
UC Berkeley
UC Berkeley Previously Published Works

Title

Maximum Likelihood Constraint Inference on Continuous State Spaces

Permalink

https://escholarship.org/uc/item/92k2r44p

Authors

Stocking, Kaylene C
McPherson, D Livingston
Matthew, Robert P
et al.

Publication Date

2022-05-27

DOI

10.1109/icra46639.2022.9811705

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/92k2r44p
https://escholarship.org/uc/item/92k2r44p#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Maximum Likelihood Constraint Inference on Continuous State Spaces

Kaylene C. Stocking1, D. Livingston McPherson1, Robert P. Matthew2, and Claire J. Tomlin1

Abstract— When a robot observes another agent unexpect-
edly modifying their behavior, inferring the most likely cause
is a valuable tool for maintaining safety and reacting ap-
propriately. In this work, we present a novel method for
inferring constraints that works on continuous, possibly sub-
optimal demonstrations. We first learn a representation of
the continuous-state maximum entropy trajectory distribution
using deep reinforcement learning. We then use Monte Carlo
sampling from this distribution to generate expected constraint
violation probabilities and perform constraint inference. When
the demonstrator’s dynamics and objective function are known
in advance, this process can be performed offline, allowing for
real-time constraint inference at the moment demonstrations
are observed. We evaluate our approach on two continuous
dynamical systems: a 2-dimensional inverted pendulum model,
and a 4-dimensional unicycle model that was successfully
used for fast constraint inference on a 1/10 scale car remote-
controlled by a human.

I. INTRODUCTION

The behavior of an agent is an important source of
information about their goals and surroundings. For example,
inverse reinforcement learning estimates the reward function
an agent appears to be optimizing, assuming the dynamics
are known [1]. In many practical situations, however, we
already have a good idea of the reward function an agent
may be optimizing. Drivers usually want to stay near the
center of their lane, and a person walking across a room
typically chooses shorter paths over longer ones. In cases like
these, even though the reward function is already known, an
agent’s actions can still provide useful information. Consider
a driver who temporarily swerves out of their lane to avoid
an obstacle. Even if we can’t directly observe the obstacle,
a reasonable inference is that something is preventing the
driver from taking the expected path. The driver’s swerving
behavior is surprising if no obstacle is present, but becomes
much more likely when we incorporate a possible obstacle
into our model. This intuition can be formalized as maxi-
mum likelihood constraint inference (MLCI), first developed
in [2]. MLCI uses the maximum entropy framework [1]
to identify which constraint in a constraint hypothesis set
provides the best explanation for unexpected demonstrator
behavior. The constraint hypothesis set can be obtained, for

*This work is supported by ONR under the project “Leveraging ego-
centric and allocentric representations for navigation”, and by the SRC
CONIX program. Code used for our experiments is available at https:
//github.com/violasox/continuous-state-MLCI.

1Kaylene Stocking, D. Livingston McPherson, and Claire Tomlin
are with the Department of Electrical Engineering and Computer Sci-
ences, University of California Berkeley, Berkeley, CA 94720, USA
kaylene@berkeley.edu

2Robert Matthew is with the Department of Physical Therapy and Reha-
bilitation Science, University of California, San Francisco, San Francisco,
CA 94143, USA

Fig. 1. Our proposed method allows for fast inference of the most
likely constraints on demonstrators. Here, we illustrate our approach on a
demonstration from a human-controlled model car driving along a racetrack.
Given a known reward function and dynamical model, deep reinforcement
learning is used to learn an implicit representation of the maximum entropy
trajectory distribution, and trajectories are sampled from this distribution (a).
These samples provide an estimate of the expected frequency a demonstrator
will violate each constraint in a constraint hypothesis set. When an unusual
demonstration is observed as the car swerves around an obstacle on the
road (b), its constraint violations can be compared with the pre-computed
expectations, and our proposed algorithm identifies the constraints that
provide the best explanation of the demonstrator’s behavior (c).

example, by dividing the state space into an even grid. It
can also be designed specifically for a particular application,
with possible constraints chosen based on their utility or
known prevalence. Choosing the hypothesized constraints is
analogous to selecting features to be used in the learned
reward function in standard inverse reinforcement learning
formulations [1]. Although using a constraint hypothesis set
limits which constraints it is possible to learn, it also acts as
a source of inductive bias and means the results of MLCI
tend to be easy to interpret.

