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A machine-learning algorithm for diagnosis of multisystem 
inflammatory syndrome in children and Kawasaki disease in 
the USA: a retrospective model development and validation 
study
Jonathan Y Lam, Chisato Shimizu, Adriana H Tremoulet, Emelia Bainto, Samantha C Roberts, Nipha Sivilay, Michael A Gardiner, John T Kanegaye, 
Alexander H Hogan, Juan C Salazar, Sindhu Mohandas, Jacqueline R Szmuszkovicz, Simran Mahanta, Audrey Dionne, Jane W Newburger, 
Emily Ansusinha, Roberta L DeBiasi, Shiying Hao, Xuefeng B Ling, Harvey J Cohen, Shamim Nemati*, Jane C Burns*, the Pediatric Emergency 
Medicine Kawasaki Disease Research Group†, the CHARMS Study Group†

Summary
Background Multisystem inflammatory syndrome in children (MIS-C) is a novel disease that was identified during the 
COVID-19 pandemic and is characterised by systemic inflammation following SARS-CoV-2 infection. Early detection 
of MIS-C is a challenge given its clinical similarities to Kawasaki disease and other acute febrile childhood illnesses. 
We aimed to develop and validate an artificial intelligence algorithm that can distinguish among MIS-C, Kawasaki 
disease, and other similar febrile illnesses and aid in the diagnosis of patients in the emergency department and acute 
care setting.

Methods In this retrospective model development and validation study, we developed a deep-learning algorithm 
called KIDMATCH (Kawasaki Disease vs Multisystem Inflammatory Syndrome in Children) using patient age, the 
five classic clinical Kawasaki disease signs, and 17 laboratory measurements. All features were prospectively 
collected at the time of initial evaluation from patients diagnosed with Kawasaki disease or other febrile illness 
between Jan 1, 2009, and Dec 31, 2019, at Rady Children’s Hospital in San Diego (CA, USA). For patients with 
MIS-C, the same data were collected from patients between May 7, 2020, and July 20, 2021, at Rady Children’s 
Hospital, Connecticut Children’s Medical Center in Hartford (CT, USA), and Children’s Hospital Los Angeles (CA, 
USA). We trained a two-stage model consisting of feedforward neural networks to distinguish between patients 
with MIS-C and those without and then those with Kawasaki disease and other febrile illnesses. After internally 
validating the algorithm using stratified tenfold cross-validation, we incorporated a conformal prediction framework 
to tag patients with erroneous data or distribution shifts. We finally externally validated KIDMATCH on patients 
with MIS-C enrolled between April 22, 2020, and July 21, 2021, from Boston Children’s Hospital (MA, USA), 
Children’s National Hospital (Washington, DC, USA), and the CHARMS Study Group consortium of 14 US 
hospitals.

Findings 1517 patients diagnosed at Rady Children’s Hospital between Jan 1, 2009, and June 7, 2021, with MIS-C 
(n=69), Kawasaki disease (n=775), or other febrile illnesses (n=673) were identified for internal validation, with an 
additional 16 patients with MIS-C included from Connecticut Children’s Medical Center and 50 from Children’s 
Hospital Los Angeles between May 7, 2020, and July 20, 2021. KIDMATCH achieved a median area under the receiver 
operating characteristic curve during internal validation of 98·8% (IQR 98·0–99·3) in the first stage and 96·0% 
(95·6–97·2) in the second stage. We externally validated KIDMATCH on 175 patients with MIS-C from Boston 
Children’s Hospital (n=50), Children’s National Hospital (n=42), and the CHARMS Study Group consortium of 
14 US hospitals (n=83). External validation of KIDMATCH on patients with MIS-C correctly classified 76 of 81 patients 
(94% accuracy, two rejected by conformal prediction) from 14 hospitals in the CHARMS Study Group consortium, 
47 of 49 patients (96% accuracy, one rejected by conformal prediction) from Boston Children’s Hospital, and 36 
of 40 patients (90% accuracy, two rejected by conformal prediction) from Children’s National Hospital.

Interpretation KIDMATCH has the potential to aid front-line clinicians to distinguish between MIS-C, Kawasaki 
disease, and other similar febrile illnesses to allow prompt treatment and prevent severe complications.

Funding US Eunice Kennedy Shriver National Institute of Child Health and Human Development, US National 
Heart, Lung, and Blood Institute, US Patient-Centered Outcomes Research Institute, US National Library of Medicine, 
the McCance Foundation, and the Gordon and Marilyn Macklin Foundation.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.
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Research in context

Evidence before this study
Multisystem inflammatory syndrome in children (MIS-C) is 
a novel inflammatory disease identified during the COVID-19 
pandemic with potential to cause permanent organ damage or 
life-threatening illness. Early detection of MIS-C remains 
a challenge given its clinical similarities to Kawasaki disease and 
other acute febrile childhood illnesses. Although there are 
reported differences in patients with MIS-C, such as older age, 
lower platelet count, and elevated inflammatory markers, there 
is no specific diagnostic test. Artificial intelligence (AI) has the 
potential to aid in early detection of MIS-C by modelling the 
complex relationships between clinical variables. We searched 
PubMed and medRxiv for research articles and preprints 
published between Jan 1, 2020, and Dec 1, 2021, using the 
terms “machine learning” OR “model” OR “score” AND 
“Kawasaki disease” AND “MIS-C”. Of the five studies found, only 
one study focused on using clinical variables to distinguish 
between Kawasaki disease and MIS-C. Another study used 
clinical variables to distinguish between MIS-C, COVID-19, 
Kawasaki disease, and toxic shock syndrome. Both studies used 
a combination of demographic, laboratory, and clinical features 
to create diagnostic scores. However, the diagnostic scores from 
these studies were not tested against patients with other febrile 
illnesses and were not externally validated. Furthermore, some 
input features used in these studies might not be available in 
many clinical settings at the time of initial evaluation, such as 

D-dimer and echocardiographic findings, and the data were 
acquired retrospectively without a standardised timeframe.

