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The determination of charged particle trajectories in collisions at the CERN Large

Hadron Collider (LHC) is an important but challenging problem, especially in the high

interaction density conditions expected during the future high-luminosity phase of the

LHC (HL-LHC). Graph neural networks (GNNs) are a type of geometric deep learning

algorithm that has successfully been applied to this task by embedding tracker data

as a graph—nodes represent hits, while edges represent possible track segments—and

classifying the edges as true or fake track segments. However, their study in hardware- or

software-based trigger applications has been limited due to their large computational

cost. In this paper, we introduce an automated translation workflow, integrated into a

broader tool called hls4ml, for converting GNNs into firmware for field-programmable

gate arrays (FPGAs). We use this translation tool to implement GNNs for charged particle

tracking, trained using the TrackML challenge dataset, on FPGAs with designs targeting

different graph sizes, task complexites, and latency/throughput requirements. This work

could enable the inclusion of charged particle tracking GNNs at the trigger level for

HL-LHC experiments.

Keywords: graph neural networks, FPGAs, tracking, LHC, trigger

1. INTRODUCTION

In high energy physics (HEP), charged particle tracking (Strandlie and Frühwirth, 2010; Amrouche
et al., 2020) is a crucial task necessary for the accurate determination of the kinematics of the
particles produced in a collision event, including the position, direction, and momentum of the
particles at their production points. This task leverages specialized detectors positioned close
to the beam collision area in a strong magnetic field. When charged particles are created in
the collisions, their trajectories bend in the magnetic field and they ionize the material of these
detectors as they move outwards from the production point, providing position measurements
along the trajectory of each particle. The objective of tracking algorithms is to identify the individual
trajectories of these charged particles and extract relevant particle kinematics. Current tracking
algorithms (Frühwirth, 1987; Billoir, 1989; Billoir and Qian, 1990; Mankel, 1997; Chatrchyan et al.,
2014; Aaboud et al., 2017) scale worse than quadratically with the number of hits, which is expected
to increase dramatically at higher beam intensities due to the presence of simultaneous proton-
proton interactions (or pileup) and for more granular, more sensitive detectors. This motivates
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the study of alternative algorithms with different computational
scaling. Another important consideration is the ability to
accelerate these algorithms using highly-parallel heterogeneous
computing resources like graphics processing units (GPUs)
and field-programmable gate arrays (FPGAs) as further
improvements in single-core CPU performance may be
limited (Dennard et al., 1974; Esmaeilzadeh et al., 2011). Recent
efforts (Farrell et al., 2018; Ju et al., 2019; DeZoort et al.,
2021) have demonstrated the effectiveness of graph neural
networks (GNNs) to correctly classify “segments” belonging
to tracks. Graph-based approaches are well suited to this
task because tracking data can be naturally encoded as a
graph structure (Shlomi et al., 2020) and GNNs consider local
information between pairs of hits to learn relationships between
them in order to “connect the dots” and infer tracks. In other
words, track finding is an example of edge classification on a
graph data structure.

In this paper, we develop an automatic translation toolflow to
convert GNNs (DeZoort et al., 2021) for segment classification,
based on the interaction network (IN) architecture (Battaglia
et al., 2016, 2018), to FPGA firmware. FPGA implementations
enable efficient processing, in both speed and energy
consumption for large HEP datasets. They may also enable
the use of GNNs in the high-throughput, FPGA-based data
filter system, known as the level-1 trigger (L1T) (ATLAS
Collaboration, 2017; Aad et al., 2020; CMS Collaboration, 2020;
Sirunyan et al., 2020), which has strict sub-microsecond latency
requirements that only FPGAs or application-specific integrated
circuits (ASICs) can meet. For instance, in the upgraded CMS
design, a latency of 4µs (plus 1µs for data transfer) and an
event throughput of 2.22MHz are required for the L1 track
trigger (CMS Collaboration, 2020). Conversely, in situations
when a longer latency is permissible such as the high-level
trigger (HLT) (Trocino, 2014) or offline processing, they may be
used in coprocessing applications and scale to larger tasks. Our
automatic translation code is integrated with hls4ml (Duarte
et al., 2018; Loncar et al., 2021), a more general compiler for
converting machine learning (ML) algorithms into FPGA
firmware. We evaluate the resource usage, latency, and tracking
performance of a variety of different implementations based on
the benchmark TrackML dataset (Amrouche et al., 2020).

This paper is structured as follows. In section 2, we briefly
recapitulate related work. Section 3 defines the benchmark
TrackML dataset and task, including the data preprocessing
and graph encoding. Section 4 describes the IN model used
for the track segment classification task. Section 5 describes the
hls4ml user interface, while section 6 describes the FPGA
designs. Section 7 summarizes the results of the FPGA firmware
synthesis, including measurements of performance, timing, and
FPGA resources. Finally, a summary and outlook are given
in section 8.

2. RELATED WORK

GNNs have been explored for particle physics
applications (Duarte and Vlimant, 2020; Shlomi et al., 2020),

including jet identification (Moreno et al., 2020a,b; Qu and
Gouskos, 2020), pileup mitigation (Arjona Martínez et al.,
2019; Li et al., 2021), calorimeter energy measurements (Qasim
et al., 2019), particle-flow reconstruction (Kieseler, 2020; Pata
et al., 2021), and charged particle tracking (Farrell et al., 2018;
DeZoort et al., 2021; Ju et al., 2021). Automatic translation of ML
algorithms into FPGA firmware has also been studied for HEP
tasks. Using hls4ml, several implementations for HEP-specific
tasks have been provided for fully connected neural networks
(NNs), autoencoders, boosted decision trees, and convolutional
NNs (Duarte et al., 2018; Loncar et al., 2020; Summers et al.,
2020; Aarrestad et al., 2021; Coelho et al., 2021; Govorkova et al.,
2021). This tool has also been applied extensively for tasks in the
HL-LHC upgrade of the CMS L1T system, including anomaly
detection, muon energy regression and identification, tau lepton
identification, and vector boson fusion event classification (CMS
Collaboration, 2020). Moreover, a GNN model known as a
GarNet was studied for calorimeter energy regression and
deployed on FPGAs using hls4ml in Iiyama et al. (2021).
Our current work extends this by allowing more generic IN
architectures to be converted with hls4ml, permitting the
specification of a variable graph adjacency matrix as input, and
supporting per-node or per-edge outputs as well as per-graph
outputs. This paper also supersedes an earlier version of this
work in Heintz et al. (2020).

