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ABSTRACT	OF	THE	THESIS	
	

A	gradient	boosting	machine	algorithm	to	predict	age	of	glioblastoma	incidence	with	copy	
number	variation	data			

	
By	
	

Yige	Lu	
	

Master	of	Science	in	Biomedical	Engineering	
	

	University	of	California,	Irvine,	2019	
	

Professor	James	Brody	Chair	
	

						Glioblastoma multiforme (GBM) is the most common form of brain cancer. The exact cause 

of GBM is not well understood.  In this thesis, we tested whether germline genetic information 

could predict who will develop GBM and when will they develop it.  We first extracted copy 

number variation (CNV) data from germline DNA in the peripheral blood samples of 8826 

patients in the The Cancer Genome Atlas (TCGA) database. We compared that to 8338 patients 

in the database who did not develop GBM.  We used several machine learning algorithms: deep 

learning, gradient boosting machine and random forest methods to test whether the germ line 

genetic data could predict who would develop GBM. The gradient boosting machine algorithm 

achieved the best results with an 0.82 AUC.  We then used this gradient boosting method to test 

whether germ line DNA information could predict the age of diagnosis of GBM patients.  We 

compared the correlation coefficient between the predicted age and actual age for GBM patients 

to the predicted correlation coefficient measured for randomized control groups and found a 

significantly better prediction in the GBM patient group (p-value 0.0004).  These results suggest 

that who develops glioblastoma and when they are diagnosed with glioblastoma is influenced by 

germline genetics.   
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Chapter	1	INTRODUCTION	

Glioblastoma accounts for around 12%-15% of all brain tumors, 50%-60% of astrocytoma [1]. 

Globally, the incidence is constant, indicating that the environmental, geographical and 

nutritional factors probably do not have an influence on this cancer [2].  No essential cause has 

been identified for the majority of gliomas, including glioblastomas. Although some studies have 

identified environmental influences, for instance, one concluded the use of cell telephones may 

increase the risk of the gliomas, a study from Deltour et al (2009) has not supported this 

statement [3].   

 

The majority of studies with glioblastoma prediction or early diagnosis are focused more on MRI 

imaging features. In a 2018 study, an MRI-based model with single feature achieved 0.61 C-

index (identical to AUC), and 0.73 C-index with combining features [4].  

 

The influence of genetic factors among glioblastoma patients is not very clear. Genome wide 

association studies (GWAS) have been widely used to identify inherited genetic factors that 

influence phenotypes. GWAS studies have identified seven loci related to glioma risk. Several 

case-control studies tried to replicate these seven key loci but obtained inconsistent results [5]. 

This is possibly due to epistatic interactions, which is the interaction between different genes. 

For example, if an allele or allelic pair masks the expression of the allele of the second gene, then 

the allele or allele pair is the epistasis of the second gene. This could not be identified by 

traditional statistical way.  



2	
	

Historically, association studies focus on single nucleotide polymorphisms to measure risk, but 

not copy number variation. However, a substantial part of total genetic variability is encoded in 

structural genetic variation, like copy number variation [6]. The associations between 

glioblastoma and copy number variations (CNV) have not been systematically studied in 

genome-wide association studies.  

 

In our study, we used several machine-learning methods to estimate the possibility to develop a 

glioblastoma by using CNV data and give a prediction to the incidence age of glioblastoma 

patients. Machine learning methods can identify interactions between different elements better 

than the standard statistical tests used in genome wide association studies. 

 

Glioblastoma.  Glioblastoma is more common among males than females. Overall, males have a 

60% increased risk of glioblastoma multiforme compared with females [7][8][9]. This result is 

similar to our dataset (male : 299, female : 189,  ratio 1.58). 