Added value of this study
To the best of our knowledge, our study is the first to use AI for 
screening of patients with MIS-C, Kawasaki disease, or similar 
febrile illnesses. We developed a deep-learning algorithm called 
KIDMATCH (Kawasaki Disease vs Multisystem Inflammatory 
Syndrome in Children) using clinical signs and laboratory data 
routinely collected during the initial evaluation of these 
patients. KIDMATCH showed consistent performance during 
external validation in patients with MIS-C from 16 hospitals 
across the USA. KIDMATCH is interpretable on a case-by-case 
basis by examining the most important features and whether 
they affect the MIS-C risk score positively or negatively. 
The conformal prediction framework identified outlier patients 
that might have been misclassified otherwise, thus identifying 
individuals for whom the model was not applicable.

Implications of all the available evidence
KIDMATCH showed the ability to distinguish between MIS-C, 
Kawasaki disease, and similar febrile illnesses using data 
available at the time of initial evaluation to the emergency 
department. These results highlight the potential of KIDMATCH 
as a clinical decision support system for diagnosing paediatric 
patients with MIS-C and Kawasaki disease in a timely manner to 
allow prompt treatment.

Introduction 
As the COVID-19 pandemic spread, reports of children 
with a SARS-CoV-2-associated multisystem inflam
matory condition emerged.1–6 Clinical features of this 
new disorder, named multisystem inflammatory syn
drome in children (MIS-C), include fever, gastrointestinal 
symptoms, conjunctival injection, rash, and elevated 
inflammatory markers.7 Complications might include 
shock and multi-organ failure. According to the US 
Centers for Disease Control and Prevention (CDC), 8798 
MIS-C cases and 71 MIS-C deaths had been reported 
nationwide as of Aug 1,  2022.8 Despite its low prevalence, 
MIS-C is a serious condition with the potential to cause 
life-threatening illness, and the absence of a specific 
diagnostic test makes recognition of MIS-C a challenge.

Treatments for MIS-C include intravenous immuno
globulin, corticosteroids, and anti-inflammatory biological 
agents that rely on timely diagnosis of MIS-C to be most 
effective.9,10 Kawasaki disease, an acute paediatric illness of 
unknown cause characterised by inflammation of the 
coronary arteries, is associated with fever and clinical 
criteria including rash, conjunctival injection, changes in 
lips or oropharyngeal mucosa, cervical lymphadenopathy, 
and changes in peripheral extremities.11 Many of these 
clinical features overlap with MIS-C.10,12 Although there 
are reported differences, such as older age, lower platelet 
count, and elevated inflammatory markers, in patients 

with MIS-C compared with those with Kawasaki disease, 
none of these features alone or in combination is sufficient 
to diagnose MIS-C.4 Artificial intelligence (AI) has the 
potential to aid in early detection of MIS-C by modelling 
the complex relationships between clinical variables, but, 
to the best of our knowledge, there is currently no 
machine-learning algorithm that differentiates Kawasaki 
disease from MIS-C.

In response to the difficulty clinicians have in diagnosis 
of and differentiation between MIS-C and Kawasaki 
disease, we aimed to develop and validate a clinical 
decision support system to distinguish among children 
with MIS-C, Kawasaki disease, and other febrile illnesses 
characterised by similar clinical and laboratory features 
in the emergency department. 

Methods 
Study design and participants 
In this retrospective model development and validation 
study, we developed a two-stage AI model called 
KIDMATCH (Kawasaki Disease vs Multisystem 
Inflammatory Syndrome in Children) to classify patients 
as having MIS-C, Kawasaki disease, or other febrile 
illness using clinical signs and laboratory values that 
would be available at the time of a patient’s initial 
evaluation. This study is reported in accordance with 
TRIPOD.
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For internal validation, patients diagnosed with MIS-C 
between May 7, 2020, and July 20, 2021, were prospectively 
enrolled from Rady Children’s Hospital (San Diego, CA, 
USA) and, to improve the generalisability of the results, 
Connecticut Children’s Medical Center (Hartford, CT, 
USA) and Children’s Hospital Los Angeles (Los Angeles, 
CA, USA; appendix p 3). To avoid the potential for 
misclassification, we prospectively enrolled patients with 
Kawasaki disease or other febrile illness who were 
diagnosed during an earlier time period, before the 
COVID-19 pandemic, between Jan 1, 2009, and 
Dec 31, 2019, at Rady Children’s Hospital. All patients (ie, 
those with MIS-C, Kawasaki disease, or other illnesses) 
enrolled from Rady Children’s Hospital were identified 
from a REDCap database at the Kawasaki Disease 
Research Center at the University of California San Diego 
(UCSD; San Diego, CA, USA). For external validation, 
patients with MIS-C were prospectively enrolled between 
April 22, 2020, and July 21, 2021, from Boston Children’s 
Hospital (Boston, MA, USA), Children’s National 
Hospital (Washington, DC, USA), and the CHARMS 
Study Group consortium (a 14-hospital database of 
patients with MIS-C funded by the Patient-Centered 
Outcomes Research Institute and housed at USCD).

