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Abstract

The cognitive processes underlying mental folding have been
investigated for decades, while the neural correlates associated
with this spatial transformation are barely understood. This
study combines cognitive modeling with EEG recordings from
41 subjects to investigate the general mechanisms of mental
spatial transformation. By linking model-based simulation and
electrocortical activity, we identified brain areas involved dur-
ing mental folding. Our novel approach showed active central
parietal and left parietal, as well as occipital areas during spa-
tial storage, while the right parietal cortex was associated with
spatial transformation. The left occipital and parietal regions
were active especially during visual baseline trials, while the
right parietal region exhibited stronger activity for more dif-
ficult folding trials, replicating previous results. The varying
activation patterns imply different cognitive loads for storage
and for transformation depending on task difficulty.
Keywords: mental folding; spatial transformation; ACT-R;
electroencephalography; independent component analysis

Introduction
Mental spatial transformation concerns ubiquitous cognitive
processes that help us understand and interact with the world
around us. It is implicated with general intelligence (Lohman,
2013), and aptitude in mathematics, STEM fields and rea-
soning ability (Uttal & Cohen, 2012; Newcombe, Booth,
& Gunderson, 2019). Yet, most research focuses on a sin-
gle paradigm, requiring mental rotation to identify objects
(Shepard & Metzler, 1971). While general core processes
underlying mental spatial transformation might exist, their
exact nature seems obscured by the lack of research into other
experimental paradigms of spatial transformation. A lesser
presented modality of spatial transformation relates to the
mental folding of a figure to allow for judgments on its shape
or surfaces (Shepard & Feng, 1972). While both mental rota-
tion and mental folding are categorized as being object-based
instead of perspective-based, and featuring intrinsic instead
of extrinsic transformations, mental folding is distinguished
by its necessity of non-rigid transformations, meaning that the
shape of the object itself is required to be changed (J. Harris,
Hirsh-Pasek, & Newcombe, 2013; Atit, Shipley, & Tikoff,
2013).

Few electroencephalography (EEG) studies have been con-
ducted on the mental folding paradigm. Milivojevic, Johnson,
Hamm, and Corballis (2003) conducted a study on mental
letter rotation and mental folding. For mental folding, active

areas have been found in both parietal hemispheres, in con-
trast to only right parietal activation for mental rotation. They
interpreted the folding results as an involvement of the right
parietal cortex for easy tasks, while more challenging tasks
additionally invoke the left parietal cortex. Glass, Krueger,
Solomon, Raymont, and Grafman (2013) analyzed the influ-
ence of brain lesions on mental folding performance, and also
identified right parietal areas important to folding processes.

While EEG is able to find areas involved in mental folding
and other tasks, identifying their exact functional contribu-
tion to the dynamics of cognition can be difficult. A possible
remedy is cognitive modeling, which allows for the simu-
lation of cognitive processes during specific tasks. ACT-R
(Anderson, Qin, Jung, & Carter, 2007) is a cognitive archi-
tecture enabling the streamlined creation of such cognitive
models. Here, cognition is modeled by the interplay of so-
called modules, dedicated units of cognition for e.g. visual,
declarative or motoric processing, effectively producing intra-
trial predictions of cognitive processes (Anderson & Lebiere,
2014). While modules do not directly represent specific neural
substrates, their activity has been mapped to brain regions
before (e.g., Anderson et al., 2007; Anderson, Fincham, Qin,
& Stocco, 2008; Borst & Anderson, 2015).