 

The average glioblastoma survival time is about one year [10]. The survival time improved 

significantly from 2005-2008 compared to 2000-2003 [11]. This finding is different from the 

previous analysis of SEER data, which shows that survival had not improved since the 1980s 

[12].  This result is mainly due to a new method of treatment: temozolomide. A report from 2015 

shows that the median overall survival in the temozolomide alone group (n = 84) is 15.6 months 

(95% CI, 13.3-19.1 months), which is consistent with research conducted in 2012 that showed 

similar improvement [13]. Despite new treatment strategies, the median after diagnosis in the 

SEER (Surveillance, Epidemiology, and End Results) population remains well under one year.  
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In previous studies, age is considered as the most important factor in the development of 

glioblastoma. The relationship between age and survival is strong. Five-year survival rates are 

about 13% for patients aged 15-45 years, and only 1% for elderly patients under 75. From an 

England survey, the median survival for those under 45 is 16.2 months, for patients age 45-69 is 

7.2 months [14]. The incidence of GBM increases with age, and the diagnosis of younger age is 

significantly associated with improved prognosis [15]. If we could predict the incidence age of 

glioblastoma patients, this information can ultimately be used to guide screening, diagnosis, and 

treatment of cancer.  

 

Machine Learning. Machine learning techniques have been successfully applied in various 

fields of biomedicine, including genomics, proteomics and systems biology. In the mid-20th 

century, Ledley first applied mathematical modeling to the medical field and used computers as a 

means of diagnosis [16]. The focus of machine learning is to utilize the knowledge we do know 

to discover unknown. By studying cancer through machine learning, you can learn from existing 

cancer case studies, so that the computer develops certain decision-making abilities and then 

intelligently judges and evaluates unknown cancer cases, which can be more accurate than each 

doctor’s limited experience. With the continuous development of artificial intelligence and 

machine learning, more and more research work is being done on medical intelligent diagnosis 

[17]. 

 

Most machine learning analysis follows this procedure:  
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1. Acquiring the data set. This is the first step and is very important. The quality and 

quantity of data gathered will directly determine the efficacy of the model.  

2. Data preparation. The information in the data sets that are often collected is very 

complex, including many samples and redundancy. Therefore, data processing should be 

done in advance to improve the reliability of the data. Then, the data now must be split 

into two parts: a training set and a test set. The training set is used to enhance the 

classification accuracy of cancer diagnosis model, and the test set is used to evaluate the 

accuracy of the model that was trained. 

3. Choosing a model: The next step is choosing a model among the many that researchers 

and data scientists have created over the years. There are three aspects in machine 

learning: regression, classification and clustering. Specifically, regression and 

classification are supervised learning that map an input to an output based on example 

input-output pairs, while clustering is an unsupervised learning. In this thesis, we mainly 

focus on the regression and classification methods. 

4. Regression: Regression is a set of statistical processes used to predict continuous valued 

output. More specifically, regression analysis helps understand how the value of 

dependent variables change when one of the independent variables is varied.  

5. Classification: Conventional classification methods in cancer diagnosis include K-nearest 

neighbors, support vector machines extended from linear classifiers to nonlinear 

classifiers, artificial neural networks that simulate human neurons, and random forests 

based on decision trees. Actual diagnostic data can be used to train different classifiers, 

and test sets can be used to compare the prediction accuracy of different cancer classifiers 

to select the appropriate method, or a combination of different classifiers. 
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6. Training the data: First, determine a particular type of algorithm and define its 

parameters. And then apply this algorithm to your prepared data. Connect both the data 

and the model to train the model.  

7. Evaluation: After the training is complete, we can now use this step to check if is the 

training was accurate. The assessment allows testing of the model against data that has 

never been used for training and this allows for representing the performance of the 

model in the real world. For regression problems, the standard evaluation method is the 

mean square error (MSE) and R squared, which is the average of the squared error of the 

true value of the target variable and the predicted value of the model. For the binary 

classification problem, there are many metrics that can be used to measure the 

performance of a classifier or predictor; different fields have different preferences for 

specific metrics due to different goals. ROC Curves summarize the trade-off between the 

true positive rate and false positive rate for a predictive model using different probability 

thresholds and is appropriate when the observations are balanced between each class. 

8. Parameter tuning: The ultimate goal of tuning is to make the model more accurate. 

Tuning is selecting the best parameters and hyperparameters to optimize the performance 

of the algorithms. 

9. Fit the model:  Finally, the test dataset is used to provide an unbiased evaluation of a final 

model fit on the training dataset. Usually, the cost function?? in the test set is larger than 

training set.  