Patients were diagnosed with MIS-C if they met the 
CDC case definition.13 All patients with MIS-C had positive 
antibody testing for either the nucleocapsid or spike 
protein of SARS-CoV-2, and none had received a SARS-
CoV-2 vaccine. Patients were diagnosed with Kawasaki 
disease if they met the case definition of the American 
Heart Association for either complete or incomplete 
Kawasaki disease.14 All patients with Kawasaki disease 
were diagnosed and treated by one of two clinicians who 
are highly experienced in the treatment of patients with 
Kawasaki disease (JCB and AHT). Patients were diagnosed 
with other febrile illnesses if they met the following case 
definition: previously healthy child with fever for at least 
3 days plus at least one of the clinical criteria for Kawasaki 
disease. More than 50% of patients with other febrile 
illnesses were referred for evaluation because of a clinical 
suspicion for Kawasaki disease. The final diagnoses for 
children with other febrile illnesses were adjudicated 
2–3 months after enrolment by two experienced paediatric 
clinicians (JTK and JCB) who reviewed the clinical 
outcomes in the medical record and all available test 
results (appendix p 4). A viral syndrome was defined as a 
self-limited illness that resolved without treatment and 
without apparent sequelae. Written informed consent or 
assent as appropriate was obtained from parents and 
children, and the study was approved by the institutional 
review boards of the participating institutions. UCSD 
served as the central institutional review board of record 
for the CHARMS Study Group participants.  

Data preprocessing 
We used age, the five classic clinical Kawasaki disease 
signs, and 17 laboratory measurements as features for 

KIDMATCH based on guidance from the clinician 
collaborators and availability of laboratory test results 
for the majority of the training cohort (appendix pp 4–5). 
Features were collected prospectively at the time of 
initial evaluation in the emergency department at all 
sites. The five clinical signs were rash, conjunctival 
injection, changes in lips or oropharyngeal mucosa, 
cervical lymphadenopathy, and changes in peripheral 
extremities. Laboratory data were white blood cell 
count, age-adjusted haemoglobin, platelets, neutrophils, 
bands, lymphocytes, atypical lymphocytes, monocytes, 
eosinophils, absolute neutrophil count, absolute 
band count, erythrocyte sedimentation rate, C-reactive 
protein, alanine aminotransferase, γ-glutamyl trans
ferase, albumin, and sodium. Because of the absence of 
bands and atypical lymphocytes in patients with 
automated differentials for the complete blood count, 
an indicator variable was added for the type of 
differential (0 was manual, and 1 was automated). For 
samples with automated differentials, we imputed the 
values for bands, atypical lymphocytes, and absolute 
band counts using the mean of the respective feature. 
Outlier values defined as less than the 0·5th percentile 
or greater than the 99·5th percentile were set to the 
values of 0·5th percentile if lower or 99·5th percentile if 
higher. All other missing laboratory values were 
imputed using K-nearest neighbours as the mean of the 
respective feature for the ten most similar samples from 
the training data. Data were normalised for each 
laboratory feature, except haemoglobin, after these 
transformations by subtracting the mean and dividing 
by the SD. Haemoglobin was normalised for age. 

Model design
In KIDMATCH, we separated the classification of MIS-C, 
Kawasaki disease, and other febrile illnesses into two 
stages (figure 1). The model in stage 1 was trained to 
differentiate between MIS-C and other paediatric febrile 
conditions because of the clinical need to prioritise the 
identification of patients with MIS-C in the emergency 
department during admission and drop in performance 
when first differentiating between patients with febrile 
illnesses and those without in stage 1 (appendix p 6). The 
model in stage 2 was trained to further classify patients 
falling into the “other” category as other febrile illness or 
Kawasaki disease. Because Kawasaki disease and MIS-C 
data distributions could vary across different sites, we 
incorporated a conformal prediction framework within 
the model.15 Conformal prediction reduces false alarms 
by identifying unfamiliar samples in new patient 
populations when compared with the training cohort and 
assigns indeterminate labels rather than making 
spurious predictions. If a test sample was rejected by the 
conformal prediction framework, no prediction was 
calculated. In stage 1, the model calculated an MIS-C risk 
score between 0 and 1 for test samples, with 1 being the 
highest MIS-C risk. In stage 2, the model calculated 
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a Kawasaki disease risk score between 0 and 1, with 1 as 
the highest risk for Kawasaki disease.  

