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Abstract

Background: Skeeter Buster is a stochastic, spatially explicit simulation model of Aedes aegypti populations, designed to
predict the outcome of vector population control methods. In this study, we apply the model to two specific locations, the
cities of Iquitos, Peru, and Buenos Aires, Argentina. These two sites differ in the amount of field data that is available for
location-specific customization. By comparing output from Skeeter Buster to field observations in these two cases we
evaluate population dynamics predictions by Skeeter Buster with varying degrees of customization.

Methodology/Principal Findings: Skeeter Buster was customized to the Iquitos location by simulating the layout of houses
and the associated distribution of water-holding containers, based on extensive surveys of Ae. aegypti populations and
larval habitats that have been conducted in Iquitos for over 10 years. The model is calibrated by adjusting the food input
into various types of containers to match their observed pupal productivity in the field. We contrast the output of this
customized model to the data collected from the natural population, comparing pupal numbers and spatial distribution of
pupae in the population. Our results show that Skeeter Buster replicates specific population dynamics and spatial structure
of Ae. aegypti in Iquitos. We then show how Skeeter Buster can be customized for Buenos Aires, where we only had Ae.
aegypti abundance data that was averaged across all locations. In the Argentina case Skeeter Buster provides a satisfactory
simulation of temporal population dynamics across seasons.

Conclusions: This model can provide a faithful description of Ae. aegypti populations, through a process of location-specific
customization that is contingent on the amount of data available from field collections. We discuss limitations presented by
some specific components of the model such as the description of food dynamics and challenges that these limitations
bring to model evaluation.
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Introduction

The mosquito Aedes aegypti is the major vector of dengue virus.

This virus causes approximately 50 million cases of dengue fever

each year [1], and sporadic epidemic outbreaks can overwhelm

health systems in affected countries [2]. The epidemiology of

dengue is complicated due to a number of factors including the

existence of 4 dengue serotypes [3] and variation in the population

dynamics of Ae. aegypti [4]. Because there is no vaccine for dengue

or drugs to alleviate symptoms, efforts to suppress dengue have

relied on vector control [5]. The impact of vector control

programs based on conventional technologies is often difficult to

predict [5,6]. Assessing the potential of new control methods based

on manipulation of Ae. aegypti genetics [7,8] is no less challenging.

Any such predictions must account for interactions between the

biology and behavior of the vector, the pathogen and the human

host [9].

Mathematical models that include Ae. aegypti population

dynamics are essential for this task. One model, CIMSiM

[10,11], includes details of the Ae. aegypti biology and dynamics,

but lacks spatial dimensions, population genetics, and stochastic

processes. Another model which is spatially explicit, includes fewer

biological details than CIMSiM and lacks genetics [12]. To

address the need for an Ae. aegypti model that includes both

ecological and genetic realism we developed the Skeeter Buster

model [13], a spatially explicit, weather-driven, stochastic

simulation of Ae. aegypti population dynamics and genetics [14].

Skeeter Buster is based on many components of the previously

developed CIMSiM model [10,11], and as such, includes a

detailed representation of Ae. aegypti biology. Further levels of
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model complexity were added to Skeeter Buster, including

stochasticity and a fine-scale spatial structure (down to the level

of individual containers). As a result, Skeeter Buster is a complex

ecological model of Ae. aegypti populations, including over 100

parameters as well as detailed inputs of weather data, container

distribution and nutritional resource availability. In a previous

study, Magori et al. [15] described the details of this model’s

parameters and procedures, including default values of all

parameters based on field and lab studies found in the literature.

A quantitative assessment of uncertainties in model predictions

arising from uncertainties in parameter value estimates and from

model stochasticity was recently published [16].

For this model to be useful as a tool to guide and assess the

operational development of control strategies, we must first be

confident that it can accurately describe specific Ae. aegypti

populations in targeted locations. Skeeter Buster is designed to

be customized for targeted locations, using specific climatic data as

well as mosquito habitat information. The ability of the model to

simulate the dynamics of the population in the location of interest

is expected to depend on local information about distribution of

larval development sites and pupal production from specific

categories of sites (e.g. buckets, tires), but how much of this local

information is needed for accurate model predictions had not been

determined.

The purpose of this study was, therefore, to test the ability of

Skeeter Buster to reflect the field population dynamics of Ae. aegypti

in two separate locations: the tropical city of Iquitos, Peru and the

temperate city of Buenos Aires, Argentina.

We carried out the Iquitos analysis based on historical weather

data for the city as well as data obtained from prior field surveys in

this city on (1) the distribution and characteristics of water-filled

containers in the city (used as model input), and (2) a detailed,

stage-specific, quantitative account of the local mosquito popula-

tion, at the level of individual houses and individual containers.

