Clayton copula was most frequently chosen as the best 

for the shorter quasi-independent datasets 30 years sampled from 1999 years with replacement, 



19 

 

50 years sampled from 1999 years with replacement, 100 years sampled from 1999 years with 

replacement). 

 

We use the copula family most often chosen as the best model for the sampling scheme and 

variable combination for all further analysis. So, we use the Gumbel copula for all temperature-

humidity analyses. We use the Gaussian copula for all wind speed-temperature analyses. We use 

the Clayton copula for all wind speed-humidity analyses.  

 

This model selection aligns with the analysis of the entire 1999-year CESM2 dataset in Section 

4.1. In both sections, Gumbel is chosen as the best copula family for temperature and humidity 

and Gaussian distribution is chosen as the best copula family for temperature and wind speed. 

The analysis of the entire 1999-year CESM2 dataset chose Clayton as the best copula family, 

which aligns with the way Clayton is chosen as the best copula family. Overall, we conclude that 

although the choice of copula family can vary extensively with variable choice, the ideal copula 

family remains consistent regardless of data record length. 

 

In order to understand how well the “true” probability of bivariate exceedance of the 99.9% 

threshold events can be estimated given shorter data records, for each of the three variable 

combinations, we compare the distributions of the estimated copula probability of bivariate 

exceedance of the 99.9% threshold events across the six sampling schemes. Figures 4.2.2.a-c 

show histograms of these distributions.  

 

Under these bootstrap schemes, there are three trends we expect to observe: 
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1) The shorter data record sampling schemes only sample from the first 30, 50, or 100 years 

as opposed to the “true” probability which sampled from all 1999 years. Any trends in the 

beginning of the dataset would be exacerbated by this sampling scheme. So, we expect 

the mean of the probability of bivariate exceedance of the 99.9% threshold events from 

the shorter data record copula fits to differ from the “true” probability of bivariate 

exceedance of the 99.9% threshold events. 

2) The shorter quasi-independent datasets take samples of size 30, 50, or 100 years from the 

full 1999-year dataset. Thus, we expect the means of the probability of bivariate 

exceedance of the 99.9% threshold events from the shorter quasi-independent datasets to 

be close to that of the “true” probability of bivariate exceedance of the 99.9% threshold 

events. 

3) For both types of sampling schemes, we expect the distributions to get narrower as the 

number of years sampled increases. 

 

In all three bivariate variable combinations, the difference between the mean estimated 

probability and “true” probability of bivariate exceedance of the 99.9% threshold events is larger 

for the shorter data records (shown in the top rows of Figures 4.2.2.a-c) than for the shorter 

quasi-independent datasets (shown in the bottom rows of Figures 4.2.2.a-c). The difference is 

approximately 10 times larger for shorter data records than shorter quasi-independent datasets 

when looking at the wind speed-temperature distribution. The difference is approximately 100 

times larger for shorter data records than shorter quasi-independent datasets when looking at the 

wind speed-humidity distribution. The difference is only slightly larger for shorter data records 

than shorter quasi-independent datasets when looking at the temperature-humidity distribution. 
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The standard deviations of the estimated probabilities of 99.9% decrease as sample size increases 

regardless of sampling scheme, for all three variable combinations. This can also be seen by 

looking from left to right in the Figures 4.2.2.a-c.  
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Figure 4.2.2.a Histograms of the estimated probability of exceedance of the 99.9% threshold wind speed-

temperature event (temperature 284.6027 K or higher and wind speed 11.3078 m/s or higher) for each of 

the six sampling schemes (30 from 30, 50 from 50, 100 from 100, 30 from 1999, 50 from 1999, 100 from 

1999). The red line shows the “true” probability. The blue line shows the mean estimated probability of 

bivariate exceedance of the 99.9% threshold event across the 1000 repetitions of the sampling scheme. 

All results are shown from the ideal copula family selected based on the most negative BIC.  
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Figure 4.2.2.b Histograms of the estimated probability of exceedance of the 99.9% threshold humidity-

wind speed event (humidity 0.0004 kg/kg or lower and wind speed 11.3078 m/s or higher) for each of the 

six sampling schemes (30 from 30, 50 from 50, 100 from 100, 30 from 1999, 50 from 1999, 100 from 

1999). The red line shows the “true” probability. The blue line shows the mean estimated probability of 

bivariate exceedance of the 99.9% threshold event across the 1000 repetitions of the sampling scheme. 