We trained a feedforward neural network on each of 
the stages using Tensorflow (version 2.3.1) with a logistic 
regression using scikit-learn (version 0.24.2) as the 
baseline model. For both stages, the neural network was 
trained with the Adam optimiser at a learning rate of 0·01 
and equally weighted batches of 100 from each class for 
stage 1 and 200 samples from each class for stage 2. Each 
neural network consisted of an input layer (23 units), 
a single hidden layer (ReLu activation function, L2 
regularisation, 20% dropout rate), and a softmax output 
layer (2 units, binary cross-entropy loss function). The 
optimal number of units in the hidden layer was 12 for 
stage 1 and 16 for stage 2.

Model training and evaluation 
We split the patients into training and internal validation 
cohorts using an 80:20 split and used stratified tenfold 
cross-validation to assess performance. Patients with any 
missing values were not considered for the internal test 
set based on the original design of the system user 
interface to generate a risk score from a complete set of 
features. Additionally, we observed a statistically non-
significant decline in performance for both stages when 
including such patients in the internal validation test set 
(appendix p 7). All patients were included from the 
training cohort in stage 1, whereas patients with MIS-C 
were omitted from the training cohort in stage 2. 
Performance of the models was evaluated using accuracy, 
area under the receiver operating characteristic curve 
(AUC), sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV) calculated at 
a minimum 95% sensitivity for the MIS-C classifications 

for stage 1 and Kawasaki disease classifications for 
stage 2. We chose 95% sensitivity based on clinician 
feedback to avoid missing true positive cases. For external 
validation, patient data were first passed through the 
conformal prediction framework to determine whether a 
prediction should be made. Patient data that were not 
rejected were fed into the two-stage model to generate a 
final classification (MIS-C, other febrile illness, or 
Kawasaki disease) based on thresholds established 
during internal validation.

Conformal prediction 
The trust sets used in the conformal prediction 
framework were constructed by filtering patients in the 
training cohort who had more than one missing value 
and MIS-C risk scores greater than the 95th percentile 
(appendix p 8). The weighted F1 score was calculated as 
the mean of the F1 score of all classes weighted by the 
support. We then constructed a trust set for each of the 
three classifications (other febrile illness, Kawasaki 
disease, and MIS-C). 200 randomly sampled patients 
from the internal training set were used for the other 
febrile illnesses and Kawasaki disease trust sets, and all 
patients with MIS-C were included in the MIS-C trust 
set. We generated feature representations for the 
conformal prediction framework by passing the 
preprocessed features of the training samples through 
the first hidden layer of the neural network. Feature 
representations from the test samples were compared 
with each of the conformal trust sets using cosine 
similarity, and if a test sample was rejected by all three 
trust sets based on a p value cutoff value of 0·05, then the 
model did not calculate risk scores for the test sample.

Shapley values 
To explain the model predictions, we calculated the 
Shapley values for the test set using the Shapley Additive 
Explanations (SHAP) Python library.16 Preprocessed data 
from the training set were used as the background to 
compare preprocessed test set data for stage 1 and stage 2. 
100 random background samples from the internal 
training set were used to calculate the Shapley values for 
each feature in the internal test set.

Statistical analysis 
p values were calculated with the Mann-Whitney U test 
for continuous variables between two groups, the 
Kruskal-Wallis test for three groups, the χ² test for 
categorical variables within the cohort used for internal 
validation, and the DeLong test17 for AUC. Non-parametric 
statistical tests were chosen based on the mixture of 
normally and non-normally distributed features as 
determined by the Shapiro-Wilk test. 

Devising a diagnostic test for two diseases for which 
there is no gold standard test presents special challenges. 
As a sensitivity analysis, we tested patients with 
Kawasaki disease who had coronary artery aneurysms 

Figure 1: Model architecture
A patient could be classified as having MIS-C, other febrile illnesses, or Kawasaki disease if the input data were not 
rejected by the conformal prediction framework. MIS-C=multisystem inflammatory syndrome in children.
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and patients with MIS-C who had a reduced left 
ventricular ejection fraction as characteristic patient 
subsets that were unlikely to be misclassified by 
clinicians. We also tested patients with other febrile 
illnesses diagnosed with bacterial infection as an 
additional sensitivity analysis based on the low 
prevalence of this population. To assess how the 

algorithm performed compared with human judgement, 
we extracted the raw feature values from 101 random 
samples of the internal test set for the final model and 
had two experienced paediatric infectious disease 
clinicians with Kawasaki disease expertise at Rady 
Children’s Hospital (AHT and JCB) assign diagnoses 
based on the features alone. 