Hardware acceleration of GNN inference, and graph
processing in general, has been an active area of study (Besta
et al., 2019; Gui et al., 2019; Ming Xiong, 2020). Nurvitadhi et al.
(2014), Ozdal et al. (2016), Auten et al. (2020), Geng et al. (2020),
Kiningham et al. (2020), Yan et al. (2020), and Zeng and Prasanna
(2020) describe various other examples of GNN acceleration
architectures. While these frameworks are applicable to various
graph processing tasks, they may not apply to the strict latency
requirements of the LHC trigger and they typically require the
user to specify the design in a highly specialized format.

3. TRACKML DATA

The results presented in this paper are based on the TrackML
dataset. The TrackML dataset is a simulated set of proton-proton
collision events originally developed for the TrackML Particle
Tracking Challenge (Amrouche et al., 2020). Each event is
generated with 200 pileup interactions on average, simulating the
high-pileup conditions expected at the HL-LHC. Each event data
record contains 3D hit positions, additional “cell” information
(e.g., directional information), hit truth information, including
the true location of each hit, and the features of the true charged
particle that generated each hit. In particular, truth particles are
specified by particle IDs (pID) and three-momentum vectors (p).

The TrackML detector emulates a generic LHC silicon-based
tracker, containing discrete layers of silicon sensors immersed in
a strong, inhomogeneous magnetic field. We focus specifically on
the innermost silicon pixel layers, a highly-granular set of 4 barrel
and 14 endcap layers in the innermost tracker regions with a
spatial resolution of 50× 50µm. These pixel layers are illustrated
in Figure 1.
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FIGURE 1 | TrackML pixel detector regions labeled 7, 8, and 9, used in this study, consisting of 7, 4, and 7 layers, respectively.

The dataset assumes a right-handed Cartesian coordinate
system is defined with the z axis oriented along the beam axis,
the x axis toward the center of the collider, and the y axis oriented
upward. The x and y axes define the transverse plane, while the
z axis identifies the longitudinal direction. The radial coordinate
is defined as r =

√

x2 + y2. The azimuth angle φ is computed
with respect to the x axis in radians in the [−π ,π] range. The
polar angle θ is measured from the positive z axis and is used
to compute the pseudorapidity η = − log(tan(θ/2)) and the

pseudoangular separation 1R =
√

1φ2 +1η2. The transverse
momentum (pT) is the projection of momentum on the (x, y)
plane. We use natural units such that c = 1 and express energy
and momentum in units of electronvolt (eV).

3.1. Graph Construction
Each event’s tracker hits are encoded into a hitgraph based on a
set of selection criteria applied to the candidate nodes and edges.
A set of truth filters are applied to hits before they are assigned
to graph nodes. In particular, a pT filter rejects hits generated by
truth particles with pT below some minimum threshold pmin

T , a
noise filter rejects hits generated by noise (no associated truth
particle), and a same-layer filter rejects all but one hit per layer for
each truth particle. After this initial hit filtering yields a reduced
set of nodes, we choose to connect certain nodes with edges
which are most likely to represent true track segments based on
geometric considerations. These chosen edges are a superset of
all possible edges that can be classified, therefore it’s important
to accept as many true track segments as possible, i.e., ensure
high efficiency, defined as the ratio of true track segment edges
contained in the graph to the total number of possible true
track segments. Conversely, permitting too many edges at this
stage, such as a fully-connected hitgraph with 1

2nnodes(nnodes−1)
edges, can result in a highly inefficient or intractable computation
problem, due to low purity, defined as the number of true track
segment edges divided by the total number of edges in the graph.
This represents a fundamental trade-off between different edge
construction algorithms: they must simultaneously maximize
efficiency without minimizing purity.

In this work, we use a purely geometric graph construction
algorithm that determines whether or not to create an edge with
features aij between hits i and j. Only pixel detector hits are

considered, pseudorapidity is restricted to η ∈ [−4, 4], and the
noise and same-layer hit filters are applied. The same-layer filter
introduces an ambiguity in defining edges between the barrel and
innermost endcap layers. Specifically, barrel hits generated by the
same particle could produce multiple true edges incoming to a
single endcap hit. The resulting triangular edge pattern conflicts
with the main assumption of the same-layer filter, that only one
true track segment exists between each subsequent layer. Thus,
a barrel intersection cut is applied, in which edges between a
barrel layer and an innermost endcap layer are rejected if they
intersect with any intermediate barrel layers. In addition to the
barrel intersection cut, edges must also satisfy constraints on the

geometric quantities z0 = zi − ri
zj−zi
rj−ri and 1φ/1r = φj−φi

rj−ri .

The restrictions are z0 < 15 cm and 1φ/1r < 0.0006 and
pmin
T = 2GeV.
Even after these geometric and truth particle pT restrictions,

a single TrackML event can feature thousands of nodes and
edges. In order to keep the graph sizes manageable for resource-
constrained environments, we can subdivide each event graph
into a certain number of φ and η sectors depending on the
latency and resource constraints of the system and the range of
applicability of the given implementation. Example graphs for 2
different sectors in one event when subdividing an event into 8 φ

sectors and 2 η sectors are shown in Figure 2.
Based on these graph construction criteria, we can measure

the efficiency and purity of the resulting graphs. These are shown
for different choices for the number of φ and η sectors in Figure 3
based on 50 events in train_1 TrackML sample. In particular
for 8 φ sectors and 2 η sectors, the graphs retain an efficiency of
98% and a purity of 57%.