Activity predictions by ACT-R have been successfully used
in conjunction to EEG data. Griffiths, West, and D’Anguilli
(2011) were able to reproduce the timing and firing pattern of
event-related potentials (ERPs) by simulating dipole genera-
tion at proposed sites related to ACT-R modules. ACT-R mod-
ule activity was also found to correlate with specific cortical
topographies, EEG frequency bands, and EEG oscillation pat-
terns (van Vugt, 2012, 2013), and cognitive processing stages
derived from EEG (Heimisch, Preuss, & Russwinkel, 2023).
Anderson, Carter, et al. (2008) outlined several methodolog-
ical obstacles for reliable model-brain comparisons, namely
temporal variability between datasets and the difficulty of
adequate model-fit assessment, which they suggest can be mit-
igated by using time-locked data such as ERPs, controlling for
autocorrelation of errors, and minimizing squared deviations
between observed and predicted data.

ACT-R has already been used to model data of spatial
tasks. Spatial modeling frameworks for the architecture have
been proposed before by Gunzelmann and Lyon (2007) and
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Figure 1: Example of a “match” trial with difficulty level H,
with 6 SSC necessary for comparing both patterns.

Harrison and Schunn (2019), with both emphasizing separate
spatial representation and transformation processes, but so far
lacking available implementations. Peebles (2019) extended
the visual module by rudimentary spatial processing features
to simulate solving of a two-dimensional mental rotation task.
Finally, earlier versions of a spatial module used in this paper
were used to create cognitive models for a mental rotation
(Preuss & Russwinkel, 2021; Heimisch et al., 2023) and a
mental folding task (Preuss, Raddatz, & Russwinkel, 2019).

In this paper, we will analyze EEG data from a mental fold-
ing experiment, and identify relevant brain areas for distinct
cognitive functions by way of a cognitive model, supported
by the addition of a spatial module to the ACT-R architecture.
We will show that individual ACT-R module output will be
matched with clusters of EEG activity that comprise sensible
regions for their respective functions on the one hand, and
that spatial representational and transformational activity are
differentiable on the other hand. Finally, we argue that a better
understanding of cognitive processes during mental folding
will provide further insight into mental spatial transformation.

Methods
Experiment, EEG recording and pre-processing are described
in more detail in Hilton, Raddatz, and Gramann (2022).

Experiment
Participants 41 participants (29-38yrs, mean 28.8yrs, SD
5.1yrs; 20 female) took part in the experiment, compensated
by 10C per hour or course credits. All participants were
right-handed, had normal or corrected-to-normal vision, and
reported no neurological conditions. They took 60 min to
complete all trials on average. Informed consent was provided
prior to the beginning of the experiment, and ethical approval
was granted by the Institute of Psychology and Ergonomics,
TU Berlin ethics board. A short mental rotation task was
performed as an online pretest to collect response time (RT)
data for correlation with the main task.

Procedure The experiment consisted of a mental folding
task based on Shepard and Feng (1972) and Wright, Thomp-
son, Ganis, Newcombe, and Kosslyn (2008). After a fixation-
cross, a reference figure appeared on screen, consisting of
semi-transparent cube shapes, with a blue bottom square and
an arrow each on two of the six cube surfaces. A second later,
a target stimulus was presented, resembling a paper-folding