MIS-C (n=135) Kawasaki disease (n=775) Other febrile illnesses (n=673) p value*

Age†, years 8·4 (4·3–11·3) 2·9 (1·5–4·8) 3·4 (1·5–5·9) <0·0001

Sex ·· ·· ·· NS

Male 77 (57%) 463 (60%) 394 (59%) ··

Female 58 (43%) 312 (40%) 279 (41%) ··

Ethnicity ·· ·· ·· <0·0001

Asian 6 (4%) 124 (16%) 47 (7%) ··

African American 14 (10%) 23 (3%) 10 (1%) ··

White 9 (7%) 167 (22%) 167 (25%) ··

Hispanic 94 (70%) 275 (35%) 272 (40%) ··

More than two races or other 12 (9%) 186 (24%) 114 (17%) ··

No information 0 0 63 (9%) ··

Maximum Z score‡ 1·6 (0·9–2·4) 1·7 (1·2–2·4) NA NS

Lowest left ventricle ejection fraction 57% (48–61) 66% (63–70) NA <0·0001

Illness day of sample collection§ 4 (3–6) 5 (4–7) 5 (4–7) NS

Automated differential† 32 (24%) 33 (4%) 91 (14%) <0·0001

Clinical signs†

Rash 76 (56%) 715 (92%) 442 (66%) <0·0001

Conjunctival injection 81 (60%) 725 (94%) 343 (51%) <0·0001

Changes in lips or oropharyngeal mucosa 50 (37%) 723 (93%) 304 (45%) <0·0001

Cervical lymphadenopathy 22 (16%) 274 (35%) 151 (22%) <0·0001

Peripheral extremity changes 18 (13%) 625 (81%) 131 (19%) <0·0001

Laboratory data

White blood cell count†, 10³ cells per μL 9·8 (6·9–13·0) 13·2 (10·4–17·0) 9·5 (6·4–13·3) <0·0001

Neutrophils† 70% (58–80) 58% (47–69) 47% (31–62) <0·0001

Bands† 12% (2–24) 7% (2–15) 5% (2–11) <0·0001

Lymphocytes† 11% (6–20) 20% (12–31) 32% (18–47) <0·0001

Atypical lymphocytes† 0% (0–1) 0% (0–1) 1% (0–3) <0·0001

Monocytes† 3% (1–5) 6% (3–8) 8% (5–11) <0·0001

Eosinophils† 1% (0–3) 2% (1–4) 0% (0–1) <0·0001

Absolute neutrophil count†, cells per μL 7980 (5476–10 416) 8892 (6305–11 768) 4800 (2599–8208) <0·0001

Absolute band count†, cells per μL 1160 (236–2167) 891 (299–2095) 438 (148–1205) <0·0001

Absolute lymphocyte count, cells per μL 962 (585–1797) 2565 (1412–3963) 2730 (1633–4356) <0·0001

Haemoglobin concentration normalised for age† –1·6 (–2·9 to –0·7) –1·3 (–2·3 to –0·5) –0·3 (–1·3 to 0·5) <0·0001

Platelet count†, 10³ per L 160 (111–222) 339 (267–426) 247 (184–322) <0·0001

Erythrocyte sedimentation rate†, mm/h 49 (31–75) 60 (39–75) 29 (15–45) <0·0001

C-reactive protein†, mg/dL 18·7 (8·2–25·7) 7·0 (4·3–16·9) 2·9 (1·2–6·0) <0·0001

Alanine aminotransferase†, IU/L 39 (21–63) 46 (26–117) 27 (19–38) <0·0001

γ-glutamyl transferase†, IU/L 36 (24–85) 46 (18–128) 15 (12–20) <0·0001

Albumin†, g/dL 3·6 (3·1–4·0) 3·8 (3·5–4·2) 4·1 (3·8–4·4) <0·0001

Sodium†, mmol/L 133 (130–135) 137 (134–139) 138 (136–139) <0·0001

Data are n (%) or median (IQR). Percentages might not sum to 100 as a result of rounding. MIS-C=multisystem inflammatory syndrome in children. NA=not applicable. 
NS=not significant. *p values were calculated with the Mann-Whitney U test for continuous variables between two groups, the Kruskal-Wallis test for three groups, and the 
χ² test for categorical variables. †Model feature. ‡Maximum Z score (internal diameter normalised for body surface area) for the right and left anterior descending coronary 
arteries. §Illness day 1 was the first day of fever. 

Table 1: Demographic and clinical characteristics of patients used in internal validation from Rady Children’s Hospital San Diego (CA, USA; n=1517), 
Connecticut Children’s Medical Center (Hartford, CT, USA; n=16), and Children’s Hospital Los Angeles (CA, USA; n=50)
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Role of the funding source 
The funders of the study were not involved in the study 
design, the collection, analysis, and interpretation of 
data, the writing of the report, or the decision to submit 
the paper for publication.

Results 
1517 patients diagnosed at Rady Children’s Hospital  
between Jan 1, 2009, and June 7, 2021, with MIS-C 
(n=69), Kawasaki disease (n=775), or other febrile 
illnesses (n=673) were identified for internal validation. 
Laboratory tests and clinical signs were obtained at the 
time of initial evaluation and before treatment for all 
patients. We added patients with MIS-C from 
Connecticut Children’s Medical Center (n=16) and 
Children’s Hospital Los Angeles (n=50), who were 
enrolled between May 7, 2020, and July 20, 2021, when 
training the model for a total of 135 patients with 
MIS-C during internal validation (table 1). External 
validation was performed using MIS-C clinical data 
(n=175) from patients enrolled between April 22, 2020, 
and July 21, 2021, at Boston Children’s Hospital (n=50), 
Children’s National Hospital (n=42), and the CHARMS 
Study Group consortium (n=83). In a comparison of 
data among the groups, patients with MIS-C 
had higher band counts, lower sodium concentration, 
lower platelet counts, and higher C-reactive protein 
(p<0·0001), and were older, than those in the other 
febrile illness and Kawasaki disease cohorts, consistent 
with previous reports (table 1).1,4

The stratified tenfold cross-validation results for 
stages 1 and 2 are shown in table 2. During internal 
validation, KIDMATCH achieved a median AUC of 
98·8% (IQR 98·0–99·3) in the first stage and 96·0% 
(95·6–97·2) in the second stage. The neural network in 
stage 1 had similar accuracy, sensitivity, specificity, PPV, 

and NPV compared with the logistic regression baseline 
in the validation set when classifying samples as MIS-C 
or not MIS-C. In stage 2, the neural network compared 
favourably with the logistic regression baseline in terms 
of accuracy, PPV, and specificity when classifying 
samples as other febrile illness or Kawasaki disease on 
the basis of thresholds set at 95% sensitivity for Kawasaki 
disease samples. 