In addition to the need to subdivide the graphs to reduce size,
for a fixed-latency FPGA implementation, hardware resources
cannot be dynamically reallocated to accept variable-size input
arrays, so the graph sizes must be made uniform. Thus, we
typically consider a fixed maximum input graph size. One
common choice is to truncate the graphs based on the 95th
percentile graph size for each sector.1 Thus, only 5% of the

1We note that for up to 2 η sectors, each of the sectors has the same hit and track

multiplicity distribution because the multiplicity depends on |η| but not on φ. In

general, for a larger number of η sectors, a variable maximum graph size could be

chosen depending on the |η| range of the sector.
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FIGURE 2 | Example graphs showing 2 of the sectors for one event with pmin
T = 2GeV, z0 < 15 cm, 1φ/1r < 0.0006, 8 φ sectors, and 2 η sectors. True track

segments are denoted by blue edges, while false track segments are denoted by gray.

FIGURE 3 | Efficiency (left) and purity (right) of the hitgraphs studied for different numbers of η and φ sectors based on 50 events in train_1.

input graphs will be truncated. For smaller graphs that have
fewer nodes or edges, we zero-pad the feature matrices to create
“null” nodes and add connections between “null” nodes to create
“null” edges. We discuss the effects of the graph truncation and
zero-padding on the network performance in section 7.

Figure 4 shows the 95th percentile for the number of nodes
and edges in each sector depending on the number of sectors
chosen. For example, the 95th percentile graph size for 8 φ

sectors and 2 η sectors is 113 nodes and 196 edges for this 2GeV
graph construction. Depending on the range of applicability for
a given FPGA implementation, a different graph construction
and segmentation strategy can be adopted. In particular, if a
more relaxed set of graph construction criteria is adopted, a
greater number of nodes and edges will be included per event. In
the Supplementary Material, we demonstrate how the number
of nodes and edges vary when considering 1GeV graphs. In
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FIGURE 4 | 95th percentile of the number of nodes and edges in each sector for the 2GeV graphs as a function of the number of η and φ sectors, based on 50

events in train_1.

particular, the 95th percentile for the number of nodes and
edges per event is nearly 6,500 and 20,000, respectively. To
accommodate these denser hitgraphs in resource-constrained
implementations, a finer segmentation is required.

4. INTERACTION NETWORK

Fundamentally, GNNs produce new graph embeddings,
leveraging them to produce graph-level, edge-level, or node-level
predictions. One iteration of an IN contains two “update”
functions, φ, and an “aggregation” operation, which, for
simplicity, we take to be a simple summation.

The edge block computes a four-dimensional output a′ij for

each edge, known as the updated edge feature or “message.”

a′ij = φR,1(xi, xj, aij) , (1)

where xi and xj are the input features of node i and j, respectively,
which are the (r, φ, z) coordinates of the corresponding hit,
and aij is the set of input edge features (1r, 1φ, 1z, 1R).
These messages are subsequently aggregated (summed) over the
corresponding connected nodes belonging to the neighborhood
N(i) of node i.

a′i =
∑

j∈N(i)

a′ij (2)

These two steps are known as the message-passing operation.
The aggregation function, here taken to be summation, maps
edge-specific information to node-specific outputs by compiling
information based on the connected node indices. To apply
generically to unordered graph-structured data, the chosen

aggregation function must be invariant to permutations of
their inputs, and should take variable numbers of arguments.
Other examples include an element-wise mean, maximum, and
minimum. This construction ensures permutation equivariance
of the GNN for edge- and node-level outputs.

The node block computes a three-dimensional output for
each node

x′i = φO(xi, a
′
i) (3)

that can be thought of as an update of the node features, which
takes into account the previous node features, and one round of
message passing among neighboring nodes.

An additional partial edge block gives the final one-
dimensional edge weights

a′′ij = φR,2

(

x′i, x
′
j, a
′
ij

)

, (4)

In this way, we produce edge weights from the re-embedded
graph with node features and edge features.

The full forward pass, comprised of edge and node blocks used
to predict edge weights, is shown in Figure 5. The functions φR,1,
φR,2, and φO are multilayer perceptrons (MLPs) with rectified
linear unit (ReLU) activation functions (Nair and Hinton, 2010;
Glorot et al., 2011) on the hidden layers. The ReLU activation
function behaves as an identity function for positive inputs and
saturates at 0 for negative inputs. Notably, the φR,2 outputs have
sigmoid activations and we optimize the binary cross-entropy
(BCE) loss between the truth targets and the outputs, such that
the resulting edge weights a′′ij ∈ [0, 1] can be interpreted as

independent probabilities that each edge is a track segment.
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FIGURE 5 | The complete IN forward pass with the edge, edge-aggregation, and node blocks. The functions φR,1, φR,2, and φO are multilayer perceptrons (MLPs)

with rectified linear unit (ReLU) activation functions on the hidden layers. In addition, the φR,2 outputs have a sigmoid activation.

However, we note that this probabilistic interpretation is not
required to build a tracking algorithm based on this IN.

Throughout the following studies, the architecture in Figure 5
is held at a constant size of 528 trainable parameters,
corresponding to 8 hidden units (h.u.) per layer in each of
the MLPs. Assuming every MLP layer has the same number
of h.u., 8 h.u. per layer is sufficient to recover the maximum
classification accuracy with models trained on pmin

T = 2GeV
segmented graphs. In the following studies, models are trained
on graphs built with pmin

T = 2GeV. A total of about 28 k
graph sectors (corresponding to 1770 total events and 16 sectors
per event) belonging to the TrackML train_1 sample are
randomly divided into 70% for training, 20% for validation,
and 10% for testing. The Adam optimizer is used to facilitate
training (Kingma and Ba, 2015). It is configured with a learning
rate of 10−3 and ǫ = 10−8, and the model is trained for 1 epoch,
which we find is enough time for themodel to reach convergence.