Unfortunately, the MLCI algorithm presented in [2] only
works for system models with discrete, finite state-action
spaces. While it is possible to approximate continuous dy-
namical systems for use with the algorithm, this process
introduces significant error into the dynamics and suffers
from an exponential increase in the number of discrete states
required as the number of state dimensions in the dynamics
increases (often called the “curse of dimensionality”) [3].
In this paper, we present a novel MLCI method that works
directly with continuous state spaces, allowing for a much
closer approximation to continuous real-world dynamics and
avoiding the curse of dimensionality in the state-space. Our
method first learns an implicit representation of the expected

maximum entropy distribution over demonstrator trajectories
by leveraging deep reinforcement learning (RL). Then, we
sample from this distribution to obtain Monte Carlo estimates
of expected constraint violations, which allows us to perform
MLCI. Our method retains several key advantages from
[2], including working with sub-optimal demonstrations and
allowing for most calculations to be pre-computed before any
demonstrations are observed.

The remainder of this paper is laid out as follows. In
Section II, we present prior work and discuss the trade-offs
between various constraint inference methods. In Section
III, we briefly overview the mathematical background for
MLCI and describe our algorithm in more detail. Section IV
presents analysis on a 2-dimensional pendulum model with
demonstrations generated by an optimal control algorithm.
Finally, Section V provides an example of successful real-
world constraint inference on the trajectory of a 1/10-scale
car, driven by a human, that must swerve to avoid an
obstacle.

II. RELATED WORK

Different perspectives on constraint inference have yielded
a variety of methods which differ in what kinds of systems
can be modeled and what assumptions are made about
the demonstrator. Our work is most directly inspired by
the maximum likelihood method introduced by [2], which
identifies the most likely constraint(s) from a hypothesis
set even when the demonstrator may behave sub-optimally
with respect to their goal. This is achieved by using the
maximum entropy framework, which is also leveraged by [4]
to learn task specifications. Specifications can be thought of
as a generalization of Markovian (memoryless) constraints
to complex multi-step behaviors. Both of these methods
require discrete state-action spaces, although [3] examines
how continuous dynamical systems might be approximated
with discrete spaces for the purposes of constraint inference.

Many other methods work directly with continuous dy-
namics, but drop the maximum likelihood feature. Chou et al.
[5] assume that all possible trajectories that could earn higher
reward than the demonstration must be constrained in some
way. Other methods use heuristics about the demonstrator’s
behavior rather than an explicit reward function. For exam-
ple, Pais et al. [6] assume that constrained behaviors will
have high within-demonstration variance and low between-
demonstration variance, and Li et al. [7] uses the heuristic
that maintaining a robot end effector in the same orientation
throughout a demonstration suggests a constraint. Lin et
al. [8] present a kinematics-based approach for learning
constraints that affect how a nominal policy is executed in
different environments. An approach proposed by Mehr et
al. [9] is specialized for online constraint inference in the
context of shared autonomy, where mis-identified constraints
can be corrected by the user.

Malik et al. [10] recently presented an approach that works
with continuous state-action spaces and retains the maximum
likelihood framework. They use deep reinforcement learning
to identify a constraint function that will allow an agent to

avoid violating the constraint(s) affecting the demonstrator.
The method we propose similarly uses deep RL to handle
continuous state spaces, but focuses instead on learning
constraints from a pre-specified constraint hypothesis set.
Because of this difference in perspective, our method enables
checking for specific possible constraints and leveraging their
presence (or absence) to make decisions beyond executing
a modified policy. Our method can also leverage prior
knowledge of the dynamics and reward function to perform
fast online inference. Therefore, our work is likely to be
especially useful in situations where the system is known
before observing demonstrations.