We describe here the details of these two data sets, and how they

are used to customize the model specifically for the Iquitos

location, including notably a calibration of container productivity

for various types of containers. We then present the results of the

customized Skeeter Buster and test the predictions against

independent data from field studies, showing that the model

accurately describes several aspects of Ae. aegypti population

dynamics in Iquitos.

We then examine the applicability of the model to Buenos Aires

to assess the level of detail in Ae. aegypti population dynamics that

Skeeter Buster can simulate where the available field data are

more limited. We conclude this study by discussing the importance

of data availability as well as identifying the corresponding model

complexities that present challenges for future model applications.

Materials and Methods

Ethics statement
The Iquitos survey protocol was approved by the University of

California, Davis (Protocol 2220210788-4(994054), Instituto

Nacional de Salud, and Naval Medical Research Center (Protocol

#NMRCD.2001.0008 [DoD 31574])) Institutional Review

Boards in compliance with all Federal regulations governing the

protection of human subjects. All subjects provided written

informed consent.

Iquitos, Peru: Study area and survey methods
Iquitos, Peru (3 449 S, 73u159 W, 120m above sea level) is a city

of approximately 380,000 people located in northeastern Peru in

the Amazonian rainforest. Iquitos constitutes a prime study site for

Ae. aegypti populations because of its relative isolation, with no land-

based connection with other population centers [17]. The climate

is equatorial, characterized by year-round high humidity and high

temperatures. The average maximum daily temperature (with

5%–95% range) is 32.2uC (29uC –35uC), the average minimum

daily temperature is 21.4uC (19uC –23uC), and the average annual

rainfall is 2,878 mm. Precipitation occurs frequently all year with

no marked rainy or dry seasons. Other studies provide further

details on the environmental and demographic characteristics of

this city [18–22].

Since January 1999, extensive surveys of mosquitoes have been

carried out across the city. The detailed protocols for these surveys

have been described by Morrison et al. [22]. In short, these surveys

consist of visits to individual households in various Iquitos

neighborhoods. In each house, adult mosquitoes were collected

using backpack aspirators and containers were examined for the

presence and abundance of Ae. aegypti pupae (individually counted)

or larvae (number visually estimated, 0, 1–10, 11–100, .100).

Each container was measured and described according to a

number of characteristics including sun exposure, location (inside

or outside), presence of a lid, and filling method (manually-filled,

passive-rain-filled or assisted-rain-filled). Each container was also

assigned to one of 14 categories (listed here in decreasing order of

pupal productivity): plastic, medium storage, large tanks, tires, non-

traditional, cooking, miscellaneous, flower pots, cans, bath, bottles, natural,

wells and pet. (See Tables 2 and 3 in [22] for more details.)

Surveys were carried out along circuits that sample households

across all Iquitos districts. Each circuit was completed in about 4

months, and includes single visits to approximately 6,000 houses.

Prior to surveys, the entire city was geo-referenced using

geographic information system (GIS) [20,22], so that all mosquito

data can be spatially located to an individual household in the city.

For more detail on the geo-referencing and survey protocols, we

refer the reader to the previously mentioned studies [20,22]. In this

study, we use the data collected in 13 consecutive surveys, from

January 1999 to August 2003, spanning a total of 12,387

households (each circuit consisting of a different subset of those

households). The average number of visits per house was 6.26, but

most houses were visited either only once (29.5% of houses) or 11

times or more (29.3%) (Figure 1).

Model customization: Location-specific model inputs
In order to apply Skeeter Buster to a specific location, we first

used available data to customize model inputs to the specific

environmental and ecological setting of the city of interest. In

Skeeter Buster weather characteristics impact biological processes

such as egg hatching, larval development rate, and daily survival

probabilities of all stages [13]. We, therefore, accessed daily

temperature (minimal and maximal), rainfall and relative humidity

data for the city of Iquitos between 1999 and 2003. Data were

obtained from the Climate Data Online (CDO) database of the

National Climatic Data Center (NCDC) [23] and translated into

input files for Skeeter Buster.

Each house in a Skeeter Buster simulation is assigned a number

of containers, representing potential larval development sites.

Within each container the dynamics of immature cohorts are

computed daily. Containers constitute potential oviposition sites

for gravid females present in that house on any given day. In order

to define the containers to be input into our Skeeter Buster

simulations, we also used the data collected in Iquitos on the

distribution and abiotic characteristics of water-filled containers.

While these data included over 12,000 houses and over 290,000

individual containers, computing constraints forced us to run the

model on a subset of these. We selected a set of 153 houses,

Aedes aegypti Simulation Model Evaluation
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arranged on a grid of 17x9 houses, as our simulation set (Figure 2).

Two criteria were used in the selection of this particular subset of

houses. First, we chose to focus on the Maynas zone of Iquitos.