pattern of six connected squares, also with one blue bottom
square and one arrow each on two of the squares. We tasked
the participants with mentally folding the target stimulus to
decide if the two arrows on the target figure would match
the arrows on the reference figure, if folded up. “Match” or
“mismatch” responses were entered into a response pad (Ce-
drus RB-540). The figures were grouped into 4 conditions,
determined by the sum of squares carried (SSC, Shepard &
Feng, 1972) necessary to fully fold each arrow square into its
final position: 0 SSC (A or baseline, as spatial transformation
is not required), 4 SSC (F), 5 SSC (G) and 6 SSC (H). 120
trials1 were presented in 5 blocks each, totaling 600 trials. We
presented participants with 10 practice trials before the actual
task. Figure 1 displays an example of an H difficulty trial (6
foldings necessary).
EEG recording and pre-processing We continuously
recorded 64-channel, 500 Hz EEG (BrainAmps, Brain Prod-
ucts) arranged according to the 10% system (Chatrian, Lettich,
& Nelson, 1985) during the experiment, referenced to FCz.
We then preprocessed the resulting data using the BeMoBIL
pipeline (Klug et al., 2022) for the EEGLAB toolbox (Delorme
& Makeig, 2004), with the data being low-pass filtered at 124
Hz and downsampled to 250 Hz. Then, time domain clean-
ing (Gramann, Hohlefeld, Gehrke, & Klug, 2021) identified
noisy data segments, leading to ∼15% rejected data per par-
ticipant. We identified Independent components (ICs) through
an adaptive mixture independent component analysis (Palmer,
Makeig, Kreutz-Delgado, & Rao, 2008). Afterwards, we fitted
the resulting ICs with an equivalent dipole model (Oostenveld
& Oostendorp, 2002) and classified brain and non-brain pro-
cesses by applying ICLabel (Pion-Tonachini, Kreutz-Delgado,
& Makeig, 2019), before further low-pass filtering at 75 Hz.
Epochs were defined from 200 ms before reference onset to
2000 ms after target onset, and baseline correction was applied
using the 200 ms pre-reference time window. We rejected the
10% noisiest trials, as well as trials with RTs deviating more
than 3 median absolute deviations from the mean. The ICs
thus produced were clustered over participants using a repeti-
tive k-means algorithm (Gramann et al., 2021), allowing for
prior selection of a region of interest (ROI) for cluster gener-
ation. We chose a parietal ROI (Talairach: x = 0, y =−66.7,
z = 41.1), based on a mental rotation meta-analysis (Zacks,
2008), and set the desired number of clusters to 16.
Additional EEG data treatment The cluster data was fur-
ther prepared to facilitate comparison to module activity data.
We included all 4 difficulty conditions and “match” and “mis-
match” trials, partitioning the data into 8 conditions. A Hilbert
transform was then applied to all cluster ERPs each to produce
the analytical signal for each, reflecting the strength of an
oscillating signal (Kozma, Aghazarian, Huntsberger, Tunstel,
& Freeman, 2007). The resulting activity strength signals of
each cluster will subsequently be referred to as cluster activity.

1We omitted 24 mismatch trials per block to shorten experiment
duration.
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Spatial module
To facilitate model-based research on mental spatial trans-
formation, we hypothesized and implemented a generalized
framework, in the form of a spatial module for ACT-R. It
extends ACT-R by the ability to perceive and process three-
dimensional structures (e.g., 3D point clouds) and relies heav-
ily on the default ACT-R architecture, adding two dedicated
buffers for spatial representation and spatial transformation
each. Its main function is to produce a time delay for the
requested storage and transformation actions, based on mental
spatial transformation literature, e.g. RT increase (Shepard
& Metzler, 1971; Shepard & Feng, 1972; Just & Carpenter,
1976), memory capacity limits (Pylyshyn, 1989; Gunzelmann
& Lyon, 2007), transformation complexity (Neely & Heath,
2010; Gunzelmann & Lyon, 2007), separation of representa-
tion and transformation (Baddeley & Lieberman, 2017; Gun-
zelmann & Lyon, 2007), and interference between the two
(Sims & Hegarty, 1997). Based on simpler formulae reported
in earlier studies (Preuss et al., 2019; Preuss & Russwinkel,
2021; Heimisch et al., 2023), the delay is now computed as
follows:

Transformation delay = b+F ∗ (1+C ∗N2)∗ x, for N ≤ L

We model transformation delay as equal to the base cost (b)
for spatially transforming objects2, plus the product of three
terms: a delay factor (F), a term representing a penalty for the
currently applied number of transformations (N) mediated by
a complexity factor (C), and the raw degree value of the trans-
formation request (x). If the current sum of transformations N
exceeds the maximum number of applicable transformations
(L), the transformation is not applied.