5. HLS4ML USER INTERFACE

The hls4ml workflow performs automatically the task of
translating a trained NN, specified by the model’s architecture,
weights, and biases, into the specification of a hardware
accelerator. Because every application is different, the goal of
the hls4ml package is to empower the user to perform this
optimization through automated NN translation and design
iteration. hls4ml leverages HLS to generate hardware modules

from code written in high-level programming languages like
C/C++ (Numan et al., 2020). Although it may lead to slightly less
optimal performance than RTL-based design, HLS-based design
has significant benefits: it raises the level of abstraction, reduces
the iteration time, simplifies the validation phase, and enables
greater exploration and evaluation of design alternatives.

Figure 6 shows the schematic of a typical workflow. The
first part of the workflow illustrated in red depicts the
model training and optimization performed with PYTORCH

GEOMETRIC (PYG) (Fey and Lenssen, 2019). The blue section of
the workflow is performed with hls4ml, which translates the
model into an HLS project that can subsequently be synthesized
and implemented on an FPGA or ASIC, as depicted by the
black section.

The hls4ml workflow is built on the concept of independent
NN “layers” that process some input data to produce some
output data. Each layer and activation type is implemented as a
separate configurable module customized to perform that specific
operation. During the hls4ml conversion, these modules are
composed in the correct way to perform the inference for a full
ML model.

Specifically, this conversion step automatically generates a
top-level C++ executable that uses predefined C++ templates
representing different NN layers provided through the
NNET_TOOLS library in hls4ml. For this GNN application,
the edge block, node block, and edge-aggregation block are each
considered separate layers. hls4ml also provides a number of
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FIGURE 6 | The workflow to translate a GNN model into an FPGA implementation using hls4ml. The red boxes (left) describe the model training steps performed

within ML software frameworks like PYTORCH GEOMETRIC. The hls4ml configuration and conversion steps are shown in the blue boxes (center). A model converter

translates the model from PYTORCH GEOMETRIC into an intermediate HLSMODEL representation. This representation can be further configured and optimized. Different

backend writers can be used to export the model into a given vendor-specific language, such as Vivado HLS. The black boxes (right) illustrate possible ways to

export and integrate the HLS project into a larger hardware design for example for Xilinx FPGAs.

configurable parameters which can help the user explore and
customize the space of latency, throughput, power, and resource
usage tradeoffs for their application.

To provide flexibility and ease-of-use, hls4ml provides
both a programming API and visualization capabilities. Figure 6
also illustrates the internal structure of the hls4ml PYTHON

package. The package first converts the user-specified model
into a common internal representation of the network graph.
Converters exist for KERAS, TENSORFLOW, PYTORCH, and
ONNX model formats. For this work, a new converter for the
GNN model provided as a PYTORCH GEOMETRIC model was
added. At the conversion step, the user-provided configuration
is also attached to the model. We note additional user-provided
information is required: the order of the modules.

One key feature of the programming API is the capability
to execute the bit-accurate emulation of the generated HLS-
synthesizable code in the PYTHON environment, for example
as a Jupyter Notebook. The hls4ml API enables a workflow
where inference can be performed on NUMPY (Harris et al.,
2020) array data in PYTHON. In addition to evaluating the
hls4ml model output, users can access the detailed output
of any layer of the network, which can aid in debugging and
performing hyperparameter optimization for quantized models.
For this work, the capability of running inference on models with
multiple inputs (node attributes, edge attributes, and the edge
index) was added.

6. FPGA HLS IMPLEMENTATIONS

To meet the strict latency and throughput requirements of the
L1T, we developed a throughput-optimized design, in which the
processing of multiple input graphs overlaps in time.

Conversely, we also consider a resource-optimized design,
which requires more clock cycles but also consumes far fewer
resources. This design has the advantage that it scales to larger
input graphs.

Tests of the hls4ml implementation target a
Xilinx Virtex UltraScale+ VU9P FPGA (part number
xcvu9p-flga2104-2L-e) with a 5 ns clock period. The
target FPGA has 6,840 digital signal processing slices (DSPs),
1,182,240 look-up tables (LUTs), 2,364,480 flip-flops (FFs), and
75.9Mb of block random access memory (BRAM) (Xilinx, Inc.,
2021). As discussed in section 3.1, the input graph size can
be adjusted by segmenting the detector more finely in η and
φ sectors. We find that large input graph sizes prohibit the
use of the throughput-optimized design. Therefore, to make
scans of resources and timing tractable, we further synthesize
designs for graphs of up to 28 nodes and 56 edges. For the
resource-optimized design, we also demonstrate how the design
scales to larger graphs by presenting results for up to 1,344 nodes
and 2,688 edges. For all results shown, we fix the ratio of the
number of edges to nodes to 2, as we empirically find that this is
close to the observed ratio for the 2GeV graphs we consider.

6.1. HLS Preprocessor Directives
The FPGA HLS implementation is written using Vivado
HLS (Xilinx, Inc., 2020) and integrated with the transpiler
hls4ml. Vivado HLS makes use of preprocessor directives,
called pragmas, in order to specify certain high-level design
choices. A full description of the two different designs
requires an understanding of some of these pragmas, namely
ARRAY_PARTITION, UNROLL, and PIPELINE.

Applying ARRAY_PARTITION to a given array will partition
it into several smaller arrays by one of three different methods.
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Block partitioning with a factor of N, will partition the array
into N consecutive blocks. Cyclic partitioning with a factor of
N, will create N smaller arrays by interleaving elements from the
original array such that the ith smaller array contains elements
i, i+N, i+2N, . . . from the original array. Complete partitioning
will fully decompose an array into its individual elements. The
benefit of partitioning is that different functions can concurrently
access and operate on the separate, smaller arrays, but this comes
at the cost of utilizing more memory registers.