Maynas is a central, densely-populated area, and presents the

highest levels of Ae. aegypti infestation [22] and highest prevalence

of dengue infection [24] in the city. Second, within this district, we

selected blocks of houses that had been most frequently surveyed

during the 1999–2003 period. This led us to the 153-house

simulation set, in which a majority of houses (63%) had been

surveyed more than 8 times (Figure 1). In this subset, a total of 871

water-filled containers were found on the first survey circuit, and

were used to initialize the model.

Although Skeeter Buster simulations are limited by computing

power and running time, it is desirable to simulate as large an area

as can be computationally managed, in order to limit the effects of

stochasticity within individual houses and alleviate potential

boundary effects. Because the basic 153-house simulation set was

specifically selected for the repeated surveys in those houses, we

chose not to extend our selection, which would have decreased the

average number of surveys per house in this selected area. Instead,

we copied our basic subset multiple times to define a larger grid of

houses (see Supplementary Text S1, Figure S1, Figure S2 and

Figure S3 for alternative options). In this study, we extend our

simulated area to 4 copies of the basic subset, for a total of 612

houses and 3,484 individually-modeled containers. In each of the

four instances of the 153-house block, we randomize the spatial

distribution of houses on the 1769 sub-grid, so that each of the

153 houses is present exactly 4 times in our simulation grid, but

with different neighbors each time. The distribution of containers

within houses is left intact, so that the same collection of containers

is found in each of the four instances of a given house.

Model calibration: Nutritional resources and calibration
for Iquitos

One of the most important factors driving the development of

immature Ae. aegypti cohorts in individual containers is the amount

of nutritional resources present in each container. This amount of

food is tracked for each container, and is affected by (i) a natural

daily input of food, (ii) a natural decay of the available food, (iii)

consumption by larval cohorts present in the container, and (iv)

conversion of larvae and pupae cadavers into suitable nutritional

resources [13]. The model uses the equations developed by Gilpin

and McClelland [25] (see p. 366 of this reference) to track the

weight gain of larval cohorts from ingested food, as well as the

corresponding decline in the amount of food remaining in the

container. If the amount of food in a given container is insufficient,

larvae will starve for a period of time based on their available

reserves, during which time they experience an increased rate of

mortality. The amount of food also drives the rate at which a

larval cohort gains weight, which in turn affects the time to

pupation and the weight at pupation of the cohort. As a

consequence, food availability affects larval density in a container

through these effects on survival and development time. Of course,

larval density in turn affects the amount of food available in a

container. Food availability therefore constitutes in Skeeter Buster,

as it does in CIMSiM, the mechanistic basis of density-dependence

in the larval stages, which is generally considered an important

component of the population dynamics of container-inhabiting

mosquitoes [26–30].

Ideally, we would parameterize the containers in Skeeter Buster

a priori, based on field information on the nutritional value of the

contents of different containers. Unfortunately, very little is known

about the exact origin or the precise amount of nutritional

Figure 1. Distribution of the number of visits per house in the city of Iquitos and in our selected subset of houses. We use data from
13 distinct survey circuits during the period 1999-2003. We only consider houses that have been visited at least once. Black bars: distribution of the
number of surveys for the whole city of Iquitos. Gray bars: distribution of the number of surveys in our selected 153-house subset.
doi:10.1371/journal.pone.0022701.g001

Aedes aegypti Simulation Model Evaluation
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resources available in containers from natural populations. It is

generally considered that microorganisms, potentially proliferating

from decaying organic debris in containers, form the basis of

immature mosquito nutrition [31–33]. There is, however, no

empirical method to assess the suitability of a specific container for

Ae. aegypti larval growth by examining only the container and the

water it contains. Practically, the quality of a given container as a

mosquito habitat can only be assessed based on the dynamics of

immature mosquito development, measuring pupal productivity,

larval development time or resistance to starvation [34]. For this

reason, we follow the approach of Focks et al. [10] in adjusting, a

posteriori, the average daily input of food into each container based

on the pupal productivity recorded for that category of container

(defined according to several container properties, see below)

during the mosquito surveys. For calibration purposes, we use

information collected in our calibration set defined as the entire set of

surveyed houses excluding those selected for our simulation set.

From this calibration set, data on container productivity was

obtained from the 13 surveys carried out during the time period

considered in this study (see Study Area and Survey Methods).