Cognitive model and activity simulation
We created a cognitive model solving a simulated replication
of the experiment, based on cognitive processes theorized
by Shepard and Feng (1972) and Just and Carpenter (1976),
comprising visual encoding, transformation and comparison,
and motor response stages. The model tried to complete both
necessary transformations (one for each arrow), and initiate a
comparison process of the resulting structure with the refer-
ence figure. Using instance-based learning (Gonzalez, Lerch,
& Lebiere, 2003), the model was able to retrieve prior trial out-
comes to bypass the need for spatial transformation. Possible
non-spatial shortcuts were scanned for concurrently, with cer-
tain patterns (e.g., certain geometric relations between squares)
allowing the model to skip spatial transformation. The proba-
bility of shortcut use was mediated by a reinforcement learning
algorithm included in ACT-R (Fu & Anderson, 2004).

At reference figure onset, the stimulus was encoded as a spa-
tial structure, including features possibly affording non-spatial
shortcuts (e.g., an arrow on the bottom square). This process
was repeated until target figure appearance to strengthen base-
level activation of the reference stimulus, facilitating memory

2Set to 0 for mental folding model, instead using a fixed delay of
200 ms at time of chunk creation.

retrieval later in the trial. Target stimulus onset triggered both
a separate spatial structure encoding, clearing the reference
figure from active mental representation, and a background
memory retrieval process to try and retrieve an associated so-
lution to the stimulus completed in the past. After encoding,
the actual transformation process was initialized, identifying
“paths” from the bottom square to squares containing arrows.
These paths were then consecutively folded upwards, starting
at the bottom square and applying a 90° transformation at the
respective next “fold” to the remaining path, until the arrow
square was folded into its final position. A static transfor-
mation then rotated the folded spatial structure into the same
position as the reference cube. If the background memory re-
trieval successfully found a representation at any time during
the transformation loop, the transformation was aborted and
the retrieved structure adopted from memory instead. Sub-
sequently, the reference figure encoded at the beginning of
the trial was retrieved from memory, or if faster, visually en-
coded again. A final comparison between the reference cube
and folded target representation3 subsequently selected an
appropriate response. During the motor process, the folded
target structure was associated with the unfolded target stim-
ulus and saved into declarative memory, thereby creating or
strengthening a solution as instance-based memory.

We fit the cognitive model as close as possible to the ex-
perimental data by adjusting ACT-R parameters, measured in
correlation and root mean square error (RMSE). A grid search
over a reasonable range of parameter values using 6 parame-
ters resulted in a latency factor of 0.2 (default: 1), retrieval
threshold of -1.8 (default: 0), activation noise of 0.5 (default:
n/a, but 0.5 is recommended), expected gain of 1 (default: 0),
spatial delay (F) of 0.001 (default: n/a), and spatial complex-
ity (C) of 0.5 (default: n/a). Then, we simulated individual
participants by presenting a new model instance with the same
pseudo-randomized order of trials as each single participant to
control for sequence effects. Binary activity was produced by
each module during each trial, referred to as module activity.
Subsequent aggregation over participants and trials produced
a gradient output in the form of a percentage of a particu-
lar module being active across all trials during a single time
sample. Only trials answered correctly by both human and
modeled solver were included. Module activity was produced
with a 250 Hz sample rate, and trimmed to 2000 ms after tar-
get onset to match the available EEG data. We performed no
time warping, as to not falsify intra-trial modular and temporal
dynamics.

Statistical analysis
For final analysis, we selected ACT-R modules meaningful to
the mental folding task, including the visual, retrieval, imag-
inal, and spatial modules. As the spatial module produces
separate storage and transformation output, both components
were included, resulting in 5 simulated cognitive structures.

3Using the Euclidean distance between folded target arrows and
reference cube arrows.
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Figure 2: RTs of experiment participants (light colors) and participant-matched model instances (dark colors), grouped by folding
difficulty and experiment block.