The UNROLL pragma is used within for-loops. For a for-loop
that normally hasM iterations, fully unrolling this loopwill create
M physical copies of the for-loop logic, so that each iteration can
run concurrently. Partially unrolling this loop with a factor of
N < M will create N copies of the for-loop, each of which will
iterate ⌈M/N⌉ times; Vivado HLS does not require that M is an
integer multiple ofN. Like partitioning, unrolling sacrifices some
resources in exchange for lower latency.

Applying the PIPELINE pragma on a function will minimize
the function’s initiation interval (II), which is the wait time
required before a new input can be processed. Pipelining a
function allows it to accept a new input before it has finished
operating on an earlier input. For example, consider a simple
three-layer MLP, and two different inputs for the MLP: A and
B. Typically, one would send input A into the MLP, wait for
it to pass through all three layers, and then send input B into
the MLP. With pipelining, one can send input A through the
first layer of the MLP, and then send input B through the first
layer as soon as input A reaches the second layer. Likewise, the
second layer can accept input B once input A has made it to
the third layer. With pipelining, idle resources are used in order
to minimize II without requiring any additional resources. The
amount of pipelining is limited by the logic and timing of the
relevant design. For example, it is possible to pipeline a for-loop
as long as each iteration is independent.

6.2. Throughput-Optimized Design
In the throughput-optimized design, pipelining is performed at
the level of the IN edge block, node block, and edge-aggregation
block, and the amount of pipelining is tunable through the
reuse factor (RF) parameter, which controls the II of each
block. In conjunction with block-level pipelining, all loops are
fully unrolled to decrease latency and all arrays are completely
partitioned to allow concurrent access to each element. These are
implemented through the HLS pragmas described above. Fully
unrolling the arrays places a constraint on how large the input
graphs can be, given the limitations imposed by the Vivado HLS
compiler. In practice, we find graphs of 28 nodes and 56 edges are
near the maximum we can consider with this design.

The edge block receives as input three fully partitioned arrays:
the node feature matrix with arbitrary fixed-point precision, the
edge feature matrix with arbitrary fixed-point precision, and the
edge index matrix with an arbitrary integer precision. The output
of the edge block is the updated matrix of edge features. The first
step is to retrieve the appropriate pair of node features for each
edge through the edge index. This is done through a non-static
array index. This pair of node features is concatenated with the
corresponding edge features in a temporary array. Subsequently,

a fully-connected NN (of up to four layers in depth) is applied to
compute the updated edge features. HLS pseudocode illustrating
the main structure and pragmas of the edge block is shown in
Algorithm 1.

Algorithm 1: Throughput-optimized edge block.

Input: node_attr[nnodes][node_dim],
edge_attr[nedges][edge_dim], edge_index[nedges][2]

Output: edge_update[nedges][edge_dim]
pipeline algorithm with factor RF ⊲HLS pragma
procedure PARTITION ARRAYS(node_attr, edge_attr,
edge_update)

completely partition node_attr ⊲HLS pragma
completely partition edge_attr ⊲HLS pragma
completely partition edge_update ⊲HLS pragma

end procedure

procedure CREATE NN INPUT(node_attr, edge_attr,
edge_index)

initialize phi_input[nedges][edge_dim+2×node_dim]
completely partition phi_input ⊲HLS pragma
for i← 1, nedges do

completely unroll loop ⊲HLS pragma
receiver_index← edge_index[i][0]
sender_index← edge_index[i][1]
receiver← node_attr[receiver_index]
sender← node_attr[sender_index]
edge← edge_attr[i]
phi_input[i]← 〈receiver, sender, edge〉

end for

return phi_input
end procedure

procedure COMPUTE EDGE UPDATE(phi_input)
for i← 1, nedges do

completely unroll loop ⊲HLS pragma
edge_update[i]← NN(phi_input[i])

end for

return edge_update
end procedure

The edge-aggregation block takes as input the updated
edge feature matrix and the edge index matrix, and returns
the aggregated updated edge features gathered along the
receiver nodes. To ensure a greater design flexibility, three
aggregation methods are supported: sum, average, and
maximum. Summation is the simplest aggregation algorithm,
and simply requires appropriately summing the corresponding
edge features for each receiver node. Average requires an
additional step of counting the number of edges connected to
each receiver node, and subsequently dividing by this number.
The division is implemented through a predefined look-up table.
In maximum aggregation, we initially set the output matrix to
the most negative value allowed by the datatype. Subsequently,
we use a tournament method to find the maximum value. We
note that maximum aggregation requires the longest latency
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and the most resources. Therefore, summation and average are
choices better suited for this FPGA implementation.

Finally, the node block receives the current node features
and the aggregated updated edge features, concatenates them,
processes the concatenated product with a NN and returns
the updated node features. It does not require any non-static
array access.

6.3. Resource-Optimized Design
In the resource-optimized design, pipelining is performed at
both the task-level of the whole design and the level of each
functional block, using the RF to determine each loop’s II and
a parallelization factor (PF) to determine the degree of loop-
unrolling. The task-level pipelining allows every functional block
to execute concurrently, reducing II of the total design. Within
each functional block, the PF is used to adjust the number of
unrolled loops. The resource-optimized design can handle large
graph sizes by adjusting PF to fit FPGA resource capacity (higher
PF means more unrolled loops and greater resource usage).
However, the latency will increase in proportion to the graph size
and violates the 4µs latency constraint when the graph size is
larger than about 896 nodes and 1,792 edges.

The resource-optimized edge block has the same inputs and
outputs as the throughput-optimized edge block. Algorithm 2

shows the pseudocode of this design, which adopts different
explicit memory access methods to handle arrays that require
static or non-static access. Static-access arrays (edge features,
edge index, and updated edge features) are cyclically partitioned
with a factor equal to the PF multiplied by the array’s feature
dimension (e.g., the edge index array’s feature dimension is 2,
the edge feature array’s feature dimension is the length of the
vector used to represent each edge). This way, all the parallel
computing elements can access these arrays concurrently. The
same practice with the node features array, which requires non-
static access, would cause latency degradation due to stalling
cycles when accessing data of different addresses. Therefore, the
node features array is first copied into PF-many duplicates, and
each parallel computing element then accesses node data from its
dedicated duplicate.