All results are shown from the ideal copula family selected based on the most negative BIC.  
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Figure 4.2.2.c Histograms of the estimated probability of exceedance of the 99.9% threshold humidity-

temperature event (humidity 0.0004 kg/kg or lower and temperature 284.6027 K or higher) for each of the 

six sampling schemes (30 from 30, 50 from 50, 100 from 100, 30 from 1999, 50 from 1999, 100 from 

1999). The red line shows the “true” probability. The blue line shows the mean estimated probability of 

bivariate exceedance of the 99.9% threshold event across the 1000 repetitions of the sampling scheme. 

All results are shown from the ideal copula family selected based on the most negative BIC.  
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Table 4.2.1.a The 5-95% quantile range of the distribution of predicted probability of bivariate 

exceedance of a 99.9% threshold wind speed-temperature event (temperature 284.6 K or higher and wind 

speed 11.3 m/s or higher) for each of the six sampling schemes (30 from 30, 50 from 50, 100 from 100, 

30 from 1999, 50 from 1999, 100 from 1999). 

 Shorter Data Records Shorter Quasi-Independent Datasets 

30 years 0.994312 - 0.997798 0.996702 - 0.999117 

50 years 0.995003 - 0.997624 0.996839 - 0.998941 

100 years 0.995788 - 0.997689 0.997233 - 0.998742 

 

Table 4.2.1.b The 5-95% quantile range of the distribution of predicted probability of bivariate 

exceedance of a 99.9% threshold humidity-wind speed event (humidity 0.0004 kg/kg or lower and wind 

speed 11.3078 m/s or higher) for each of the six sampling schemes (30 from 30, 50 from 50, 100 from 

100, 30 from 1999, 50 from 1999, 100 from 1999). 

 Shorter Data Records Shorter Quasi-Independent Datasets 

30 years 0.994312 - 0.997798 0.996702 - 0.999117 

50 years 0.995003 - 0.997624 0.996839 - 0.998941 

100 years 0.995788 - 0.997689 0.997233 - 0.998742 

 

Table 4.2.1.c The 5-95% quantile range of the distribution of predicted probability of bivariate 

exceedance of a 99.9% threshold humidity-temperature event (humidity 0.0004 kg/kg or lower and 

temperature 284.6027 K or higher) for each of the six sampling schemes (30 from 30, 50 from 50, 100 

from 100, 30 from 1999, 50 from 1999, 100 from 1999). 

 Shorter Data Records Shorter Quasi-Independent Datasets 

30 years 0.996027 - 0.998894 0.996236 - 0.999556 

50 years 0.995764 - 0.998541 0.996689 - 0.999071 

100 years 0.996953 - 0.998740 0.997086 - 0.997233 
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Tables 4.2.1.a-c show the central 90% range of the distribution of the predicted probabilities of 

bivariate exceedance of a 99.9% threshold event. We are interested in the 90% coverage rate. By 

comparing these ranges to the “true” probabilities shows in Table 4.1.1, we find that the “true” 

probability falls in the 90% range for shorter quasi-independent dataset sampling schemes but 

not for shorter data record sampling schemes for the wind speed-temperature and wind speed 

humidity variables combinations. However, the “true” probability falls in the 90% range for all 

sampling schemes for the temperature-humidity variable combination. 

 

It is important to keep in mind that we only sampled from the first 30, 50, and 100 years of the 

1999 year long CESM2 dataset in the shorter data record sampling schemes. In order to 

understand if this was due to any specific trends in the beginning of the CESM2 dataset, or a 

feature of the variable selection, we compare the coverage rate for all the possible 30-year time 

periods. We were unable to repeat this analysis for the 50 year and 100-year sample sizes due to 

computational limitations. 

 

We split the 1999-year dataset into sixty-six different 30-year datasets. These datasets consist of 

the first 30 years, second 30 years, and so on. We repeat the analysis above for each of these 66 

datasets in the 30 from 30 bootstrap scheme. In each time duration, we generate 1000 different 

30 from 30 bootstrapped samples, fit the ideal copula to each of these, calculate the estimated 

probability of bivariate exceedance of a 99.9% threshold event, and then construct a central 90% 

range. 
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These 90% intervals are shown in Figure 4.2.3 and the coverage rates are displayed in Table 

4.2.2. Regardless of variable choice, the coverage rate for a 30-year dataset is approximately 

80%. So, overall, copula models adequately capture the true probability value of a 99.9% 

extreme event even with limited sample sizes of 30 years, although there is still noticeable 

undercoverage. Since copula models have more accurate performance when trained with more 

data, we have strong reason to believe that this coverage rate would be just as high or even 

higher for 50- or 100-year long datasets. 