We then applied linear regression models utilizing general-
ized least squares (GLS) to provide statistical inference. We
chose GLS as it is robust against autocorrelation of errors and
unequal variances in conditions. For each cognitive activity
prediction, its activity was to be predicted by each cluster’s
activity. First-order autocorrelation was controlled for per
condition, as was variance. Finally, we considered significant
clusters for each module meaningful predictors, consequently
inferring a module-cluster match.

Results
Experiment results
Participants showed an average correctness rate of 95.8%.
We analyzed the effect of folding difficulty (factor: 0/A,
4/F, 5/G, 6/H), experiment block (factor: 1-6), and their
interaction on RT by multiple linear regression, with
subject as random intercept factor. The linear model
explained 88% of variance (corrected R2 = .88). Dif-
ficulty was significant in all levels (βfolding F = 1.11,
βfolding G = 1.34, βfolding H = 2.03, all p < .001), as was
block (βblock 2 =−.145, p < .05; βblock 3 =−.218, p < .001;
βblock 4 = −.260, p < .001; βblock 5 = −.277, p < .001).
Interaction of folding difficulty and block was significant
for blocks 4 and 5 with level F (βblock 4 & folding F = −.226,
p < .01; βblock 5 & folding F = −.341, p < .001), blocks
3 to 5 with level G (βblock 3 & folding G = −.253,
p < .005; βblock 4 & folding G = −.362, p < .001;
βblock 5 & folding G = −.448, p < .001), and all blocks with
level H (βblock 2 & folding H =−.306, βblock 3 & folding H =−.43,
βblock 4 & folding H = −.620, βblock 5 & folding H = −.724, all
p < .001). These results showed significantly lower RTs for
all experiment blocks compared to the first, and higher RTs
for more difficult conditions, with a stronger decrease in RTs
for higher difficulty levels in later experiment blocks.

We calculated individual participant regression slopes for
the effect of difficulty on RT for both the mental rotation
pretest and the mental folding task. No significant relationship

Table 1: Cerebral areas of module-matched clusters for mental
folding, sorted by coefficient strength. X, y, z refer to Talairach
coordinates. ROI cluster in bold.

Module Area x y z

Visual Right superior parietal 43 -16 48
Retrieval Left parietal -32 -36 44

Right inferior temporal 50 -48 2
Left superior frontal -40 -5 49
Right parietal 63 -24 20

Imaginal - - - -
Spatial (repr.) Left occipital -36 -67 -17

Central parietal 7 -39 39
Left parietal -32 -36 44

Spatial (transf.) Right posterior parietal 36 -69 32
Left parietal -32 -36 44
Right parietal 63 -24 20

between both RT slopes was produced (r = .28, p = .073).

Model fit
The cognitive model achieved a correctness rate of 100%. Par-
ticipant and model RTs showed a high correlation and moder-
ate deviation (r(796) = .82, p < .001, RMSE = .7 on subject
level; r(18) = .98, p < .001, RMSE = .62 on group level).
The cognitive model replicated individual subjects reasonably
well, but yielded slower averaged RTs than human responders
(Mhuman = 1.75, SDhuman = .73, Mmodel = 2.3, SDmodel = .67).
See figure 2 for group-level results.

We performed an ANOVA on a combined simulation and
experiment dataset to analyze the effect of data source (fac-
tor: human or model) and its interactions with folding dif-
ficulty and experiment block on RT, with subject as an
added error term. All factors except subject reached signifi-
cance (Fsource(1,1541) = 1696.3, Fsource & rotation(6,1541) =
1348.2, Fsource & block(10,1763) = 129.2, all p < .001;
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Figure 3: Activity of selected ACT-R modules during men-
tal folding task solving, aggregated over participant-matched
instances of the cognitive model, aggregated over (left) and
separated by conditions (right).

Fsubject(2,37) = 1.657, p = .205). RT predictions from the
cognitive model differ significantly from RTs observed in the
experiment, with varying influence per folding difficulty and
experiment block but no significant influence of subject inter-
cepts.