The resource-optimized edge-aggregation block has the
same inputs and outputs as the throughput-optimized edge-
aggregation block. This block adopts different explicit memory
access methods to handle arrays that require static or non-
static access. Static-access arrays (edge index and updated edge
features) are partitioned in the same way as those in the resource-
optimized edge block. The aggregated edge features array, which
requires non-static access, must be handled differently. Stalling
cycles may arise if there is an attempt to concurrently aggregate
two or more edges to the same receiver node. Therefore, this
block first creates PF-many aggregated edge feature “duplicates,”
and each parallel computing element then aggregates to its
dedicated duplicate. Then, these duplicates are themselves
aggregated into the final aggregated edge features array. The
corresponding HLS pseudocode is shown in Algorithm 3.

The resource-optimized node block also has the same inputs
and outputs as the throughput-optimized node block. It does not
require any non-static array access, so all arrays are partitioned in

Algorithm 2: Resource-optimized edge block.

Input: node_attr[nnodes][node_dim],
edge_attr[nedges][edge_dim], edge_index[nedges][2]

Output: edge_update[nedges][edge_dim]
procedure PARTITION ARRAYS(node_attr, edge_attr,
edge_index, edge_update)

cyclically partition node_attr with factor node_dim×PF
⊲HLS pragma

cyclically partition edge_attr with factor edge_dim×PF
⊲HLS pragma

cyclically partition edge_index with factor
2×PF ⊲HLS pragma

cyclically partition edge_update with factor edge_dim×PF
⊲HLS pragma

end procedure

procedure COPY NODE ATTRIBUTES(node_attr)
initialize node_attr_copies[PF][nnodes][node_dim]
for i← 1, nnodes do

unroll loop with factor PF ⊲HLS pragma
pipeline loop with factor RF ⊲HLS pragma
for j← 1, PF do

completely unroll loop ⊲HLS pragma
node_attr_copies[j][i]← node_attr[i]

end for

end for

return node_attr_copies
end procedure

procedure COMPUTE EDGE UPDATE(edge_attr,
node_attr_copies, edge_index)

for i← 1, nedges do
unroll loop with factor PF ⊲HLS pragma
pipeline loop with factor RF ⊲HLS pragma
receiver_index← edge_index[i][0]
sender_index← edge_index[i][1]
receiver← node_attr_copies[i%PF][receiver_index]
sender← node_attr_copies[i%PF][sender_index]
edge← edge_attr[i]
phi_input← 〈receiver, sender, edge〉
edge_update[i]← NN(phi_input)

end for

return edge_update
end procedure

the same manner way that the edge block and edge-aggregation
block partition the static-access arrays.

Finally, in the resource-optimized design, arrays which are
used by more than one functional block, or hls4ml layer, are
cloned in order to allow concurrent access. For example, it can
be seen in Figure 5 that the output of the first edge block is used
in the edge-aggregation block, the node block, and the second
edge block. Therefore, three clones are created from the output
of this first edge block, one for each function that uses it. This
way, no single array is ever used by more than one function. To
perform this cloning, we developed anhls4ml cloning layer and
a frontend hls4ml optimizer which searches a design for reused
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Algorithm 3: Resource-optimized aggregation block.

Input: edge_update[nedges][edge_dim], edge_index[nedges][2]
Output: node_aggr[nnodes][node_dim]

procedure PARTITION ARRAYS(edge_update, edge_index,
node_aggr)

cyclically partition edge_update with factor edge_dim×PF
⊲HLS pragma

cyclically partition edge_index with factor
2×PF ⊲HLS pragma

cyclically partition node_aggr with factor edge_dim×PF
⊲HLS pragma

end procedure

procedure RESET INTERMEDIATE NODE

FEATURES(node_interim)
initialize node_interim[PF][nnodes][edge_dim]
for i← 1, nnodes do

unroll loop with factor PF ⊲HLS pragma
pipeline loop with factor RF ⊲HLS pragma
for j← 1, PF do

completely unroll loop ⊲HLS pragma
node_interim[j][i]← 0

end for

end for

return node_interim
end procedure

procedure AGGREGATE EDGE UPDATE TO

RECEIVER(edge_update, node_interim, edge_index)
for i← 1, nedges do

unroll loop with factor PF ⊲HLS pragma
pipeline loop with factor RF ⊲HLS pragma
receiver_index← edge_index[i][0]
node_interim[i%PF][receiver_index] ←

node_interim[i%PF][receiver_index] + edge_update[i]
end for

return edge_update
end procedure

procedure SUM INTERMEDIATE NODE

FEATURES(node_interim)
for i← 1, nnodes do

unroll loop with factor PF ⊲HLS pragma
pipeline loop with factor RF ⊲HLS pragma
for j← 1, PF do

completely unroll loop ⊲HLS pragma
node_aggr[i]← node_interim[j][i] + node_aggr[i]

end for

end for

return node_aggr
end procedure

arrays and appropriately inserts instances of this cloning layer
wherever necessary.

In summary, the main differences between the resource-
optimized and throughput-optimized design are (1) pipelining
both at the task-level and within each functional block and (2)
duplicating arrays for parallel, concurrent access. Although (2)

demands more storage space for data, the memory resources of
the FPGA used are more than sufficient to support this design
choice for all the graph sizes discussed here.

7. RESULTS

For the hls4ml implementation, we scan the fixed-point
precision to determine its impact on the physics performance of
the algorithm as well as the latency and resource usage on the
FPGA. We evaluate the receiver operating characteristic (ROC)
curve for the segment classifier, and use the area under the
curve (AUC) as a performance metric. In particular, we first scan
the number of integer bits Y when using the Vivado arbitrary
precision data type ap_fixed<X,Y>, i.e., X total bits are used
and Y bits are used for the integer part (including sign). From
this, we determine that the minimum number of integer bits
required to reach the full AUC is 7. Next, we scan the number of
total bits, holding the number of integer bits fixed to 7. Figure 7
shows the AUC as a function of the number of integer bits (left)
and total bits (right). We see that with 12 total bits and 7 integer
bits, we effectively reproduce the 32-bit floating point model.