 

In this thesis, we selected three different machine learning algorithms: Deep learning, Random 

forest and Gradient boosting.  
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1、 Deep learning: A machine learning technique which is widely used in the field of 

biomedicine [18]. This algorithm is considered a “versatile tool” and has many potential 

applications, including biomarker development and new drug discovery.  Due to the various 

types of data in modern biomedical research, deep learning approaches could be the vehicle 

for translating big biomedical data into improved human health [19].  

2、 Random forest:  An ensemble learning method for classification or regression. This 

algorithm is operated by generating multiple decision trees at training time and outputting a 

class (category) or prediction (regression) of the individual tree. This method needs a large 

scale of classifiers, helping to reduce overfitting. In 2017, a random forest algorithm was 

used to predict prostate cancer by three features: prostate-specific antigen, age and 

transrectal ultrasound findings. This method achieved high accuracy (83.1%) and specificity 

(93.83%) [20].  

3、 Gradient boosting machine: An ensemble learning method for regression and classification 

problems. The main idea is that in the iterative process of the traditional boosting algorithm, 

each iteration is based on the residual of the loss function of the previous iteration and fits 

the residual using the direction of the gradient function of the loss function. A large loss 

function indicates that the training model is less adequate, and it is still necessary to continue 

the iteration so that the loss function is continuously decreasing. This method is currently 

considered one of the most effective methods of statistical learning, and together with deep 

learning is considered the direction of future machine learning. 

 

 In this thesis, we applied several different machine learning algorithms to the copy number 

variation (CNV) for the glioblastoma classification and predict the age of glioblastoma patients. 
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Chapter	2	Methods	

2.1 Data collection 

The Cancer Genome Atlas (TCGA) [21] is a collaboration between the National Cancer Institute 

(NCI) and the National Human Genome Research Institute (NHGRI). TCGA generates a 

comprehensive multidimensional map of key genomic changes in 33 cancers. The open-access 

TCGA data includes somatic mutation cells, clinical data, mRNA and miRNA expression, DNA 

methylation and protein expression from 33 different tumor types. The NCI also creates public 

repositories in the Google Cloud Platform —— Google Bigquery [22]. Google Bigquery is a 

web service launched by Google that allows use of familiar Structured Query Language (SQL) 

without the need for a database administrator. In this research, we used the SQL to extract TCGA 

data from Bigquery online datasets.  

 

Firstly, we selected chromosomes and their end positions from 

[TCGA_hg38_data_v0.Copy_Number_Segment_Masked] and [TCGA_bioclin_v0.Biospecimen] 

datasets. The masked copy number variation (CNV) dataset contains all available copy-number 

segmentation information for TCGA samples of 10995 cases. In this case, we selected the end 

position of chromosomes that have additions or deletions (in total 23). The second (TCGA-

bioclin-Biospecimen) dataset contains one row for each TCGA sample (also known as 

biospecimen) of 23979 samples obtained from 11365 unique cases. In this dataset, most cases 

provided two samples: one primary tumor sample and one blood normal sample. As for this 

study, we mainly focused the sample for blood derived normal. In these two datasets, their 
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sample barcodes are the same (e.g. "TCGA-12-1089-01A"), which indicated that the sample is 

from the same patient and extracted in the same way. 

 

2.2 Data cleaning  

After collecting two datasets, we selected general information (project names, gender, age, days-

to-death) and genetic factors among patients (the end position of chromosome, the chromosome 

for the copy number segment and the mean of segment) from Google Bigquery. Next, we 

imported the data into statistical language R. By using the Bigrquery package in R, a new dataset 

was obtained with 205428 observations and 8 variables. Then we used Tidyverse package to 

clean and rearrange the data. There are three principle rules for a tidy dataset:  

(1): Each variable must have its own column.  

(2): Each observation must have its own row. 

(3): Each value must have its own cell. 