IC clustering
16 clusters were generated, composed of an average of 35
ICs (SD = 9.0, range 21-58) from 21 participants on average
(SD = 7.5, range 12-40). The ROI parietal cluster contains 58
ICs from 40 participants. Additionally, a left parietal cluster
of 45 ICs by 33 participants was produced.

Module-cluster fit
Figure 3 shows the simulated activity of the visual, retrieval,
imaginal, and spatial modules of ACT-R.

Visual module The visual module is used by the model to
identify and encode the virtually displayed figures. Its GLS
regression showed no improvement of fit over its null model
(χ2(16,6000) = 18.86, p = .276). Nevertheless, it received
significant contribution from a right superior parietal cluster
(β =−.31, t(5998) =−2.17, p < .05).

Retrieval module The cognitive model assumed short-term
memory retrieval processes for handling of the multiple spa-
tial structures necessary for a comparison. The retrieval
GLS yielded high predictivity of cluster activity on module
activity compared to its null model (χ2(16,3624) = 41.16,
p < .001). It also held the highest amount of significant clus-

Visual

Retrieval

Imaginal

Spatial

(repr.)

Spatial

(transf.)

Figure 4: Mental folding IC clusters with a significant (p <
0.05) influence on the respective module according to GLS
linear models. Colors reflect ranking of clusters by coefficient
strength (from most to least significant: light blue, red, yellow,
green). The imaginal module identified no significant clusters.

ters among the selected modules: a left parietal (β = .293,
t(3622) = 4.01, p < .001), a right inferior temporal (β =
−.137, t(3622) = −2.29, p < .05), a left superior temporal
(β = .184, t(3622) = 2.04, p < .05), and a right parietal clus-
ter (β = .105, t(3622) = 1.97, p < .05).

Imaginal module The mental folding model used the imag-
inal module to associate a target stimulus with its fully trans-
formed outcome, effectively to create a mental representation
as instance memory. No significant difference between null
and full model was reached for the imaginal GLS linear model
(χ2(16,2184) = 9.4, p = .9), and it showed no significant
clusters.

Spatial module The spatial module was used to handle stor-
ing of mental spatial representations, and transform these
representations according to the presented task. It outputs its
activity in two separate streams, as representative and transfor-
mative activity, respectively.
Representation activity – The spatial representation GLS linear
model had a significantly better fit compared to the null model
(χ2(16,5536) = 35.91, p < .01). Significance was reached by
a left occipital cluster (β =−.272, t(5534) =−3.01, p < .01),
a central parietal (ROI cluster, β = .203, t(5534) = 2.5,
p < .05), and a left parietal cluster (β = .198, t(5534) = 2.12,
p < .05).
Transformation activity – The GLS model for spatial trans-
formation reached a significant improvement of fit over the
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null model (χ2(16,3024) = 30.39, p < .05). A right posterior
parietal cluster (β =−.188, t(3022) =−2.26, p < .05), a left
parietal cluster (β =−.195, t(3022) =−2.23, p < .05), and a
right parietal cluster (β = .124, t(3022) = 2, p < .05) reached
significance.

Identified cluster structures Figure 4 shows Talairach brain
renderings with IC clusters identified as significantly match-
ing module activity produced by the mental folding cognitive
model, which are listed in table 1. The mental folding task
showed a right temporal area for visual activity; retrieval ac-
tivity was associated with lateralised parietal, temporal, and
frontal areas. Spatial storage activity was shown in central
parietal, and left parietal and occipital areas, whereas spatial
transformation activity was lateralized in parietal regions.

Discussion

Results discussion The model produced a high goodness-
of-fit, but still carries a non-trivial mismatch to the behavioral
data, leading to lower reliability of module activity output.
This comes down to the complexity of the task, requiring
multiple solving steps. However, as modules are independent
units and interpretable on their own, the module-cluster com-
parisons should be considered as a valid outcome, regardless
of an imperfect model fit.