We selected the models in the cross-validation with the 
highest stage 1 accuracy to use in the final model. To 
ensure model generalisability and similar performance 
across external sites, we constructed a conformal 
prediction framework using the training samples from 
the final model.15 Briefly, we selected the parsimonious 
combination of missingness and risk score with the 
highest weighted F1 score to construct the conformal 
trust sets (appendix p 8). This approach rejected 
three (2%) of the 149 other febrile illness samples, six (4%) 
of the 165 Kawasaki disease samples, and none of the 
MIS-C samples in the internal validation test set. The 
receiver operating characteristic curves for the final 
model indicated that the neural networks had high 
sensitivity and specificity with an AUC of 0·982 in stage 1 
and 0·950 in stage 2 (figure 2).

The neural networks trained for each stage in the final 
model showed robust performance when setting 
thresholds (stage 1 –0·36, stage 2 –0·60) at a 
95% sensitivity level. Although there was no statistical 
difference in the AUC for stage 1 (p=0·17) and stage 2 
(p=0·59), the neural networks were chosen for the final 
model as the conformal prediction framework relied on 
feature representations that could not be calculated with 
logistic regression. In addition, the majority of patients at 
UCSD had a complete blood count with a manual 
differential, but the external sites had a significant 
proportion of automated differentials. The neural 

Accuracy AUC Sensitivity Specificity Positive predictive 
value

Negative predictive 
value

Stage 1

Training

Logistic regression 95·4% (95·0–95·5) 98·6% (98·5–98·7) 92·4% (91·6–93·3) 95·6% (95·4–96·0) 70·9% (69·4–72·2) 99·1% (99·0–99·2)

Neural network 96·4% (96·1–97·2) 99·5% (99·4–99·6) 100·0% (99·2–100·0) 96·3% (96·0–96·9) 74·7% (73·9–78·8) 100·0% (99·9–100·0)

Validation

Logistic regression 96·4% (96·1–96·8) 98·5% (98·0–98·8) 93·8% (87·5–100·0) 97·0% (95·8–97·3) 65·0% (59·3–66·7) 99·6% (99·2–100·0)

Neural network 96·4% (96·1–97·8) 98·8% (98·0–99·3) 93·8% (93·8–100·0) 97·0% (95·8–98·1) 63·6% (59·3–75·0) 99·6% (99·6–100·0)

Stage 2

Training

Logistic regression 91·4% (91·2–91·5) 97·2% (97·0–97·3) 95·1% (95·0–95·1) 86·7% (86·1–86·9) 89·8% (89·6–90·0) 93·4% (93·3–93·5)

Neural network 91·7% (91·4–91·8) 97·4% (97·3–97·4) 95·0% (95·0–95·1) 87·6% (86·9–88·0) 90·4% (90·0–90·7) 93·4% (93·4–93·5)

Validation

Logistic regression 88·6% (88·2–90·1) 96·1% (95·5–96·7) 94·6% (94·6–95·3) 80·3% (78·9–84·3) 86·1% (85·2–88·1) 92·4% (92·0–92·9)

Neural network 90·1% (89·4–90·9) 96·0% (95·6–97·2) 94·6% (94·6–94·6) 84·3% (82·5–86·1) 88·6% (87·6–89·7) 92·4% (92·2–92·5)

Data are median (IQR). AUC=area under the receiver operating characteristic curve.

Table 2: Tenfold stratified cross-validation performance metrics for the training and validation cohorts in stage 1 and stage 2 
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networks were able to adjust for the difference between 
manual and automated differential complete blood 
counts effectively by incorporating an indicator variable 
as input to the model.

In a sensitivity analysis, we tested patients with 
Kawasaki disease who had coronary artery aneurysms 
and patients with MIS-C who had a reduced left 
ventricular ejection fraction as characteristic patient 
subsets that were unlikely to be misclassified by 
clinicians. The final model correctly assigned 124 (87%) 
of 142 patients with Kawasaki disease who had coronary 
artery aneurysms (31 [84%] of 37 in the test set) and 
19 (95%) of 20 patients with MIS-C who had a reduced 
left ventricular ejection fraction (three [75%] of four in 
the test set; appendix p 9). We also tested patients with 
other febrile illnesses diagnosed with bacterial infection 
as an additional sensitivity analysis. Of the children with 
other febrile illnesses with documented bacterial 
infection, 69 (83%) of 83 (11 [79%] of 14 in the test set) 
were classified correctly. We extracted the raw feature 
values from 101 random samples of the internal test set 
for the final model and had two experienced paediatric 
infectious disease clinicians with Kawasaki disease 
expertise at Rady Children’s Hospital (AHT and JCB) 
assign diagnoses based on the features alone. The 
algorithm outperformed both clinicians with an accuracy 
of 86% (87 of 101 cases correctly assigned) compared 
with 79% (80 of 101) and 80% (81 of 101; appendix p 10).