III. CONSTRAINT INFERENCE ON CONTINUOUS STATE
SPACES

A. Markov Decision Dynamics

Our approach relies on a system model formulated as a
deterministic Markov Decision Process (MDP). The MDP is
a tuple of four elements:
• A state space S to navigate and a set of actions A that

can be taken at each state. Both S and A may be either
continuous or discrete.

• A transition kernel T : S × A → S that describes
how at−1 ∈ A affects st. The repeated application
of this transition kernel generates a sequence of states
over a time horizon t ∈ [0 : T] given a sequence of
action choices. The couple of state sequence and action
sequence is a trajectory ξ = (s0, a0, ..., aT−1, sT) and
the space of all possible trajectories is Ξ.

• An objective metric R : Ξ → R (also called a reward
function) that measures the quality of trajectories.

If the state and action spaces are both discrete and finite,
we say that the MDP is tabular. The MLCI approach devel-
oped by [2] only works for tabular MDPs. The method we
propose in section III-C, however, admits MDPs with discrete
or continuous state spaces. For many continuous dynamical
systems, this allows for a model that is a much closer
approximation to the true dynamics. Note that the MDP
formulation requires discrete time steps; however, continuous
dynamics can be approximated well with a sufficiently small
δt using standard simulation methods [11].

B. Maximum Entropy Likelihood on Trajectories

After observing a demonstrator’s behavior, we suspect that
they may be avoiding a constraint we don’t know about
when their trajectory is surprising, in the sense of accu-
mulating significantly less reward than should be possible.
We can formalize this intuition by defining a distribution
of expected demonstrator behavior. Following [1], we adopt
the maximum entropy likelihood distribution, under which
the probability of a trajectory on a tabular MDP is defined
as:

P (ξ) =
1

Z
eβR(ξ) =

1

Z
q(ξ) (1)

Z =
∑
ξ′∈Ξ

eβR(ξ′) (2)

where β is a temperature parameter that reflects how noisy
(sub-optimal) the demonstrator is, q(ξ) is the unnormalized
trajectory probability, and Z is a normalizing constant.
For continuous state-action spaces, this distribution can be
generalized to a probability density:

p(ξ) =
eβR(ξ)∫

ξ′∈Ξ
eβR(ξ′)dξ′

=
1

Z
q(ξ) (3)

To remain agnostic as to whether the state-action space
is continuous or discrete, we define the maximum entropy
distribution as π(ξ) = 1

Z q(ξ) for both cases.
Constraints invalidate any trajectory that would otherwise

enter the constrained region of the state-action space, ren-
dering its probability zero. Therefore, when we augment a
deterministic MDP with a constraint c, we obtain a new
maximum entropy distribution:

πc(ξ) =

{
1
Zc
q(ξ), (st, at) /∈ c ∀t ∈ [0 : T]

0, otherwise
(4)

Where Zc is a new, smaller normalizing constant that re-
flects the trajectory probability mass removed by imposing
the constraint. Let Z0 be the normalizing constant for the
original, unconstrained MDP. Assuming the demonstrator
doesn’t violate c, their behavior is more likely under the new
distribution because Zc < Z0. In fact, given a uniform belief
prior over each constraint in a constraint hypothesis set C,
the most likely constraint is the one that yields the smallest
Zc. Therefore, to perform MLCI, it is sufficient to calculate
the ratio Zci/Z0 for each ci ∈ C and identify the smallest
value. If subsequent demonstrations violate new constraints,
these are simply removed from the hypothesis set, and the
smallest remaining Zci/Z0 indicates the likeliest constraint.

Theorem 1: Let 1ci(ξ) be the indicator function that tra-
jectory ξ does not violate constraint ci at any t ∈ [0 : T].
We have:

Zci
Z0

= Eξ∼π0
[1ci(ξ)]

(A proof is provided in the appendix.)
Theorem 1 suggests that a MLCI algorithm requires two

components: a representation of the unconstrained maxi-
mum entropy distribution π0(ξ), and a way to calculate
expected constraint violation under this distribution. For
tabular MDPs, both components can be obtained via dynamic
programming [2]. Although a method for approximating con-
tinuous dynamical systems with tabular MDPs was presented
in [3], it is desirable to work directly with continuous state
spaces and avoid the approximation errors inherent to the
discretization process. This motivates a new approach.