 

2.3 H2o.ai and K-fold cross-validation 

After doing all these preparations, we were able to analysis the new dataset with machine-

learning method in h2o.ai. The h2o.ai is an open source for AI programming [23]. By using the 

h2o package in R, we could import our dataset into online h2o platform and run the machine-

learning models.  
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H2O’s AutoML (Automatic machine-learning) is a helpful tool for users with little coding 

experience. AutoML can be used for automating the machine learning workflow, which includes 

automatic training and tuning of many models within a user-specified time-limit. In a regular 

h2o-based modeling example, the dataset is split into two datasets: training set and test set. The 

training set is used for model training with selected hyperparameters and obtains the optimal 

model. We used the test set to evaluate the model. This method can better consider the 

generalized ability of the model. However, the shortcoming is that this method requires a large 

amount of data. The data of cancer patients is often limited, which is an impedance to the model 

accuracy. 

 

The K-fold cross-validation, on the other hand, is an alternative method to make full use of a 

data set. Fig 1 shows the 4-fold cross-validation. The original dataset is randomly partitioned into 

4 subsets with identical-sized data. Of the k=4 subsamples, a single subset is retained as the 

validation data for testing the model and the remaining 3 subsets are used as training data. We 

repeated this procedure 4 times to get the average cost function for the model. This procedure is 

similar to random subsampling. In our study, we set k=5 for training. The accuracy of the cross-

validation is the overall classification rates, which is the average accuracy of each experiment.  
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Figure	1	:	K-fold	cross-validation	procedure	(from	the	slide	of	Texas	A&M	University	

https://www.cs.tau.ac.il/~nin/Courses/NC05/pr_l13.pdf)	

 

In our models, we focused two major problems: one is a regression problem and the other is a 

classification problem.  

(1) : Regression: Using copy number variation data to predict when will the patients develop 

glioblastoma. 

(2) : Classification: Using copy number variation data to predict who will develop 

glioblastoma. 

 

2.4 Simple random sampling 

To better evaluate regression model, we used a simple random sampling method to generate 

randomized data of the age of glioblastoma patients. This is called a control dataset, we expect 

that we cannot predict the age in the control dataset, since it was randomly assigned and does not 

have relevant genetic information. 
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We first filtered 488 patients with glioblastoma from our prepared dataset (8826 patients in 

total). A model with original data was trained by using machine-learning algorithm. To make a 

comparison, we created 4 control groups:  by taking random samples according to the ages of 

without replacement and repeating 3 times. Then we used random sampling data to train models 

with the same copy number variation data and got four models with sampled data.  

 

After that, we used our models to fit the original age and calculated the root-mean-squared error 

(RMSE) of and correlation coefficients of fitting results to evaluate our models. 

  



12	
	

Chapter	3	Results	

The fitted result and randomized result were compared. For all of the models, the gradient 

boosting algorithm achieved best results, indicating that our model could make a prediction of 

the age of glioblastoma patients. We obtained a table of the fitted results in Table 1.  

 

 Actual fit Control1 fit Control2 fit Control3 fit  Control4 fit 

RMSE 13.61 13.72 14.16 14.66 14.29 

Correlation 

coefficients  

0.15 -0.04 -0.03 0.002 -0.0004 

P-value 0.00113 0.653 0.942 0.958 0.959 

	
Table	1	:	Fitting	results:	Actual	age	using	gradient	boosting	machine	model	vs	4	randomized	sampling	using	

gradient	boosting	machine	model	
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Figure	2	:	Fitting	result	obtained	by	Gradient	Boosting	Machine	algorithm	(488	cases),	the	x-axis	is	the	actual	

age	and	the	y-axis	is	the	predicted	age	

 

 

Figure	3	:	The	fitting	result	obtained	by	control	group	1.	We	first	take	a	sample	of	the	age	of	the	Glioblastoma	

patients	without	replacement,	then	use	machine	learning	algorithm	to	create	a	model	and	then	use	the	best	
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model	to	fit	the	age.	The	x-axis	is	the	actual	age	and	the	y-axis	is	the	predicted	age.	The	Figs.	3-6	are	different	

sampling	groups	with	identical	procedure	

 