We model the daily amount F of food input in a given container

according to the following equation:

F~F0 ai bj log(1zV ), ð1Þ

where F0 is a baseline amount of food (in liver powder equivalent

per unit volume), ai is a container-type-specific coefficient (i = 1 to

14, based on the 14 container types), bj is a container-location-

specific coefficient (j = 1 to 2, inside or outside), and V is the

volume of the container. Because F0, ai and bj are combined into a

Figure 2. Selection of the 153-house simulation set. Right: entire city of Iquitos. Each ‘+’ symbol represents an individual house referenced in
the GIS map [20,22]. Orange circles are houses that have been included in at least one survey circuit during the period considered in this study. Inset:
a zoomed-in view of part of the Maynas district (delimited in yellow). Our selected block of houses constituting the simulation set is shown as the
shaded region in the inset.
doi:10.1371/journal.pone.0022701.g002

Aedes aegypti Simulation Model Evaluation
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single multiplicative coefficient, only the relative values of ai (for

different values of i) and bj (for different values of j) are important.

We arbitrarily set the value of ai to 1 for large tanks and the value

of bj to 1 for outside locations.

In the Iquitos case, we can calculate the average pupal

productivity of each container type in our calibration set. Based

on these values, the coefficients F0, ai and bj are simultaneously

adjusted so that the average pupal productivity per container type

observed from the model matches the distribution observed in the

field. The comparison between the observed productivity of each

container type in our simulated area and the pupal productivity

reported from the field for this same container type in the houses

selected in the simulation set is presented in Figure 3.

Spatial statistics: Comparison between simulations and
empirical data

An important characteristic of a mosquito population is the level

of spatial heterogeneity observed among houses, because it can

potentially affect arbovirus transmission [35]. We use three

statistical measures of heterogeneity and cluster size to character-

ize the spatial structure of simulated populations.

First, we compute the values of Moran’s I index (Moran, 1950).

This index is defined as follows:

I~
NXN

i~1

XN

j~1,j=i

wi,j

XN

i~1

XN

j~1,j=i

wi,j xi{xð Þ xj{x
� �

XN

i~1

xi{xð Þ2
, ð2Þ

where N is the total number of houses, xi is the number of pupae in

house i, xis the average number of pupae per house, and wij is the

weight between locations i and j (defined here as the reciprocal of

the distance between houses i and j). Moran’s I values range from -

1 to 1, with an expected value of –1/(N-1) (i.e., close to 0 for large

values of N such as the value of N = 612 in this study) under the

assumption of random spatial distribution. Negative values are

indicative of a uniform distribution whereas positive values

indicate a clustered distribution.

Next, adhering to the analysis of spatial patterns observed in the

Ae. aegypti population in Iquitos [20], we calculate global Lw and

local Gi statistics to characterize the existence and size of clusters of

high (or low) numbers of pupae per house in our simulated

populations.

Lw statistics are based on K functions from point pattern analysis

models [36–38] and measure the number and distribution of pairs

of observations (here, the number of pupae) within a distance d of

each other. For a given distance d, Lw(d) is given by:

Lw(d)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
X

i

X
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where A is the area of the study region, xi is the number of pupae

in house i and Vd(i) is the set of houses that are within distance d of

house i (excluding house i itself). Because, in our model setup, the

presence of pupae is dependent on the presence of a house, and

because houses are distributed on a regular rectangular grid (and

therefore non-randomly spatially distributed), we must also

compute the value of L(d) for the distribution of the houses

themselves (with xi then being a dummy variable whose value

equals one for each house). If pupae are randomly distributed

among houses, Lw(d) will be equal to L(d). Following [38] we

calculate the increments in L(d) and Lw(d) when d increases, that is,

(Lw(d) - Lw(d-1)) – (L(d) - L(d-1)) for all values of d. An observed

change in Lw(d) greater than the change in L(d) (that is, a positive

value of the above calculation) indicates that pupae are more

clustered than expected given the existing pattern of houses within

distance d.

Getis’ Gi statistics [20,39] were used to measure the local

distribution of pupae around house i to identify this particular

house as a member (or not) of a cluster of pupal productivity. For a

given distance d around house i, this statistic is given by:

Gi dð Þ~

X
j[Vd (i)

xj

0
@

1
A{xYd ið Þ

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NYd ið Þ{Yd ið Þ2

N{1

s , ð4Þ

where N is the total number of houses, x and s are the average and

standard deviation of the number of pupae per house, and Yd ið Þ is

the number of neighboring houses within distance d of house i (i.e.

the size of the set Vd(i)). If pupae are randomly distributed around

house i the expected value of Gi(d) is 0. Positive values (significant

Z-scores above 2.575 at 0.01 confidence level [20]) indicate a

cluster of high number of pupae around house i, negative values

indicate a cluster of low number of pupae.