With hls4ml, we employ post-training quantization (PTQ),
meaning the model training does not take into account
the expected reduced precision. The required bit width for
full performance can be reduced further through techniques
like quantization-aware training (QAT) (Coelho, 2019; Coelho
et al., 2021; Hawks et al., 2021), in which the effects
of reduced precision operations are accounted for during
training. Figure 7 (right) shows that with a QAT library called
BREVITAS (Pappalardo, 2020), only 7 total bits are needed for full
performance. Details of the QAT procedure can be found in the
Supplementary Material.

Figure 7 also shows the effect of graph truncation and zero-
padding on the edge classification performance. Graph zero-
padding, in which null nodes and edges are appended to a
graph with too few nodes or edges, does not usually affect the
classification performance.With the exception of a few rare cases,
it is possible to pad a graph such that the null nodes and edges
form a completely disconnected graph from the original graph.
In this case, no messages are passed between the original and null
subgraphs, and results for the original subgraph are the same.
Graph truncation, on the other hand, has a twofold effect on
the IN’s performance. The first effect is that truncated nodes
and edges are no longer factored into the creation or passing
of messages, which clearly affects the final output. The second
effect is that truncated edges can no longer be classified by the
IN. To account for this second effect in our performance metrics,
we consider each truncated edge as classified as false. Figure 7
demonstrates that net result of the above effects is a drop in the
optimal AUC from 99.9% to about 95%.

All resource estimates are computed using Vivado HLS 2019.2
using logic synthesis targeting a Xilinx Virtex UltraScale+ VU9P
FPGA with part number xcvu9p-flga2104-2L-e. The
latency and II estimates are from C synthesis. For simplicity,
when scanning the total bit width X in the following results, we
use a fixed-point precision of ap_fixed<X,X/2>, i.e., X/2
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FIGURE 7 | AUC values as a function of the integer bit width with total bit width fixed to 24 (left) and total bit width with integer bit width fixed to 7 (right). Either the

full sectorized 2GeV graphs (dashed line) or those truncated at 113 nodes and 196 edges (solid line), corresponding to the 95% percentile graph size, are used as

input. The performance is evaluated with 1,000 graphs from train_2. With precision greater than ap_fixed<12,7>, the AUC closely approximates the full floating

point model for the same graphs.

FIGURE 8 | Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock cycles (right) for a constant reuse factor of 8 as a

function of the total bit width.

bits are used for each the integer and fractional parts, but the
results generalize to other quantization schemes. The hls4ml
version used is a custom branch available at Elabd et al. (2021).

7.1. Throughput-Optimized Results
First, we present results for the throughput-optimized
implementation. We consider graphs consisting of 28 nodes and

56 edges, which is near the upper limit that can be synthesized
with this design. Figure 8 (left) shows the resource usage as a
function of the bit width for a constant RF of 8. As expected,
increasing the bit width increases the resource usage especially
for LUTs and DSPs. As shown previously, this model has good
performance with a total bit width of 12 bits, however the
bit width can be reduced down to 7 bits using QAT (Coelho,
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FIGURE 9 | Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock cycles (right) for a constant fixed point precision of

ap_fixed<14,7> as a function of the reuse factor.

2019; Coelho et al., 2021; Hawks et al., 2021), meaning a
substantion reduction in resource usage. We also note that
Vivado HLS implements multiplications with bit widths of 10
and above using DSPs, and multiplications below 10 bits using
LUTs (Xilinx, Inc., 2020). For this reason, we see that the DSP
usage drops to zero for 10 bits and below.

Figure 8 (right) shows the latency in clock cycles (for a 5 ns
clock period) as a function of the total bit precision, which
ranges from about 300 to 370 ns. For simplicity, we consider
ap_fixed<X,X/2> data types, so the number of integer bits
is half of the total bits. By construction, the II for this design
should be equal to the RF, although it may be smaller due to
optimizations in Vivado HLS. In this case, the II is constant at
40 ns given the constant RF of 8.

We also scan the RF at a constant fixed point precision of
ap_fixed<14,7>, to study the resources and timing as a
function of decreasing concurrency. Figure 9 shows the resource
usage estimates (left) and latency and II (right) vs. RF. In general,
increasing the RF, decreases the resources, while increasing the
latency and II. For a RF of 1, the algorithm saturates the FPGA
(100% DSP usage and 65% LUT usage). However, increasing
the reuse factor to 8, makes the algorithm much more feasible,
with the same resources taking up about 25% of the available
ones. As we scan the RF from 1 to 40, we find the latency
ranges from about 400 to 700 ns, while the II ranges from
5 to 200 ns.

Figure 10 also shows how the design scales as a function
of the number of nodes nnodes from 7 to 28. The number of
edges nedges is fixed to nedges = 2nnodes, a relationship that
is empirically observed for the 2GeV graphs. To synthesize
larger graphs than those shown here, a different approach must
be adopted.

7.2. Resource-Optimized Results
To demonstrate how the design scales, results for the resource-
optimized implementation are shown for 448 nodes and 896
edges are shown in Figures 11, 12. For all results shown, we take
the PF= 16, but this is fully configurable by the user. Despite the
large graph size, the resources remain below 90% for all bit widths
and reuse factors considered. However, the latency ranges from
about 2.4µs to 40µs depending on the reuse factor. Similarly
the II ranges from about 850 ns to 11µs. While these latency
and II results may be too long for L1 applications, they represent
substantial improvements over CPU-based processing and thus
may form the basis of a CPU-FPGA coprocessing workflow for
a particle tracking application in the high-level trigger or offline
processing. For CPU-based inference of the same model (using a
12-core Intel Xeon CPU E5-2650 v4 @ 2.20GHz), the latency is
about 1.06ms per graph for the same size graphs (448 nodes and
896 edges) in the PyG framework (Fey and Lenssen, 2019).