Module-cluster matches are mostly in line with expected
brain areas as reported in literature (e.g., Borst & Anderson,
2015), with spatial activity found in parietal clusters. No clus-
ters were found to match with imaginal module activity, which
implies that its function in the model as an instance-forming
mechanism does not hold true. As its activity was produced
comparatively late in each trial however, it might have been
not reflected well by the available cluster data. Retrieval mod-
ule activity mirrored its associated clusters well, validating the
model assumption of intra-trial retrieval processes.

General discussion As hypothesized in the beginning, we
produced module-cluster matches in regions that have been
established in literature to be functionally associated, although
presenting more varied patterns than suggested by e.g. Borst
and Anderson (2015). In addition, representative and transfor-
mative spatial activity was shown to be differentiable by the
module, identifying a representation cluster in the proposed
ROI region as well as lateralized clusters with cognitive loads
shifting with increasing trial difficulty. The spatial module
and cognitive model were able to predict activity, timing and
variability of task conditions well.

Spatial representations were associated with central and
left hemispheric areas, as were spatial transformations in low
difficulty conditions. Trials with higher difficulty showed
more transformation activity in the right hemisphere. The
lateralization contrasts Milivojevic et al. (2003) who reported
lateralization only for rotation. While visuospatial process-
ing is usually reported to be predominantly right-hemispheric
(Milivojevic, Hamm, & Corballis, 2009; I. M. Harris et al.,
2000; Zacks, 2008), our results suggest lateralization to be

primarily dependent on task difficulty.
Some of the clusters matched with spatial processes are usu-

ally associated with vision, and vice versa, implying a joined
visuospatial process guiding mental spatial transformation,
rather than purely visual or spatial processes. With growing
experience, solvers of spatial tasks might create an internal
“spatial structure vocabulary”, recalling more complex spatial
structures and their relation to the task outcome by sight of
the stimuli alone. This is in line with (Bethell-Fox & Shepard,
1988), who found stimulus complexity to decrease in its effect
on RT over the course of a 2D mental rotation experiment, and
perhaps similar to an increase in domain-specific visuospatial
working memory efficiency reported for, e.g., chess board
states (Smith, Bartlett, Krawczyk, & Basak, 2021).

Limitations We found no neural correlates for simulated
activity of the imaginal module, and while a parietal cluster
structure was found to match visual module activity, we would
have expected to find an occipital substrate. Furthermore,
GLS models for both modules were not significantly better
than their respective null models. This is potentially caused
by the spatial focus of the task introducing a bias in neural
visuospatial and working memory activity, further exacerbated
by the cognitive model explicitly using the spatial module in
part for visuospatial encoding and representation processes.
Additionally, our use of GLS regression relied heavily on au-
tocorrelation of predictor errors. Although this has proven
effective in filtering out weak or unlikely predictors, it as-
sumes “time” as a predictor to have high explanatory power.
This generalization might effectively conceal a number of con-
founding variables, and may indeed be counterproductive in
the analysis of experiments with shorter trials, or with a higher
number of time-fixed events (see Friston (2005) for a similar
argument). Both issues warrant a careful interpretation of our
results, and will be examined more closely in future studies.

Future research We will apply the method presented in this
paper to a mental rotation study in an upcoming paper, and
juxtapose the resulting clusters with those presented herein
(Preuss, Hilton, Gramann, & Russwinkel, 2023). As some
authors theorized different cognitive loads on spatial represen-
tation and transformation between mental rotation and folding,
this model-based approach might illuminate the differences
and similarities of the two paradigms. Furthermore, our up-
coming research will focus on a novel combined mental ro-
tation and folding experiment, allowing analyses of mental
spatial transformation in a unified manner.

Data and Software

EEG IC cluster ERPs and statistics from mental rotation and
mental folding experiments:
https://doi.org/10.14279/depositonce-19702
Spatial module:
https://doi.org/10.14279/depositonce-17795
Mental folding model:
https://doi.org/10.14279/depositonce-19515
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