C. A Sampling-based Method for Continuous MLCI

In this section we describe our algorithm for constraint
inference on MDPs with continuous state spaces.

1) Deep Reinforcement Learning of π0(ξ): As we will
see in the following section, a direct representation of the
maximum entropy distribution π0(ξ) isn’t necessary for
MLCI; simply being able to sample trajectories from this dis-
tribution is sufficient. This motivates us to approximate π0(ξ)
by leveraging the policy gradient method in reinforcement
learning (RL). Following [10], consider the KL-divergence
between the true maximum entropy distribution π0(ξ) and a
learned policy πθ(ξ) parameterized by θ.

DKL(πθ||π0) = Eξ∼πθ [logπθ(ξ)− logπ0(ξ)]

= Eξ∼πθ [logπθ(ξ)− βR(ξ) + logZ0]
(5)

Since log Z0 is a constant, we can minimize the divergence
by maximizing the following modified expected reward func-
tion:

J(πθ) = Eξ∼πθ [R(ξ)− 1

β
logπθ(ξ)] (6)

This objective can be used with any policy gradient method.
In our experiments, we use proximal policy optimization
(PPO) due to its good performance and stability [12].

The parameterization of πθ is an important limiting factor
in how good of an approximation can be achieved. Most
RL algorithms working with continuous action spaces learn
a Gaussian distribution over actions at each state (e.g. see
[13]). However, this is unsuitable for our application because
it results in a policy that commits to a single “global” strategy
rather than simultaneously exploring multiple strategies with
probability determined by their expected reward. Therefore,
we handle continuous action spaces by discretizing the range
of possible action inputs. A categorical action policy can then
be used to learn action distributions with an arbitrary shape
at each state.

2) Sampling-Based Approximation of Zci/Z0: The
learned policy πθ doesn’t directly yield estimates of the
trajectory probability distribution π0(ξ). However, for a
potential constraint ci of interest, we can obtain a Monte
Carlo estimate of Eξ∼π0

[1ci(ξ)] by simulating policy ex-
ecutions many times and checking whether each sampled
trajectory ξ ∼ πθ violates ci. Since the constraint avoidance
indicator 1ci(ξ) for ξ ∼ πθ is a Bernoulli random variable,
Hoeffding’s inequality tells us that the Monte Carlo estimate
will be very close to the true constraint violation probability
(the probability that the absolute error δ is larger than ε
decays exponentially with the number of samples n: P (δ >
ε) ≤ 2e−2ε2n). By Theorem 1, calculating the fraction of
trajectories that violate each hypothesized constraint is suffi-
cient for determining the most likely constraint. If constraint
regions are determined by actions (for example, a constraint
on the amount of torque that can be applied with a motor),
extra care may need to be taken with determining how the
actions are discretized and constraint violation is determined
for sampled trajectories. In this work we focus on state-based
constraints.

3) Real-Time Constraint Inference: Once we have learned
the policy πθ and calculated expected constraint violation via
Monte Carlo sampling, we are ready to perform constraint

inference. This last step simply consists of sorting by magni-
tude the estimated Zci/Z0 for each hypothesized constraint,
then checking this ranking against the constraints violated
by the demonstrations. The smallest Zci/Z0 that is not
violated by any demonstration is the most likely constraint, as
described in section III-B. It is important to note that prior to
this final step of checking which constraints are violated by
the demonstrations, no information from the demonstrations
is used by our algorithm. Therefore, even though the policy
learning and sampling steps described in this section may be
time-consuming, they can be pre-computed when the MDP
and constraint hypothesis set are known in advance. This
means that constraint inference can occur in real-time as
demonstrations are collected, a key difference from prior
work that requires demonstrations to be available throughout
the deep learning process [10].