 

Figure 4.2.3. Coverage plots of the central 90% range of the predicted probabilities of bivariate 

exceedance of a 99.9% threshold event for 1000 iterations of the 30 from 30 sampling scheme for each of 

the 66 different 30 year time periods for all three variable combinations. The vertical lines show the 90% 

range, beginning at the 5% quantile value and ending at the 95% quantile value of the predicted 

probability of bivariate exceedance of a 99.9% threshold event. These lines are black if the interval 

includes the “true” probability of a 99.9% event and blue if they do not. The dashed red line represents 

the “true” probability of the bivariate exceedance of a 99.9% threshold event. 

 

Table 4.2.2. The coverage rates of the central 90% intervals across the 66 different time durations for 

each of the variable combinations. 

Temperature - Humidity Wind Speed - Humidity Wind Speed - Temperature 

81.8% 78.8% 80.3% 
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4.3 GSOD Data Application 

Now that we have developed an understanding of the performance of various copula families on 

various data records for a variety of bivariate variable combinations, we focus our attention on 

the GSOD data from Broomfield Jefferson, Colorado. We split the data into two sub-datasets: 

January 1983 - December 2002 and January 2003 - July 2022. We are interested in analyzing the 

ways the occurrence of compound extremes in wind speed-temperature, wind speed-humidity, 

and temperature-humidity have changed alongside climate change. We use dew point instead of 

specific humidity in this analysis. We fit all five copula family models to each of the bivariate 

variable combinations for both time periods. Figures 4.3.1a-f show contour plots of the predicted 

copula probability of bivariate exceedance of climate events for both time periods for the ideal 

copula family as selected in Section 4.2. There are broad similarities in the contour plots across 

the time periods. We see an apparent shift in probability of lower dew point values given high 

temperature observations from the earlier time period to the more recent time period. 

 

The predicted probability of bivariate exceedance of 99% threshold values of temperature, dew 

point, and wind speed are shown in Table 3.2.1.1. Tables 4.3.1 and 4.3.2 show us that, regardless 

of the copula family or variable choice, the estimated probabilities of bivariate exceedance of a 

99.9% threshold event were between 0.25 and 0.28% for the 1983-2002 data and between 0.2 

and 0.23% for the 2003-2022 data. This shows that there has been a slight increase in occurrence 

of extreme high temperature-low dew point, high temperature-high wind speed, and high wind 

speed-low dew point events in recent decades. However, it is important to note that this slight 

difference seems to be within the expected variability as shown in the CESM2 analysis in 

Section 4.2. 
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Figure 4.3.1. Contour plots of the predicted copula probability of the weather occurrences of the GSOD 

data with scatter plot of a random subsample of the observations overlaid, for wind speed-temperature, 

wind speed-dew point, and temperature-dew point, for 1983-2002 and 2003-2022. The legend displays 

the predicted copula probabilities of bivariate exceedance of the bivariate climate event. For temperature 

and wind speed, this means the probability of observing the event or a higher value and for humidity this 

means observing the event or a lower value. Yellow regions have higher copula probabilities than purple 

regions. All plots are shown for the copula family selected as the ideal family for the variable 

combination within the 30 from 30 sampling scheme in Section 4.2. 
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Table 4.3.1. The predicted bivariate exceedance probabilities of a 99.9% event for copula fits on the 

1983-2002 GSOD data. 

 Gaussian t Frank Clayton Gumbel 

Temperature 

Dew Point 

0.002586 

 

0.002686 

 

0.002503 

 

0.002705 

 

0.002353 

 

Wind Speed 

Dew Point 

0.002506 

 

0.002806 

 

0.002706 

 

0.002505 

 

0.002705 

Wind Speed 

Temperature 

0.002633 

 

0.002633 

 

0.002634 

 

0.002634 

 

0.002594 

 

 

Table 4.3.2. The predicted bivariate exceedance probabilities of a 99.9% event for copula fits on the 

2003-2022 GSOD data. 

 Gaussian t Frank Clayton Gumbel 

Temperature 

Dew Point 

0.002343 

 

0.002343 

 

0.002362 

 

0.002364 

 

0.002098 

Wind Speed 

Dew Point 

0.002366 

 

0.002362 

 

0.002365 

 

0.002364 

 

0.002364 

 

Wind Speed 

Temperature 

0.002024 

 

0.002018 

 

0.002026 

 

0.002027  0.001924 

 

 

Tables 4.3.3 and 4.3.4 show the BIC values for the copula fits to the 1983-2002 and 2003-2022 

GSOD data. In both time periods, the Gaussian family yields a drastically lower BIC value for 

the temperature-dew point analysis than any of the other copula families. The bootstrap analysis 

of the CESM2 data in Section 4.2 selected the Gumbel family as the ideal choice. This may be a 

feature of using dew point instead of specific humidity measurements. We also saw in the 

previous section that different instances of internal variability could yield different ideal copula 

families. It would be of interest to investigate this in future studies.  