As Tab 1 shows, the model trained by the actual age has the lowest RMSE, indicating that the 

difference between the predicted age and the real age is relatively small. The correlation 

coefficients for the model trained by the actual age has the largest value compared to the 4 

control tests. We used t-test to compare our model and control groups (p-value = 0.004). The 

scatter plot of the prediction age and the real age is also plotted. The five p-values of our simple 

regression models across different groups are calculated. The x-axis is the actual age of the 

patients and the y-axis is the predicted age of patients. These results suggest that the time when 

the patients are diagnosed with glioblastoma is influenced by genetics.  The fitting results are 

shown in Figs. 3-6. We can see that compared with randomized fitting, the fitting result of 

gradient boosting machine is much better, especially at the range of 55 to 60. 
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Figure	4	:	The	fitting	result	obtained	by	control	group	2.		The	model-fitting	process	is	same	as	Fig	2.	The	x-axis	

is	the	actual	age	and	the	y-axis	is	the	predicted	age	

	

 

Figure	5	:	The	fitting	result	obtained	by	control	group	3	
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Figure	6	:	The	fitting	result	obtained	by	control	group	4	

 

We selected two indices to better tune our classification models: logarithmic loss (log loss) and 

the receiver operator curves (ROC curves). The log loss function is a hyperparameter that 

measures the performance of a classification model where the prediction input is a probability 

value between 0 and 1. The ROC curve is a plot that illustrates the diagnostic ability of 

a classifier system. The false positive rate (1-specificity) is the x-axis and the true positive rate is 

the y-axis (sensitivity). The quality of a classification can be expressed by the area under the 

curve (AUC).  

 

Generally, the AUC of 0.9-1 could be considered as excellent (A), 0.8-0.9 as good (B), 0.7-0.8 as 

fair (C), 0.6-0.7 as poor (D) and below 0.6 is considered as a failure (F). We have also tried other 

algorithms and here are the results. 
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Figure	7	:	The	log	loss	function	of	GBM	(Gradient	Boosting	Machine)	algorithm	

 

 

Figure	8	:	The	log	loss	function	of	DRF	(Distributed	Random	Forest)	algorithm	
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Figure	9	:	The	log	loss	function	of	deep	learning	algorithm	

 
As Figs. 7-9 show, for the gradient boosting machine model, when the number of trees arrived at 

around 30, the log loss function reached the minimum value. As for the DRF model, when the 

log loss function reached its minimum value, the number of trees would be 20. As for the deep 

learning model, we could set the epochs as 120 to minimize the log loss function.  
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Figure	10	:	The	receiver	operator	curves	(ROC)	for	GBM	(Gradient	Boosting	Machine)	algorithm	to	classify	the	

glioblastoma	patients	and	other	patients	(n=	8826).	The	AUC	(the	area	under	the	curve)	=0.82.	An	AUC	of	0.50	

is	random	guess.	An	AUC	of	1.0	is	a	perfect	test	

 

Figure	11	:	The	receiver	operator	curves	(ROC)	for	Deep	Learning	algorithm	to	classify	the	GBM	patients	and	

other	cancer	patients.	The	AUC=0.71	
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Figure	12	:	The	receiver	operator	curves	(ROC)	for	DRF	(Distributed	Random	Forest)	algorithm	to	classify	the	

GBM	patients	and	other	cancer	patients.	The	AUC=0.80	

 
As the Figs. 10-12 show, the gradient boosting machine has the highest AUC (0.82), while the 

AUC of the DRF model reaches at 0.80, and the Deep learning model behaves worst 

(AUC=0.71). All of the results tell us that the majority of glioblastoma patients have acquired 

cancer due to the inherited factor.  

 

We also applied gradient boosting machine algorithm into male groups and female groups. The 

age fitting results are shown as Figs. 13-14. The correlation coefficients between predicted age 

and actual age are 0.11 and 0.05 respectively, indicating that separating genders cannot improve 

the accuracy of our regression models.  



21	
	

 

Figure	13	:	Fitting	result	obtained	by	GBM	(Gradient	Boosting	Machine)	algorithm	among	male	groups	(n	=	

299),	the	x-axis	is	the	actual	age	and	the	y-axis	is	the	predicted	age	

 

 

Figure	14	:	Fitting	result	obtained	by	GBM	(Gradient	Boosting	Machine)	algorithm	among	female	groups	(n	=	

189),	the	x-axis	is	the	actual	age	and	the	y-axis	is	the	predicted	age	



22	
	

 

 

For female patients, the classification result is more accurate than male groups (AUC = 0.92 vs 

AUC = 0.80). This might due to the reason of the different chromosome variances across males 

and females. The Figs. 15-18 showed our results. In the male groups, the three most important 

copy number variations located in the X, 2 and 10 chromosomes, while for the females, the most 

important copy number located in the 2,3 and 8 chromosomes.   