To determine how the features contributed to the 
model predictions, we used Shapley values—specifically 
the SHAP method.16 In stage 1, the most important 
features that distinguished patients with MIS-C from 
those without were serum sodium, platelet count, 
neutrophils, and C-reactive protein (figure 3). The 
patterns observed were consistent with published reports 
of the laboratory testing characteristics of patients with 
MIS-C.1,4 In stage 2, changes in peripheral extremities, 
conjunctival injection, erythrocyte sedimentation rate, 
and changes in the lips or oropharyngeal mucosa were 
the most important features for differentiating between 
other febrile illnesses and Kawasaki disease. Three of the 
four features mentioned previously are clinical signs 
used by clinicians to diagnose Kawasaki disease, so it is 
not surprising that the presence of one or more of these 
clinical signs contributed to a higher stage 2 risk score 
and higher probability of Kawasaki disease. The next 
most important features were age, with younger patients 
more likely to have Kawasaki disease, and γ-glutamyl 
transferase, higher levels of which indicate hepatobiliary 
inflammation, which is often observed in Kawasaki 
disease.18

We externally validated KIDMATCH using patients with 
MIS-C from the CHARMS Study Group consortium, 
Boston Children’s Hospital, and Children’s National 
Hospital. Our conformal prediction framework rejected 
two (2%) of 83 samples from the CHARMS Study Group 
consortium, one (2%) of 50 from Boston’s Children’s 

Hospital, and two (5%) of 42 from the Children’s National 
Hospital (table 3). KIDMATCH accurately predicted 
MIS-C in 76 (94%) of 81 samples from the CHARMS 
Study Group consortium (appendix p 11), 47 (96%) of 
49 samples from Boston Children’s Hospital, and 36 (90%) 
of 40 samples from the Children’s National Hospital after 
conformal prediction (table 3). Examination of the stage 1 
risk scores for each site revealed that most patients with 
MIS-C were confidently classified as MIS-C (risk score 
of >0·8) with conformal prediction successfully identifying 
false alarms from the rejected patients (appendix p 12).

KIDMATCH generalised well to external MIS-C 
cohorts, with 90% or greater accuracy at all three external 
sources despite missingness of one to four features, 
most often (88%) γ-glutamyl transferase. The model had 
the lowest prediction accuracy for Children’s National 

Figure 2: ROCs for stage 1 (A) and stage 2 (B) in the final model
Thresholds for each stage were set based on the red circle on the ROC for the 
neural network. AUC=area under the receiver operating characteristic curve. 
MIS-C=multisystem inflammatory syndrome in children. ROC=receiver 
operating characteristic curve. 
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Hospital at 90% (table 3). Further investigation revealed 
that their laboratory values for albumin were significantly 
lower than the MIS-C training distribution (median 
2·9 g/dL [IQR 2·5–3·2] vs 3·6 g/dL [3·2–4·0], p<0·0001) 
due to differences in the test platform used by that 
clinical laboratory (appendix p 13). In addition, all 
misclassified patients with MIS-C from Children’s 
National Hospital had a normal serum sodium of 
138 mmol/L or higher, and the distribution of serum 
sodium values from this laboratory was significantly 
higher than from the other MIS-C clinical sites 
(median 136 [IQR 134–139] vs 133 [130–135], p<0·0001). 
Although these values deviated from those observed in 
other sites, outlier serum albumin and sodium values 
were observed in patients with MIS-C in the training 
cohort, and the model showed consistent performance 
when handling samples with outlier values. The reliance 
of the stage 1 algorithm on characteristic MIS-C 
laboratory test values such as low serum sodium and low 
platelet count increases the probability of misclassification 
when presented with normal values from a patient with 
MIS-C (appendix p 13). However, the model enables 
clinicians to explore how the relevant features are 
contributing to the risk score and adjust their clinical 
judgement accordingly.

Discussion 
We present a machine-learning model for screening of 
patients with MIS-C, Kawasaki disease, or similar febrile 
illnesses using clinical signs and laboratory data routinely 
collected during the initial evaluation of these patients. 
To the best of our knowledge, this is the first application 
of AI to aid in the diagnosis of MIS-C and differentiate it 
from Kawasaki disease and other febrile illnesses. 
KIDMATCH has the ability to reject test samples that are 
outside the distribution in the training set, which 
provides a measure of confidence by statistically 
identifying outlier inputs. It is interpretable on a case-by-
case basis by examining the most important features and 
whether they affect the MIS-C risk score positively or 
negatively. KIDMATCH showed consistent performance 
across different hospitals, and the conformal prediction 
framework identified outlier patients that would have 
been misclassified otherwise. A web calculator for 
KIDMATCH was developed using Streamlit, an open-
source framework for building applications in Python, to 
assist clinicians with calculation of the proposed risk 
scores and assessment of the top factors contributing to 
risk (appendix pp 14–18). It was internally deployed at 