4) Highly Optimal Demonstrators: One drawback to a
Monte-Carlo approach to calculating expected constraint vi-
olation is that if the demonstrator behaves close to optimally
(i.e. with a large β parameter), the expected unconstrained
trajectories will be tightly clustered around the most optimal
path(s). This makes accurate constraint inference difficult due
to the paucity of trajectory samples with lower rewards un-
der the unconstrained distribution, since these lower-reward
trajectories would only occur when acting under a constraint.
We can circumvent this problem by learning a πθ distribution
with a lower β than the demonstrator, and then using
techniques from importance sampling to correct our results
for the true reward function. To formalize this idea, consider
the case where we sample from πs,0(ξ) = 1

Zs,0
eβsR(ξ), but

the true reward function induces the distribution πd,0(ξ) =
1

Zd,0
eβdR(ξ). If we can determine Zd,ci/Zs,0 for each ci ∈ C,

this allows us to determine which Zd,ci is smallest and
therefore identify the likeliest constraint. Since

Zd,ci
Zs,0

=
Zd,ci
Zs,ci

Zs,ci
Zs,0

(7)

and we can use Theorem 1 to estimate Zs,ci/Zs,0, all that
remains is to calculate Zd,ci/Zs,ci . The following theorem
allows us to do this:

Theorem 2:
Zd,ci
Zs,ci

= Eξ∼πs,ci [e
(βd−βs)R(ξ)]

(A proof is provided in the appendix.) Since we assume
deterministic dynamics, sampling from πs,ci can be easily
achieved by sampling from πs,0 and discarding trajectories
that violate constraint ci.

IV. ANALYSIS WITH PENDULUM SYSTEM

A. Pendulum Dynamics

The pendulum model consists of a 2-dimensional state
space (angle θ and angular velocity θ̇). The 1-dimensional
control input is the normalized torque applied at the base of
the pendulum:

θ̈ =
g

l
· sin(θ) + u (8)

Fig. 2. This figure illustrates the ground truth constraints for our pendulum
dynamics analysis. The constraint hypothesis space evenly divides the state
space into 100 cells, 10 along the angle axis and 10 along angular velocity.
The two constraints used in our experiments, C1 and C2, are shown here
in different shades of orange. The constraints cover different angle regions
but the same angular velocity.

Fig. 3. Constraint inference accuracy for our method (MLCI-Continuous,
blue circles), with the performance of the discretized state space method
from [3] (MLCI-Discrete, gold squares) as a comparison. The y-axis
measures the likelihood ranking of the ground truth constraint among all
100 hypothesized constraints, on average. A score of 1 means that the true
constraint is identified as the most likely.

Where the gravitational constant g and the length of the
pendulum l are both assumed to be 1 for simplicity. The
constraint hypothesis set is an evenly spaced 10-by-10 grid of
non-overlapping cells that cover the state space of θ ∈ [0, 2π]
and θ̇ ∈ [−6, 6], for a total of 100 possible constraints. We
assign a uniform prior likelihood to every constraint. The
demonstrator wants to arrive at a particular goal state ŝT at
the end of a T = 5s period while minimizing the total squared
torque and avoiding the true constraint region, K. In practice,
this is achieved by optimizing the reward function

u∗ = max
u∈U
−[α1‖s(T)− ŝT ‖22 + α2 ∗

∫ T

0

u(t)2dt]

s.t. s(t) /∈ K ∀t ∈ [0, T]

(9)

using the constrained optimal control method described in
[3]. α1 = 80 and α2 = 0.05 were chosen so that most
trajectories terminate in a small neighborhood around the
goal state. Note that since the pendulum dynamics are
nonlinear, the demonstrations generated with this method are

not guaranteed to be globally optimal and may correspond
to local maxima in the reward function.