 

Figure	15	:	The	receiver	operator	curves	(ROC)	for	GBM	(Gradient	Boosting	Machine)	algorithm	to	classify	the	

glioblastoma	patients	and	other	patients	across	females	(n	=	4692)	
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Figure	16	:	The	receiver	operator	curves	(ROC)	for	GBM	(Gradient	Boosting	Machine)	algorithm	to	classify	the	

glioblastoma	patients	and	other	patients	across	males	(n	=	4134)	

 

 

Figure	17	:	The	variance	importance	of	females	in	gradient	boosting	machine	algorithm,	the	x-axis	is	the	

coefficients	and	the	y-axis	is	the	CNV	location.	The	larger	the	coefficients,	the	larger	the	variance	

importance	
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Figure	18	:	The	variance	importance	of	males	in	gradient	boosting	machine	algorithm,	the	x-axis	is	the	

coefficients	and	the	y-axis	is	the	CNV	location.	The	larger	the	coefficients,	the	larger	the	variance	

importance	
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Chapter	4	Discussion	

Despite the availability of large datasets, the hypothesis that CNV influences the cancer risk in 

the population has not been systematically evaluated. Recently, Zhang et al. implemented an 

ensemble learning method to detect and genotype CNV and achieved a higher sensitivity. This 

provided a new direction to investigate the contribution of CNVs to human disease [24].  In our 

study, we	tested	whether	CNV	information	could	predict	who	will	develop	GBM	and	when	

will	they	develop	it. 

 

A confusion matrix is a table that is commonly used to describe the performance of a 

classification model (or "classifier") over a set of test data, where the true value is known. In 

cross-validation metrics, there are 373 glioblastomas patients and 6698 patients with other cancer 

type (labeled as “normal”). In this confusion matrix, we can see clearly that our accuracy for the 

detection of the glioblastoma patients is very high, indicating that the majority of the 

glioblastoma can be explained by genetic factors. Explanation is better in female groups 

compared to male groups (AUC = 0.92 vs AUC = 0.80). 

 

 Predict (GBM) Predict (Normal) Recall 

Actual (GBM) 28 345 0.97 

Actual (Normal) 1 6697 0.95 

Precision 0.08 1.0  

	

Table	2	:	Cross-validation	metrics	of	confusion	matrix	
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Figure	19	:	The	age	distribution	of	glioblastoma	patients	across	male	and	female,	the	dotted	line	is	female	

group	and	the	dashed	line	is	male	group.	

 

In our dataset, we find that the median age of glioblastoma patients is 59 and the mean age is 58. 

The age distribution is shown as Fig 19. Among male patients, the median age is 59 and the 

mean age is 58.5 and among female patients, the median age is 59 and the mean age is 57 (p-

value=0.546 using Wilcoxon test), indicating that the age distribution is similar among males and 

females. The median survival for the patients under 45 is 20.8 months and the patients above 45 
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has the median survival of 12.4 months. However, for the elderly patients, their median survival 

is 6.3 months. As for the males, the median survival is 12.9 months and the median survival of 

female is 13.8 months. We use the Wilcoxon test to determine the difference of their mean. The 

p-value is 0.2333, which indicates that the median survival rate is similar among male and 

female groups. We also tried to predict age with separating gender groups. The correlation 

coefficients are 0.11 (in female) and 0.05 (in male), and p-values of simple regression models are 

0.24 and 0.35, respectively. This tells us that genders do not play a key role in the incidence age 

of glioblastoma, which agrees with a previous study [25]. 

 

In conclusion, the glioblastoma patients are mainly due to the genetics factors and their incidence 

ages are also influenced by those factors. Our gradient boosting machine method gets a good 

fitting result compared to the random sampling. However, this result could only predict a small 

range of ages and is not medically useful. This is possibly due to the limited scale of data. With 

more collected CNV data in the future, the predicted precision will be more accurate.   
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