Figure 3: SHAP summary plot for stage 1 (A) and stage 2 (B) with raw feature 
values
A feature for a patient with a SHAP value below 0 decreases the risk score. In 
stage 1, a higher risk score indicates a higher probability of MIS-C. In stage 2, a 
higher risk score indicates a higher probability of Kawasaki disease. Features are 
ranked in order of importance from top to bottom. MIS-C=multisystem 
inflammatory syndrome in children. SHAP=Shapley Additive Explanations.
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Rady Children’s Hospital and is currently being updated 
with clinician feedback in an ongoing single-site 
prospective implementation study. The laboratory tests 
incorporated into KIDMATCH (complete blood 
count, comprehensive metabolic panel, erythrocyte 
sedimentation rate, C-reactive protein, and γ-glutamyl 
transferase) are commonly obtained for paediatric 
patients in many outpatient and inpatient medical 
settings, and the clinical features are easy to assess by 
front-line clinicians. The use of such readily available 
data enables KIDMATCH to be potentially deployable 
immediately across the USA without the need for 
specialised laboratory tests. 

A strength of our work is the universal availability of 
the required features in the majority of health-care 
settings and the validation using external cohorts. 
Two recent studies19,20 have created diagnostic scores to 
distinguish between Kawasaki disease and MIS-C. Both 
studies have the same approach as our model in using a 
combination of demographic information, laboratory 
tests, and clinical features for risk assessment. However, 
models in both studies were not tested against control 
paediatric patients with other febrile illnesses and were 
not externally validated. Laboratory values for both 
studies were collected without a standardised timeframe, 
using the highest or lowest values instead of extracting 
values at a set timepoint, whereas our study used the 
first result from the initial evaluation. In addition, the 
Kostik score19 included D-dimer, which might not be 
available in many clinical settings, and the Godfred-Cato 
scores20 include pericardial effusion and other 
echocardiographic findings that would not be readily 
available in an emergency room. KIDMATCH uses 
routinely ordered laboratory studies and assessable 
clinical features, making it an effective screening tool at 
the point of initial evaluation before more costly testing 
is ordered.

We recognise limitations of our work due to the 
absence of a gold standard for Kawasaki disease or 

MIS-C diagnosis and the limited availability of febrile 
illness and Kawasaki disease data for external validation. 
We cannot exclude some degree of misdiagnosis in 
either the training or test set. However, the internal 
validation performance showed consistency with known 
discriminating features that were used as input for 
KIDMATCH. It is unknown whether a simpler model or 
addition of other routine laboratory tests would have a 
similar or better performance. It is also unknown how 
the model would perform on patients with other febrile 
illnesses or Kawasaki disease from other hospitals 
because we trained our model on pre-pandemic febrile 
illness and Kawasaki disease data from a single site. The 
thresholds established during internal validation might 
not be generalisable to different sites, and shifting the 
threshold might be required to adjust for different 
prevalence rates. However, the high model AUC means 
that the model can be used to effectively prioritise 
patients with a febrile illness for further evaluation of 
MIS-C or Kawasaki disease. A key step for deployment 
will be to establish standardised conditions for use so 
that the algorithm is applied to the appropriate patients. 
The current algorithm is only optimised for laboratory 
test values collected at the time of initial evaluation, and 
it is unknown how it would perform with data collected 
at a later timepoint. It is also unknown how end users 
should deal with patients flagged as indeterminate, but 
a possible solution could be to order more specialised 
tests such as ferritin, troponin, B-type natriuretic 
peptide or N-terminal pro B-type natriuretic peptide, 
and D-dimer, as well as IgG antibody against 
SARS-CoV-2, as is routine practice for patients with 
suspected MIS-C.21

On the basis of these results, the proposed algorithm 
is a generalisable and accurate tool for the diagnosis of 
MIS-C and Kawasaki disease during the initial 
evaluation of patients with suspected disease. Future 
work will include retrospective validation in external 
patients with other febrile illnesses or Kawasaki disease 
and prospective validation in patients with MIS-C, as 
well as refining the implementation of KIDMATCH 
within the clinical workflow. As the first, to the best of 
our knowledge, externally validated machine-learning 
solution for the diagnosis of MIS-C, KIDMATCH has 
the potential to aid front-line clinicians and improve 
patient outcomes through timely diagnosis.
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CHARMS Study 
Group 
consortium* 
(n=83)

Boston Children’s 
Hospital 
(MA, USA; n=50)

Children’s National 
Hospital 
(Washington, DC, 
USA; n=42)

Rejected 2 (2%)† 1 (2%)‡ 2 (5%)†

Other febrile 
illnesses

3/81 (4%) 2/49 (4%) 3/40 (8%)

Kawasaki 
disease

2/81 (2%) 0 1/40 (3%)

MIS-C 76/81 (94%) 47/49 (96%) 36/40 (90%)

Data are n (%) or n/N (%). Percentages might not sum to 100 as a result of 
rounding. Percentages are based on the total number of patients from each site 
who were not rejected by conformal prediction. MIS-C=multisystem 
inflammatory syndrome in children. *Consisted of patients from 14 US hospitals. 
†Classifications were other febrile illnesses and Kawasaki disease. ‡Classification 
was other febrile illness. 

Table 3: Predicted classifications of patients with MIS-C from external sites
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