B. Experimental Design

We examined two possible ground truth constraints, shown
in Fig. 2. We generated 65 demonstration trajectories with
random start and goal points for each constraint. The MDP
for this system was formulated using a timestep of δt =
1/60s and 5 discrete action choices linearly distributed
between u = −1 and u = 1. A separate deep RL policy
was trained for each of the 65 goal states by inserting the
reward function in equation 9 into the objective derived in
equation 6. Using β = 0.67 was found to provide the best
fit to the demonstrations. Random starting states were used
during training. After training, sampling was performed by
using the same starting state as the demonstrator and per-
forming 10,000 independent policy rollouts on the simulated
pendulum environment.

C. Constraint Inference Results

To analyze constraint inference performance on the pen-
dulum system, we pick demonstrations at random (across
200 trials) and use the average constraint violations from
the corresponding trajectory samples to rank the most likely
constraints. We compare the performance of our algorithm to
the best hyperparameter settings for the approximate discrete
state space approach proposed in [3]. (A direct comparison
to the work of Malik et al. [10], which also performs MLCI
on continuous systems, is not possible since this method
does not utilize a constraint hypothesis set.) The results for
each method are shown in Fig. 3. Our approach identifies
the ground truth constraint as one of the most likely after
observing only a few demonstrations for both C1 and C2. The
inference accuracy of our method is similar to the discrete
state space method for C1, which lies in a region of the
pendulum state space that is close to a stable equilibrium
point. However, our method performs comparatively better at
identifying C2, where the pendulum dynamics are unstable
and the discrete state space approximation suffers accord-
ingly. This difference highlights the advantage of using a
continuous state space for performing constraint inference
on continuous dynamical systems.

V. CONSTRAINT INFERENCE ON 1/10 SCALE CAR

To demonstrate the effectiveness of our method in a
real-world setting, we performed constraint inference on
demonstrations from a human radio-controlling a 1/10 scale
Traxxas robotic car along a racetrack, attempting to stay in
their lane and reach the goal (x̂, ŷ) quickly (reward) while
avoiding an obstacle region marked on the road (constraint).
The position of the car was recorded with an Optitrack
system, and the car’s speed and heading were inferred from
the position data.

A. MDP formulation

We modeled the car system with idealized 4-dimensional
unicycle dynamics, where the control inputs are turning

velocity (u1) and forward acceleration (u2). These dynamics
have the following form:

ẋ = v cos(θ) θ̇ = u1

ẏ = v sin(θ) v̇ = u2

(10)

The human is assumed to be optimizing the following reward
function:

u∗ = max
u∈U
−
∫ T

0

∥∥∥∥α1(x(t)− x̂)
α2(y(t)− ŷ)

∥∥∥∥
1

dt

s.t. s(t) /∈ K ∀t ∈ [0 : T]

(11)

where the roadway is aligned with the y-axis so that the car
starts at (x(0) = 0, y(0) = 0), x̂ = 0 is the center of the right
lane, and ŷ = 8.5 is the far end of the road segment. K
is an obstacle in the roadway that prevents the human from
being in the right lane between y = 6.7 and y = 7.4, but
is unknown to our algorithm. T is a variable time horizon
where the episode ends once the car crosses the y = ŷ line.

To formulate the MDP model, we choose a discrete action
space with an evenly spaced grid of 9 points between (u1 =
-0.5, u2 = -1) and (u1 = 0.5, u2 = 1). We use a simulation
time-step of δt = 0.05s. These values, as well as the reward
function parameters α1 = 100 and α2 = 0.05, and the human’s
temperature parameter β = 200, were chosen to create a close
match between the human’s behavior when not attempting to
avoid an obstacle (i.e. ignoring the constraint K) and a deep
RL policy trained with the unconstrained reward function.
The constraint hypothesis set is 28 evenly spaced regions
along the roadway in (x, y) space, 14 in each lane. The
real-world racetrack and a diagram of the corresponding
MDP model are shown in Fig. 4. A policy was trained to
perform the task of driving the car following the reward
function in equation 11, with an additional reward bonus for
reaching the goal and a penalty for leaving the track. 1000
trajectories were sampled from the resulting πθ distribution.
Trajectories that left the racetrack or did not reach the goal
were discarded. The remaining samples allowed us to rank
the most likely candidate constraints before observing any
demonstrations.