Figure 13 demonstrates the scalability of this resource-
optimized design to larger graphs. We vary the number of nodes
from 28 to 1,344, while, as before, we fix nedges = 2nnodes.
Given the dataflow design, the resources stay fairly consistent
throughout, always staying below 60% for the dominant resource
(DSPs) when RF = 1. The latency and II scale linearly with the
number of nodes.

Table 1 summarizes the latency, II, and FPGA resource usage
metrics of the synthesized firmware, in particular comparing the
throughput-optimized design with the resource-optimized one
for a few different configuration choices. In particular, the table
compares the throughput-optimized design for RF= 1 and RF=
8, noting the large reduction in resources (and relatively small
increase in latency). We also show how the resources remain
stable for the resource-optimized design even when scaling
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FIGURE 10 | Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock cycles (right) for a constant reuse factor of 8 and a bit

width of ap_fixed<14,7> as a function of the number of nodes nnodes. The number of edges is fixed to nedges = 2nnodes, as is empirically observed for the 2GeV

graphs. Each clock cycle corresponds to 5 ns.

FIGURE 11 | Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock cycles (right) for a constant reuse factor of 1 as a

function of the total bit width for the resource-optimized implementation. Input graphs consist of 448 nodes and 896 edges. Each clock cycle corresponds to 5 ns.

to much larger graph sizes. Finally, relative to the resource-
optimized design, the throughput-optimized design is able to
achieve the smallest latency and II for small graphs.

8. SUMMARY AND OUTLOOK

In summary, we develop two complementary field-
programmable gate array (FPGA) implementations of a

graph neural network (GNN) for charged particle tracking at
the LHC. Namely, the GNN classifies track segments as true or
false based on a graph constructed from the positions of hits in
the tracking detector. One of the implementations is optimized
for low-latency and high-throughput typical for applications in
the FPGA-based level-1 trigger systems at the LHC. The other
implementation is optimized to minimize the FPGA resources
needed and is capable of scaling to much larger graph sizes
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FIGURE 12 | Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock cycles (right) for a constant fixed point precision of

ap_fixed<14,7> as a function of the reuse factor for the resource-optimized implementation. Input graphs consist of 448 nodes and 896 edges. Each clock cycle

corresponds to 5 ns.

FIGURE 13 | Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock cycles (right) for a constant reuse factor of 1 and a bit

width of ap_fixed<14,7> as a function of the number of nodes nnodes. The number of edges is fixed to nedges = 2nnodes, as is empirically observed for the 2GeV

graphs. Each clock cycle corresponds to 5 ns.

(thousands of nodes and edges). In order to make this possible,
multiple improvements were made including an optimization
of the memory access of the input data and the instantiation
of multiple parallel processing engines. This implementation
is applicable for FPGA-CPU coprocessing workflows in both

the software-based high-level trigger and offline computing.
The conversion of the trained model, specified using PYTORCH

GEOMETRIC, into high-level synthesis (HLS) code is achieved
automatically using a custom converter integrated into hls4ml,
a source-to-source compiler.
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TABLE 1 | Summary of the latency, II, and FPGA resource usage metrics of the synthesized firmware for a variety of design choices.

Design (nnodes, nedges) RF Precision
Latency II

DSP [%] LUT [%] FF [%] BRAM [%]
[cycles] [cycles]

Throughput-opt. (28, 56) 1 ap_fixed<14,7> 59 1 99.9 66.0 11.7 0.7

Throughput-opt. (28, 56) 8 ap_fixed<14,7> 75 8 21.9 23.8 4.7 0.7

Resource-opt. (28, 56) 1 ap_fixed<14,7> 79 28 56.6 17.6 3.9 13.1

Resource-opt. (448, 896) 1 ap_fixed<14,7> 470 174 56.6 25.0 7.4 16.5

Resource-opt. (448, 896) 8 ap_fixed<14,7> 1590 520 5.6 25.0 7.4 16.3

The target FPGA is a Xilinx Virtex UltraScale+ VU9P FPGA (part number xcvu9p-flga2104-2L-e), which has 6,840 DSPs, 1,182,240 LUTs, 2,364,480 FFs, and 75.9Mb of

BRAM (Xilinx, Inc., 2021). A 5 ns clock period is used.

Several further improvements can reduce the resource
usage or improve the performance. In particular, we showed
quantization-aware training (QAT) (Coelho, 2019; Coelho et al.,
2021; Hawks et al., 2021) can significantly reduce the number
of bits required, but further work is needed to fully support
QAT GNN models into hls4ml. A further detector-motivated
optimization is the restriction of which nodes can be accessed
simultaneously. Currently, the firmware is generic enough to
allow any two nodes in the input graph to be connected, but
given the detector geometry and hitgraph construction, certain
nodes will never be directly connected (such as those belonging
to the same tracker layer or on opposite sides of the detector).
Implementing this restriction should further reduce the FPGA
resources required.

Other considerations are necessary for implementing such
a trigger in real experimental settings. For instance, graph
construction, track building, and track fitting are additional
steps that need to be applied in addition to the track
segment classification performed here. Further, the sectors we
use are non-overlapping, which means boundary effects can
reduce the accuracy of the track segment classification. To
resolve this, a typical technique is to use overlapping regions
and define “fiducial regions” as the central portions of each
region, where boundary effects are less significant. Further
duplicate removal may be necessary as well when building full
track candidates.

Despite these caveats and further possible improvements,
this study demonstrates that for small graphs with dozens
of nodes and edges, inference of GNNs for charged particle
tracking is possible within the strict sub-microsecond latency
and FPGA resource requirements of the level-1 trigger at
the LHC. Further, for CPU-FPGA coprocessing applications,
larger graphs with thousands of nodes and edges can also be
processed with latencies in the tens of microseconds range,
which still represent a considerable speedup with respect to
CPU-only inference.
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