Model calibration for Buenos Aires
We also consider the case of the Ae. aegypti population in the

Mataderos neighborhood of Buenos Aires, Argentina (34.61 S,

58.37 W), a city with a temperate climate. Climatic data for the

years 2001 to 2003 were obtained from the Climate Data Online

(CDO) database of the National Climatic Data Center (NCDC)

[23] and translated into input files for Skeeter Buster. The local Ae.

aegypti population has been described elsewhere [40–42], and

modeled by Otero et al. using another stochastic, weather-driven,

spatial model that shares some assumptions with Skeeter Buster,

but does not consider heterogeneity in larval development site

characteristics, suitability for Ae. aegypti or distribution among

houses [12]. Unlike Iquitos, we have no data on the types,

distribution or productivities of containers, therefore Skeeter

Buster cannot be customized to the same extent than in the

Iquitos case, lacking a realistic description of the distribution of

larval development sites in Buenos Aires. However, for model

evaluation purposes, we choose to copy the grid composition and

customization that was done in Iquitos. Because the two locations

are ecologically very different (an isolated, medium-size city in an

equatorial climate versus a neighborhood in a large metropolitan

area in a temperate climate), it is likely that the Iquitos container

distribution is a very poor description of the actual distribution in

Buenos Aires. For the purpose of this study, this allows us to

investigate the dependence of Skeeter Buster on detailed field data

regarding breeding sites at the household level, and to examine the

level of population dynamics prediction that can be made without

such information.

We therefore set up the simulation area for Buenos Aires using

the same 3,484 containers used in Iquitos, with identical

characteristics and distributed identically among the 612 houses.

We also use the same ai and bi coefficients to govern the amount of

food present in the containers. Calibration of food amounts

consists only in adjusting the F0 coefficient to match the observed

Aedes aegypti Simulation Model Evaluation
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overall population levels, based on surveys carried out in the

Mataderos neighborhood [12,40,41]. These constitute the results

of weekly monitoring of eggs using ovitraps deployed across the

study area. We adjust population levels in the model by comparing

the observed fraction of positive ovitraps each week with a daily

measure of the proportion of containers in Skeeter Buster that

have been oviposited into in the past 7 days, and adjusting F0

accordingly.

Results

Stage-specific time series in Iquitos
We ran Skeeter Buster calibrated for conditions in Iquitos as

described in the Methods section. All parameters of the model

were set to their default values, obtained from review of previous

field and lab studies of Ae. aegypti, and described in detail in our

previous article [13]. Following the calibration process described

in our Methods section, the time series of numbers of pupae

predicted by the model were compared to pupal counts from

surveys of the houses in the simulation set (Figure 4). Note that

because each field survey spans a period of several weeks, the

plotted field estimates represent averages over time (length of

survey) that are not directly equivalent to daily tallies in the model

output.

In the context of entomological field surveys, pupae are the only

mosquito life stage that can be extensively and accurately counted,

and pupal counts are considered the most reliable measure of

population density for wide-scale surveys [43,44]. The method

used here ensures that the predicted overall number of pupae is in

accordance with the values observed from the field. Other life

stages were more difficult to extensively and accurately count

during surveys; larval numbers were estimated to a range of values,

not exact numbers [22] and adults were collected using backpack

aspirators, but the sampling efficiency of this method is not well

calibrated [45,46]. Therefore, model predictions of the dynamics

of life stages other than pupae cannot be similarly, reliably

evaluated.

Spatial structure of the Iquitos population
An important characteristic of the local population is the level of

spatial heterogeneity observed among households. The Moran’s I

index can be used to test the existence of non-random spatial

distribution (clustering) at the population scale. Calculations of

Moran’s I for the number of pupae per house on 20 replicated

simulations of our 612-house grid showed index values ranging

from 20.0011 to 0.0060 (average = 0.0017) with no individual

value significant at the 0.05 level (Z-scores ranging from 21.38 to

1.51). This indicates that no significant deviation from random

distribution of pupae among houses can be detected at the scale of

our simulated area. Calculations of the same Moran’s I from data

collected in 13 circuits in our selected block reveal values ranging

from 20.01 to 0.01, with no individual value significant at the 0.05

level (Z-scores ranging from 20.4 to 1.7), confirming a similarly

random distribution of pupae among house in this subset of the

Iquitos population.

A detailed analysis of the spatial distribution of Ae. aegypti pupae

and adults in the city of Iquitos has been previously published [20]

and is based on data collected in the Maynas neighborhood where

our simulation set of houses is located. This analysis examined

variation among houses in number of pupae produced, and

concluded that, while houses can differ in their productivity, there

was an absence of clustering of high-producing houses beyond 30

meters from an individual household for adult mosquitoes, and

beyond 10 meters for immature stages. While the absence of

clustering detected from the model by calculations of Moran’s I is

consistent with the observed absence of large clusters in the Iquitos

population, other statistics are needed to investigate the size of

potential local clusters in the simulated population. Note that

distances in the model can only be measured as a number of

houses, or number of cells between two locations on the grid.