B. Constraint inference

7 demonstration trajectories were collected. For each
demonstration, the most likely constraint after observing
the single demonstration was determined by removing con-
straints violated by the demonstration from the candidate set,
then selecting the most likely remaining constraint using the
pre-computed Zs,ci/Zs,0 estimates. This calculation can be
performed very quickly - all that is required is to determine
which candidate constraints the demonstration violates. As
shown in the bottom-right panel of Fig. 4, for 3 of the
demonstrations, the candidate constraint that most closely
matches the true constraint region is identified as the most
likely constraint. For the remaining 4 demonstrations, a
neighboring candidate constraint is selected, although it is
still a close approximation to the ground truth constraint.
This second region is selected because the human turns

Fig. 4. Constraint inference on a 1/10-scale car trajectory along a racetrack. The upper panel shows a picture of the car approaching the obstacle region,
highlighted in orange. The bottom panels show the x and y components of the corresponding MDP space with 7 human demonstration trajectories plotted.
The grid in these panels shows the hypothesized constraint set, where each constraint is a region in (x,y) space. In the bottom left panel, the ground truth
constraint is highlighted. In the bottom right panel, the possible constraints identified as most likely after observing a single demonstration are shown. The
left-hand constraint is the most likely for 3 demonstrations, while the neighboring region to the right is the most likely for the remaining 4 demonstrations.
The orange circles mark the position of the true constraint, which is close to the inferred constraints.

slightly earlier than is necessary to avoid the obstacle in these
demonstrations.

VI. CONCLUSION

This paper presented a novel algorithm for maximum
likelihood constraint inference that works on MDPs with
continuous state spaces. For many continuous dynamical
systems, these MDPs provide a much closer approximation
to the true underlying dynamics than is possible with tabular
spaces, which suffer from the curse of dimensionality. Our
algorithm works with continous state spaces by leveraging a
Monte Carlo sampling approach to track expected constraint
violation, which requires only an implicit representation of
the maximum entropy trajectory distribution. For continuous
state spaces, deep reinforcement learning yields such a
representation. Although our method does rely on a discrete
action space and discrete transition dynamics, we show in our
experiments that accurate constraint inference is nevertheless
possible for interesting continuous systems. By inferring
constraints from a user-specified hypothesis set, we obtain
an interpretable result (although this does come at the cost of
restricting which constraints can be inferred). Our approach
also allows for significant pre-computation, so that only a
trivial filtering process is required at the time demonstrations
are observed. The maximum likelihood framework we use is
well-suited to noisy or sub-optimal demonstrators including
non-expert humans, enables real-time constraint inference,
and leads to interpretable and actionable inferences.

APPENDIX
For simplicity, the proofs here assume a continuous state-

action space, but similar results hold for the discrete set-
ting. Recall that q(ξ) = eβR(ξ). Furthermore, define the

normalized trajectory distributions as p0(ξ) = 1
Z0
q(ξ) for

the nominal unconstrained case and pc(ξ) = 1
Zc
q(ξ)1c(ξ)

for the constrained case.

Proof of Theorem 1:

Zci
Z0

=
1

Z0

∫
q(ξ)1ci(ξ)dξ

=

∫
p0(ξ)1ci(ξ)dξ

= Eξ∼p0 [1ci(ξ)]

(12)

Note that the expression for Zci comes from removing
trajectories that violate ci from the integral, so that the
constrained probability distribution pci integrates to 1.

Proof of Theorem 2:

First, define qd(ξ) = eβdR(ξ), qs(ξ) = eβsR(ξ), and
ps,c(ξ) = 1

Zs,c
qs(ξ)1c(ξ). We have:

Zd,c
Zs,c

=
1

Zs,c

∫
qd(ξ)1c(ξ)dξ

=
1

Zs,c

∫
qd(ξ)

ps,c(ξ)
ps,c(ξ)1c(ξ)dξ

=
1

Zs,c

∫
eβdR(ξ)

eβsR(ξ)/Zs,c
ps,c(ξ)1c(ξ)dξ

=

∫
e(βd−βs)R(ξ)ps,c(ξ)dξ

= Eξ∼ps,c [e(βd−βs)R(ξ)]

(13)

The constraint avoidance indicator 1c(ξ) disappears because
it is redundant with ps,c(ξ).