 



31 

 

The copula families with the lowest BIC values for the wind speed-dew point and wind speed-

temperature analyses also differ between the GSOD and CESM2 analyses. The GSOD copula 

fits yield Gumbel as the best family for wind speed-dew point and Clayton for wind-speed-

temperature. Whereas the CESM2 copula fits yield t as the best family for wind speed-humidity 

and Gaussian for wind-speed-temperature. However, the BIC values across families are much 

closer in scale for these variable combinations than the temperature-dew point analysis. It is also 

of interest to continue to investigate what causes these differences. 

 

Table 4.3.3. The copula BIC values for the 1983-2002 GSOD data. The model with the lowest BIC for 

each variable combination is bolded. 

 Gaussian t Frank Clayton Gumbel 

Temperature 

Dew Point 

-32427.160  -8719.512  -7501.357  -7234.432  -6935.733 

Wind Speed 

Dew Point 

-6464.537  -6500.950  -6573.152 -6832.907  -6855.224 

Wind Speed 

Temperature 

-6836.546  -6813.762 -6922.635  -7049.783 -7006.004 

 

Table 4.3.4. The copula BIC values for the 2003-2022 GSOD data. The model with the lowest BIC for 

each variable combination is bolded. 

 Gaussian t Frank Clayton Gumbel 

Temperature 

Dew Point 

-32864.042  -8069.476 -7046.139 -6815.687 -6570.230 

Wind Speed 

Dew Point 

-6484.255  -6533.511 -6641.954  -6706.446  -6707.877 

Wind Speed 

Temperature 

-6535.572  -6537.206  -6667.172 -6669.048 -6591.004 
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5. Conclusion 

The increase in the prevalence of hot climate extremes, alongside global climate change, poses a 

threat to the anthropogenic world. These effects are particularly felt in compound extremes, 

multiple co-occurring climate extremes, such as temperature-humidity, temperature-wind speed, 

and humidity-wind speed. By developing methods to accurately statistically model these events, 

we can better understand and potentially troubleshoot the impacts of compound extreme events. 

 

In this study, we focused on the usage of copula models to predict temperature-humidity, 

temperature-wind speed, and humidity-wind speed extremes in Boulder County, Colorado. We 

intercompared the fit of the Gaussian, t, Clayton, Gumbel, and Frank copulas on data records 

including 30, 50, 100, and 1999 years of data. By using case resampling block bootstrap schemes 

on climate model simulation data, we found that longer data records have lower bias and 

variance in estimating the true probability of a compound extreme event than shorter data 

records. We also found that although the choice of copula family can vary extensively with 

variable choice, the ideal copula family remains consistent regardless of data record length. 

Afterwards, we fit the copula models to observational daily summary data from Broomfield 

Jefferson, Colorado on 1983-2002 and 2003-2022 data to understand the ways these climate 

extremes have changed over time. We used dew point as a measure of humidity instead of 

specific humidity due to data availability. We found that although there has been a slight increase 

in the frequency of high temperature-low dew point, high temperature-high wind speed, and low 

dew point-high wind speed events in the past two decades, this difference is within the expected 

envelope of sampling variability explored in the CESM2 analysis in Section 4.2  
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There are some suggestions for future directions of research. First, it is of interest to do a similar 

analysis after removing the season cycle from the data. It would be interesting to also consider 

the frequency of relative extreme events within each season, alongside this analysis of absolute 

climate extreme events. Second, our current analysis violated the linearity and normality 

assumptions of the BIC. It would be of interest to compare this analysis to one with another 

metric for model selection. Third, due to computational limitations, we analyzed the bivariate 

distributions of temperature-humidity, temperature-wind speed, and wind speed-humidity 

separately. It would be interesting to run similar analyses on the trivariate temperature-humidity-

wind speed distribution and compare the results to those in this study. Fourth, there is high 

autocorrelation between climate variables, such as temperature and humidity. It would be of 

interest to investigate the impact of such autocorrelation and in future research. Lastly, our 

current work does not consider the non-stationarity caused by climate change. It would be of 

interest to examine the impact of climate change on wind speed, temperature, and humidity 

extremes in Boulder County, CO using non-stationary copula models. 

 

Our understanding of compound extreme events and modeling techniques still have a far way to 

go. By continuing to understand the implications of the assumptions made when choosing copula 

families, we can ensure that we use these assumptions to our advantage when understanding 

climate extremes.  
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