Figure 3. Results of the calibration of pupal productivity of different container types. The x-axis represents the container types defined in
the Iquitos surveys [22]. Out of 14 total container types, the 8 most productive types are presented here, while the 6 remaining types are condensed
into ‘Others’. The percentage of total pupae emerging from a given container type is presented for both model predictions (light gray bars) in the
simulated area and field data (black bars) collected in the simulation set of houses.
doi:10.1371/journal.pone.0022701.g003
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These distances can be translated into actual geographic distances

by multiplying by the average distance between houses in Iquitos,

which is on the order of 5 to 10 meters.

We compute the values of the spatial statistics used in the

previously mentioned study [20] to characterize the potential

clusters in the simulated population. First we calculate Lw(d) to

provide a global measurement of the level of clustering in the

number of pupae produced per house in our simulated population.

We show that no significant clustering is observed, even at the

smaller scales (Figure 5). This corresponds to the results in the

empirical analysis [14].

Finally, we calculate local statistics Gi(d) [20,39] to identify each

individual house in our simulated area as being a member or non-

member of clusters of size d for the number of pupae per house.

We show that clusters of small sizes can be found in our simulated

population (Figure 6), consistent with the notion that houses vary

in their productivity in terms of numbers of pupae. However, these

clusters are no larger than 4 houses wide (Figure 6), again

consistent with the observed absence of clustering at scales much

larger than a household in Iquitos [20]. The absence of these

larger clusters suggests that there is no spatial correlation in the

productivity of individual households; additionally, it reveals that

highly producing individual households are not sufficient to

constitute a cluster larger than 4-house wide, consistent with the

notion that dispersal of Ae. aegypti, at least in Iquitos, is limited to

small distances [20].

Application to Buenos Aires
For the Mataderos neighborhood of Buenos Aires, Argentina,

Skeeter Buster was customized using only local weather data [23].

The distribution of containers per house was taken from the

Iquitos data. The overall food input in those containers is adjusted

to match the observed fraction of positive ovitraps in the study

area. This is done by adjusting the coefficient F0 to 1.5x its value in

Iquitos. Since this upward adjustment results in higher amounts of

food available for larval cohorts, higher midsummer densities of

adults are predicted in the Buenos Aires simulations than in

Iquitos. Direct data on adult mosquito abundance would be

required to confirm this prediction.

We present the outcome of simulations from Skeeter Buster

compared to field data as well as to the outcome of another

Figure 4. Comparison of predicted pupal time series and observed pupal counts. We compare time series of total numbers of pupae from
a Skeeter Buster simulated population with values from the Iquitos survey data collected in houses forming the simulation set. Solid line presents one
model outcome (with 1-year burn-in not presented). Red circles mark estimated numbers calculated from data collected during 6 separate field
circuits (in 2000 and 2001) in the set of houses that corresponds to the simulated area, and adjusted to reflect our 612-house set. Note that each
survey spans in reality a period of several weeks. Data points are positioned on this graph at the midpoint of each circuit.
doi:10.1371/journal.pone.0022701.g004

Figure 5. Measures of clustering in a Skeeter Buster simulated
population using point-pattern analysis L statistic. We calculate
L values for 20 replicate Skeeter Buster simulations. This statistic is
calculated (1) for the number of pupae within a house, noted Lw(d), and
(2) for the houses themselves, being non-randomly distributed, noted
L(d). Here we plot the difference between the increment in Lw(d) and
the increment in L(d) – that is, (Lw(d) - Lw(d-1)) – (L(d) - L(d-1)) for all
values of d. The distance d between two houses in this model is defined
as the number of steps (horizontal or vertical only) separating these two
locations in the grid. The existence of a significant cluster of size d is
marked by a positive value of this difference, while a value of 0 is
expected under random distribution.
doi:10.1371/journal.pone.0022701.g005
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stochastic spatial model by Otero et al. [12] (Figure 7). The time

series of ovipositions into containers in Skeeter Buster is in good

accordance with the observed data from the field, although some

discrepancies appear. The most notable difference occurs at the

end of the summer (weeks 93–100) when Skeeter Buster predicts

significant oviposition events that are not observed in the field.

Interestingly, Otero et al. [12] observed a similar discrepancy

between predicted and observed dynamics using their model of Ae.

aegypti populations.

Discussion

In this study, we detail the process through which the Skeeter

Buster model can be customized to simulate a population of Ae.

aegypti in a given location and environmental setting. The level of

spatial and environmental detail incorporated into Skeeter Buster

makes it possible to develop this type of location-specific

application, an important requisite for the ability to simulate the

outcome of vector control programs in a given area.