REFERENCES

[1] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey,
“Maximum entropy inverse reinforcement learning,”
Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, p. 6, 2008.

[2] D. R. Scobee and S. S. Sastry, “Maximum likeli-
hood constraint inference for inverse reinforcement
learning,” in International Conference on Learning
Representations, 2019.

[3] K. C. Stocking, D. L. McPherson, R. P. Matthew,
and C. J. Tomlin, “Discretizing dynamics for maxi-
mum likelihood constraint inference,” Sep. 10, 2021.
arXiv: 2109.04874. [Online]. Available: http:
//arxiv.org/abs/2109.04874.

[4] M. Vazquez-Chanlatte, S. Jha, A. Tiwari, M. K. Ho,
and S. Seshia, “Learning task specifications from
demonstrations,” Advances in Neural Information
Processing Systems, vol. 31, pp. 5367–5377, 2018.
[Online]. Available: https : / / proceedings .
neurips . cc / paper / 2018 / hash /
74934548253bcab8490ebd74afed7031 -
Abstract.html (visited on 11/09/2020).

[5] G. Chou, N. Ozay, and D. Berenson, “Learning
constraints from locally-optimal demonstrations under
cost function uncertainty,” IEEE Robotics and Au-
tomation Letters, vol. 5, no. 2, pp. 3682–3690, Apr.
2020, Conference Name: IEEE Robotics and Automa-
tion Letters, ISSN: 2377-3766. DOI: 10.1109/LRA.
2020.2974427.

[6] L. Pais, K. Umezawa, Y. Nakamura, and A. Billard,
“Learning robot skills through motion segmentation
and constraints extraction,” HRI Workshop on Collab-
orative Manipulation, p. 5, 2013.

[7] C. Li and D. Berenson, “Learning object orien-
tation constraints and guiding constraints for nar-
row passages from one demonstration,” in 2016 In-
ternational Symposium on Experimental Robotics,
D. Kulić, Y. Nakamura, O. Khatib, and G. Ven-
ture, Eds., ser. Springer Proceedings in Advanced
Robotics, Cham: Springer International Publishing,
2017, pp. 197–210, ISBN: 978-3-319-50115-4. DOI:
10.1007/978-3-319-50115-4_18.

[8] H. Lin, M. Howard, and S. Vijayakumar, “Learning
null space projections,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA),
ISSN: 1050-4729, May 2015, pp. 2613–2619. DOI:
10.1109/ICRA.2015.7139551.

[9] N. Mehr, R. Horowitz, and A. D. Dragan, “Inferring
and assisting with constraints in shared autonomy,” in
2016 IEEE 55th Conference on Decision and Control
(CDC), Dec. 2016, pp. 6689–6696. DOI: 10.1109/
CDC.2016.7799299.

[10] S. Malik, U. Anwar, A. Aghasi, and A. Ahmed,
“Inverse constrained reinforcement learning,” in In-
ternational Conference on Machine Learning, PMLR,
2021, pp. 7390–7399.

[11] C. K. Liu and D. Negrut, “The role of physics-
based simulators in robotics,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 4,
no. 1, pp. 35–58, May 3, 2021, ISSN: 2573-5144,
2573-5144. [Online]. Available: https://www.
annualreviews . org / doi / 10 . 1146 /
annurev-control-072220-093055.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, “Proximal policy optimization al-
gorithms,” arXiv:1707.06347 [cs], Aug. 28, 2017.
arXiv: 1707.06347. [Online]. Available: http:
//arxiv.org/abs/1707.06347.

[13] The garage contributors, Garage: A toolkit for re-
producible reinforcement learning research, 2019.
[Online]. Available: https : / / github . com /
rlworkgroup/garage.