In the Iquitos case, in which the model is set up with detailed

ecological information collected from empirical studies in the city,

we show that the results of the model are in good accordance with

the observed data from the natural population. The remarkable

amount of data that were available from this location was helpful

not only for testing our model predictions (particularly for spatial

analyses), but also for the process of customizing the model to this

particular setting, that ensures the ability to faithfully simulate this

mosquito population. In particular, as discussed in the Methods,

an important part of the customization process is the calibration a

posteriori of the population levels predicted by the model, based on

the pupal counts observed in the field. This is forced by the explicit

simulation of the dynamics of within-container nutritional

resources in Skeeter Buster, a quantity for which no direct field

quantification is available. Although we based this adjustment on a

calibration set distinct from the simulated area, this represents

nonetheless a less than ideal way to test model predictions. Stage

specific numbers for other mosquito life stages can be examined,

but collection of accurate data for these life stages (adults, larvae,

eggs) is significantly more challenging than for pupae.

The ability to apply a complex model like Skeeter Buster to

multiple geographic locations with different environmental and

ecological conditions is obviously desirable. We focused our first

application study to the Iquitos case that arguably offers the most

detailed house-by-house longitudinal entomological data available

for Ae. aegypti. To test the model’s versatility, we applied Skeeter

Buster to the Mataderos district of Buenos Aires, a city with a

temperate climate. In this case the location-specific customization

process was limited to two adjustments: (i) using weather data from

Buenos Aires, and (ii) adjusting the overall population levels

(measured in the field by monitoring deployed ovitraps) by

increasing the daily input of food in containers of all types. Because

of the lack of data regarding breeding site distribution and

productivity, we carried over the distribution and customization

that was established from Iquitos data. This application to Buenos

Aires should therefore not be regarded as an effort to provide

accurate predictions regarding all aspects of population dynamics

in this particular location, but rather as a test of the model’s

reliance on specific input data.

This exercise shows that Skeeter buster, even with this limited

calibration, can capture the temporal dynamics of population

expansion and decline across one year under a temperate climate

like that of Buenos Aires. Specific discrepancies between observed

and simulated time series show, however, that the predictive ability

of the model is limited for this location when population levels

begin to decline. This could be evidence of an inappropriate

parameterization of the model. In our default settings, for

example, the minimal water temperature for egg hatch is set to

22uC. Although this value may be appropriate for an equatorial

location, it is likely that hatching can occur in colder water at more

temperate latitudes (H. Solari, pers. comm.) More generally, it

should be noted that the ability to replicate one type of time series

at the population scale does not demonstrate the ability of Skeeter

Buster to capture other details of the population structure, like

actual stage-specific numbers or spatial distribution.

By contrasting the Iquitos and Buenos Aires simulations

presented in this study, we illustrate the relationship between

Skeeter Buster’s ability to simulate specific aspects of Ae. aegypti

population dynamics and the requirements for specific input data

to parameterize and calibrate this complex model. If the model is

to be used to simulate and/or predict the temporal profile of

average population levels in a given location, then our application

to Buenos Aires demonstrate that the data requirements to obtain

satisfactory predictions are relatively inexpensive: location-specific

climatic data are sufficient. In that case, many aspects of Skeeter

Buster’s complexity appear superfluous, particularly the detailed

spatial distribution of houses and breeding sites. This is consistent

with the idea that spatial heterogeneity does not affect average

mosquito numbers in Skeeter Buster as shown in a previous study

Figure 6. Identification of individual houses in the simulated population as members or non-members of pupal clusters. Getis’ Gi

values are calculated for each house at distances 1, 3 or 5 houses. Significant positive values of Gi (yellow to green) indicate members of a positive
clustering of pupae (grouping of high numbers). Significant negative values of Gi (purple to red) indicating members of a negative cluster (grouping
of low numbers) are not observed in this setup. Houses that are not identified as members of either type of cluster are shown in black. Calculations
with d .5 houses reveal no clusters, positive or negative (not shown).
doi:10.1371/journal.pone.0022701.g006
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[13]. This is also illustrated here by the match observed in Buenos

Aires between field data and simulations run with container data

obtained in Iquitos (whereas it is likely that the actual distribution,

types and productivity of breeding sites in Buenos Aires differ greatly

from that of Iquitos). In other words, the simulations presented in this

study demonstrate that detailed container information such as that

collected in Iquitos is not necessary to simulate a temporal profile of

Ae. aegypti numbers, and an ecologically unrealistic container

distribution is sufficient in this case. In fact, a simpler distribution

can be used with the same results, and we investigate this question

further in a separate study by taking a model comparison approach

between Skeeter Buster and a model that does not include such detail

at the container level [12].

In many instance, knowledge of the temporal profile of average

numbers of mosquitoes would, however, be insufficient. For

example, heterogeneity in mosquito numbers among houses is an

important factor in many aspects; most notably, it impacts the

efficiency of control strategies as well as the dynamics of disease

transmission by adult vectors [20,35]. Similarly, at the container

level, differential productivity of various container types is crucial

information to design effective control programs. The ability of a

population dynamics model to capture these details is therefore

necessary if this model is to provide guidance for control programs

in a given location. In that regard, the Iquitos case study presented

here demonstrates Skeeter Buster’s ability to operate on this level

of detail, thanks to specific aspects of this model’s complexity that,

in this case, are an integral part of this particular ability.

Importantly, this is also contingent on the availability of detailed

data on container ability and distribution among houses.

This comparison illustrates the advantages and limitations of

using a complex model like Skeeter Buster to simulate specific Ae.

aegypti populations. The ability to incorporate the environmental

and ecological specificities of the location of interest make Skeeter

Buster a very adaptable model, a trait that is particularly

important in order to guide the development of control strategies

that are optimized for a specific location. Yet this level of

specificity can only be achieved if the model can be properly

customized and its predictions evaluated, which requires the

availability of detailed data on the field population. We suggest

that the steps presented here could be replicated to apply the

model to other locations, insofar as the essential data is available,

and keeping in mind that the data requirements are themselves

contingent on the level of detail required in the simulation results.

Information on the weather-related variables (temperature,

precipitation, humidity) are easily available for most locations

worldwide from the source used here [23], and provide a first level

of location-specificity for Skeeter Buster (as illustrated by our

Buenos Aires simulations). If simulating finer details of the

temporal and spatial dynamics of a particular mosquito population

(as done here for Iquitos) is of interest, extensive field surveys, like

pupal/demographic surveys [43,47–49], are needed, particularly

collecting data on the local distribution of water-filled containers

and their relative contribution to the population of adult

mosquitoes.

Overall, the process by which a complex mechanistic model like

Skeeter Buster can be evaluated and used with confidence is a

conceptually and practically complex task [50]. This process is

typically referred to as ‘‘model validation’’, an essential but

controversial part of the development of useful modeling tools

[51]. Whether or not a model can ever be fully and definitively

validated is a debate beyond the scope of this study. In the case of

predictive ecological models, validation is generally recognized as

the ability to give reliable and robust predictions regarding a given

set of biological questions [52]. Specific approaches have been

identified to achieve this objective [53] and our approach for the

evaluation of Skeeter buster was designed accordingly. The type of

study presented here, a retrospective analysis based on existing

data, is naturally not sufficient to establish the validity of this

model in any specific location. However, it provides a valuable test

with regards to model evaluation, examining how model

predictions can withstand falsification efforts. The concordance

between simulated and real population dynamics observed in the

Figure 7. Application of Skeeter Buster to the Mataderos neighborhood in Buenos Aires, Argentina. Time series presented here are
from the beginning of July 2001 (week 52) to the end of June 2002 (week 104). Shaded dark gray area: observed fraction (95% CI) of positive ovitraps
in a weekly field monitoring [40,41]. Black line: outcome of Otero et al. [12] stochastic spatial model. Shaded red area: Skeeter Buster simulation
results (95% CI of 20 replicated simulations) using container data obtained from Iquitos (see text). Discontinuities in the red area correspond to weeks
during which no positive container was observed in the model.
doi:10.1371/journal.pone.0022701.g007
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two case studies presented here constitutes a necessary first step in

evaluating whether Skeeter Buster can provide such predictions.

To further establish Skeeter Buster’s validity and robustness

with confidence, additional studies of this model’s predictions will

be required. In particular, it is important to recognize that this

study was limited to prediction of dynamics of an unperturbed

mosquito population. If the model is to be used to predict the

outcome of high-intensity vector control strategies, the ability of

Skeeter Buster to predict the dynamics of a perturbed population,

notably in response to control measures, must be further

demonstrated. In that case, prospective studies, based on

controlled field experiments monitoring population dynamics after

a given type of intervention, will be especially informative.

Supporting Information

Figure S1 Selection procedure for extended simulation set. +
markers represent individual properties in Iquitos. Green: 153

houses constituting the original simulation set (see shaded area in

Fig. 2). Red circles: additional houses that, together with the

original 153 houses, constitute the extended simulation set.

(TIF)

Figure S2 Distribution of the number of visits per house in the

original selected set of 153 houses (gray) and in the extended set of

612 houses (red).

(TIF)

Figure S3 Upper panel: time series comparison with various

compositions of the simulated area. A (black): 153-house

simulation set replicated 4 times (setup used in the main text).

B (blue): same 153-house set simulated once, i.e. not replicated.

C (red): 612-house extended simulation set (see Fig. S1) simulated

once. Note that the time series for treatments A and B (black and

blue lines) match very closely and are therefore hard to distinguish.

Lower panel: average and standard deviation of the total number

of pupae in the simulated area across 2 years of simulation (years 2

and 3, after 1 year burn-in).

(TIF)

Text S1 Selection of simulation set and effects of set replication.

(DOC)
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